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2 Summary

3 Ecological baselines – reference states of species’ distributions and abundances – are key to the 

4 scientific arguments underpinning many conservation and management interventions, as well as to 

5 the public support to such interventions. Yet societal as well as scientific perceptions of these 

6 baselines are often based on ecosystems that have been deeply transformed by human actions. 

7 Despite increased awareness about the pervasiveness and implications of this shifting baseline 

8 syndrome, ongoing global assessments of the state of biodiversity do not take into account the long-

9 term, cumulative, anthropogenic impacts on biodiversity. Here, we propose a new framework for 

10 documenting such impacts, by classifying populations according to the extent to which they deviate 

11 from a baseline in the absence of human actions. We apply this framework to the bowhead whale 

1 *Author for correspondence (ana.rodrigues@cefe.cnrs.fr).
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12 (Balaena mysticetus) to illustrate how it can be used to assess populations with different geographies 

13 and timeline of known or suspected impacts. Through other examples, we discuss how the 

14 framework can be applied to populations for which there is a wide diversity of existing knowledge, 

15 by making the best use of the available ecological, historical, and archaeological data. Combined 

16 across multiple populations, this framework provides a standard for assessing cumulative 

17 anthropogenic impacts on biodiversity.

18

19 Introduction

20 The human footprint is now ubiquitous across the world’s ecosystems [1,2]. Nonetheless the extent 

21 to which humans have already transformed the natural world is still poorly understood, and 

22 generally underestimated, because impacts started millennia ago (e.g., [27]), long before 

23 conventional ecological recordings started [3]. Furthermore, and even for relatively recent and 

24 ongoing changes, impacts tend to be progressively forgotten as human perceptions readjust, thus 

25 shifting the accepted norm for the condition of ecosystems [4–11]. This readjustment, what Pauly 

26 termed the “shifting baseline syndrome” [6] and Kahn Jr. called “environmental generational 

27 amnesia” [7], can be so rapid that even large and culturally significant species can be forgotten soon 

28 after they disappear [8], and it can take place even within individuals’ lifetimes [4]. 

29 Returning to a planet with pre-human levels of disturbance is out of the question, but 

30 understanding how we have already changed and are continuing to change the world around us 

31 has important implications to our future capacity to inhabit it alongside other species. Firstly, it 

32 improves our knowledge of how ecosystems are structured, function, and evolve when not strongly 

33 moulded by anthropogenic pressures (e.g., [12]). Secondly, and by extension, it allows us to 

34 understand better the world we currently live in, how it has been shaped by the interplay between 

35 natural and anthropogenic processes (e.g., [13]), and how it will respond to future pressures. And 

36 finally, it broadens our ambitions regarding what is possible as future goals for the sustainable 

37 exploitation [14], conservation [15], and recovery of species [16] and ecosystems [17]. 

38 Here, we focus on understanding the past, cumulative human impacts on species’ distributions and 

39 abundances. This is a first step towards a broader comprehension of ecosystem structure and 

40 function, and one with practical implications to conservation and management decisions. Indeed, 

41 decisions on which populations to exploit, to protect, to reinforce, to cull, to create or to extirpate are 
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42 frequently underpinned by societal as well as scientific perceptions of whether the species is part of 

43 the native fauna (and thