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Abstract. There is a rich theory of so-called (strict) nearly Kähler manifolds, almost-
Hermitian manifolds generalising the famous almost complex structure on the 6–sphere in-
duced by octonionic multiplication. Nearly Kähler 6–manifolds play a distinguished role both
in the general structure theory and also because of their connection with singular spaces with
holonomy group the compact exceptional Lie group G2: the metric cone over a Riemannian
6–manifold M has holonomy contained in G2 if and only if M is a nearly Kähler 6–manifold.

A central problem in the field has been the absence of any complete inhomogeneous exam-
ples. We prove the existence of the first complete inhomogeneous nearly Kähler 6–manifolds
by proving the existence of at least one cohomogeneity one nearly Kähler structure on the 6–
sphere and on the product of a pair of 3–spheres. We conjecture that these are the only simply
connected (inhomogeneous) cohomogeneity one nearly Kähler structures in six dimensions.

1. Introduction

At least since the early 1950s (see Steenrod’s 1951 book [45, 41.22]) it has been well known
that viewing S6 as the unit sphere in ImO endows it with a natural nonintegrable almost
complex structure J defined via octonionic multiplication. Since J is compatible with the round
metric grd, the triple (grd, J, ω), where ω(·, ·) = grd(J ·, ·), defines an almost-Hermitian structure
on S6. Its torsion has very special properties: in particular, dω is the real part of a complex
volume form Ω. Appropriately normalised, the pair (ω,Ω) defines an SU(3)–structure on S6

which by construction is invariant under the exceptional compact Lie group G2 ' Aut(O).
Octonionic multiplication also defines a G2–invariant 3–form ϕ on ImO by

ϕ(u, v, w) = uv · w.

We call this the standard G2–structure on R7. Regarding R7 as the Riemannian cone over
(S6, grd), ϕ and its Hodge dual are given in terms of (ω,Ω):

(1.1) ϕ = r2dr ∧ ω + r3 Re Ω, ∗ϕ = −r3dr ∧ Im Ω + 1
2r

4ω2.

Conversely, viewing S6 as the level set r = 1 in R7, the SU(3)–structure (ω,Ω) is recovered
from ϕ and ∗ϕ by restriction and contraction by the scaling vector field ∂

∂r .
More generally, consider a 7–dimensional Riemannian cone C = C(M) over a smooth com-

pact manifold (M6, g). Suppose that the holonomy of the cone is contained in G2. Then there
exists a pair of closed (in fact parallel) differential forms ϕ and ∗ϕ, pointwise equivalent to
the model forms on R7 and homogeneous with respect to scalings on C. Just as above, view-
ing M as the level set r = 1 in C, the restriction and contraction by ∂

∂r of ϕ and ∗ϕ define
an SU(3)–structure (ω,Ω) on M satisfying (1.1). In particular, the closedness of ϕ and ∗ϕ is
equivalent to

(1.2)

{
dω = 3 Re Ω,

d Im Ω = −2ω2.
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2 L. FOSCOLO AND M. HASKINS

Definition 1.3. A nearly Kähler 6–manifold is a manifoldM6 endowed with an SU(3)–structure
(ω,Ω) satisfying (1.2). We call (1.2) the nearly Kähler structure equations.

There are other possible equivalent definitions of a nearly Kähler 6–manifold. By relating
the holonomy reduction of the cone C(M) to the existence of a parallel spinor instead of a
pair of distinguished parallel forms, nearly Kähler 6–manifolds can be characterised as those
6–manifolds admitting a real Killing spinor [34]. Alternatively, one could give a definition
in terms of Gray–Hervella torsion classes of almost Hermitian manifolds [33]. Our definition
corresponds then to what are usually called strict nearly Kähler 6–manifolds, to distinguish
them from Kähler manifolds which, having vanishing torsion, belong to every torsion class.

Remark. The latter point of view allows one to define nearly Kähler manifolds in every even
dimension. See [10, §14.3.2] for some references and an early history of the subject, includ-
ing early lesser known contributions from the Japanese school before the terminology nearly
Kähler had been adopted. Even in this more general context, nearly Kähler 6–manifolds play
a distinguished role, see [39, Theorem 1.1].

Since every manifold with holonomy contained in G2 is Ricci-flat, nearly Kähler 6–manifolds
are necessarily Einstein with scalar curvature 30 (in fact, Gray proved this fact before the
connection with G2 holonomy had been noticed [32, Theorem 5.2]). In particular, a complete
nearly Kähler 6–manifold is compact with finite fundamental group and its universal cover is
also a complete nearly Kähler manifold. In the rest of the paper we will therefore restrict to
the case of simply connected nearly Kähler 6–manifolds.

Besides the G2–invariant nearly Kähler structure on the 6–sphere S6 = G2/SU(3), there
are only three known examples of complete simply connected nearly Kähler 6–manifolds, all
of which are homogeneous: S3 × S3 = SU(2)3/4SU(2), CP 3 = Sp(2)/U(1) × Sp(1) and the
flag manifold F3 = SU(3)/T 2. They were first constructed in 1968 by Gray and Wolf [48]
in their work on 3–symmetric spaces (which also yielded many homogeneous nearly Kähler
manifolds in higher dimensions). Recently Cortés–Vásquez [24] have constructed and partially
classified locally homogeneous nearly Kähler 6–manifolds by considering finite quotients of
these homogeneous nearly Kähler structures.

Although as early as 1958 Calabi [16] exploited the fact that any oriented hypersurface of R7

admits an SU(3)–structure thanks to the inclusion SU(3) ⊂ G2, the connection between nearly
Kähler geometry in 6 dimensions and G2 holonomy that we have emphasised seems to have
been noticed only in the 1980s; the homogeneous nearly Kähler 6–manifolds described above
then played an important role in the early development of metrics with holonomy G2. The first
explicit example of a local metric with full holonomy G2 given by Bryant in [12, Section 5] is
the G2–cone over the flag manifold F3; this appears to be the first appearance of the nearly
Kähler equations (1.2). Furthermore, the first examples of complete G2–metrics constructed
by Bryant–Salamon [14] are asymptotically conical manifolds modelled at infinity on the cones
over nearly Kähler S3×S3, CP 3 and F3. In each case, Bryant–Salamon construct a 1–parameter
family of (cohomogeneity one) complete metrics with holonomy G2 on the total space of a
vector bundle over S3, S4 and CP 2, respectively. The parameter measures the size of the zero
section and as it goes to zero the manifold develops an isolated singularity and converges in
the Gromov–Hausdorff sense to the corresponding G2–cone.

The behaviour of these solutions exemplifies the reason for the interest in nearly Kähler
6–manifolds from the point of view of G2 geometry: Riemannian cones over 6–dimensional
nearly Kähler manifolds and complete metrics with holonomy G2 asymptotic to them provide
local models for the simplest type of singularities and for singularity formation in families of
smooth G2–manifolds.
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The obvious natural question now is whether there are any other nearly Kähler 6–manifolds.
Thanks to the recent work of Butruille [15], no such manifold can be homogeneous. The local
existence of nearly Kähler structures in dimension 6 was studied by Reyes Carrion [42, §4.5] and
later by Bryant [13], in both cases using Cartan–Kähler theory; the conclusion is that nearly
Kähler structures have the same local generality as Calabi–Yau structures and, in particular,
there are many local inhomogeneous nearly Kähler structures. The outstanding question is
therefore to find new complete examples.

An apparently promising source of nearly Kähler manifolds of any dimension is that of
twistor spaces of quaternionic Kähler manifolds with positive scalar curvature [43]. In 6 di-
mensions the connection with nearly Kähler geometry was first noticed by Eells–Salamon [25]
(later generalised to higher dimensions in [3]). Unfortunately, while this construction provides
many incomplete examples, eg starting from quaternionic Kähler orbifolds, so far the only
complete examples it has yielded are homogeneous. By a result of Hitchin [35] the only quater-
nionic Kähler (equivalently, self-dual Einstein) 4–manifolds with positive scalar curvature are
S4 and CP 2 endowed with their standard metrics, in which case the nearly Kähler structures
on the twistor spaces coincide with the homogeneous ones on CP 3 and F3, respectively. In
higher dimensions the only known quaternionic Kähler manifolds with positive scalar curvature
are Wolf’s quaternionic symmetric spaces [47]; an influential conjecture of LeBrun–Salamon
[37], known to hold up to dimension 8, asserts the non-existence of inhomogeneous examples.

On the other hand, the scarcity of nearly Kähler 6–manifolds, or equivalently of G2–holonomy
cones, is surprising when compared to geometries related to other special holonomy groups:
there are infinitely many Calabi–Yau cones [44] and infinitely many hyperkähler and Spin(7)–
cones [10, §13.7, §14.3]. Indeed, in this paper we show that complete nearly Kähler 6–manifolds
need not be homogeneous.

Main Theorem. There exists an inhomogeneous nearly Kähler structure on S6 and S3×S3.

There are two very natural approaches to attempt to construct nearly Kähler 6–manifolds.
On the one hand, from the perspective of symmetries, the next step beyond the homogeneous
setting would be to consider cohomogeneity one nearly Kähler 6–manifolds, ie those that
admit an isometric action by a compact Lie group whose generic orbit is of codimension one.
A completely different starting point would be to exploit the existence of a large number of
6–dimensional singular nearly Kähler spaces and to attempt to produce smooth nearly Kähler
manifolds from these by singular perturbation methods. As we will explain, both points of
view will play an important role in the proof of the Main Theorem.

Apart from orbifolds, the simplest singular Einstein spaces with positive scalar curvature are
those obtained by the sine-cone construction (also called spherical suspension): given a smooth
compact Einstein manifold (N, gN ) with positive scalar curvature appropriately normalised, the
sine-cone SC(N) over N is the product [0, π]×N endowed with the metric gsc = dr2+sin2 r gN .
This has two isolated singularities at r = 0 and π modelled on the cone over N . The sine-
cone construction has a very simple geometric interpretation in terms of cones: the cone over
SC(N) is Ricci-flat and is isometric to the product of the Ricci-flat metric cone C(N) over N
and the real line. Specialising to seven dimensions, the further requirement that the holonomy
of the cone over SC(N) be contained in G2 forces C(N) to be a 6–dimensional Calabi–Yau
cone. The induced geometric structure on the cross-section N , analogous to the nearly Kähler
condition for a G2–cone, is called a Sasaki–Einstein structure. Hence the existence of infinitely
many Sasaki–Einstein 5–manifolds, see for example [44], yields infinitely many 6–dimensional
nearly Kähler sine-cones.
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Not every nearly Kähler sine-cone is a good starting point for constructing smooth nearly
Kähler 6–manifolds via the desingularisation method. From the viewpoint of singular pertur-
bation methods it is natural to consider only Calabi–Yau cones that admit asymptotically
conical Calabi–Yau desingularisations. Many such examples are now known [19]. The simplest
such cone is the conifold, which is well known to admit two Calabi–Yau desingularisations: the
Candelas–de la Ossa structure on the small resolution [17] and the structure on the smoothing
due to Candelas–de la Ossa and Stenzel [17,46]. The Calabi–Yau structures on the conifold itself
and on both of its desingularisations are cohomogeneity one. The group acting is SU(2)×SU(2)
and the generic (principal) orbit is diffeomorphic to SU(2) × SU(2)/4U(1) ' S2 × S3 in all
three cases. The singularity of the conifold is replaced by a round totally geodesic holomorphic
S2 in the small resolution and by a round totally geodesic special Lagrangian S3 in the smooth-
ing. In both cases these totally geodesic spheres are the unique lower-dimensional (singular)
orbits.

The cross-section of the conifold is S2 × S3 endowed with its homogeneous Sasaki–Einstein
structure. The sine-cone over it is a cohomogeneity one nearly Kähler space with two isolated
singularities modelled on the conifold. One could try to construct an approximate solution
to (1.2) on manifolds obtained by gluing rescaled copies of either desingularisation of the
conifold into neighbourhoods of each singular point. Since both the singular background and
the “bubbles” we glue in are of cohomogeneity one, this raises the question of whether complete
cohomogeneity one nearly Kähler structures exist on such manifolds.

Podestà and Spiro initiated the study of cohomogeneity one nearly Kähler 6–manifolds. In
[40] they classified the possible group actions, principal and singular orbits and diffeomorphism-
types of complete simply connected cohomogeneity one nearly Kähler 6–manifolds. In fact, the
only case of possible interest is exactly the case described above: the principal orbit type is
SU(2)×SU(2)/4U(1); there are two singular orbits, which are spheres of either 2 or 3 dimen-
sions; the compact 6–manifold is obtained by identifying neighbourhoods of the two singular
orbits along their boundary S2 × S3; these neighbourhoods are SU(2) × SU(2)–equivariantly
diffeomorphic to the small resolution or to the smoothing of the conifold; the four resulting
manifolds are S6, S3 × S3, CP 3 and S2 × S4. In a second paper [41] they studied this case
in more detail, but were unable to establish the existence of new complete nearly Kähler
structures.

The nearly Kähler structures on S6 and S3×S3 that we construct in the Main Theorem are
of cohomogeneity one and in fact we conjecture these are the unique (inhomogeneous) complete
cohomogeneity one nearly Kähler 6–manifolds. In particular, we conjecture that S2×S4 carries
no cohomogeneity one nearly Kähler structure and CP 3 only its homogeneous one.

In the rest of the Introduction we give the plan of the paper, which serves at the same
time as a detailed outline of the proof of the Main Theorem. The techniques we use in the
paper are cohomogeneity one methods. Unlike the construction of, say, cohomogeneity one
Sasaki–Einstein metrics [21, 30] we do not find explicit closed-form expressions for our new
nearly Kähler structures and in this sense the theorem is an abstract existence result (see
however the final section of the paper). Instead the paper is more in the spirit of Böhm [8,9].
The desingularisation intuition, however, provides crucial geometric insight when applying
the cohomogeneity one methods, in particular in the consideration of certain geometrically-
motivated singular limits and rescalings.

Plan of the paper. In the same way that an oriented hypersurface of a 7–manifold with a
G2–structure admits an induced SU(3)–structure, any oriented hypersurface of a 6–manifold
endowed with an SU(3)–structure (ω,Ω) comes naturally equipped with an SU(2)–structure.
When (ω,Ω) satisfies differential equations such as (1.2), so does the induced SU(2)–structure.
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The SU(2)–structures induced on oriented hypersurfaces of Calabi–Yau and nearly Kähler
6–manifolds are called hypo and nearly hypo structures, respectively. In the spirit of Hitchin
[36], away from the singular orbits we regard a cohomogeneity one nearly Kähler (Calabi–Yau)
6–manifold as a curve in the space of invariant nearly hypo (hypo) structures on the principal
orbit. This curve must satisfy a system of first order ODEs.

In Section 2 we parametrise the space of nearly hypo structures on S2×S3 invariant under
SU(2) × SU(2), showing that it is a smooth connected 4–manifold. In Section 3 we derive
the ODE system (3.10) whose solutions are cohomogeneity one nearly Kähler structures. We
note the existence of continuous and discrete symmetries of this system; the latter will play
an important role in the proof of the Main Theorem. Up to the action of these symmetries,
we find a 2–parameter family of SU(2) × SU(2)–invariant cohomogeneity one nearly Kähler
structures on the product of some interval with S2 × S3. This gives an alternative more
geometric derivation of results contained in [41]. We have been unable to find a closed form for
the general solution of these ODEs, but there are four explicit solutions which correspond to
the homogeneous nearly Kähler structures on S6, CP 3 and S3 × S3 and to the sine-cone over
the invariant Sasaki–Einstein structure on S2 × S3. The latter two play a role in the proof of
the Main Theorem.

The generic solution in this 2–parameter family does not extend to a complete nearly Kähler
structure on a closed 6–manifold. In Section 4 we understand necessary conditions for such
an extension to be possible. Based on the desingularisation philosophy, close to the sine-
cone we might expect to find two 1–parameter families of local cohomogeneity one smooth
nearly Kähler structures modelled on the two different Calabi–Yau desingularisations of the
conifold. We prove that this is indeed the case; the proof consists of two steps. In Section 4,
studying singular initial value problems for the ODE system (3.10), we prove the existence
of two 1–parameter families of solutions {Ψa}a>0 and {Ψb}b>0 that extend smoothly over a
singular orbit S2 or S3, respectively. In both cases the parameter a or b measures the size
of the singular orbit, but, unlike the Calabi–Yau case, the parameter does not arise from
an overall rescaling and instead represents a nontrivial deformation. Any cohomogeneity one
nearly Kähler structure that extends to a complete manifold must belong to (at least) one
of these families. In the first part of Section 6 we then confirm the expectation that these
families are nearly Kähler deformations of the Calabi–Yau desingularisations of the conifold.
More precisely, in the limit where the size of the singular orbit tends to zero, suitably rescaled,
Ψa and Ψb converge to the Calabi–Yau structures on the small resolution and the smoothing,
respectively.

Since any complete cohomogeneity one nearly Kähler manifold has two singular orbits, it
would necessarily contain a (unique) principal orbit of maximal volume. This gives a further
necessary condition for a member of {Ψa}a>0 or {Ψb}b>0 to admit a smooth nearly Kähler
completion. The space of invariant nearly hypo structures on S2 × S3 that could potentially
arise as such a maximal volume orbit is a smooth submanifold of codimension 1 in the space of
all invariant nearly hypo structures. The main result of Section 5 is that in fact every member
of both families {Ψa}a>0, {Ψb}b>0 admits a unique maximal volume orbit. The proof of this
uses a continuity argument relying on a compactness result for the space of maximal volume
orbits with a given upper bound on volume. The discrete symmetries of the ODE system
(3.10) play an important role in the matching construction described below. To this end we
also determine the fixed locus of these symmetries in the space of maximal volume orbits.

The existence of maximal volume orbits now becomes a tool to detect which solutions in the
families {Ψa}a>0, {Ψb}b>0 extend to a complete cohomogeneity one nearly Kähler structure.
Topologically the resulting closed 6–manifold is described as the union of neighbourhooods of
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the two singular orbits identified along their boundary. Hence we consider pairs of solutions in
the two 1–parameter families and try to match them across a principal orbit using the discrete
symmetries of the ODE system (3.10). The maximal volume orbit provides a geometrically
preferred slice to carry out this “gluing”. The necessary matching conditions are stated in
the Doubling and Matching Lemmas 5.19 and 5.20 at the end of Section 5. These are best
formulated in terms of two continuous curves α and β parametrising the maximal volume orbits
of {Ψa}a>0 and {Ψb}b>0, respectively. Complete cohomogeneity one nearly Kähler manifolds
are in one-to-one correspondence with intersection points of the two curves, self-intersection
points of either curve and points on the curves lying in the fixed locus of the discrete symmetries
in the space of invariant maximal volume orbits. The diffeomorphism type of the corresponding
closed cohomogenity one nearly Kähler 6–manifold is determined by the pair of singular orbits
and the discrete symmetry used to identify the pair of solutions to (3.10) across their maximal
volume orbit.

The proof of the Main Theorem is now reduced to the problem of describing the behaviour of
the curves α and β. The explicit solutions to (3.10) corresponding to the homogeneous nearly
Kähler structure on S6, CP 3 and S3× S3 already yield distinguished points on the curves. In
Section 6 we describe the limit of α and β for small values of the parameter: as expected from
the desingularisation philosophy, Ψa and Ψb converge to the sine-cone as a and b tend to zero.
The proof of this fact makes use of a functional B introduced by Böhm in [9] as a Lyapunov
function for the ODE system describing cohomogeneity one Einstein metrics. Since the space of
invariant metrics in our setting does not reduce to relative rescalings along distinct subspaces
(there are isomorphic components in the isotropy representation of the principal orbit and
therefore “non-diagonal” terms in the metric), it is not clear that B is a Lyapunov function
for the system (3.10). However, we establish that the functional B restricted to the space
of invariant maximal volume orbits has an absolute minimum at the homogeneous Sasaki–
Einstein structure on S2 × S3. This is enough to establish the convergence of Ψa and Ψb to
the sine-cone as a and b tend to zero using the convergence of the bubbles to the Calabi–Yau
desingularisations we have already proved.

Using a comparison argument for solutions of Sturm–Liouville equations, in Section 7 we
compare Ψa and Ψb for small a and b with a solution of the linearisation of (1.2) on the
sine-cone. This comparison argument yields enough information on the curve β to prove the
existence of the complete nearly Kähler structure on S3×S3 given in the Main Theorem. The
fact that this is inhomogeneous follows from a curvature computation.

The existence of at least two complete cohomogeneity one nearly Kähler structures on S3×S3

has the following consequence: an arc of the curve β together with its image under the discrete
symmetries form the boundary of a bounded region in the space of invariant maximal volume
orbits containing the homogeneous Sasaki–Einstein structure on S2 × S3. By the convergence
of Ψa to the sine-cone as a → 0, the curve α starts inside this region. In Section 8 we prove
that α is unbounded as the parameter a→∞. The proof is based on a less geometric ad hoc
rescaling argument suggested by the actual shape of the Taylor series of Ψa. We conclude that
up to discrete symmetries the curves α and β must intersect in at least two points; one of
these corresponds to the homogeneous nearly Kähler structure on S6. The second intersection
point yields a complete cohomogeneity one nearly Kähler structure on S6 which is shown to
be inhomogeneous by a curvature computation.

The proof of the Main Theorem is now complete. In fact we conjecture that the theorem
yields all (inhomogeneous) complete cohomogeneity one nearly Kähler structures. In Section
9 we provide some numerical evidence for this conjecture and some further information about
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the new complete cohomogeneity one solutions that we have obtained as part of a systematic
numerical study.

The authors would like to thank Bobby Acharya, Robert Bryant, Simon Donaldson, Hans-
Joachim Hein, David Morris, Johannes Nordström and Simon Salamon for stimulating discus-
sions related to this paper. They would also like to thank Ron Stern for raising the possibil-
ity that S2 × S4 could arise as a cohomogeneity one SU(2) × SU(2)–invariant nearly Kähler
6–manifold. MH would like to thank EPSRC for their continuing support of his research under
Leadership Fellowship EP/G007241/1 and his Developing Leaders Grant EP/L001527/1. MH
would also like to thank the Simons Center for Geometry and Physics at Stony Brook for
hosting him several times, particularly for his long visit during Summer 2014.

2. Cohomogeneity one SU(3)–structures and homogeneous SU(2)–structures

As explained in the Introduction we adopt Hitchin’s approach in our study of cohomogene-
ity one nearly Kähler 6–manifolds, ie we concentrate on the geometry induced on (invari-
ant) hypersurfaces. In the context of 6–manifolds with an SU(3)–structure this approach has
been pursued by Conti and Salamon [23] and by Fernandez et al [28] in the Calabi–Yau and
nearly Kähler settings, respectively. This section thus starts by recalling the basic definitions
of SU(2)–structures concentrating on those that arise as hypersurfaces in Calabi–Yau and
nearly Kähler 6–manifolds: hypo and nearly hypo structures respectively. For applications to
the construction of complete compact cohomogeneity one nearly Kähler 6–manifolds it follows
from the results of Podestà and Spiro [40] (recalled in more detail at the beginning of Section
3) that the only interesting case is that of nearly hypo structures on S2 × S3 invariant under
the action of SU(2) × SU(2) with isotropy group ∆U(1). The main results of the section are
therefore those about SU(2) × SU(2)–invariant nearly hypo structures on S2 × S3, especially
Proposition 2.41, and related results about invariant hypo structures (Proposition 2.23 and
Theorem 2.27).

Hypersurfaces of 6–manifolds with an SU(3)–structure. We recall from Conti–Salamon
[23, §1] some basic facts about the geometry of orientable hypersurfaces of a 6–manifold en-
dowed with an SU(3)–structure.

Let M6 be a 6–manifold endowed with an SU(3)–structure (ω,Ω). An orientable hypersur-
face N5 ↪→ M is naturally endowed with an SU(2)–structure, ie an SU(2)–reduction of the
frame bundle of N . This is equivalent to the existence of a quadruple (η, ω1, ω1, ω3) where η is
a nowhere-vanishing 1–form and ωi are 2–forms on N satisfying

(i) ωi ∧ ωj = δijv, where v is a fixed 4–form such that η ∧ v 6= 0;
(ii) Xyω1 = Y yω2 ⇒ ω3(X,Y ) ≥ 0.

The quadruple (η, ω1, ω2, ω3) is given in terms of the SU(3)–structure (ω,Ω) and the unit
normal ν to N via

(2.1) η = −νyω, ω1 = ω|N , ω2 + iω3 = −iνyΩ.

Conversely, given an SU(2)–structure on N we can define an SU(3)–structure (ω,Ω) on N ×R
by

ω = ω1 + η ∧ dt, Ω = (ω2 + iω3) ∧ (η + idt),

where t is a coordinate on R.
Since SU(2) < SO(4) = SU(2)+ ·SU(2)− < SO(5) there is a unique metric g and orientation

on N compatible with any SU(2)–structure. At each point x ∈ N the nowhere-zero 1–form η
defines a splitting TxN ' R ⊕ ker ηx. The metric g and orientation on N determine a metric
and orientation on the 4–plane field H := ker η and hence the space of “horizontal” 2–forms
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Λ2H∗ splits as a direct sum of self-dual and anti-self-dual horizontal forms: Λ2H∗ = Λ+⊕Λ−.
A triple (ω1, ω2, ω3) satisfying (i) determines a trivialisation of Λ+ and therefore a reduction of
the structure group from SO(4) = SU(2)+ · SU(2)− to SU(2)−. In fact, we can always assume
that (ω1, ω2, ω3) is an oriented basis of Λ+ with respect to the natural orientation induced
from the orientation of ker η; this gives condition (ii) above.

Remark 2.2. For future reference we make the elementary observations that if (η, ω1, ω2, ω3)
is an SU(2)–structure on N then so are the quadruples

τ1(η, ω1, ω2, ω3) := (−η, ω1,−ω2,−ω3),(2.3a)

and

τ2(η, ω1, ω2, ω3) := (−η,−ω1, ω2,−ω3).(2.3b)

The involutions τ1 and τ2 have the following interpretations at the level of SU(3)–structures.
First note that if (ω,Ω) is an SU(3)–structure then so is (−ω,−Ω). Given an oriented hypersur-
face (N, ν) of the SU(3)–manifold (M,ω,Ω) besides the SU(2)–structure (η, ω1, ω2, ω3) defined
by (2.1) we can consider two alternative SU(2)–structures on N : one in which we endow N with
the opposite orientation −ν and M with its original SU(3)–structure and the other in which
we endow N with its original orientation ν and M with the SU(3)–structure (−ω,−Ω). Notice
however that both symmetries change the orientation of the hypersurface N ⊂ M . Indeed,
in the latter case changing ω into −ω changes the orientation on M and therefore, since ν is
kept fixed, the one on N . Using (2.1) we see that these two SU(2)–structures differ from the
original one by the action of the involutions τ1 and τ2 respectively. All three SU(2)–structures
clearly induce the same Riemannian metric on N .

Remark 2.4. Conti–Salamon also explain how to understand SU(2)–structures on 5–manifolds
in terms of spin geometry. Underlying this is the low dimensional isomorphism Spin(5) ∼=
Sp(2) and the fact that the spinor representation of Spin(5) is isomorphic to the fundamental
representation of Sp(2) on H2. Hence the isotropy subgroup of a nonzero spinor ψ in five
dimensions is isomorphic to Sp(1) ∼= SU(2). It follows that an SU(2)–structure on a 5–manifold
N is equivalent to the choice of a spin structure on N and a unit spinor. Further aspects of
the geometry of SU(2)–structures, including their intrinsic torsion also have formulations in
terms of spin geometry. In this paper we find it most convenient to phrase everything in terms
of differential forms rather than spinors. However sometimes for a compact notation it will
be convenient to refer to an SU(2)–structure on a 5–manifold N by ψ, the corresponding
SU(3)–structure on N × R by Ψ and the restriction of Ψ to N × {t} by ψt.

Conical SU(3)–structures. We will be interested in conical, asymptotically conical and con-
ically singular SU(3)–structures, mainly those of Calabi–Yau or nearly Kähler type. Con-
sideration of conical Calabi–Yau structures leads us to the first important special class of
SU(2)–structures: Sasaki–Einstein structures.

The (smooth) metric cone C(N) over a smooth Riemannian manifold (N, gN ) is the non-
compact manifold R+×N endowed with the incomplete Riemannian metric gC = dr2 + r2gN ,
where r > 0 denotes the (radial) coordinate on R+. Smooth metric cones provide the local
models for the simplest isolated singularities of Riemannian metrics. Any smooth metric cone
C(N) admits a 1–parameter family of dilations preserving the cone metric gC . If N possesses
additional geometric structure, eg a G–structure, we can make the additional demand that the
1–parameter family of dilations of the metric cone C(N) act on the extra geometric structure
in the obvious way.
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Motivated by this, given an SU(2)–structure (η, ωi) on a 5–manifold N we define a conical
SU(3)–structure on C(N) via

(2.5) ωC = rη ∧ dr + r2ω1, ΩC = r2(ω2 + iω3) ∧ (rη + idr).

The metric induced by the conical SU(3)–structure (ωC ,ΩC) is the cone metric gC associated
with the Riemannian metric gN induced by the SU(2)–structure on N .

Definition 2.6. An SU(2)–structure (η, ω1, ω2, ω3) on a 5–manifoldN is called Sasaki–Einstein
if it satisfies

(2.7) dη = −2ω1, dω2 = 3η ∧ ω3, dω3 = −3η ∧ ω2.

Equation (2.7) is equivalent to requiring that the conical SU(3)–structure defined by (2.5) be
Calabi–Yau, ie dωC = dΩC = 0.

Remark. The involution τ2 defined in (2.3b) preserves the Sasaki–Einstein equations while the
involution τ1 defined in (2.3a) reverses the signs in all three equations in (2.7). Furthermore,
the complex 2–form ω2 + iω3 can be multiplied by any complex number of unit norm while
preserving (2.7). In other words, (ωC , e

iθΩC) for eiθ ∈ S1 define different conical Calabi-Yau
structures on C(N) inducing the same cone metric.

SU(2)× SU(2)–invariant SU(2)–structures on S2 × S3. Consider now a (not necessarily
complete or compact) 6–manifold M with an SU(3)–structure preserved by a cohomogene-
ity one isometric action of a compact Lie group G. For reasons explained at the beginning
of Section 3, we will assume G = SU(2) × SU(2) and that a dense open set M∗ ⊂ M
is diffeomorphic to the product of an interval with the 5–dimensional homogeneous space
N1,1 = SU(2)×SU(2)/4U(1) ' S2×S3. In the spirit of Hitchin’s work [36], we will regard the
SU(3)–structure on M∗ as a 1–parameter family of SU(2)–structures on N1,1 invariant under
the action of SU(2)× SU(2).

Fix a basis H,E, V of su(2) with Lie brackets

[H,E] = V, [H,V ] = −E, [E, V ] = 1
2H.

Let U+ = (H,H) be the generator of the Lie algebra of ∆U(1). The vectors

(2.8) U− = (H,−H), E1 = (E, 0), E2 = (0, E), V1 = (V, 0), V2 = (0, V ),

on su(2) ⊕ su(2) define left-invariant vector fields on N1,1. Let u−, e1, e2, v1, v2 be the corre-
sponding co-frame.

There is a distinguished SU(2) × SU(2)–invariant SU(2)–structure on N1,1: the Sasaki–
Einstein structure on S2 × S3 that gives rise to the conical Calabi–Yau metric on the conifold
{z2

1 + z2
2 + z2

3 + z2
4 = 0}. In terms of the above basis the standard Sasaki–Einstein structure

on N1,1 is
(2.9)

ηse =
2

3
u−, ωse

1 =
1

12
(e1∧v1−e2∧v2), ωse

2 =
1

12
(e1∧v2+e2∧v1), ωse

3 =
1

12
(e1∧e2+v1∧v2).

Observe that (2.7) are not scale-invariant, so the numerical factors here are forced on us once
we fix a basis of su(2).

There is in fact a circle of invariant Sasaki–Einstein structures inducing the same metric
due to the freedom of changing the phase of the complex 2–form ωse

2 + iωse
3 . These are all

equivalent because the flow of the Reeb vector field U− preserves ηse and ωse
1 and acts as a

rotation in the (ωse
2 , ω

se
3 )–plane.

Lemma 2.10. ηse is the unique (up to scale) invariant 1–form on N1,1. In particular, the
distribution ker η is independent of the choice of invariant SU(2)–structure on N1,1.
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Fix the volume form v = ωse
1 ∧ ωse

1 on ker ηse. The space of invariant self-dual 2–forms on
ker ηse is 3–dimensional, spanned by ωse

1 , ω
se
2 , ω

se
3 , and there exists a unique invariant anti-self-

dual 2–form on ker ηse up to scale,

ωse
0 =

1

12
(e1 ∧ v1 + e2 ∧ v2).

Furthermore, ωse
0 is closed.

Proof. Write Span(U−, E1, E2, V1, V2) as RU−⊕n1⊕n2, where ni = Span(Ei, Vi). Then ni ' n
as ∆U(1)–representations, where n is the complex 1–dimensional representation of U(1) with
weight 1. Therefore as U(1)–representations Λ2n∗i ' R(ei ∧ vi) and n1 ⊗ n2 ' Λ2n∗ ⊕ Rid ⊕
Sym0(n), where Sym0(n) is the complex 1–dimensional representation of weight 2.

N1,1 is a circle bundle over S2 × S2. The anti-self-dual 2–form ωse
0 is a multiple of the

pull-back of the Kähler–Einstein metric on CP1 × CP1 and is therefore closed. �

Endow the 4–dimensional vector space of invariant 2–forms on ker ηse with the inner product
〈ω, ω′〉v = ω ∧ ω′ of signature (1, 3).

Proposition 2.11. The space of invariant SU(2)–structures on N1,1 inducing the same ori-
entation as the standard Sasaki–Einstein structure can be identified with R+×R+×SO0(1, 3).

Proof. If (η, ωi) is an invariant SU(2)–structure on N1,1 then

(2.12) η = ληse

for some λ 6= 0. The choice of orientation implies that λ > 0. The 2–forms ω1, ω2, ω3 yield
an oriented orthogonal basis of the space-like 3–dimensional subspace Span (ω1, ω2, ω3) of
Λ2(ker ηse)∗. Moreover |ωi| is independent of i. Therefore up to scale the triple (ω1, ω2, ω3)
represents a point in the Lorentzian Stiefel manifold V0(3;R1,3) ' SO0(1, 3). Indeed, we can
always complete (ω1, ω2, ω3) to a basis of R1,3 with the unique invariant 2–form ω0 satisfying
〈ω0, ωi〉 = 0, |ω0|2 = −|ωi|2 and 〈ω0, ω

se
0 〉 > 0. Then

(2.13) (ω0, ω1, ω2, ω3) = µA (ωse
0 , ω

se
1 , ω

se
2 , ω

se
3 )

for some µ > 0 and A ∈ SO0(1, 3). Here A ∈ SO0(1, 3) is interpreted as an endomorphism of
the space of invariant 2–forms on ker ηse with respect to the basis {ωse

0 , ω
se
1 , ω

se
2 , ω

se
3 }. �

Remark 2.14. Given any (λ, µ,A) ∈ R+ ×R+ × SO0(1, 3) we will denote the invariant SU(2)–
structure (η, ω1, ω2, ω3) satisfying (2.12) and (2.13) by ψλ,µ,A. The choice of notation ψ here
is motivated by the spinor reformulation of SU(2)–structures alluded to in Remark 2.4 and
the desire for a compact notation. From now on we make the standing assumption that our
invariant SU(2)-structures satisfy λ > 0, ie ψλ,µ,A induces the same orientation as the Sasaki–
Einstein structure.

Remark 2.15. The involutions τ1 and τ2 defined in (2.3) act on the set of invariant SU(2)–
structures. Adopting the notation of the previous remark τ1 and τ2 act as follows:

τ∗1ψλ,µ,A = ψ−λ,µ,AT1 , τ∗2ψλ,µ,A = ψ−λ,µ,AT2 ,

where T1, T2 ∈ SO0(1, 3) are defined by T1 := diag (1,−1, 1,−1) and T2 := diag (1, 1,−1,−1).
Observe that neither τ1 nor τ2 preserves the normalisation λ > 0, but their composition does.

The left-invariant vector field U− generates the group of inner automorphisms of SU(2) ×
SU(2) that fix ∆U(1). U− induces a circle action on the space of invariant SU(2)–structures
given by a rotation in the (ωse

2 , ω
se
3 )–plane. There are also discrete symmetries, cf Proposition

3.11 below.
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Any invariant SU(2)–structure on N1,1 determines uniquely an invariant metric. The next re-
sult describes this map explicitly in terms of the parametrisation of invariant SU(2)–structures
given in Proposition 2.11.

Proposition 2.16 (cf [2, Lemma 4.1]).

(i) The set of invariant metrics on N1,1 is parametrised by R+ × R+ × S+ where

S+ := {w ∈ R1,3 : |w|2 = −1, w0 > 0}

is the upper hyperboloid in R1,3. We denote the corresponding invariant metric gλ,µ,w.
(ii) The invariant metrics corresponding to gλ,µ,w and gλ,µ,w′, where

w′ = (w0, w1, cos θ w2 − sin θ w3, sin θ w2 + cos θ w3),

are isometric.
(iii) The map from the invariant SU(2)–structure ψλ,µ,A to its invariant metric gλ,µ,w is given

by

(λ, µ,A) 7→ (λ, µ, pr1(A)),

where pr1(A) ∈ S+ is the projection of the matrix A ∈ SO0(1, 3) onto its first column.
In particular the set of invariant SU(2)–structures is a principal SO(3)–bundle over the
space of invariant metrics.

Proof. Denote by ∆u(1)⊥ the orthogonal complement of ∆u(1) in su2 ⊕ su2. In the proof of
Lemma 2.10 we have already observed that

∆u(1)⊥ = Span (U−, E1, V1, E2, V2) ' R⊕ n1 ⊕ n2

where ni is isomorphic to the standard representation n of U(1). An invariant metric g on N1,1

can be written as

g = λ2ηse ⊗ ηse + gT ,

where the transverse metric gT can be thought of as a U(1)–invariant inner product on n1⊕n2.
When g is induced by an invariant SU(2)–structure ψλ,µ,A then g(U−, U−) = η(U−)2, which
motivates the notation. Furthermore, in this case we also define transverse almost complex
structures Ji such that gT (u, v) = ωi(u, Jiv).

The main observation is that the U(1)–invariance of gT forces additional structure on the
transverse geometry. Indeed, J se

0 = [U+, · ] defines a complex structure on n1⊕n2 with J se
0 Ei =

Vi. Since U+ generates the action of ∆U(1), U(1)–invariant endomorphisms of n1 ⊕ n2 are
precisely those commuting with J se

0 . In particular, J se
0 Ji = JiJ

se
0 and gT is an almost-Hermitian

metric with respect to J se
0 . Therefore we can define the associated Hermitian form ω0(X,Y ) =

gT (J se
0 X,Y ). Observe also that J se

0 induces the opposite orientation with respect to the volume
form v = ωse

1 ∧ ωse
1 and therefore ω0 is an anti-self-dual form. It follows that the map from

invariant SU(2)–structures to invariant metrics is surjective and is a principal SO(3)–bundle
as claimed. The explicit expression for ω0 in terms of the parametrisation (λ, µ,A) is

ω0 = µAωse
0 = µ (w0 ω

se
0 + w1 ω

se
1 + w2 ω

se
2 + w3 ω

se
3 ) ,

where w = (wi) is the first column of the matrix A ∈ SO0(1, 3).
The circle action in (ii) is the induced action of the flow of the Reeb vector field U− on

invariant metrics. �

We are interested in SU(2)–structures induced on a hypersurface of a Calabi–Yau or nearly
Kähler 6–manifold; these have been dubbed hypo and nearly hypo structures, respectively. We
will study the SU(2) × SU(2)–invariant ones on N1,1. As we will see in a moment, hypo and
nearly hypo structures can be defined by a set of constraints on the exterior differentials of
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the forms defining the SU(2)–structure. By (2.7) and Lemma 2.10, for the invariant SU(2)–
structure ψλ,µ,A we have

(2.17) dη = −2λωse
1 , dωi = −2µλη ∧ TAω

se
i , d(η ∧ ωi) = −2λµ〈Aωse

i , ω
se
i 〉v,

where T ∈ End(R1,3) is

(2.18) T =


0 0 0 0
0 0 0 0
0 0 0 −3
0 0 3 0

 .

Remark 2.19. As an immediate consequence we see that the invariant Sasaki–Einstein struc-
tures on N1,1 are those ψλ,µ,A with λ = µ = 1 and A ∈ SO(2) ⊂ SO0(1, 1)×SO(2) ⊂ SO0(1, 3).
Indeed, the equations (2.7) are not scale invariant and the only geometric degree of freedom is
to rotate the form ω2 + iω3 by a phase eiθ. This freedom of rotation in the plane spanned by
ωse

2 and ωse
3 , as already noted, is nothing but the action of the flow of the Reeb vector field on

invariant 2–forms; in general the flow of the Reeb vector field on invariant metrics on N1,1 is
nontrivial but in the case of the Sasaki–Einstein metric gse the Reeb vector field is an additional
Killing field. In particular gse is invariant under the larger group U(1)× SU(2)× SU(2).

Hypo structures. In this section, following Conti–Salamon [23, Definition 1.5], we consider
the class of SU(2)–structures that arise on oriented hypersurfaces in Calabi–Yau 3–folds. To
this end consider a 1–parameter family of SU(2)–structures

(
η, ωi

)
(t) such that

(2.20) ω = η ∧ dt+ ω1, Ω = (ω2 + iω3) ∧ (η + idt),

is a Calabi–Yau structure on N × I for some interval I ⊂ R, ie an SU(3)–structure such that
ω and Ω are both closed. The condition dω = 0 = dΩ is equivalent to

(2.21a) dω1 = 0, d(η ∧ ω2) = 0, d(η ∧ ω3) = 0,

together with the evolution equations

(2.21b) ∂tω1 = −dη, ∂t(η ∧ ω2) = −dω3, ∂t(η ∧ ω3) = dω2.

Definition 2.22. An SU(2)–structure (η, ω1, ω2, ω3) on a 5–manifold N satisfying (2.21a) is
called a hypo structure. We call equations (2.21b) the hypo evolution equations.

Remark. The involutions τ1 and τ2 defined in Remark 2.2 both preserve the hypo equations.
Moreover, (η, ω1, ω2, ω3)(t) solves the hypo evolution equations if and only if τ2(η, ω1, ω2, ω3)(t)
does (and similarly for τ1(η, ω1, ω2, ω3)(−t)). Furthermore, (2.21a) and (2.21b) are both invari-
ant under changing the phase of the complex 2–form ω2 + iω3.

We now describe the space of invariant hypo structures on N1,1. Recall again the notation
ψλ,µ,A where (λ, µ,A) ∈ R+ × R+ × SO0(1, 3) adopted in Remark 2.14 to describe invariant
SU(2)–structures on N1,1.

Proposition 2.23. For any (f, g) ∈ R+ × R+ the invariant hypo structures on N1,1 are
invariant under the rescalings

η 7→ fη, ωi 7→ g ωi for i = 1, 2, 3.

In particular by rescaling it suffices to describe the invariant hypo structures with λ = µ = 1.
The set of invariant hypo structures on N1,1 with λ = µ = 1 is the union of two smooth

manifolds:

(i) A two-dimensional manifold diffeomorphic to S (O+(1, 1)×O(2)) ⊂ SO0(1, 3).
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(ii) A three-dimensional manifold diffeomorphic to O+(1, 2) embedded in SO0(1, 3) as the
subgroup that fixes the line spanned by (0, 1, 0, 0).

In each case there are two connected components, which are interchanged by τ1 ◦ τ2. The two
manifolds intersect in two circles, the one parametrising the 1–parameter family of invariant
Sasaki–Einstein structures on N1,1 described in Remark 2.19 and its image under τ1 ◦ τ2.

Proof. Let ψλ,µ,A be an invariant hypo structure on N1,1. Observe first that the hypo equations
(2.21a) are invariant under η 7→ fη and ωi 7→ g ωi for any f > 0, g > 0. Therefore without loss
of generality we now assume that λ = µ = 1. Writing ωi = Aωse

i and using (2.17) we see that
(2.21a) is satisfied if and only if A is of the form

(2.24) A =


w0 x0 y0 z0

w1 x1 0 0
w2 0 y2 z2

w3 0 y3 z3

 .

Imposing the condition that A ∈ SO0(1, 3) leads us to distinguish two cases: y0 = z0 = 0 or
otherwise. In the former case, up to the action of τ1 ◦ τ2, (2.24) together with A ∈ SO0(1, 3)
forces

(2.25) A =


cosh s sinh s 0 0
sinh s cosh s 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ

 ,

while in the latter we must have

(2.26) A =


w0 0 y0 z0

0 1 0 0
w2 0 y2 z2

w3 0 y3 z3

 ∈ SO0(1, 2).

The final statement about the intersection of the two components follows immediately. �

We are now going to solve the hypo evolution equations (2.21b) in the two components (i)
and (ii) of invariant hypo structures on N1,1 given in the previous Proposition. The invari-
ance assumption reduces these evolution equations to ODEs on the space of invariant hypo
structures that we will solve explicitly. The limiting case corresponding to the intersection
of the manifolds of Proposition 2.23 is of course the conifold, the Calabi–Yau cone over the
Sasaki–Einstein structure (2.9). Up to scale there exist two SU(2)× SU(2)–invariant complete
Calabi–Yau metrics asymptotic to the conifold: one on the small resolution of the conifold [17],
the total space of the vector bundle O(−1) ⊕ O(−1) over P1, and one on the smoothing of
the conifold [17,46], diffeomorphic to T ∗S3. These have been recently proven to be the unique
complete asymptotically conical Calabi–Yau metrics with tangent cone at infinity the conifold
[20].

Theorem 2.27 (Candelas–de la Ossa [17]; Stenzel [46] only for part (ii)).

(i) Up to scale there exists a unique smooth invariant Calabi–Yau structure on the total
space of O(−1)⊕O(−1) over P1.

(ii) Up to scale there exists a unique smooth invariant Calabi–Yau structure on T ∗S3.

Both Calabi–Yau structures are complete and asymptotic to the conifold in the sense made
precise below.
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We give a detailed outline of the proof of the theorem using the language of invariant hypo
structures, partly as a warm-up for the more complicated analysis in the nearly Kähler case,
and because these asymptotically conical Calabi–Yau manifolds will play a role in that analysis
as limiting objects.

Proof of Theorem 2.27(i). We begin with the complete invariant Calabi–Yau structures that
arise form the invariant hypo structures described in Proposition 2.23(i), ie where y0 = z0 = 0.

By acting with the flow of the Reeb vector field, ie choosing θ = −π
2 in equation (2.25), we

can always assume that a hypo structure with y0 = 0 = z0 satisfies

(2.28) η = ληse, ω1 = u0 ω
se
0 + u1 ω

se
1 , ω2 = −µωse

3 , ω3 = µωse
2 ,

with

−u2
0 + u2

1 = µ2.

Then the flow equations (2.21b) are equivalent to

(2.29) u̇0 = 0, u̇1 = 2λ, ∂t(λµ) = 3µ.

The solution with u0 = 0 is the conifold. When u0 6= 0, by scaling and the discrete symmetry
τ4 of Proposition 3.11 that exchanges the two factors of SU(2)×SU(2), we can assume without
loss of generality that u0 = 1. It is convenient to introduce a new variable r such that u1 = r2.
Here up to the action of τ1 ◦ τ2 we can always assume u1 ≥ 0. Hence µ2 = −u2

0 + u2
1 = r4 − 1

and λ = rṙ. In terms of the new variable r from (2.29) we obtain

d

dr
(λµ)2 = 2λµ

d

dr
(λµ) =

6λµ2

ṙ
= 6rµ2 = 6r5 − 6r.

In Section 4 we will discuss necessary conditions for a cohomogeneity one SU(3)–structure to
extend smoothly over a singular orbit. In view of Lemma 4.1, we require that, with respect to
the variable t, u1(0) = 1 and λ(0) = 0. Thus r ≥ 1 and

(2.30) µ =
√
r4 − 1, λ =

√
r6 − 3r2 + 2

r4 − 1
.

In particular as r →∞ we have

λµ = r3
√

1− 3r−4 + 2r−6 = r3 +O(r−1),(2.31a)
rµ

λ
= (r2 − r−2)(1− 3r−4 + 2r−6)−1/2 = r2 +O(r−2).(2.31b)

For r ∼ 1 using λ = rṙ to transform back to the variable t yields t ∼ 2√
3

√
r − 1 and therefore

u0 − u1 = 1− 3
2 t

2 +O(t4), λ = 3
2 t+O(t3).

Lemma 4.1(i) guarantees that the resulting cohomogeneity one Calabi–Yau structure (ω,Ω) ex-
tends smoothly at r = 1 over a 2–sphere SU(2)×SU(2)/U(1)×SU(2). Moreover (ω,Ω) is asymp-
totic as r →∞ to the conifold. To see this explicitly recall from (2.20) how the SU(3)–structure
(ω,Ω) is obtained from the 1–parameter family of SU(2)–structures (η(t), ωi(t)). Converting
from t to r using λdt = λdrṙ = rdr we obtain

ω = ω1 + η ∧ dt = u0 ω
se
0 + u1 ω

se
1 + ληse ∧ dt = ωse

0 + r2ωse
1 + rηse ∧ dr,(2.32a)

Re Ω = ω2 ∧ η − ω3 ∧ dt = −λµωse
3 ∧ ηse − µr

λ ω
se
2 ∧ dr,(2.32b)

Im Ω = ω3 ∧ η + ω2 ∧ dt = λµωse
2 ∧ ηse − µr

λ ω
se
3 ∧ dr.(2.32c)
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Substituting the expansions from (2.31) into (2.32) and comparing with (2.5) we obtain

ω = ωC +O(r−2),(2.33a)

Re Ω = Re ΩC +O(r−4),(2.33b)

Im Ω = Im ΩC +O(r−4),(2.33c)

where we used the cone metric to compute norms. We stress that up to scaling and discrete
symmetries, (2.32) is the unique solution to (2.21b) that extends smoothly over a singular
orbit S2. �

Proof of Theorem 2.27(ii). Consider instead the evolution of an invariant hypo structure with
(y0, z0) 6= (0, 0). By acting with the flow of the Reeb vector field and by changing the phase
of ω2 + iω3, we can always assume that y0 = y2 = z3 = 0 in (2.26) and hence

η = ληse, ω1 = µωse
1 , ω2 = −µωse

3 , ω3 = v0 ω
se
0 + v2 ω

se
2 ,

with
−v2

0 + v2
2 = µ2.

Then the nearly hypo evolution equations (2.21b) become

(2.34) µ̇ = 2λ, ∂t(λµ) = 3v2, ∂t(λv0) = 0, ∂t(λv2) = 3µ.

If we introduce a new dependent variable s defined by

ds

dt
=

1

λ
> 0,

then we can integrate the resulting system of ODEs explicitly as follows. In terms of s the
ODE system (2.34) is equivalent to

(2.35)
d

ds
(µ3) = 6(µλ)2,

d

ds
(µλ) = 3λv2,

d

ds
(λv0) = 0,

d

ds
(λv2) = 3µλ.

In particular both µλ and λv2 satisfy the second order ODE f ′′ = 9f . Applying Lemma 4.2 one
can determine the various constants of integration that ensure that the resulting cohomogeneity
one SU(3)–structure extends smoothly over the exceptional orbit (a totally geodesic round S3)
that without loss of generality we assume occurs at s = 0. Up to the action of the discrete
symmetries of Proposition 3.11, the solution of (2.35) takes the form

λv0 = −κ, λµ = κ sinh 3s, λv2 = κ cosh 3s, µ3 = κ2(sinh 3s cosh 3s− 3s),

where κ is a positive real parameter and s ∈ [0,+∞). The parameter κ > 0 can be changed
by scaling: the choice κ = 2

3 is equivalent to the normalisation λ(0) = 1; geometrically this
corresponds to the exceptional orbit at s = 0 being a unit 3–sphere.

Solving for the coefficients λ, µ, v1 and v2 we obtain

(2.36)

λ =

(
2

3

) 1
3 sinh 3s

(sinh 3s cosh 3s− 3s)
1
3

, µ =

(
2

3

) 2
3

(sinh 3s cosh 3s− 3s)
1
3 ,

v0 = −
(

2

3

) 2
3 (sinh 3s cosh 3s− 3s)

1
3

sinh 3s
, v2 =

(
2

3

) 2
3 (sinh 3s cosh 3s− 3s)

1
3

tanh 3s
.

In order to analyse the asymptotics of the resulting Calabi–Yau structure as s→∞, consider
the change of variable r2 = µ(s) which, since ω = d

(
−µ

2η
se
)
, defines a symplectomorphism

between (0,∞)×N1,1 and the conifold. Thus

r2 ∼ e2s

3
2
3

(
1 +O(se−6s)

) 1
3 ,
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and therefore

ω = ωC , Ω = ΩC + ξ +O

(
log r

r6

)
,

where ξ = 2
3rω

se
0 ∧ (dr − irηse) = O(r−3) and we used the cone metric to compute norms. �

Nearly Hypo structures. In the previous theorem we described cohomogeneity one Calabi–
Yau 3–folds as the evolution of invariant hypo structures under (2.21b). Following the same
philosophy, in this section we consider the nearly Kähler analogue of hypo SU(2)–structures:
in order to understand cohomogeneity one nearly Kähler manifolds we study the class of
SU(2)–structures induced on hypersurfaces in a nearly Kähler 6–manifold. Fernandez et al
[28, Definition 3.1] named these nearly hypo structures.

To this end consider a family of SU(2)–structures on N induced by a nearly Kähler structure
on N × R. By (2.20) and the definition of a nearly Kähler structure in terms of (ω,Ω), the
SU(2)–structures on N must then satisfy

(2.37a) dω1 = 3η ∧ ω2, d(η ∧ ω3) = −2ω2
1,

and evolve according to the evolution equations

(2.37b) ∂tω1 = −3ω3 − dη, ∂t(η ∧ ω2) = −dω3, ∂t(η ∧ ω3) = dω2 + 4η ∧ ω1.

Definition 2.38. An SU(2)–structure (η, ω1, ω2, ω3) satisfying (2.37a) is called nearly hypo.
We call equations (2.37b) the nearly hypo evolution equations.

Remark 2.39. Observe that the involutions τ1 and τ2 defined in Remark 2.2 both preserve
the nearly hypo equations. In the latter case this corresponds to the fact that (ω,Ω) satisfies
the nearly Kähler equations (1.2) if and only if (−ω,−Ω) does. Moreover, (η, ω1, ω2, ω3)(t)
solves the nearly hypo evolution equations if and only if τ2(η, ω1, ω2, ω3)(t) does (and similarly
for τ1(η, ω1, ω2, ω3)(−t)). Unlike the hypo case, we are not free to change the phase of the
holomorphic volume form.

As a first example, we now give a simple but fundamental class of mildly singular nearly
Kähler structures associated with any Sasaki–Einstein structure on a compact smooth 5–
manifold N via the so-called sine-cone construction and explain its relation both to G2 geom-
etry in dimension 7 and to nearly hypo structures in dimension 5.

The sine-cone construction of singular nearly Kähler spaces. The metric cone C(N) over N
endowed with an SU(2)–structure equipped with the conical SU(3)–structure (ωC ,ΩC) defined
in (2.5) is Calabi–Yau if and only if the SU(2)–structure is Sasaki–Einstein. Hence the metric
product R × C(N) is a (non smooth) metric cone C ′(N) whose holonomy is contained in
SU(3) ⊂ G2. Because of the R–invariance of C ′(N) its cross-section is not smooth but is
instead the sine-cone (or metric suspension) over N , ie SC(N) := [0, π]×N endowed with the
Riemannian metric gsc = dr2 + sin2 r gN .

Unless the cone C(N) is isometric to C3 the sine-cone SC(N) is a compact but singular
metric space with two isolated conical singularities at r = 0 and r = π both modelled on
C(N). Since C ′(N) is a (singular) Ricci-flat cone, its cross-section SC(N) with the metric gsc

is a singular Einstein space with scalar curvature 30. Moreover, since C ′(N) has holonomy
contained in G2, its cross-section SC(N) admits a nearly Kähler structure compatible with
the sine-cone metric gsc and therefore every orientable hypersurface of SC(N) must admit a
nearly hypo structure. In particular, the (totally geodesic) hypersurface {π2 } × N admits a
nearly hypo structure whose induced metric is isometric to the Sasaki–Einstein metric gN .

In fact we notice as an immediate consequence of the Sasaki–Einstein and nearly hypo
structure equations (2.7) and (2.37a) respectively that if (η, ω1, ω2, ω3) is Sasaki–Einstein then
the “rotated” SU(2)–structure (η,−ω3, ω2, ω1) is in fact nearly hypo and they both induce
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the same Riemannian metric. More generally, we find that the following explicit 1–parameter
family of nearly hypo structures solves the nearly hypo evolution equations (2.37b) and induces
the “rotated Sasaki–Einstein” nearly hypo structure when t = π/2:

(2.40)
η = sin t ηse, ω1 = sin2 t (cos t ωse

1 − sin t ωse
3 ) ,

ω2 = sin2 t ωse
2 , ω3 = sin2 t (sin t ωse

1 + cos t ωse
3 ) ,

for t ∈ [0, π]. Clearly the metric induced on {t}×N by this nearly hypo structure is sin2 t gN as
required for the nearly hypo structure induced by the nearly Kähler structure on the sine-cone.
Nearly Kähler sine-cones were introduced in [28] generalising the construction of (non-smooth)
Spin(7)–cones that had appeared in the physics literature [1,6]; see also [10, §14.4] for further
references.

Sine-cones (also called spherical or metric suspensions) have also played a key role in the
structure theory for spaces with lower Ricci curvature bounds. They provide non-smooth metric
spaces that have extremal properties analogous to the round metric on spheres (which is
of course the sine-cone over a lower-dimensional round sphere of the appropriate size) and
therefore appear in several “almost rigidity” statements, eg Cheeger and Colding’s Almost
Maximal Diameter Theorem [18, Theorems 5.12 & 5.14] that generalises the classical Maximal
Diameter Theorem of Cheng to (singular) limit spaces.

Invariant nearly hypo structures on N1,1. We now specialise to the case of invariant nearly
hypo structures on N1,1. Since we will construct cohomogeneity one nearly Kähler manifolds
by studying the nearly hypo evolution equations (2.37b) restricted to invariant nearly hypo
structures, the following result will play a crucial role in the rest of the paper.

Proposition 2.41. Invariant nearly hypo SU(2)–structures on N1,1 are parametrised by the
product of a circle with the open set U in SO0(1, 2) defined by (2.43). Here the embedding
of SO0(1, 2) ⊂ R+ × R+ × SO0(1, 3) is given by equations (2.42) and (2.44) and the SO(2)
factor corresponds to the orbits of the action of the Reeb vector field U−. Moreover, U is a
(trivial) real line bundle over R2. In particular, the space of invariant nearly hypo structures
is a smooth connected 4–manifold.

Proof. For an invariant SU(2)–structure ψλ,µ,A on N1,1 the defining equations (2.37a) are
equivalent to

TAωse
1 = 3λAωse

2 , 〈Aωse
3 , ω

se
1 〉 = µ

λ ,

where T is the matrix defined in (2.18). Together with the requirements 〈Aωse
i , Aω

se
2 〉 = 0 for

i = 1, 3 and |Aωse
2 | = 1 this implies that A is of the form

(2.42) A =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ




w0 x0 0 y0

w1 x1 0 µ
λ

w2 −λ 0 y2

0 0 −1 0

 ∈ SO(2)× SO0(1, 2).

The matrix  w0 x0 y0

w1 x1
µ
λ

w2 −λ y2


lies in the open set U of SO0(1, 2) defined by

(2.43) U = {B ∈ SO0(1, 2) |B32 < 0, B23 > 0},
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where Bij denotes the (i, j) entry of the matrix B. The map SO(2)×U → R+×R+×SO0(1, 3)
defined by (2.42) and

(2.44) U 3 B 7−→ (−B32,−B23B32) ∈ R+ × R+

is clearly injective.
We conclude by describing the open set U more precisely. Identify SO0(1, 2) with the unit

tangent bundle of the hyperbolic plane SO0(1, 2)/SO(2). The projection of a matrix B ∈
SO0(1, 2) to its first column is the bundle projection and the fibrewise circle action is given by

(2.45) B 7−→ B

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 .

The inequalities B32 < 0 and B23 > 0 define two open intervals of length π in each circle fibre.
These two intervals must intersect either in a connected open subinterval or a pair of points.
In the latter case, however, these two points correspond to matrices of the form

B =

 w0 x0 y0

w1 x1 0
w2 0 y2

 ∈ SO0(1, 2).

Since x1y2 = w0 > 0, rotating by ±π
2 in the circle containing B we can arrange that

both inequalities are satisfied. Thus the first case occurs and U is an interval-bundle over
SO0(1, 2)/SO(2) ' R2 as claimed. �

As an immediate corollary we obtain a characterisation of the invariant nearly hypo struc-
tures embedded as hypersurfaces of the sine-cone.

Corollary 2.46. Let ψλ,µ,A be an invariant nearly hypo structure on N1,1 such that x0 = 0 = y0

(equivalently, w1 = 0 = w2) in (2.42). Then (N1,1, ψλ,µ,A) is an invariant hypersurface of the
sine-cone over an invariant Sasaki–Einstein structure on N1,1.

3. Cohomogeneity one nearly Kähler manifolds

In this section we begin the study of cohomogeneity one nearly Kähler 6–manifolds proper.
After quickly reviewing basic facts about smooth compact simply connected cohomogeneity
one spaces we recall Podestà and Spiro’s classification of possible compact simply connected
cohomogenity one nearly Kähler 6–manifolds. The only potentially interesting cases all turn
out to have principal orbit S2×S3 invariant under SU(2)×SU(2) with isotropy group ∆U(1).
Using our results on SU(2)×SU(2)–invariant nearly hypo structures on S2×S3 we specialise the
nearly hypo evolution equations (2.37b) to this invariant setting and derive the fundamental
ODEs (3.10) satisfied by any SU(2) × SU(2)–invariant nearly Kähler structure on the (open
dense) subset of principal orbits. We note the continuous and discrete symmetries of the
fundamental ODEs, explaining their geometric origins. The discrete symmetries in particular
play an important role in our construction of new complete cohomogeneity one nearly Kähler
structures. We have been unable to find a closed form for the general solution to (3.10);
however, four explicit solutions are described and their geometric significance explained. Two
of these four solutions also play important roles in the proof of the Main Theorem.

Let M be a complete nearly Kähler 6–manifold (as always in the sense of Definition 1.3)
acted upon isometrically by a connected compact Lie group G with cohomogeneity one, ie the
orbit space M/G is 1–dimensional. Since M is Einstein with positive Einstein constant, M is
compact with finite fundamental group. By [11, Theorem 9.3, Chapter I] the universal cover
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of M is also a cohomogeneity one nearly Kähler manifold; hence there is no loss of generality
in assuming M simply connected, and we will do so throughout the rest of this paper.

From the general theory of cohomogeneity one spaces [11, Theorem 8.2, Chapter IV], M/G is
then a connected closed interval [0, T ] ⊂ R. The open set M∗ ⊂M corresponding to the interior
of M/G is diffeomorphic to (0, T ) × G/K. We call K ⊂ G the principal isotropy subgroup
and G/K the principal orbit. Corresponding to the boundary points of M/G there are two
lower-dimensional singular orbits with isotropy subgroups K1 and K2 respectively. We call K1

and K2 the singular isotropy subgroups. They both contain the principal isotropy subgroup
K and the coset Ki/K is diffeomorphic to a sphere. Moreover, there are representations Ki →
O(Vi) on Euclidean spaces Vi such that a neighbourhood of the singular orbit G/Ki in M
is G–equivariantly diffeomorphic to a neighbourhood of the zero section of the vector bundle
G ×Ki Vi → G/Ki. In fact, M is obtained by identifying the two disc bundles G ×Ki Di,
Di ⊂ Vi, along their common boundary G/K.

The set of inclusions K ⊂ K1,K2 ⊂ G is called the group diagram of M . Two cohomogeneity
one manifolds are G–equivariantly diffeomorphic if their group diagrams can be obtained one
from the other with the following operations:

(i) interchanging K1 and K2;
(ii) conjugating K,K1,K2 by the same element of G;
(iii) replacing K1 with hK1h

−1, where h is an element of the connected component of the
normaliser of K in G.

In [40, Theorem 1.1] Podestà and Spiro classified all possible group diagrams of cohomo-
geneity one nearly Kähler 6–manifolds; the list is given in Table 1. The last case is the sine-cone

G K K1 K2 M
SU(2)× SU(2) 4U(1) 4SU(2) 4SU(2) S3 × S3

SU(2)× SU(2) 4U(1) 4SU(2) U(1)× SU(2) S6

SU(2)× SU(2) 4U(1) U(1)× SU(2) SU(2)×U(1) CP 3

SU(2)× SU(2) 4U(1) U(1)× SU(2) U(1)× SU(2) S2 × S4

SU(3) SU(2) SU(3) SU(3) S6

Table 1. Group diagrams of cohomogeneity one nearly Kähler 6–manifolds

over the round Sasaki–Einstein structure on S5 ' SU(3)/SU(2). Since the space of invariant
metrics on S5 is 1–dimensional, it is clear that this is the unique nearly Kähler structure arising
in that case.

The interesting case is therefore G = SU(2) × SU(2) with principal orbit N1,1 = SU(2) ×
SU(2)/4U(1), which motivates our interest in invariant nearly hypo structures on this homo-
geneous space. We will see later in the section that the first three group diagrams in the list
are realised by known homogeneous nearly Kähler manifolds; on the other hand, no nearly
Kähler structure is known to exist on S2 × S4. In fact, this case is overlooked in [40].

Remark. Böhm [8] constructed infinitely many cohomogeneity one Einstein metrics on some
of the manifolds of Table 1. By [40, Lemma 3.1] these cannot be induced by a nearly Kähler
structure since on a nearly Kähler 6–manifold not isometric to the round 6–sphere any isometry
must also preserve the almost complex structure. In particular, the isotropy group of the
principal orbit must be contained in SU(2). For example, the metrics constructed by Böhm
on S3 × S3 are invariant under the action of SO(3) × SO(4) with principal isotropy group
SO(2)× SO(3) ⊂ SO(5).
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The fundamental ODE system. In order to study the nearly hypo evolution equations
(2.37b) restricted to invariant nearly hypo structures it is convenient to introduce an alternative
parametrisation to the one of Proposition 2.41, whose main advantage is to reduce the problem
to the study of a first order ODE system, rather than the mixed differential and algebraic
system given by (2.37a) and (2.37b).

Given an invariant nearly hypo structure ψλ,µ,A with A as in (2.42) we write

(3.1a) η = ληse, ω1 = u0 ω
se
0 + u1 ω

se
1 + u2 cos θ ωse

2 + u2 sin θ ωse
3 .

The first equation in (2.37a) and (2.37b), respectively, is equivalent to

(3.1b) ω2 = −u2

λ
sin θ ωse

2 +
u2

λ
cos θ ωse

3 , ω3 =
v0

λ
ωse

0 +
v1

λ
ωse

1 +
v2

λ
cos θ ωse

2 +
v2

λ
sin θ ωse

3 ,

where v0, v1, v2 are determined by λ and u0, u1, u2 via

λu̇0 + 3v0 = 0,(3.2a)

λu̇1 + 3v1 − 2λ2 = 0,(3.2b)

λu̇2 + 3v2 = 0.(3.2c)

Here ˙ denotes differentiation with respect to the arc length parameter t along a geodesic
orthogonal to the principal orbits. Thus if B ∈ U is the matrix

B =

 w0 x0 y0

w1 x1 y1

w2 x2 y2


then the change of variables from the parametrisation of invariant nearly hypo structures in
Proposition 2.41 to the one in (3.1) is

(3.3) ui = µxi, vi = λµ yi, i = 0, 1, 2, where λ = −x2, µ = −x2y1.

The second equation of (2.37b) implies

θ̇ = 0, λu̇2 + 3v2 = 0.

Since we are free to change θ by acting by the flow of the Reeb vector field U−, we assume
without loss of generality that θ = 0. Then the last equation of (2.37b) is

v̇0 − 4λu0 = 0,(3.4a)

v̇1 − 4λu1 = 0,(3.4b)

λv̇2 − 4λ2u2 + 3u2 = 0.(3.4c)

Besides (3.2) and (3.4), necessary conditions for ψλ,µ,A to define a nearly hypo structure are
the algebraic constraints

I1 = 〈u, v〉 = 0,(3.5a)

I2 = λ2|u|2 − u2
2 = 0,(3.5b)

I3 = λ2|u|2 − |v|2 = 0,(3.5c)

I4 = v1 − |u|2 = 0,(3.5d)

which correspond to ω1 ∧ ω3 = 0, ω2
1 = ω2

2, ω2
1 = ω2

3 and the second equation of (2.37a),
respectively; ω2∧ω1 = 0 = ω2∧ω3 follow immediately from (3.1). Here |·| and 〈·, ·〉 denote the
metric of signature (−+ +) on R1,2. Furthermore, the pair of vectors u, v ∈ R1,2 has to satisfy
the sign constraint

(3.6) u1v2 − u2v1 > 0,
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which corresponds to the requirement that the matrix A in (2.42) lies in the restricted Lorentz
group.

Following [41, Proposition 5.1], we now derive a differential equation for λ which will imply
that equations (3.5) have to be imposed only at the initial time and will then be conserved for
all time. Differentiating (3.5) using (3.2) and (3.4) we obtain:

λİ1 = 3I2 + 3I3 + 2λ2I4,(3.7a)

λİ2 = −6λ2I1 + 2λ2|u|2λ̇+ 4λ4u1 + 6u2v2,(3.7b)

λİ3 = −14λ2I1,(3.7c)

λİ4 = 6I2.(3.7d)

Thus if λ satisfies the first order differential equation

(3.8) λ2|u|2λ̇+ 2λ4u1 + 3u2v2 = 0,

then I = (I1, . . . , I4) satisfies a homogeneous linear system (with coefficients depending on λ)
and is therefore uniquely determined by the initial conditions.

The following proposition follows immediately from this discussion.

Proposition 3.9. Let (λ, u, v) be a solution of the ODE system

λu̇0 + 3v0 = 0,(3.10a)

λu̇1 + 3v1 − 2λ2 = 0,(3.10b)

λu̇2 + 3v2 = 0,(3.10c)

v̇0 − 4λu0 = 0,(3.10d)

v̇1 − 4λu1 = 0,(3.10e)

λv̇2 − 4λ2u2 + 3u2 = 0,(3.10f)

λ2|u|2λ̇+ 2λ4u1 + 3u2v2 = 0.(3.10g)

defined on an interval (a, b) ⊂ R on which u2 < 0, λ, µ2 := |u|2 > 0 and (3.6) is satisfied.
Assume also that I1(t0) = · · · = I4(t0) = 0 for some a < t0 < b. Then (3.1) defines an
invariant nearly Kähler structure on (a, b)×N1,1. Conversely, any nearly Kähler structure on
(a, b) × N1,1 invariant under the action of SU(2) × SU(2) on N1,1 takes the form (3.1) for a
solution (λ, u, v) of (3.10) satisfying the given sign constraints and with I1 = I2 = I3 = I4 = 0
for all time.

Moreover, given an invariant nearly hypo structure ψλ,µ,A on N1,1 there exists a unique
solution of (3.10) with initial condition ψλ,µ,A (in particular, I1(0) = · · · = I4(0) = 0). In
particular, up to the action of the flow of the Reeb vector field there exists a 2–parameter
family of local invariant nearly Kähler structures on (a, b)×N1,1.

Remark. In [22, Thorem 5] Conti shows that any compact real analytic nearly hypo 5–manifold
can be embedded into a (local) real analytic nearly Kähler 6–manifold. The final statement of
the Proposition, which follows from standard ODE theory, is a specialisation of Conti’s result
to the case of invariant nearly hypo structures on N1,1.

Symmetries of the fundamental ODE system. In the rest of the paper we will make
repeated use of various symmetries of the fundamental ODE system (3.10); the discrete sym-
metries of (3.10) in particular will turn out to play a crucial role in our construction of new
complete nearly Kähler metrics on S3 × S3 and S6.

To facilitate the description of these symmetries we introduce the alternative notation
(λ, u0, u1, u2, v0, v1, v2, t) for a solution Ψ =

(
λ(t), u0(t), u1(t), u2(t), v0(t), v1(t), v2(t)

)
of (3.10).
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Proposition 3.11 (cf [41, Proposition 4.2]). The system (3.10) is invariant under the fol-
lowing symmetries.

(i) Time translation t 7→ t+ t0, t0 ∈ R.
(ii) Time reversal

τ1 : (λ, u0, u1, u2, v0, v1, v2, t) 7−→ (−λ, u0, u1, u2, v0, v1, v2,−t).
(iii) The involutions τ2, τ3, τ4 defined by

τ2 : (λ, u0, u1, u2, v0, v1, v2, t) 7−→ (−λ,−u0,−u1,−u2, v0, v1, v2, t),

τ3 : (λ, u0, u1, u2, v0, v1, v2, t) 7−→ (λ, u0, u1,−u2, v0, v1,−v2, t),

τ4 : (λ, u0, u1, u2, v0, v1, v2, t) 7−→ (−λ, u0,−u1, u2,−v0, v1,−v2, t).

τ2 preserves the constraint u2 = −λµ, while the remaining τi send this constraint into u2 = λµ.
All the symmetries preserve the constraints (3.5).

Proof. The fact that these transformations are symmetries of (3.10) is straightforward to verify
by direct computation. Instead we concentrate on explaining the geometric origin of each of
these symmetries. The involutions τ1 and τ2 are simply the specialisation to the invariant case
of the involutions τ1 and τ2 defined in Remark 2.2 and we already noted in Remark 2.39 that
both involutions preserve the nearly hypo condition. The existence of the remaining involutions
τ3 and τ4 is specific to the case of SU(2) × SU(2)–invariant SU(2)–structures: τ3 and τ4 are
induced by automorphisms of SU(2)× SU(2) that fix 4U(1). More precisely, τ4 is the action
on invariant SU(2)–structures of the outer automorphism of SU(2) × SU(2) that exchanges
the two factors. The Reeb vector field U− generates the group of inner automorphisms of
SU(2)× SU(2) fixing 4U(1). By normalising nearly hypo structures so that w3 = 0, ie θ = 0
or π in (2.42), we quotient out this action except for a residual Z2–action generated by τ3. �

Special solutions of the fundamental ODE system. There are four distinguished solu-
tions to the ODE system (3.10): the sine-cone over the homogeneous Sasaki–Einstein metric
on N1,1 and the three homogeneous nearly Kähler solutions for which there is a subgroup
of the full isometry group isomorphic to SU(2) × SU(2), namely nearly Kähler S6, CP 3 and
S3 × S3. These special solutions will play a role in our analysis of general cohomogeneity one
SU(2) × SU(2)–invariant nearly Kähler metrics and provide explicit solutions of (3.10) that
we will record below. It is immediate to verify that the given expressions define solutions of
(3.10) but we also refer to [41, §4.2] where these expressions are derived.

Example 3.12 (The sine-cone). The sine-cone over the standard Sasaki–Einstein structure
on N1,1 has already been discussed in (2.40). In terms of (3.1), we have

λ = sin t, u0 = 0, u1 = sin2 t cos t, u2 = − sin3 t,

v0 = 0, v1 = sin4 t, v2 = sin3 t cos t,

for t ∈ [0, π]. The two conical singularities of the sine-cone occur at t = 0 and t = π.

Example 3.13 (The round sphere). In this case

λ =
3

2
cos t, u0 = −3

2
sin t

(
2− 5 cos2 t

)
, u1 = −3 sin t

(
1− 2 cos2 t

)
, u2 = −9

2
sin t cos2 t,

v0 =
9

4
cos2 t

(
4− 5 cos2 t

)
, v1 = 9 sin2 t cos2 t, v2 =

9

4
cos2 t

(
3 cos2 t− 2

)
,

for t ∈ [0, π2 ]. The open set of principal orbits is compactified by adding a 3–sphere SU(2) ×
SU(2)/4SU(2) at t = 0 and a 2–sphere SU(2)× SU(2)/SU(2)×U(1) at t = π

2 .
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Example 3.14 (Homogeneous nearly Kähler structure on S3×S3). The homogeneous nearly
Kähler structure on S3 × S3 corresponds to the solution

λ = 1, u0 = u1 =
1√
3

sin (2
√

3t), u2 = − 2√
3

sin (
√

3t),

v0 = −2

3
cos (2

√
3t), v1 =

2

3

(
1− cos (2

√
3t)
)
, v2 =

2

3
cos (
√

3t),

for t ∈ [0, π√
3
]. (Notice that there is a typo in [41, §4.2.3]: the range of t with their normalisations

should be t ∈ [0, π√
6
].) The singular orbits are two 3–spheres, SU(2) × SU(2)/4SU(2) at

t = 0 and SU(2) × SU(2)/φ3(4SU(2)) at t = π√
3
, where φ3 is the inner automorphism of

SU(2)× SU(2) generated by π
4U
−.

Example 3.15 (Homogeneous nearly Kähler structure on CP 3). In this case,

λ =
3
√

2

4
sin (
√

2t), u0 =
3

8

(
3 cos2 (

√
2t)− 1

)
, u1 =

3

4
cos (
√

2t), u2 = −9

8
sin2 (

√
2t),

v0 = −9

8
cos (
√

2t) sin2 (
√

2t), v1 =
9

8
sin2 (

√
2t), v2 =

9

8
cos (
√

2t) sin2 (
√

2t),

for t ∈ [0, π√
2
]. The singular orbits are both 2–spheres, SU(2) × SU(2)/U(1) × SU(2) at t = 0

and SU(2)× SU(2)/SU(2)×U(1) at t = π√
2
.

4. Solutions that extend smoothly over the singular orbits

In the previous sections we have described the subset consisting of principal orbits of a
cohomogeneity one nearly Kähler manifold as a 1–parameter family of nearly hypo structures.
In this section we will discuss (singular) boundary conditions for the ODE system (3.10), ie
study conditions under which a cohomogeneity one nearly Kähler structure extends smoothly
across a singular orbit. Recall from Table 1 that in the SU(2) × SU(2)–invariant case there
are only three types of singular orbits, a 3–sphere SU(2) × SU(2)/4SU(2) and 2–spheres
SU(2)× SU(2)/U(1)× SU(2) and SU(2)× SU(2)/SU(2)×U(1). The latter two are exchanged
by the outer automorphism of SU(2) × SU(2). The main results of the section are Theorems
4.4 and 4.5: these establish the existence of two 1–parameter families of local cohomogeneity
one nearly Kähler 6–manifolds that close smoothly on a singular orbit that is a round sphere
of dimension two or dimension three, respectively. In both cases the parameter is the size of
the singular orbit. In subsequent sections, by studying the behaviour of these two 1–parameter
families as the size of the singular orbit shrinks to zero, we will show that they should be
viewed as nearly Kähler deformations of the Calabi–Yau structures on the small resolution
and on the smoothing of the conifold respectively.

To understand the conditions under which invariant tensors on a cohomogeneity one man-
ifold extend smoothly across a singular orbit we will appeal to a method due to Eschenburg
and Wang [27, §1]. For the convenience of the reader, we describe it briefly here.

Let Mn be a smooth manifold with a cohomogeneity one isometric action of a compact Lie
groupG. LetQ = G/K ′ be a singular orbit. Set V = TqM/TqQ and recall that a neighbourhood
ofQ inM isG–equivariantly diffeomorphic to a neighbourhood of the zero section of the normal
bundle E = G×K′ V → Q.

In view of our applications and for concreteness, we only discuss conditions under which a G–
invariant section h ∈ Γ (E; End(TE)) extends smoothly over the zero section, but the method
generalises to arbitrary tensors. G–invariance implies that h is determined by its restriction
to V ' Eq. The choice of a complement p of the Lie algebra of K ′ in the Lie algebra of G
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determines a trivialisation TE|V = V ⊕ p. Fix a point v0 ∈ V with |v0| = 1 (having fixed an
invariant inner product on V ) and denote by K its stabiliser in G. The principal orbits of M
are diffeomorphic to G/K = G×K′ Sd−1 → Q, where Sd−1 is the unit sphere in V .

Introduce polar coordinates (t, σ) ∈ [0,∞) × Sd−1 ' V . Then h ∈ Γ (V ; End(V ⊕ p)) can
be thought of as a 1–parameter family of maps ht ∈ Γ

(
Sd−1; End(V ⊕ p)

)
. Since K ′ acts

transitively on Sd−1, the spaceW ofK ′–equivariant maps ht : S
d−1 → End(V⊕p) is isomorphic

to End(V ⊕ p)K via the evaluation at v0. Denote by Wp the subspace of W consisting of the
restriction of homogeneous polynomials of degree p. Notice that we can always increase the
degree of h ∈ Wp by 2 by multiplying h by v 7→ |v|2. However, by finite dimensionality ofW and
polynomial approximation, we can find a basis of the vector space End(V ⊕p)K such that every
element corresponds to a K ′–equivariant homogeneous polynomial of minimum degree p ≥ 0.
Then a curve ht ∈ W defined for t ∈ [0, T ) represents a smooth section h ∈ C∞ (E; End(TE))
if and only if it has Taylor series at t = 0, ht =

∑
p≥0 hpt

p, with hp ∈ Wp for all p [27, Lemma

1.1]. In this way the problem is reduced to a representation-theoretic computation.
We now specialise our discussion to the case n = 6, G = SU(2) × SU(2), K = 4U(1) and

K ′ = ∆SU(2),U(1)× SU(2) or SU(2)×U(1).

Closing smoothly on an S2. We first consider the case K ′ = U(1) × SU(2) and Q ' S2.
Then p = n1 = Span{E1, V1} in the notation of (2.8) and V ' H, where U(1)× SU(2) acts on
V via (eiθ, q) ·x = qxe−iθ. In particular, the vector bundle E = (SU(2)× SU(2))×U(1)×SU(2) V

is isomorphic to O(−1)⊕O(−1)→ S2.
As a ∆U(1)–representation V = R2 ⊕ n2, where n2 ' n is the standard representation

of U(1) and R2 is a trivial 2–dimensional representation. It follows that End(V ⊕ p)U(1) =

End(R2)⊕ 4 End(n)U(1). Moreover, End(n)U(1) is 2–dimensional, spanned by the identity and
the complex structure.

Since SU(2) already acts transitively on the unit sphere in V , any U(1)×SU(2)–equivariant
polynomial h on S3 ⊂ V with values in End(V ⊕ p) must satisfy h(q) = M−1h(1)M , where

h(1) ∈ End(V ⊕ p)U(1), M = (1, q) ∈ U(1)× SU(2) and we identified S3 with SU(2). A simple
computation then shows that

(i) idn1 , jn1 , idR2 + idn2 , jR2 + jn2 correspond to constant polynomials (they are preserved by
U(1)× SU(2));

(ii) End(ni, nj)
U(1) with i 6= j correspond to polynomials of degree 1;

(iii) idR2 − idn2 , jR2 − jn2 and Sym2
0(R2) correspond to degree 2 polynomials.

Here jX denotes the standard complex structure on X.
The general theory of [27] now gives conditions for the smooth extension of any U(1) ×

SU(2)–equivariant End(V ⊕ p)–valued polynomial on V . However, in order to interpret these
conditions as initial data for the ODE system (3.10) it is necessary to change coordinates from
this description of a neighbourhood of the singular orbit to the coframe dt, u−, ei, vi that we
introduced on the set of principal orbits. To this end embed S2 × V in ImH × H and let
SU(2) × SU(2) act via (q1, q2) · (x, y) = (q1xq

∗
1, q2yq

∗
1). Along the ray γ(t) = (i, t) the vector

fields U−, Ei, Vi of (2.8) are

U− = (0,−it), E1 =
1

2
√

2
(−2k,−jt), V1 =

1

2
√

2
(2j,−kt),

E2 =
1

2
√

2
(0, jt), V2 =

1

2
√

2
(0, kt).

Thus if (t, q1, q2, q3) are coordinates on V = H, along γ we have dt = dq0, tu− = dq1, te2 =
2
√

2dq2 and tv2 = 2
√

2dq3, while e1, v1 are 1–forms along S2.
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In the notation of (3.1a) we write an invariant 2–form on (0, ε)×N1,1 as

ω = ληse ∧ dt+ u0 ω
se
0 + u1 ω

se
1 + u2 ω

se
2 + u3 ω

se
3 ,

where λ, u0, . . . , u3 are functions depending on time only. Recalling (2.9), the change of vari-
ables above yields

ω = −2λ

3t
dq0 ∧ dq1 +

u0 + u1

12
e1 ∧ v1 +

2(u0 − u1)

3t2
dq2 ∧ dq3+

√
2u2

6t
(e1 ∧ dq3 + dq2 ∧ v1) +

√
2u3

6t
(e1 ∧ dq2 − dq3 ∧ v1) .

It is now straightforward to use the representation-theoretic computation to deduce condi-
tions on the coefficients of ω so that it extends smoothly at t = 0 along the singular orbit.

Lemma 4.1. Let ω = λdt ∧ ηse + u0 ω
se
0 + u1 ω

se
1 + u2 ω

se
2 + u3 ω

se
3 be an invariant 2–form on

(0, T )×N1,1. Then:

(i) ω extends smoothly over a singular orbit SU(2) × SU(2)/U(1) × SU(2) at t = 0 if and
only if
(a) u0, u1, u2, u3 are even and λ is odd;

(b) u2(0) = 0 = u3(0) and u0(t) − u1(t) = −λ̇(0)t2 + O(t4), where λ̇ denotes the
derivative of λ with respect to t.

(ii) ω extends smoothly over a singular orbit SU(2) × SU(2)/SU(2) × U(1) at t = 0 if and
only if
(a) u0, u1, u2, u3 are even and λ is odd;

(b) u2(0) = 0 = u3(0) and u0(t) + u1(t) = λ̇(0)t2 +O(t4).

Proof. The statement in (i) follows immediately from the representation-theoretic computa-

tion, since u0+u1 must be even, u2t and u3
t odd,−2λ

3t and 2(u0−u1)
3t2

are both even and well-defined
at t = 0 where they must take the same value. Since U(1)× SU(2) and SU(2)× U(1) are ex-
changed by the outer automorphism of SU(2)×SU(2), the statement in (ii) follows immediately
from (i) after applying the discrete symmetry τ4 of Proposition 3.11. �

Closing smoothly on an S3. When K ′ = ∆SU(2) and Q ' S3 , V and p are both isomorphic
to the adjoint representation of SU(2). The vector bundle E is trivial and we can identify it
with T ∗S3.

Since su2 = R⊕ n as a U(1)–representation, End(V ⊕ p)U(1) = 4 End(R⊕ n)U(1). It is easy

to see that End(R⊕ n)U(1) is a 3–dimensional vector space, spanned by idR, idn and jn. Under
the identification of the action of SU(2) on its Lie algebra with the standard action of SO(3)
on R3, SO(3)–equivariant polynomials on R3 with values in End(R3) are generated by the
constant polynomial id, the degree two polynomial v 7→ 〈 · , v〉v and the degree one polynomial
v 7→ · × v, which by evaluation at (1, 0, 0) correspond to idR + idn, idR and jn, respectively.

In order to understand how to change coordinates from this description of the neighbourhood
of the singular orbit to the coframe dt, u−, ei, vi on the set of principal orbits, think of S3×R3

as embedded in H× ImH and let SU(2)×SU(2) act via (q1, q2) · (x, y) = (q2xq
∗
1, q1yq

∗
1). Along

the ray γ(t) = (1, it) the vector fields U−, Ei, Vi of (2.8) are

U− = (−i, 0), E1 =
1

2
√

2
(−j,−2kt), V1 =

1

2
√

2
(−k, 2jt),

E2 =
1

2
√

2
(j, 0), V2 =

1

2
√

2
(k, 0).
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Thus if (t, x, y) are coordinates on R3 = ImH, along γ we have e+ = −
√

2
t dy and v+ =

√
2
t dx,

where e±, v± and are the 1–forms dual to the vector fields E1 ± E2 and V1 ± V2, respectively.
On the other hand, u−, e−, v− gives instead a coframe on the singular orbit S3.

Lemma 4.2 (cf [41, Proposition 6.1]). An invariant 2–form ω = λdt∧ ηse +u0 ω
se
0 +u1 ω

se
1 +

u2 ω
se
2 + u3 ω

se
3 on (0, T )×N1,1 extends smoothly over a singular orbit SU(2)× SU(2)/4SU(2)

if and only if

(i) u0, u1, u2 are odd and λ, u3 are even;
(ii) u0 + u2 = O(t3), u3 = O(t2) and u1(t) = 2λ(0)t+O(t3).

Remark. Lemmas 4.1 and 4.2 give conditions for an invariant 2–form ω to extend smoothly
along a singular orbit. Suppose now we have a solution Ψ = (λ, u, v) of the fundamental ODE
system (3.10) such that λ, u0, u1, u2 satisfy the conditions of either of these lemmas (with
u3 = 0) at t = 0 and the constraints I1 = · · · = I4 = 0 of (3.5) hold for all time. Thus Ψ
defines an invariant nearly Kähler structure (ω,Ω) on (0, T ) × N1,1 and ω extends smoothly
at t = 0. Since 3 Re Ω = dω and Im Ω is determined algebraically by Re Ω [36, §2], it follows
that the whole SU(3)–structure (ω,Ω) extends smoothly at t = 0.

Extension of symmetries over a singular orbit. Before dealing with the existence of
solutions of the fundamental ODE system (3.10) closing smoothly on a singular orbit, we
discuss here which symmetries of Proposition 3.11 extend over the singular orbits of Table 1.

Lemma 4.3. Let Ψ(t) be a solution of the fundamental ODE system (3.10) defined on [0, T ).

(i) If Ψ extends smoothly over a singular orbit S2 = SU(2)× SU(2)/U(1)× SU(2) at t = 0
then so does τi(Ψ) for i = 1, 2, 3, while τ4(Ψ) extends smoothly over a singular orbit
SU(2)× SU(2)/SU(2)×U(1).

(ii) If Ψ extends smoothly over a singular orbit S3 = SU(2)× SU(2)/4SU(2) at t = 0 then
so does τi(Ψ) i = 1, 2, 4, while τ3(Ψ) extends smoothly over a singular orbit SU(2) ×
SU(2)/φ3 (4SU(2)), where φ3 = Ad

(
exp

(
π
4U
−)).

Proof. It is obvious that τ1 and τ2 preserve the boundary conditions for closing smoothly
on a singular orbit of any type. It remains to check whether the automorphisms φ3 and φ4

corresponding to τ3 and τ4, respectively, fix not only 4U(1) but also the stabiliser K ′ of a
point on the singular orbit.

Denote by (φj)∗ the infinitesimal action of φj , j = 3, 4, on RU− ⊕ n1 ⊕ n2, identified with
the tangent space of N1,1 at a point. Then

(φ3)∗ = Ad
(

exp
(π

4
U−
))

=

 1 0 0
0 i 0
0 0 −i

 , (φ4)∗ =

 −1 0 0
0 0 1
0 1 0

 .

The Lie algebras of K1 = U(1)× SU(2) and K2 = SU(2)×U(1) are RU+ ⊕ RU− ⊕ n1 and
RU+⊕RU−⊕ n2, respectively. Thus φ3 preserves both K1 and K2, while φ4 exchanges them.
Similarly, (φ3)∗ exchanges n+ and n−, where n± is the subspace generated by E± = E1 ± E2

and V± = V1 ± V2, while φ4 preserves 4SU(2). �

Existence of solutions extending smoothly over a singular orbit. The main results
of this section are the existence of two 1–parameter families of solutions to the fundamental
ODE system (3.10) closing smoothly on a singular orbit.

Theorem 4.4 (Invariant nearly Kähler metrics extending smoothly over a singular orbit S2).
For every a > 0 there exists a unique solution Ψa to (3.10) satisfying the initial conditions

λ(0) = u2(0) = 0, u0(0) = u1(0) = a2, v0(0) = v1(0) = v2(0) = 0,
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and such that λ, u0, u1, u2 satisfy the conditions of Lemma 4.1(i). In other words, for every
a > 0 there exists a unique SU(2) × SU(2)–invariant smooth nearly Kähler structure defined
in a sufficiently small neighbourhood of the zero section of O(−1) ⊕ O(−1) → S2 and such
that the zero section has volume a2 with respect to the induced metric. Moreover, Ψa depends
continuously on a ∈ (0,∞).

The singular orbit S2 here is SU(2) × SU(2)/U(1) × SU(2). The composition τ2 ◦ τ3 ◦ τ4

preserves the sign constraints λ > 0, u2 < 0, v1 > 0 and by Lemma 4.3 it sends Ψa to a
solution of (3.10) which extends smoothly across a singular orbit SU(2)×SU(2)/SU(2)×U(1).

Theorem 4.5 (Invariant nearly Kähler metrics extending smoothly over a singular orbit S3).
For every b > 0 there exists a unique solution Ψb to (3.10) satisfying the initial conditions

λ(0) = b, v0(0) = −v2(0) = −2

3
b3, v1(0) = 0, ui(0) = 0, i = 0, 1, 2.

In other words, for every b > 0 there exists a unique SU(2) × SU(2)–invariant smooth nearly
Kähler structure defined in a sufficiently small neighbourhood of the zero section of T ∗S3 such
that the zero section has volume b3 with respect to the induced metric. Moreover, Ψb depends
continuously on b ∈ (0,∞).

Remark 4.6. The solutions of Examples 3.13, 3.14 and 3.15 of course belong to the two
1–parameter families of the theorems. More precisely, the round nearly Kähler structure on
S6, Example 3.13, is Ψa with a =

√
3 and Ψb with b = 3

2 , the homogeneous nearly Kähler

structure on S3 × S3, Example 3.14, is Ψb with b = 1 and the homogeneous nearly Kähler

structure on CP 3, Example 3.15, is Ψa with a =
√

3
2 .

The main technical tool for proving these theorems is the following general result about first
order singular initial value problems. We will appeal to it repeatedly in the paper.

Theorem 4.7. Consider the singular initial value problem

(4.8) ẏ =
1

t
M−1(y) +M(t, y), y(0) = y0,

where y takes values in Rk, M−1 : Rk → Rk is a smooth function of y in a neighbourhood of
y0 and M : R× Rk → Rk is smooth in t, y in a neighbourhood of (0, y0). Assume that

(i) M−1(y0) = 0;
(ii) hId− dy0M−1 is invertible for all h ∈ N, h ≥ 1.

Then there exists a unique solution y(t) of (4.8). Furthermore y depends continuously on y0

satisfying (i) and (ii).

The condition (ii) guarantees the existence of a unique formal power series solution y(t)
to (4.8). Once a formal power series solution has been shown to exist, one can follow the
arguments of [38, Theorem 7.1], [27, §5] and [29, §4]: use a truncation of the power series of
sufficiently high degree as an approximate solution to (4.8) and deform it to a genuine solution
by applying a contraction mapping fixed point argument. As for the continuous dependence
on the initial conditions, one argues as in [29, §4]: the coefficients of the formal power series
solution y(t) depend differentiably on y0 satisfying (i) and (ii) and the operator used in the
fixed point argument is uniformly contracting with respect to the initial conditions.

Proof of Theorem 4.4. We first reformulate the problem in the form (4.8).
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By Lemma 4.1.(i) if Ψ is a solution to (3.10) that extends smoothly along a singular orbit
S2 = SU(2)× SU(2)/U(1)× SU(2) we can write

u0(t) = a2 + t2y1(t), u1(t) = a2 + t2y2(t), u2(t) = t2y3(t),

v0(t) = t2y4(t), v1(t) = t2y5(t), v2(t) = t2y6(t), λ(t) = t y7(t),

for some a > 0.
In terms of y = (y1, . . . , y7) the system (3.10) becomes

ẏ1 = −1

t

(
2y1 + 3

y4

y7

)
, ẏ4 = −1

t

(
2y4 − 4a2y7

)
+ 4ty1y7,

ẏ2 = −1

t

(
2y2 + 3

y5

y7
− 2y7

)
, ẏ5 = −1

t

(
2y5 − 4a2y7

)
+ 4ty2y7,

ẏ3 = −1

t

(
2y3 + 3

y6

y7

)
, ẏ6 = −1

t

(
2y6 + 3

y3

y7

)
+ 4ty3y7,

ẏ7 = −1

t

(
y7 +

y2
7

y2 − y1
+

3y3y6

2a2y2
7(y2 − y1)

)
+M7(t, y),

where

tM7(t, y) =
y2

7

y2 − y1
+

3y3y6

2a2y2
7(y2 − y1)

−

2y2
7(a2 + t2y2)

2a2(y2 − y1) + t2(−y2
1 + y2

2 + y2
3)
− 3y3y6

y2
7

(
2a2(y2 − y1) + t2(−y2

1 + y2
2 + y2

3)
) .

Hence y solves an ODE system as in (4.8).
It remains to check the hypotheses of Theorem 4.7. First, the requirement M−1 (y0) = 0

uniquely determines the initial condition y0 in terms of a:

(4.9) y0 =

(
−3a2,−3a2 +

3

2
,−3
√

3

2
a, 3a2, 3a2,

3
√

3

2
a,

3

2

)
,

where we assumed u2 < 0 without loss of generality.
For y sufficiently close to y0, a bounded away from 0 and t sufficiently small we see that M−1

and M are real analytic functions of all of their arguments and depend smoothly on a > 0.
Finally, the linearisation of M−1 at y0 is

dy0M−1 =



−2 0 0 −2 0 0 4a
0 −2 0 0 −2 0 2 + 4a

0 0 −2 0 0 −2 2
√

3a
0 0 0 −2 0 0 4a
0 0 0 0 −2 0 4a

0 0 −2 0 0 −2 −2
√

3a
1 −1 − 2√

3a
0 0 2√

3a
−7


.

The determinant of hId− dy0M−1 is

(h+ 1)(h+ 2)3(h+ 4)3 ≥ 512 > 0

for all integer h ≥ 0. �
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Remark 4.10. The first few terms of the Taylor series of Ψa at t = 0 are:

λ(t) = 3
2 t−

2a2 + 3

12a2
t3 +

116a4 − 381a2 + 261

1440a4
t5 +

5500a6 − 26523a4 + 34209a2 − 13149

90720a6
t7 + . . . ,

u0(t) = a2 − 3a2t2 +
52a2 − 3

24
t4 − 172a4 + 3a2 − 18

270a2
t6 + . . . ,

u1(t) = a2 − 3
2(2a2 − 1)t2 +

52a4 − 32a2 − 3

24a2
t4 − 2752a6 − 1688a4 + 93a2 − 261

4320a4
t6 + . . . ,

u2(t) = −3
√

3
2 at2 +

√
3(16a2 − 3)

12a
t4 +

√
3(−3412a4 + 267a2 + 423)

8640a3
t6 + . . . ,

v0(t) = 3a2t2 −
(

1

4
+

14a2

3

)
t4 +

5516a4 + 429a2 + 261

2160a2
t6 + . . . ,

v1(t) = 3a2t2 +

(
2− 14a2

3

)
t4 +

5516a4 − 2541a2 − 549

2160a2
t6 + . . . ,

v2(t) = 3
2

√
3at2 −

√
3(34a2 − 3)

12a
t4 +

√
3

13492a4 + 273a2 − 423

8640a3
t6 + . . . .

The particular form of the coefficients will play an important role in Proposition 8.8.

The proof of Theorem 4.5 is similar, cf also [41, Theorem 6.4] and Proposition 6.3.

5. The orbital volume function and maximal volume orbits

It follows from previous work that any complete SU(2) × SU(2)–invariant nearly Kähler
6–manifold must arise as the completion of some element (or possibly an element from both)
of the two 1–parameter families {Ψa}a>0, {Ψb}b>0 constructed in the previous section. Our
strategy to understand whether any of these solutions closes smoothly along a second singular
orbit at some time T > 0 will be to consider pairs of solutions from these two families and to
try to match them across a principal orbit. In this section we find a geometrically preferred
slice to use as a tool in this matching.

To this end we study the properties of the orbital volume function V (t), ie the volume of
the hypersurfaces {t} ×N1,1, for these two 1–parameter families of solutions. The main result
of this section, Proposition 5.15, establishes that the orbital volume function of every solution
constructed in Theorems 4.4 and 4.5 has a unique (strict) maximum. An important ingredient
of the proof of Proposition 5.15 is Proposition 5.9 which establishes key properties of the space
of possible maximal volume orbits V, foremost of which are: (i) the orbital volume restricted
to V is bounded below by the volume of the invariant Sasaki–Einstein structure on N1,1 and is
achieved only by a “rotated” invariant Sasaki–Einstein structure; (ii) for any C ≥ 1 the subset
of maximal volume orbits with volume bounded above by C is compact and nonempty.

Proposition 5.15 allows us to define two curves α and β : (0,∞) → V that parametrise
the maximal volume orbits of the two 1–parameter families {Ψa}a>0 and {Ψb}b>0 respectively
inside the space of all maximal volume orbits. The maximal volume orbit is the preferred
principal orbit on which to investigate matching conditions; such matching conditions are
then described in Lemmas 5.19 and 5.20 (which we call the Doubling and Matching Lemmas
respectively) in terms of properties of the curves α and β (or a certain projection of them).
Establishing enough information about the curves α and β to prove that they satisfy the
conditions of the Doubling or Matching Lemmas in some cases will occupy the rest of the
paper.
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According to Proposition 2.16, the volume of N1,1 with respect to the metric induced by an
invariant SU(2)–structure ψλ,µ,A has the simple form V = V0 λµ

2, where V0 is the volume of
N1,1 with respect to the standard Sasaki–Einstein metric. For notational convenience in the
rest of the paper we will write V for (V/V0). While it is possible to derive evolution equations
for the orbital volume function V and related quantities directly from the fundamental ODE
system (3.10), for some purposes it is more convenient to consider the system of ODEs describ-
ing arbitrary cohomogeneity one Einstein metric: computations will be minimised and, more
importantly, we will be able to recognise often complicated algebraic expressions involving the
SU(2)–structure ψ as basic geometric quantities.

The Einstein equations for families of equidistant hypersurfaces. Let gt be a family
of Riemannian metrics on an n–dimensional oriented manifold N and consider the metric ĝ on
Rt ×N defined by ĝ = dt2 + gt. We recall the derivation of the Einstein equations for ĝ given
by Eschenburg–Wang in [27, Proposition 2.1].

Denote by ν the unit normal of the family of hypersurfaces Nt := {t} × N and by L the
Weingarten operator given by

L(X) = ∇̂Xν, for every X ∈ TN,

where ∇̂ is the Levi-Civita connection of the metric ĝ. Then L = 1
2g
−1g′ and

(5.1) L′ + L2 + R̂ν = 0

is the Riccati equation. Here R̂ν is the normal-tangential component of the curvature of ĝ, ie
R̂ν(X) = R̂(X, ν)ν for every X ∈ TN , and ′ denotes differentiation with respect to t.

Assume now that ĝ is Einstein with scalar curvature (n+ 1)Λ. Then the Gauss equation for
the hypersurface Nt implies that

(5.2) L′ + lL− r + Λ id = 0,

where l = TrL is the mean curvature of the hypersurface Nt and r is the Ricci-endomorphism
of the metric gt. Moreover, if we regard L as a TN–valued 1–form and d∇ is the exterior
differential induced by the Levi-Civita connection of gt then the vanishing of the Ricci curvature
in normal-tangential directions can be expressed using the Codazzi equation as

(5.3) Tr(Xyd∇L) = 0, for all X ∈ TN.

Taking the trace of both (5.1) and (5.2) yields

l′ + |L|2 + Λ = 0,(5.4a)

Scal−(n− 1)Λ = l2 − |L|2,(5.4b)

where Scal is the scalar curvature of gt and |L|2 = TrL2.
The Einstein equations are therefore a first order system for a pair (g, L) consisting of a

Riemannian metric g on N and a symmetric endomorphism L of TN subject to the additional
constraints (5.3) and (5.4a). (5.4b) is then a conserved quantity of this system.

Consider now a solution Ψ = (ψt)0<t<T of the fundamental ODE system (3.10). Each
invariant nearly hypo structure ψt on N1,1 determines an invariant metric g. Furthermore,
differentiating the map from invariant nearly hypo structures to invariant metrics along the
direction of the vector field (3.10) defines the Weingarten operator L. The pair (g, L) then
satisfies the system above with n = 5 = Λ.

The positivity of Λ has a number of immediate consequences.
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Proposition 5.5. Let Ψ be a solution of the fundamental ODE system (3.10) defined on
(−T1, T2) for T1, T2 > 0. Moreover, let V be the orbital volume function V = λµ2, where

µ2 = |u|2 in the parametrisation of (3.1), and l be the mean curvature l = TrL = V̇
V .

(i) Every critical point of V is a strict maximum.
(ii) T1 + T2 ≤ π.

(iii) Fix t0 ∈ (0, π) such that l(0) = 5 cot (t0). Then

l(t) ≤ 5 cot (t+ t0), for t > 0;

l(t) ≥ 5 cot (t+ t0), for t < 0.

(iv) For the same t0 as above and any t ∈ (−T1, T2)

V (t) ≤ V (0)
sin5 (t+ t0)

sin5 (t0)
.

Proof. Since V ′ = lV and therefore V ′′ = l′V at any critical point of V , (5.4a) implies (i).

Decomposing L into its trace l and its traceless part L̊, we write |L|2 = 1
5 l

2 + |L̊|2. Then
(5.4) implies that l satisfies the inequality

l′ +
1

5
l2 + 5 ≤ 0.

Comparing l with a solution of the scalar Riccati-type equation l′ + 1
5 l

2 + 5 = 0 we obtain (ii)
and (iii) by [26, Theorem 4.1]. Direct integration of V ′ = lV then yields (iv). �

We will now write down explicit formulae for the geometric quantities appearing in (5.4b) in
terms of an invariant nearly hypo structure ψλ,µ,A as an illustration of how complicated these
algebraic expressions can be. Two of these explicit formulae will be useful in the next section.

Lemma 5.6. Let ψλ,µ,A be one of the invariant nearly hypo structures on N1,1 parametrised
in Proposition 2.41. Let xi, yi and wi be given by (2.42) and, acting with the flow of the Reeb
vector field if necessary, assume that θ = 0.

(i) The scalar curvature of the induced invariant metric g on N1,1 is

Scal = 20− 4
λ2x2

1

µ2
+ 24

x1y2

µ
− 4

λ2w2
1

µ2
− 9

w2
2

λ2
.

(ii) The mean curvature l is

l = 2
x1

y1
− 3

y2

x2
.

(iii) The norm squared of the traceless part of the Weingarten operator L is

|L̊|2 =
36

5

(
λx1

µ
− y2

λ

)2

+ 4
λ2w2

1

µ2
+ 9

w2
2

λ2
.

Proof. First we give an expression for the scalar curvature of a general invariant SU(2)–
structure on N1,1 and then specialise to the case of invariant nearly hypo structures. Bedulli
and Vezzoni [5, Theorem 3.4] give a formula for the scalar curvature of the metric induced by
an SU(2)–structure on a 5–manifold. Since ηse spans the space of invariant 1–forms on N1,1

and invariant functions on N1,1 are constant, this formula simplifies considerably in the case
of invariant SU(2)–structures:

(5.7) Scal = −5φ2
11 −

3∑
i=1

φ2
i − 4φ1φ23 − 4φ2φ31 − 4φ3φ12 −

3∑
i=0

1

2
|σi|2,



32 L. FOSCOLO AND M. HASKINS

where φi, φij and σi are the SU(2)–irreducible components of the intrinsic torsion Θ of the
SU(2)–structure as described in Conti–Salamon [23, Proposition 2.3]. These irreducible com-
ponents of Θ are determined by the exterior derivatives of η and the triple ωi via

(5.8) dωi = αi ∧ ωi +
3∑
j=1

φijη ∧ ωj + σi, dη = η ∧ α4 +
3∑
i=1

φiωi + σ4.

To apply these two formulae we need to express the components of the intrinsic torsion of the
invariant SU(2)–structure ψλ,µ,A in terms of the parameters (λ, µ,A) ∈ R+ × R+ × SO0(1, 3).
Recall that from equations (2.12) and (2.13) we have η = ληse, ωi = µAωse

i . From (2.17) we
obtain

dη = −2
λ

µ
ω1, dωi =

1

λ
η ∧ (A−1TA)ωi,

where T is defined in (2.18).
We now specialise to the case of invariant nearly hypo SU(2)–structures. An explicit com-

putation of A−1 and A−1TA yields

dη = −2
λ

µ

(
−w1ω0 + x1ω1 +

µ

λ
ω3

)
, dω1 = 3η ∧ ω2,

dω2 = η ∧ 1

λ
(−3w2ω0 − 3λω1 + 3y2ω3) , dω3 = −3

y2

λ
η ∧ ω2.

The first part of the lemma follows from (5.7) and (5.8) using the fact that |ω0|2 = 2 with
respect to g.

The expression for the mean curvature l follows from (3.10) and the change of variables

(3.1) since l = V̇
V = λ̇

λ + 2 µ̇µ . Once (i) and (ii) are known, (iii) follows from (5.4b). �

Formulae in the parametrisation (λ, u, v) of (3.1) follow immediately by applying the change
of variables (3.3).

The space of invariant maximal volume orbits. If a solution of (3.10) gives rise to
a complete invariant nearly Kähler metric on a closed 6–manifold M then clearly it would
contain a unique orbit of maximal volume. In general the two 1–parameter families of invariant
nearly Kähler metrics provided by Theorems 4.4 and 4.5 give rise to incomplete invariant
nearly Kähler metrics. Nevertheless, in this section we show that every solution Ψ in the two
1–parameter families of Theorems 4.4 and 4.5 has a unique maximal volume orbit, ie the orbital
volume function V = λµ2 reaches a strict maximum before Ψ blows up.

Let l be the mean curvature of an invariant nearly hypo structure ψ ∈ U × SO(2), where U
is the open set of SO0(1, 2) defined in Proposition 2.41. Here for any δ > 0 sufficiently small
we extend ψ to an invariant nearly Kähler structure Ψ on (−δ, δ)×N1,1 by Proposition 3.9 and

define l by V̇ (0) = l V (0). In this manner, we regard l as a smooth function on the space of
invariant nearly hypo structures and denote by V its zero level set. V is clearly invariant under
the circle action generated by the Reeb vector field and therefore, in the parametrisation of
Proposition 2.41, V = V0 × SO(2) for a subset V0 of U .

Proposition 5.9. The space V = V0× SO(2) of invariant nearly hypo structures on N1,1 that
satisfy the additional constraint l = 0 is a smooth manifold.

Let π : V0 → R+ ×R+ be the map given by ψλ,µ,A 7→ (λ, µ). Then π(ψ) = π(ψ′) if and only
if ψ′ lies in the orbit of ψ under the group of discrete symmetries generated by the involutions
τ1, τ2, τ3, τ4 of Proposition 3.11. The image of V0 under π is the wedge

W = {(λ, µ) ∈ R+ × R+ |µ ≥ λ ≥ 1}
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and the projection π : V0 →W is a 4–fold cover branched along the boundary of W .
In particular, the volume V = λµ2 of an invariant nearly hypo structure ψ ∈ V is bounded

below by 1 with equality if and only if ψ is an invariant Sasaki–Einstein structure on N1,1 and
the set V ∩ {V ≤ C} is compact for any C ≥ 1.

Proof. By the first equation in (5.4) at any point the differential of l evaluated on the tangent
vector corresponding to the evolution equations (2.37b) is strictly negative and therefore V is
a smooth submanifold of U × SO(2). We will now describe V in detail.

Let ψ be an invariant nearly hypo structure written in the form (3.1) with θ = 0. By Lemma
5.6(ii) and the change of variables (3.3), ψ is a critical point of V if and only if

(5.10) 2λ4u1 = 3u2v2.

We now use (5.10) to rewrite the constraints (3.5) in terms of λ, µ and u1. First of all,
substituting u2 = −λµ in (5.10) yields

(5.11) v2 = −2λ3u1

3µ
.

Notice that the inequality (3.6) then reads

(5.12) u2
1 <

3µ4

2λ2
.

We now substitute the expression (5.11) for v2 along with those for u2 and v1 in terms of λ
and µ into the constraints (3.5). We obtain

u2
0 = u2

1 + µ2(λ2 − 1),(5.13a)

9µ2

4λ6
v2

0 = u2
1 +

9µ4

4λ6
(µ2 − λ2),(5.13b)

3µ

2λ3
u0v0 =

µ

2λ3
u1(3µ2 + 2λ4).(5.13c)

Equating the product of the first two equations with the square of the third we see that
x = u2

1 satisfies the quadratic equation

(5.14) x2 − cx+ d = 0,

where c = µ2
(

1 + 3µ2

λ2
+ 9µ2

4λ4

)
> 0 and d = 9µ6

4λ6
(λ2−1)(µ2−λ2). The discriminant ∆ = c2−4d

of the quadratic (5.14) is

∆ =
µ4

λ8

(
45

2
µ4λ2 + 15µ2λ6 +

81

16
µ4 + λ8 − 9

2
µ2λ4

)
≥ µ4

λ8

(
45

2
µ4λ2 + 15µ2λ6

)
≥ 0,

where equality holds if and only if λ = µ = 0. Hence (5.14) always has two distinct real roots.
The larger root x+ always has to be discarded because it contradicts (5.12). When d < 0

the smallest root x− = 1
2(c−

√
∆) < 0. Assume then that d ≥ 0. We distinguish two cases: (i)

µ < λ < 1; (ii) µ ≥ λ ≥ 1.
In case (i) we show that the choice x = x− is incompatible with (5.13). Indeed, if the first two

equalities of (5.13) were satisfied with this choice of u2
1, then we must have c+2µ2(λ2−1) ≥

√
∆

and c+ 9µ4

2λ6
(µ2 − λ2) ≥

√
∆. However, the squares of the expressions on the left hand side of

these inequalities are ∆ + µ4

λ6
(3µ2 + 2λ4)2(λ2 − 1) and ∆ + 9µ6

4λ12
(3µ2 + 2λ4)2(µ2 − λ2), both

strictly less than ∆ by hypothesis.
In case (ii) the solution x = x− to (5.14) is both non-negative and compatible with (5.12)

and (5.13). Thus an admissible solution to the quadratic equation (5.14) only exists (and is
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unique) when (λ, µ) ∈ W . In this case u1 is determined up to sign by the pair (λ, µ). The
first two equations in (5.13) therefore determine u0 and v0 up to sign in terms of (λ, µ).
Acting by τ4 ◦ τ1 if necessary we can assume without loss of generality that u1 ≥ 0. Then
u1, u2 = −λµ, v1 = µ2, v2, |u0|, |v0| are completely determined by (λ, µ). Moreover, the third
equation of (5.13) implies that u0v0 ≥ 0. The involution τ2 ◦τ3 ◦τ4 maps (u0, v0) 7→ (−u0,−v0)
while keeping λ, u1, u2, v1, v2 fixed and therefore can be used to remove the remaining ambiguity
in the choice of sign of u0, v0. �

Thanks to the compactness statement we deduce the following crucial proposition.

Proposition 5.15. Let Ψ be one of the solutions of (3.10) given by Theorems 4.4 and 4.5.
Then Ψ intersects V in a unique point.

Proof. The proof is identical in the two cases and we therefore give it only for the family Ψa.
Let S be the set of a ∈ (0,∞) such that Ψa intersects V. The solution of (3.10) of Example
3.13, ie the standard nearly Kähler structure on S6, admits a maximal volume orbit and a
singular orbit S2 (and S3). Hence S is non-empty.
S is open: by Proposition 5.5(i) every nearly hypo structure with l = 0 is a non-degenerate

maximum of the orbital volume function. Moreover, by Proposition 5.9, l = 0 defines a smooth
hypersurface in the space of invariant nearly hypo structures and therefore if Ψa has a maximal
volume orbit, so does Ψa′ for any a′ sufficiently close to a.
S is closed: suppose that a sequence ai in S converges to some a ∈ (0,∞). By the continuous

dependence on the initial conditions, we can find some time t > 0 sufficiently small such that
the orbital volume V (t) and the mean curvature l(t) remain uniformly bounded for all ai.
By Proposition 5.5(iii), the maximal volume orbits of Ψai have uniformly bounded volume.
By Proposition 5.9 the set of maximal volume orbits with an upper bound on the volume is
compact and therefore Ψa must also contain a maximal volume orbit.

We conclude that S = (0,∞). The intersection point is unique by Proposition 5.5(i). �

Since the solutions Ψa,Ψb of Theorems 4.4 and 4.5 depend continuously on a, b > 0, respec-
tively, Proposition 5.15 yields two continuous curves α, β : (0,∞)→ V0. Using Proposition 5.9
we project these two curves onto the wedge W .

Definition 5.16. Let αW, βW : (0,∞)→W be the two continuous curves which parametrise
the maximal volume orbit of the solutions Ψa, a > 0, and Ψb, b > 0, respectively, up to the
action of discrete symmetries.

The fact that αW and βW parametrise maximal volume orbits up to discrete symmetries
follows from Proposition 5.9.

We now use the curves αW and βW to state conditions for pairs of solutions Ψε, Ψε′ to
match across their maximal volume orbit and therefore define a complete invariant nearly
Kähler structure on closed manifold. The task of the rest of paper is to study the behaviour
of the curves αW and βW to establish whether these matching conditions are ever satisfied.

Doubling and matching. Suppose that Ψ1,Ψ2 are two of the solutions of (3.10) given by
Theorems 4.4 and 4.5. In the parametrisation of (3.1) we write

Ψ1(t) =
(
λ(t), u0(t), u1(t), u2(t), v0(t), v1(t), v2(t)

)
,

Ψ2(t) =
(
λ̂(t), û0(t), û1(t), û2(t), v̂0(t), v̂1(t), v̂2(t)

)
.
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Suppose that the maximal volume orbit of Ψ1,Ψ2 occurs at t = T1, T2, respectively, and that

(λ(T1), µ(T1)) =
(
λ̂(T2), µ̂(T2)

)
, ie the two maximal volume orbits coincide up to the action of

discrete symmetries. In particular, ui(T1), vi(T1) coincide with ûi(T2), v̂i(T2) up to some sign.
Acting by τ2 ◦ τ3 ◦ τ4 on Ψ1 we define

Ψ̃1(t) =
(
λ(t),−u0(t), u1(t), u2(t),−v0(t), v1(t), v2(t)

)
.

By the uniqueness of solutions of (3.10) with given initial conditions, if u1(T1) = û1(T2) then

necessarily Ψ2 = Ψ1 or Ψ2 = Ψ̃1 depending on the sign of u0(T1), û0(T2). Thus we assume
without loss of generality that u1(T1) = −û1(T2).

Acting by a time translation and τ1 ◦ τ2 ◦ τ3 or τ1 ◦ τ4, respectively, define

Ψ±2 (t) =
(
λ̂(τ),∓û0(τ),−û1(τ), û2(τ),±v̂0(τ), v̂1(τ),−v̂2(τ)

)
,

where τ = T1 + T2 − t for T1 ≤ t ≤ T1 + T2. By our assumptions either Ψ1(T1) = Ψ+
2 (T1) and

we define a smooth solution of (3.10)

(5.17) Ψ(t) =

{
Ψ1(t), 0 ≤ t ≤ T1,
Ψ+

2 (t), T1 ≤ t ≤ T1 + T2,

or Ψ1 (T1) = Ψ−2 (T1) and we consider

(5.18) Ψ(t) =

{
Ψ1(t), 0 ≤ t ≤ T1,
Ψ−2 (t), T1 ≤ t ≤ T1 + T2.

We deduce the following two lemmas.

Lemma 5.19 (Doubling Lemma).

(i) Suppose that there exists a ∈ (0,∞) such that αW(a) lies in the portion of the boundary
of W with λ = 1, µ > 1. Then (5.17) with Ψ1 = Ψ2 = Ψa defines a smooth invariant
nearly Kähler structure on S2 × S4.

(ii) Suppose that there exists a ∈ (0,∞) such that αW(a) lies in the portion of the boundary
of W with λ = µ > 1. Then (5.18) with Ψ1 = Ψ2 = Ψa defines a smooth invariant nearly
Kähler structure on CP 3.

(iii) Suppose that there exists b ∈ (0,∞) such that βW(b) lies on the boundary of W and
βW(b) 6= (1, 1). Then (5.17) or (5.18) with Ψ1 = Ψ2 = Ψb defines a smooth invariant
nearly Kähler structure on S3 × S3.

Proof. The point (1, 1) ∈ W corresponds to the standard Sasaki–Einstein structure on N1,1

and therefore has to be excluded.
In view of the previous discussion we have only to explain the topology of the underlying

manifold M obtained by the gluing construction of (5.17) and (5.18).
Recall that τ3 is induced by the inner automorphism φ3 of SU(2) × SU(2) generated by

π
4U
−, ie φ3 is conjugation by an element of the normaliser N of 4U(1) in SU(2) × SU(2).

It is clear that N = U(1) × U(1) is the maximal torus of SU(2) × SU(2). In particular N is
connected and φ3 can be deformed to the identity through a path in N . On the other hand, τ4

is induced by the outer automorphism of SU(2)×SU(2), which fixes both 4U(1) and 4SU(2)
but exchanges U(1)× SU(2) and SU(2)×U(1). It is then straightforward to deduce the group
diagrams of the resulting cohomogeneity one manifolds. The result follows from Table 1. �

Remark. Observe that the nearly Kähler structures of the lemma are obtained by “doubling”
a solution Ψa or Ψb across its maximal volume orbit. In particular, the two singular orbits are
spheres of the same dimension and have the same volume. Because of the non-trivial action
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of the discrete symmetries, however, the maximal volume orbit is not totally geodesic. By
[28, Lemma 2.1] this can only occur for the “rotated” Sasaki–Einstein structure in a nearly
Kähler sine-cone.

Lemma 5.20 (Matching Lemma).

(i) Suppose that there exists a < a′ ∈ (0,∞) such that αW(a) = αW(a′). Set Ψ1 = Ψa and
Ψ2 = Ψa′. Then either (5.17) yields a smooth nearly Kähler structure on S2 × S4 or
(5.18) defines a smooth invariant nearly Kähler structure on CP 3.

(ii) Suppose that there exists b < b′ ∈ (0,∞) such that βW(b) = βW(b′). Set Ψ1 = Ψb

and Ψ2 = Ψb′. Then either (5.17) or (5.18) defines a smooth invariant nearly Kähler
structure on S3 × S3.

(iii) Suppose that there exist a, b ∈ (0,∞) such that αW(a) = βW(b). Then either (5.17) or
(5.18) with Ψ1 = Ψa and Ψ2 = Ψb defines a smooth invariant nearly Kähler structure
on S6.

Proof. In all cases Ψ2 6= Ψ1, Ψ̃1 and therefore one of the conditions of (5.17) or (5.18) are
satisfied. The topology of the resulting 6–manifold follows from Table 1. �

6. Limits of the two 1–parameter families of smoothly closing nearly Kähler
solutions as a or b tend to 0

In order to be able to satisfy the conditions of the Doubling or Matching Lemmas 5.19 and
5.20 we will need information about the behaviour of the two curves α and β parameterising
the maximal volume orbits of the two 1–parameter families {Ψa}a>0 and {Ψb}b>0 respectively.
In this section we establish properties about the families {Ψa}a>0 and {Ψb}b>0 in the limit
where the size of the singular orbit tends to zero, ie a or b→ 0. This information will suffice for
our applications to constructing a new complete cohomogeneity one nearly Kähler structure
on S3×S3 in Section 7; however, to prove the existence of a new complete cohomogeneity one
nearly Kähler structure on S6 we will also need some understanding of the family {Ψa}a>0 in
the limit where a→∞. We turn to this latter problem in Section 8.

The four compact SU(2)×SU(2)–manifolds of Table 1 can each be thought of as desingular-
isation of the sine-cone of Example 3.12, where a neighbourhood of each conical singularity is
replaced with a copy of either O(−1)⊕O(−1)→ S2 or of T ∗S3. By Theorem 2.27 both of these
carry complete Calabi–Yau structures. Proposition 6.3 establishes that in the limit where the
size of the singular orbit tends to zero, suitably rescaled Ψa and Ψb converge to the Calabi–
Yau structures on the small resolution and the conifold respectively, and thus confirms our
earlier expectation that the two 1–parameter families {Ψa}a>0 and {Ψb}b>0 are nearly Kähler
deformations of the two Calabi–Yau desingularisations of the conifold. Further confirmation
of the desingularisation intuition is provided by the main result of this section, Theorem 6.9:
this establishes that on every compact set of (0, π) the local nearly Kähler structures Ψa and
Ψb converge to the sine-cone of Example 3.12 as a and b → 0. The proof of this result uses
the limiting behaviour of the rescalings of Ψa or Ψb as a or b → 0 as described above, along
with the properties of the Böhm functional B and results from the previous section about the
space of maximal volume orbits V.

Bubbling-off of asymptotically conical Calabi–Yau 3–folds. Let {Ψa}a>0 and {Ψb}b>0

be the two 1–parameter families of solutions to (3.10) given by Theorems 4.4 and 4.5, respec-
tively. Set ε = a or ε = b and consider the scaling

(ω,Ω) 7−→ (ε−2ω, ε−3Ω).
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Under such a transformation, the two 1–parameter families define two families of local nearly
Kähler structures with Scal = 30ε2 defined in a neighbourhood of a singular orbit of fixed size.
In terms of the parametrisation of (3.1), a solution Ψε(t) = (λ(t), u(t), v(t)) of (3.10) defines
a solution

Ψ̃ε =
(
ε−1λ(εt), ε−2u(εt), ε−3v(εt)

)
of the ODE system

λu̇0 + 3εv0 = 0,(6.1a)

λu̇1 + 3εv1 − 2λ2 = 0,(6.1b)

λu̇2 + 3εv2 = 0,(6.1c)

v̇0 − 4ελu0 = 0,(6.1d)

v̇1 − 4ελu1 = 0,(6.1e)

ελv̇2 − 4ε2λ2u2 + 3u2 = 0,(6.1f)

ελ2|u|2λ̇+ 2ελ4u1 + 3u2v2 = 0,(6.1g)

together with the constraints

〈u, v〉 = 0,(6.2a)

u2 = −ελµ(6.2b)

λ2|u|2 = |v|2,(6.2c)

v1 = εµ2,(6.2d)

where µ2 := |u|2.

Proposition 6.3 (Rescaled nearly Kähler “bubbles” converge to Calabi–Yau structures).

(i) For every a ≥ 0 there exists a unique smooth solution Ψ̃a to (6.1) with ε = a satisfying
the initial conditions

λ(0) = 0 = u2(0), u0(0) = 1 = u1(0), vi(0) = 0, i = 0, 1, 2.

(ii) For every b ≥ 0 there exists a unique smooth solution Ψ̃b to (6.1) with ε = b satisfying
the initial conditions

λ(0) = 1, ui(0) = 0, i = 0, 1, 2, v0(0) = −2

3
= −v2(0), v1(0) = 0.

Moreover, Ψ̃a and Ψ̃b depend continuously on a, b ∈ [0,∞) and lima→0 Ψ̃a, limb→0 Ψ̃b is the
asymptotically conical Calabi-Yau structure of Theorem 2.27(i) and (ii), respectively.

Proof. The proof is analogous to the one of Theorems 4.4 and 4.5 and we only prove (ii).
For better comparison with Theorem 2.27(ii) and since λ(0) = 1, we introduce a new variable

defined by ds
dt = 1

λ . Write

u0(s) = sy1(s), u1(s) = sy2(s), u2(s) = εsy3(s)

v0(s) = −2

3
+ s2y4(s), v1(s) = s2y5(s), v2(s) =

2

3
+ s2y6(s), λ2(s) = y7(s).
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In terms of the new variables the system (6.1) becomes

ẏ1 = −y1 − 2b

s
− 3bsy4, ẏ4 = −2y4 − 4by1y7

s
,

ẏ2 = −y2 − 2y7

s
− 3bsy5, ẏ5 = −2y5 − 4by2y7

s
,

ẏ3 = −y3 + 2

s
− 3sy6, ẏ6 = −2y6 − 4b2y3y7 + 3y3

s
,

ẏ7 = −
4
(
y2y

2
7 + y3

)
s
(
−y2

1 + y2
2 + b2y2

3

) − 6sy3y6

y2
1 + y2

2 + b2y2
3

,

which has the form ẏ = 1
sM−1(y) + M(s, y) of (4.8). Condition (i) in Theorem 4.7 fixes the

initial condition

y0 =
(
2b, 2,−2, 4b2, 4b, 3− 4b2, 1

)
.

Then the linearisation of M−1 at y0 is

dy0M−1 =



−1 0 0 0 0 0 0
0 −1 0 0 0 0 2
0 0 −1 0 0 0 0
4b 0 0 −2 0 0 8b2

0 4b 0 0 −2 0 8b
0 0 4b2 − 3 0 0 −2 −8b2

0 −1 −1 0 0 0 −4


.

Since

det
(
hId− dy(0)A

)
= (h+ 1)2(h+ 2)4(h+ 3) 6= 0

for all h ≥ 1 the hypotheses of Theorem 4.7 are satisfied and the existence of a continuous
1–parameter family of solutions to (6.1) follows.

Taking the limit b → 0 in the equations and initial conditions we immediately obtain that

Ψ̃0 satisfies u0 = u2 = v1 = 0 (and therefore µ = u1), u′1 = 2λ2 and v0 = −2
3 . Moreover,

the constraint (6.2b) implies that sy3 = −λµ and therefore (λµ)′ = 3v2 and v′2 = 3λµ. Here ′

denotes derivative with respect to s. Comparing the parametrisations (2.28) and (3.1), by The-

orem 2.27(ii), Ψ̃0 is the unique invariant complete Calabi–Yau structure on T ∗S3 normalised
so that λ(0) = 1. �

Remark 6.4. With respect to the new variable s introduced in the proof of the proposition the

Taylor series of Ψ̃b at s = 0 is

λ2(s) = 1− 9
5(b2 − 1)s2 + 27

35(b2 − 1)(2b2 − 1)s4 + . . . ,

u0(s) = 2bs− 4b3s3 + 6
25b

3(19b2 − 9)s5 + . . . ,

u1(s) = 2s− 2
5(13b2 − 3)s3 + 6

175(172b4 − 111b2 + 9)s5 + . . . ,

u2(s) = −2bs+ b(4b2 − 3)s3 − 3
100b(152b4 − 192b2 + 45)s5 . . . ,

v0(s) = −2

3
+ 4b2s2 − 2

5
b2(19b2 − 9)s4 + . . . ,

v1(s) = 4bs2 − 4

5
b(11b2 − 6)s4 + . . . ,

v2(s) =
2

3
− (4b2 − 3)s2 +

1

20
(152b4 − 192b2 + 45)s4 + . . . .
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One checks that as b→ 0 these are exactly the first terms in the Taylor series at s = 0 for the
Calabi–Yau structure of Theorem 2.27(ii).

Singular limit: the sine-cone. Since the Calabi–Yau manifolds of Theorem 2.27 are asymp-
totic to the Calabi–Yau cone over the standard Sasaki–Einstein structure on N1,1, Proposition
6.3 implies that as ε = a, b converges to zero we can find some time tε > 0 such that the SU(2)–
structure Ψε(tε) is arbitrarily close to the standard invariant Sasaki–Einstein structure. We
will now deduce from this that Ψε converges to the sine-cone over the standard Sasaki–Einstein
structure on N1,1 away from the singular orbit(s) as ε→ 0.

The main tool is a functional B, introduced by Böhm in his work [9] on cohomogeneity one
Einstein metrics, which plays the role of a Lyapunov function for the system (3.10).

Recall from Section 5 that the Einstein equations for a family of equidistant hypersurfaces
R×N is a first-order system for a pair (g, L) of a Riemannian metric g on N and a symmetric
endomorphism of TN satisfying, among other constraints, (5.4b). We restrict here to the case
where the pair (g, L) is homogeneous with respect to the action of a compact Lie group G. In
[9, Equation (8)] Böhm considers the function

B(g, L) = V (g)
2
n

(
|L̊|2 + Scal(g)

)
,

where n is the dimension of N , V (g) the volume of N with respect to the metric g, L̊ is the

traceless part of L and |L̊|2 = Tr (L̊2). Using (5.4b), B(g, L) can be rewritten as

(6.6) B(g, L) = V (g)
2
n
(
(n− 1)Λ + l2

)
,

where l = TrL. Observe that the power of V makes B scale-invariant. Moreover, suppose that
(g, L) is an integral curve of the ODE system defining an Einstein metric of cohomogeneity
one on (−δ, δ)×N , ie L = 1

2g
−1g′ and (g, L) satisfies (5.2) and (5.4). Then B is decreasing in

t whenever l ≥ 0.

Lemma 6.7 ([9, Proposition 2.2]). If (gt, Lt) is a 1–parameter family of G–invariant pairs
defining an Einstein metric of cohomogeneity one on (−δ, δ) × N with Einstein constant Λ
then

d

dt
B(g, L) = −2

n− 1

n
V

2
n (g) TrL|L̊|2.

Proof. Differentiate (6.6) using (5.4a) and V ′ = lV . �

We now specialise to the case of a homogeneous pair (g, L) on N1,1 induced by a hypo or
nearly hypo structure. Thus n = 5 and Λ = 0 or Λ = 5, respectively. By abuse of notation we
write B(ψ) when the pair (g, L) is determined by a (nearly) hypo structure ψ.

Lemma 6.8. Let Ψε be one of the solutions of Theorems 4.4 and 4.5 with ε = a, b, respectively.

(i) B|Ψε attains its minimum on the maximal volume orbit;
(ii) B(ψ) ≥ 20 for every invariant nearly hypo structure ψ with l = 0 and equality holds if

and only if ψ is a rotated Sasaki–Einstein structure.

Proof. By Proposition 5.6(iii) if L̊ = 0, then in particular w1 = w2 = 0 and Corollary 2.46

implies that ψ is an invariant hypersurface of the sine-cone. Hence |L̊| > 0 on the solutions of
Theorems 4.4 and 4.5 and Lemma 6.7 implies (i). By (6.6), restricted to the space of invariant
nearly hypo structure with a fixed value of l, B is proportional to a fixed power of the volume.
The statement in (ii) then follows from Proposition 5.9. �

Observe that in view of part (ii) and the scale invariance of B, we have B ≡ 20 both on the
sine-cone and the conifold. We now deduce the main result of this section.
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Theorem 6.9. As a, b → 0, Ψa and Ψb converge to the sine-cone over the standard Sasaki–
Einstein structure on N1,1 on every relatively compact neighbourhood of the maximal volume
orbit t = π

2 in (0, π)×N1,1.

Proof. Consider first the functional B restricted to one of the Calabi–Yau structures of Theo-
rem 2.27. Since they are asymptotic to the conifold, B approaches the value 20 asymptotically.

By the scale-invariance of B and Proposition 6.3 for every ε = a or b sufficiently small we
can then find some time tε > 0 such that l(tε) > 0 and B (Ψε(tε)) is arbitrarily close to 20.

Lemma 6.8 then implies that as ε → 0 the maximal volume orbit Ψε(tmax,ε) converges to
the “rotated” standard Sasaki–Einstein structure. The theorem is now a consequence of the
continuous dependence on the initial conditions for solutions of (3.10) (and their time reversals)
starting from a principal orbit, cf Proposition 3.9. �

7. An exotic nearly Kähler structure on S3 × S3

In this section we prove the existence of an inhomogeneous nearly Kähler structure on
S3×S3. According to part (iii) of the Doubling Lemma 5.19 every point of intersection of the
curve βW of Definition 5.16 with the boundary of W (recall Proposition 5.9) corresponds to a
smooth invariant nearly Kähler structure on S3 × S3.

Our strategy is inspired by Böhm’s work in [8, §4]: we will consider a function f on the space
of invariant nearly hypo structures such that every solution Ψb of Theorem 4.5 intersects the
level set f−1(0) transversally and such that the intersection of f−1(0) with the space of maximal
volume orbits V0 lies in the preimage of the boundary of W under the projection of Proposition
5.9. Studying how the number of zeroes of f before the maximal volume orbit of Ψb varies as
a function of b > 0 will allow us to detect intersection points of βW with the boundary of W .

There are in fact various possible choices for the function f . Our choice is motivated by the
fact that we will need to know more than the existence of an intersection point of βW with the
boundary of W . Indeed βW(1), the maximal volume orbit of the homogeneous nearly Kähler
structure on S3 × S3, lies on the portion of ∂W where λ = 1. For our applications in the next
section, we will need to know that βW has at least one intersection point with the second line
λ = µ defining the boundary of W . By (5.13b), λ = µ is equivalent to v0 = 0 on a maximal
volume orbit. We will then count zeroes of v0 (equivalently, critical points of u0) and show
that there exists b ∈ (0, 1) such that v0 = 0 on the maximal volume orbit of Ψb.

Counting zeroes of v0. Let Ψ = (λ, u, v) be a solution of (3.10). The pair (u0, v0) then
satisfies the system

λu̇0 = −3v0, v̇0 = 4λu0.

An immediate consequence is that critical points of u0 (equivalently, zeroes of v0) are non-
degenerate unless u0 = 0 = v0. By Corollary 2.46 this can only occur on an invariant hyper-
surface of the sine-cone of Example 3.12.

For all b ∈ (0,∞) let Tb denote the time of the maximal volume orbit of Ψb.

Definition 7.1. For all b ∈ (0,∞) such that v0(Tb) 6= 0 let C(b) be the number of zeroes of v0

in (0, Tb).

The following properties of C(b) follow easily from the non-degeneracy of critical points of
u0, cf [8, Lemmas 4.4 and 4.5].

Lemma 7.2.

(i) Given 0 < b′ < b′′, suppose that v0(Tb) 6= 0 for all b ∈ [b′, b′′]. Then C(b) is constant on
[b′, b′′].
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(ii) Suppose that b∗ > 0 is the unique value of b ∈ [b∗ − δ, b∗ + δ] such that v0(Tb) = 0. Then∣∣C(b′)− C(b′′)∣∣ ≤ 1

for all b′, b′′ ∈ [b∗ − δ, b∗ + δ] with b′ < b∗ < b′′.

It follows that for all 0 < b′ < b′′ there exist at least |C(b′) − C(b′′)| values of b ∈ [b′, b′′] such
that v0(Tb) = 0.

Recalling Example 3.14 and Remark 4.6, when b = 1 then v0 = −6 cos (2
√

3t) and Tb = π
2
√

3
.

The existence of a second nearly Kähler structure on S3×S3 is now a consequence of Lemma
7.2 and the following result.

Proposition 7.3. For all b > 0 sufficiently small C(b) ≥ 2.

In the rest of the section we prove this proposition.
For every b > 0 consider the solution Ψb of (3.10) given by Theorem 4.7 and observe that

u0 is a solution of the second order ODE

(7.4) (λu′0)′ + 12λu0 = 0,

with initial conditions

u0(0) = 0, u′0(0) = 2b2 > 0.

By Theorem 6.9, λ(t) → sin t uniformly on compact sets of (0, π) as b → 0. Since we are
interested in the behaviour of u0 for small b, it makes sense to compare u0, which satisfies
(7.4), with a solution of the simpler limiting equation

(7.5) (sin t ξ′)′ + 12 sin t ξ = 0.

Remark. In fact (7.5) naturally arises when considering the linearisation of (3.10) on the sine-
cone of Example 3.12. Indeed, since u0 = 0 = v0 on the sine-cone it is not difficult to see that
the space of solutions of the linearised equations consists of the vector field corresponding to
time-translation along the sine-cone and the 2–parameter family of solutions to (7.5).

Equation (7.5) is one of Legendre’s equations. Its solutions take the form

(7.6) ξ0(t) = C1 ξreg + C2 ξsing

for constants C1, C2 ∈ R where

ξreg = 5 cos3 t− 3 cos t, ξsing =
5

2
cos2 t+

1

8
cos t (4 cos2 t− 6 sin2 t) log

1− cos t

1 + cos t
− 2

3
.

Lemma 7.7. There exists a solution ξ0 of (7.5) with the following property: there exists
0 < t1 < t2 < t3 <

π
2 such that ξ0(t1) = 0 = ξ0(t2), ξ0 ≥ 0 on [t1, t2] and ξ0 has a negative

minimum at t3.

Proof. The function ξ0 in (7.6) with C1 = 0, C2 = 1 has all the required properties except
that t3 = π

2 . Since the Legendre polynomial 5 cos3 t − 3 cos t vanishes at t = π
2 and has

strictly positive derivative there, by taking C1 > 0 small enough we ensure that the qualitative
behaviour of ξ0 is unchanged and at the same time its minimum occurs at t3 <

π
2 . See Figure 1.

�

The solution ξ0 in the previous lemma is singular at t = 0 and π, but in the following we
will only consider its restriction to the interval [t1, π − t1].
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t
π

0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

t1 t2
t3

ξreg

ξsing

ξ0

Figure 1. Solution ξ0 of (7.5) as in Lemma 7.7

A Sturm comparison argument. We are now going to compare the function u0 for a
solution Ψb of (3.10) with b small enough, with the solution ξ0 of the Legendre equation (7.5)
given in the previous lemma. The comparison result we need is the following generalisation of
the Sturm comparison theorem for Sturm–Liouville equations.

Lemma 7.8. Let λ1, λ2, q1, q2 be continuous functions on [t1, t3] ⊂ R such that

λ1 ≥ λ2 > 0, q2 ≥ q1,

for all t ∈ [t1, t3]. Suppose that ξ is a solution of

(λ1ξ
′)′ + q1ξ = 0
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such that ξ(t1) = 0 = ξ(t2) for some t1 < t2 < t3, ξ(t) ≥ 0 for all t ∈ [t1, t2] and ξ has a strict
negative minimum at t3. Then any solution u of

(λ2u
′)′ + q2u = 0

has a strict negative minimum in (t1, t4) unless u(t1) < 0 and u′(t1) ≥ 0.

The proof is analogous to that of the classical Sturm comparison theorem, cf [7, Theorem 3,
Chapter 10] and [8, Proposition 5.9].

Proposition 7.9. There exists ε > 0 such that for all b < ε the function u0 has a strict
negative minimum before the maximal volume orbit.

Proof. Fix 0 < t1 < t3 <
π
2 as in Lemma 7.7.

By Theorem 6.9 for all δ > 0 there exists ε > 0 such that if b < ε then |λ(t)− sin t| < δ for
all t ∈ [t1, π − t1].

Consider the Sturm–Liouville equation

(7.10)
(
(sin t+ δ) ξ′

)′
+ 12(sin t− δ) ξ = 0

on [t1, π − t1] with initial conditions ξ(t1) = ξ0(t1), ξ′(t1) = ξ′0(t1), where ξ0 is the solution of
(7.5) given by Lemma 7.7. Since the coefficients of (7.10) converge uniformly to the ones of
(7.5) and sin t + δ ≥ sin t1 > 0, by choosing δ > 0 small enough we can guarantee that ξ has
the same behaviour as ξ0, ie ξ has two zeroes t1, t

′
2 and a negative minimum at t′3 <

π
2 .

We can then apply Lemma 7.8 with λ1 = sin t+ δ, q1 = sin t− δ, λ2 = q2 = λ to compare u0

to ξ on [t1, t
′
3]: either u0 has a strict negative minimum in (t1, t

′
3) or u0(t1) < 0 and u′0(t1) ≥ 0.

In the former case, by taking ε smaller if necessary we can make sure that the maximal volume
orbit of Ψb occurs at some time t > t′3 for all b < ε. In the latter case, because of the initial
conditions, u0 must have a negative minimum in [0, t1]. �

Because of the initial conditions, u0 must also have a positive maximum before achieving
the minimum in the proposition. Thus Proposition 7.3 is proved.

Remark 7.11. The whole argument can also be carried out in the case of the solutions Ψa of
Theorem 4.4: Definition 7.1, Lemma 7.2 and Proposition 7.9 still hold. However in this case u0

is a solution of (7.4) with initial conditions u0(0) = a2 > 0, u′0(0) = 0. We therefore conclude
that C(a) ≥ 1 for a > 0 sufficiently small. When a2 = 3, ie Ψa is the homogeneous nearly
Kähler structure on S6 given in Example 3.13, one checks that C(a) = 0. Thus there must
exist at least one value of a ∈ (0,

√
3) that satisfies the hypothesis of Lemma 5.19(ii). On the

other hand, by Remark 4.6, a =
√

3
2 already gives such a solution, the homogeneous nearly

Kähler structure on CP 3.

Theorem 7.12. There exists b ∈ (0, 1) such that Ψb defines an inhomogeneous nearly Kähler
structure on S3 × S3.

Proof. By Lemma 7.2 and Proposition 7.3 there exists at least one b ∈ (0, 1) such that the
maximal volume orbit of Ψb lies on the portion of the boundary of W with λ = µ > 1. By part
(iii) of the Doubling Lemma 5.19 this is enough to guarantee that Ψb defines a smooth nearly
Kähler structure on S3 × S3. It remains to show that this is not homogeneous and therefore
defines a new nearly Kähler structure.

Consider the Riccati equation (5.1). Since L = 1
2g
−1ġ, the component in the direction of

the Reeb vector field U− gives

λ̈

λ
+ R̂(U−, U−) = 0.
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Suppose that the new nearly Kähler structure is homogeneous. We first show that R̂(U−, U−)
must be constant. Let ĝ be the metric on S3×S3 induced by the new nearly Kähler structure
and∇ denote its Levi-Civita connection. Observe that R̂(U−, U−) = R̂(∂t, J∂t, ∂t, J∂t) because
J∂t is parallel to the Reeb vector field U−. Since ∂t is the unit tangent vector of a geodesic in
(S3×S3, ĝ) we have∇∂t∂t = 0. Moreover, the nearly Kähler property implies that (∇XJ)X = 0
for every tangent vector X (see [4, p. 517] for a simple derivation from the G2–holonomy
perspective). Therefore ∇∂t(J∂t) = 0. By Butruille’s classification of homogeneous nearly
Kähler 6–manifolds [15], if (S3×S3, ĝ) is homogeneous it must be a 3–symmetric space. Then
part (ii) in [31, Proposition 4.3] implies that

(∇XR)(X, JX,X, JX) = 0

for every tangent vector X. We conclude that R̂(U−, U−) is constant.
Now, since λ(0) = λ(T ) > 0, where T is the maximal existence time of Ψb, and λ is even

at t = 0 and t = T , the only possibility would be R̂(U−, U−) = 0 and λ a constant. However,
it is easy to check that the unique solution of (3.10) with λ = const is Ψb with b = 1, ie the
homogeneous nearly Kähler structure on S3 × S3 of Example 3.14. For example, this follows
from the power series expansions of Remark 6.4. �

Remark 7.13. A similar argument shows that the solutions of Theorems 4.4 and 4.5 are mutu-
ally non-isometric. Indeed, using the constancy of R̂(U−, U−) on nearly Kähler 3–symmetric
spaces and the Taylor series of Remarks 4.10 and 6.4 one can show that Ψa and Ψb cannot be

homogeneous unless a =
√

3
2 ,
√

3 and b = 1, 3
2 , the known homogeneous examples of Remark

4.6. On the other hand, assume that f is an isometry between, say, the metric induced by Ψa

and Ψa′ for a 6= a′. Since f cannot preserve the SU(2)× SU(2)–orbits, the tangent space of a
point is spanned by Killing fields and Ψa,Ψ

′
a would then be homogeneous.

8. An exotic nearly Kähler structure on S6

In this section we prove the existence of an inhomogeneous nearly Kähler structure on
S6. By part (iii) of the Matching Lemma 5.20 we have to show that there exist two values
a, b ∈ (0,∞) such that the two curves αW, βW parametrising the maximal volume orbits of the
solutions of Theorems 4.4 and 4.5 up to discrete symmetries intersect. One intersection point
is already known to exist: by Remark 4.6 the choice a =

√
3 and b = 3

2 yields the standard

nearly Kähler structure on S6. We will show that there exists a second intersection point.
The key new ingredient is Proposition 8.8 which gives us some control over the solution Ψa as
a→∞.

Theorem 8.1. There exists a 6=
√

3 and b ∈ (0, 1) such that Ψa and Ψb satisfy the conditions
of part (iii) of the Matching Lemma 5.20 and therefore define an inhomogeneous nearly Kähler
structure on S6.

The rest of the section contains the proof of the theorem, which consists of various steps.
We first give an alternative parametrisation of the space of maximal volume orbits V to that

of Proposition 5.9. Recall that V = V0 × SO(2), where V0 = U ∩ l−1(0) ⊂ SO0(1, 2). Denote
by π the natural projection SO0(1, 2)→ SO0(1, 2)/SO(2) to V0. We identify SO0(1, 2)/SO(2)
with the upper hyperboloid

H = {w = (w0, w1, w2) ∈ R1,2, |w|2 = −1, w0 > 0}
and take (w1, w2) ∈ R2 as global coordinates on H.

Lemma 8.2. The projection π : V0 → H is a homeomorphism.
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Proof. Since H is endowed with the quotient topology we only have to show that π is a
bijection.

In the notation of Proposition 2.41, let

B =

 w0 x0 y0

w1 x1 y1

w2 x2 y2

 ∈ U
parametrise an invariant nearly hypo structure with θ = 0 as usual. Thus x2 < 0, y1 > 0 and
B ∈ SO0(1, 2). The projection π : SO0(1, 2)→ H is then the map B 7→ w ∈ H. Let π−1(w) be
the circle fibre (2.45) of π through B, parametrised by an angle variable φ. Since π−1(w) ∩ U
is an interval containing 0 of length at most π, we take tanφ as a coordinate on π−1(w) ∩ U .
The range of tanφ is then the connected interval containing 0 where x1 tanφ + y1 > 0 and
x2 − y2 tanφ < 0.

By Lemma 5.6(ii) the restriction of l to π−1(w) ∩ U is

l(tanφ) = 2
x1 − y1 tanφ

x1 tanφ+ y1
− 3

x2 tanφ+ y2

x2 − y2 tanφ
.

Now, on one hand

l′(tanφ) = −2
x2

1 + y2
1

(x1 tanφ+ y1)2
− 3

x2
2 + y2

2

(x2 − y2 tanφ)2
< 0

and therefore π : V0 → H is injective. On the other hand l(tanφ) approaches values of opposite
sign as tanφ converges to the endpoints of its range, as can be easily checked by working out
the precise range of tanφ according to the sign of x1, y2. More precisely, l(tanφ) approaches
±∞ at the boundary of its range unless (i) x1, y2 > 0 or (ii) x1, y2 < 0.

In case (i) max
(
− y1
x1
, x2y2

)
< tanφ < ∞ and −2 y1x1 + 3x2y2 < l(tanφ) < ∞, while in case (ii)

−∞ < tanφ < min
(
− y1
x1
, x2y2

)
and −∞ < l(tanφ) < −2 y1x1 + 3x2y2 . �

The lemma implies that the two continuous curves α and β parametrising the maximal
volume orbits of Ψa, Ψb can also be regarded as curves in H.

Definition 8.3. Let αH, βH : (0,∞)→ H be the two continuous curves in H ' V0 parametris-
ing the maximal volume orbits of the solutions {Ψa}a>0 and {Ψb}b>0 of Theorems 4.4 and 4.5.

We collect properties of αH, βH that are readily deduced from results of the previous sections.

Lemma 8.4.

(i) The curves αH, βH do not self-intersect.
(ii) The curves αH and βH cannot intersect for positive values of the parameters a, b > 0.

(iii) lima→0+ αH(a) = limb→0+ βH(b) = (0, 0) and αH(a), βH(b) are distinct from the origin
for a, b > 0.

Proof. Parts (i) and (ii) follow from the uniqueness of solutions to (3.10) with given initial
conditions since H ' V0 by Lemma 8.2. Part (iii) follows from Theorem 6.9 and Corollary
2.46. �

It will be important to understand the induced action of the discrete symmetries of Propo-
sition 3.11 on H. Observe that in terms of the parametrisation (λ, u, v) of (3.1)

(8.5) w0 =
u1v2 − u2v1

V
, w1 =

u0v2 − u2v0

V
, w2 =

u1v0 − u0v1

V
,
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where V = λµ2 and µ2 = |u|2, since w is the Minkowski “cross-product” of the two orthogonal
space-like vectors u

|u| ,
v
|v| ∈ R1,2. An immediate consequence of Proposition 3.11 and (8.5) is

the following lemma.

Lemma 8.6. Set ε = a, b > 0 and let Ψε be the solution to (3.10) given by Theorems 4.4 or
4.5, respectively. The image of αH or βH under the involutions

(w1, w2) 7→ (−w1,−w2), (w1, w2) 7→ (−w1, w2), (w1, w2) 7→ (w1,−w2)

parametrises the maximal volume orbit of, respectively,

τ2 ◦ τ3 ◦ τ4(Ψε), τ1 ◦ τ2 ◦ τ3(Ψε), τ1 ◦ τ4(Ψε).

Finally, the results of Section 7 allow us to deduce the following crucial property of the
curve βH.

Lemma 8.7. There exists 0 < b′ < b′′ ≤ 1 such that the arc βH(b), b′ ≤ b ≤ b′′, and its image
under the involutions of Lemma 8.6 form the boundary of a bounded closed set D ⊂ H which
contains the origin in its interior.

Proof. By the proof of Proposition 7.3 for b > 0 sufficiently small the function u0 in Ψb has at
least two critical points and one zero before the maximal volume orbit. On the other hand, by
Remark 4.6 the solution Ψb with b = 1 is the homogeneous nearly Kähler structure on S3×S3.
Thus for b = 1 the function u0 has a unique maximum before the maximal volume orbit and a
unique zero, which occurs at the maximal volume orbit. We do not know whether the number
of critical points or zeroes of u0 before the maximal volume orbits is monotone in b. However,
the observations above guarantee the existence of an interval 0 < b′ < b′′ ≤ 1 such that u0 has
a unique maximum and a unique zero before the maximal volume orbit for all b′ ≤ b ≤ b′′, a
minimum on the maximal volume orbit when b = b′ and a zero on the maximal volume orbit
when b = b′′.

By (5.13) and (8.5), on a maximal volume orbit w1 = 0 if and only if v0 = 0 and similarly
w2 = 0 if and only if u0 = 0. Thus the arc βH(b), b′ < b < b′′ is contained in an open quadrant
of the (w1, w2)–plane. We conclude that the arc βH(b), b′ ≤ b ≤ b′′ together with its image
under the involutions of Lemma 8.6 form a continuous closed curve γ in H ' R2. This curve
is simple by Lemma 8.4(i) and does not contain the origin by part (iii) of the same Lemma.
The existence of the domain D follows from the Jordan curve theorem. By the construction
of γ the origin is contained in the interior of D. �

By Lemma 8.4(ii) the boundary of D cannot contain the points αH(
√

3
2 ), αH(

√
3) (the max-

imal volume orbits of the homogeneous nearly Kähler structures on CP 3 and S6 respectively
by Remark 4.6) nor their image under the group generated by reflections along the axes. If

αH(
√

3
2 ) or αH(

√
3) do not belong to D then the proof of Theorem 8.1 is complete, because

the curve αH must intersect the boundary of D. The bad case is therefore when αH(
√

3
2 ) and

αH(
√

3) both lie in the interior of D.

Proposition 8.8. The curve αH exits any compact set of V0 as a→∞.

Proof. In order to understand the behaviour of Ψa as a → ∞, we observe that the Taylor
series of Remark 4.10 suggest that we consider the rescaling

(8.9) Ψ̃a(t) =

(
λ(t),

u0(t)

a2
,
u1(t)

a2
,
u2(t)

a
,
v0(t)

a2
,
v1(t)

a2
,
v2(t)

a

)
.

Observe that Ψ̃a(t) does not satisfy the constraints (3.5) and therefore does not define an
SU(2)–structure.
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We now want to derive differential equations satisfied by Ψ̃a which are well-behaved in the
limit a → +∞. Using the conserved quantities (3.5) satisfied by Ψa, we can rewrite the last
equation of (3.10) as

(8.10) λ̇ = −2λ2u1

v1
− 3v2

u2
.

Then Ψ̃a is a solution of the ODE system

λu̇0 + 3v0 = 0, v̇0 − 4λu0 = 0,

λu̇1 + 3v1 − 2ε2λ2 = 0, v̇1 − 4λu1 = 0,

λu̇2 + 3v2 = 0, λv̇2 − 4λ2u2 + 3u2 = 0,

where ε = 1
a , together with (8.10).

The conditions of Lemma 4.1 and of Theorem 4.4 suggest that we write

u0(t) = 1 + t2y1(t), u1(t) = 1 + t2y2(t), u2(t) = t2y3(t),

v0(t) = t2y4(t), v1(t) = t2y5(t), v2(t) = t2y6(t), λ(t) = ty7(t).

Then y = (y1, . . . , y7) satisfies

ẏ1 = −1

t

(
2y1 + 3

y4

y7

)
, ẏ4 = −1

t
(2y4 − 4y7) + 4ty1y7,

ẏ2 = −1

t

(
2y2 + 3

y5

y7
− 2ε2y7

)
, ẏ5 = −1

t
(2y5 − 4y7) + 4ty2y7,

ẏ3 = −1

t

(
2y3 + 3

y6

y7

)
, ẏ6 = −1

t

(
2y6 + 3

y3

y7

)
+ 4ty3y7,

ẏ7 = −1

t

(
y7 + 2

y2
7

y5
+ 3

y6

y3

)
− 2t

y2y
2
7

y5
,

and the initial condition

y0 =

(
−3,−3 +

3

2
ε2,−3

√
3

2
, 3, 3,

3
√

3

2
,
3

2

)
.

Thus y is a solution of a singular initial value problem of the form ẏ = 1
tM−1(y) +M(t, y).

It is immediate to check that M−1 (y0) = 0 and that the linearisation of M−1 at y0

dy0M−1 =



−2 0 0 −2 0 0 4
0 −2 0 0 −2 0 4 + 2ε2

0 0 −2 0 0 −2 2
√

3
0 0 0 −2 0 0 4
0 0 0 0 −2 0 4

0 0 −2 0 0 −2 −2
√

3
0 0 2√

3
0 1

2
2√
3

−3


satisfies

det (hId− dy0M−1) = h(h+ 1)(h+ 2)3(h+ 4)2 6= 0

for all integer h ≥ 1. Theorem 4.7 then implies the existence of a 1–parameter family Ψ̃a

depending continuously on ε = 1
a ≥ 0.

Hence as a → ∞, Ψ̃a approaches a well-defined smooth limit Ψ̃∞ defined on an interval
0 ≤ t < T . In particular, reversing the scaling (8.9), there exist smooth functions l∞, V∞ such
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that the mean curvature l and the orbital volume function V of Ψa are C0–close to l∞ and
a4V∞, respectively, for a sufficiently large. Fix 0 < t∗ < min (T, π2 ) such that l∞(t∗), V∞(t∗) > 0
(the initial conditions guarantee the existence of such t∗). Then the comparison results of
Proposition 5.5 imply that for a sufficiently large the volume Vmax of the maximal volume
orbit of Ψa satisfies

Vmax ≥ a4 V∞(t∗)

sin5 (t∗ + π
2 )
− δ,

where δ > 0 can be choosen arbitrarily small as a → ∞. Thus the maximal volume orbit of
Ψa has unbounded volume as a→∞. Recalling that V = λµ2, the result follows immediately
from the parametrisation of V0 as a branched 4–fold cover of the wedge W in the (λ, µ)–plane
given in Proposition 5.9. �

Proof of Theorem 8.1. By Proposition 8.8 the curve αH intersects the boundary of D. By
Lemmas 8.4(ii) and 8.6 such an intersection point can only occur on the image of the arc
βH(b), b ∈ (b′, b′′), under the symmetries (w1, w2) 7→ (−w1, w2) or (w1, w2) 7→ (w1,−w2).
Part (iii) of the Matching Lemma 5.20 then implies the existence of a smooth nearly Kähler
structure on S6. It remains only to show that this is not homogeneous.

As in the proof of Theorem 7.12 we look at the Riccati equation (5.1) in the direction of the
Reeb vector field U−. If the constructed nearly Kähler structure on S6 were homogeneous then
it would have to be the standard nearly Kähler structure on S6. In particular, R̂(U−, U−) = 1
and λ = C1 cos t + C2 sin t for some constants C1 and C2. Without loss of generality assume
that the singular orbit S3 occurs at t = 0. Since λ must be even in t we have C2 = 0. The
singular orbit S2 must then occur at t = π

2 (the first zero of λ) and the Taylor series of Remark

4.10 (or the condition y7(0) = 3
2 in the proof of Theorem 4.4) imply that C1 = 3

2 . This however
is impossible since λ(0) = b < b′′ ≤ 1 by assumption. �

9. Conjectures and numerical results

Theorems 7.12 and 8.1 guarantee the existence of at least one complete inhomogeneous
nearly Kähler structure both on S3 × S3 and on S6 (as stated in the Main Theorem). In fact
we make the following:

Conjecture. The Main Theorem yields all (inhomogeneous) complete cohomogeneity one nearly
Kähler structures on simply connected manifolds. In particular, S2 × S4 does not admit any
cohomogeneity one nearly Kähler structure and CP 3 admits only its homogeneous one.

This conjecture is motivated by a systematic numerical study of the ODE system (3.10).
In this final less formal section we discuss numerical results in support of the Conjecture and
provide some numerical information about the nearly Kähler structures of the Main Theorem.
A more detailed account of the numerics may appear elsewhere.

The numerical scheme. The proofs of Theorems 4.4 and 4.5, where existence of the two
1–parameter families {Ψa}a>0 and {Ψb}b>0 is established, can be turned into a constructive
numerical scheme useful in the study of the system (3.10). These proofs showed the existence of
recurrence relations that uniquely determine the coefficients of the Taylor series of Ψa and Ψb

at t = 0 once initial conditions are fixed. The initial conditions are uniquely determined by the
choice of a or b respectively, eg see (4.9) for the initial conditions in terms of a. After computing
the first several terms of the Taylor series by hand we made these recurrence relations explicit
and then computed the first 50 nonzero terms in these Taylor series symbolically in MATLAB
using its Symbolic Math Toolbox. The first few terms of these power series expansions are
recorded in Remarks 4.10 and 6.4.
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The main problem in using numerical methods to study the existence of new complete co-
homogeneity one nearly Kähler structures is the inevitability of singularities in the coefficients
of the equations (3.10). We overcome this problem as follows. First using the symbolic polyno-
mials associated to the two families {Ψa}a>0 and {Ψb}b>0 described above we find (very high
order) approximations to regular initial conditions for the ODE system (3.10) simply by eval-
uating these polynomials at some sufficiently small positive value t∗ of t. Now, by Proposition
5.15, we know that every solution Ψa or Ψb has a unique maximal volume orbit that it attains
at some time tvmax before the solution develops its second singularity. Moreover, the maximal
volume orbit is characterised algebraically by the equality (5.10). Therefore for each positive
a or b we approximate the solution Ψa or Ψb on the interval [t∗, tvmax] by using one of the
standard MATLAB ODE solvers (we found ODE45 to be suitable) to integrate numerically
equation (3.10) beginning with nonsingular initial conditions at t = t∗ and detecting tvmax by
evolving the solution numerically until a zero of 2λ4u1 − 3u2v2 occurs.

In particular, this numerical scheme allows us to obtain very accurate numerical approxi-
mations to the two curves α and β : (0,∞)→ V parameterising the (unique) maximal volume
orbits of the two 1–parameter families {Ψa}a>0 and {Ψb}b>0 respectively. We can therefore
use these numerical approximations of α and β to study when the conditions of the Doubling
and the Matching Lemmas 5.19 and 5.20 can be satisfied. This has the great advantage that
we never have to solve numerically toward an unknown final time when the solution becomes
singular again (some numerical experimentation makes it clear that in practice that more naive
strategy is very unstable.)

Conjectures based on numerics. The properties of the numerical approximations to the
curves α and β so obtained suggest a number of concrete conjectures on the behaviour of Ψa

and Ψb as functions of the parameters, that one might hope to establish analytically.

Conjecture 9.1. The volume of the maximal volume orbit of Ψa and Ψb is strictly increasing
in a and b, respectively.

Remark. The fact that the volume of the maximal volume orbit of Ψa is eventually strictly
increasing, ie strictly increasing for all a sufficiently large, follows from the rescaling argument
employed in the proof of Proposition 8.8. A different rescaling argument based on further
contemplation of the power series expansions for Ψb might establish the same result for the
family {Ψb}b>0.

An immediate consequence of the verification of this conjecture would be: the curves αW

and βW of Definition 5.16 can never self-intersect and hence parts (i) and (ii) of the Matching
Lemma 5.20 can never be applied. In particular, for any complete cohomogeneity one nearly
Kähler structure on CP 3, S2×S4 and S3×S3 both singular orbits must have the same volume,
ie is obtained by “doubling” some member of one of the two families {Ψa}a>0 and {Ψb}b>0.

We next consider how many complete nearly Kähler structures arise by applying the Dou-
bling Lemma 5.19. By (5.13) the conditions of the lemma are satisfied if and only if either u0

or v0 has a zero on the maximal volume orbit. In Definition 7.1 we considered the number C(b)
of zeroes of v0 before the maximal volume orbit of Ψb. According to Remark 7.11 it is possible
to extend this definition to the family {Ψa}a>0 as well, and we write this count as C(a).

Conjecture 9.2. The count C of zeroes of v0 before the maximal volume orbit satisfies:

(i) C(a) and C(b) are decreasing in a and b, respectively;
(ii) for a > 0 sufficiently small C(a) = 1; for b > 0 sufficiently small C(b) = 2;
(iii) C(a) = 0 for all a ≥

√
3 and C(b) = 1 for all b ≥ 1.
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Figure 2. Plots of αH and βH showing locations of the 5 complete cohomogeneity
one nearly Kähler structures

Based on numerical evidence, we also conjecture analogous properties for the count of zeroes
of u0 before the maximal volume orbit.

As a result, the conditions of the Doubling Lemma 5.19 are satisfied only three times: once
in the family {Ψa}a>0, corresponding to the homogeneous nearly Kähler structure on CP 3;
twice in the family {Ψb}b>0, yielding the inhomogeneous nearly Kähler structure on S3 × S3

of the Main Theorem and the homogeneous nearly Kähler structure of Example 3.14.
Finally, Figure 2 plots the numerical approximations to the curves αH and βH of Definition

8.3. This provides further numerical evidence that the Doubling Lemma 5.19 yields exactly
three cohomogeneity one nearly Kähler structures; these correspond to the three points of
intersection of the curves αH and βH with the axes (the origin parametrises the circle of
Sasaki–Einstein structures on N1,1 and must therefore be excluded). The plot also suggests
that αH intersects the image of βH under reflections in the two axes exactly twice; these two
intersection points yield the inhomogeneous nearly Kähler structure on S6 given by the Main
Theorem and the homogeneous one of Example 3.13.
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The volumes of the cohomogeneity one nearly Kähler structures. According to the
Conjecture above, there exist exactly two new complete cohomogeneity one nearly Kähler
structures. The numerical analysis of the previous subsection provides more concrete infor-
mation about these two new solutions than the abstract existence proofs of Theorems 7.12
and 8.1, and gives a way to compare them quantitatively with the known homogeneous nearly
Kähler structures and with the sine-cone.

In Table 2 we consider various quantities describing the geometry of a complete cohomo-
geneity one nearly Kähler 6–manifold: the size of the two singular orbits O1 and O2 in terms
of the parameters a or b ; the maximum Vmax of the orbital volume function; and the total
volume vol normalised so that vol(S6

std) = 1.
The values of these quantities on the two new inhomogeneous solutions are numerical ap-

proximations. For a more accurate result, we cut S6 and S3 × S3 along the maximal volume
orbit of their inhomogeneous nearly Kähler structures and compute numerically the total vol-
ume on each half separately. Information about the sine-cone and the homogeneous nearly
Kähler structures on S6, S3 × S3 and CP 3 is computed analytically from the explicit solu-
tions of Examples 3.12–3.15. The values in the tables are all obtained directly from those
expressions. Since the orbital volume function is V = λµ2, the total volume is easily deduced
by integration. For example, for the homogeneous nearly Kähler structure on S6 we have
V (t) = 27

2 sin2 t cos3 t and hence Vol(S6
std) = 9

5V0, where V0 is the volume of N1,1 with respect
to the standard Sasaki–Einstein metric. Since the volume of the 6–sphere with respect to the
round metric of curvature 1 is 16

15π
3, we must have V0 = 16

27π
3.

M O1 O2 Vmax vol

sine-cone 0 0 1 16
27 ≈ 0.5926

S3 × S3
new b = 0.3736 b = 0.3736 1.0041 0.5929

S6
new a = 0.5646 b = 0.5985 1.0385 0.5752

CP 3 a =
√

3
2 a =

√
3

2
27
√

2
32 ≈ 1.1932 5

8

S3 × S3
std b = 1 b = 1 4

3
10π

27
√

3
≈ 0.6718

S6
std a =

√
3 b = 3

2
81
√

3
25
√

5
≈ 2.5097 1

Table 2. Cohomogeneity one nearly Kähler manifolds

The quantities in Table 2 all give a measure of how both inhomogeneous nearly Kähler
structures, in particular the one on S3 × S3, are much closer to the sine-cone than the homo-
geneous ones. Observe that the total volume vol is greater than the volume of the sine-cone in
all cases except for the inhomogeneous nearly Kähler structure on S6.
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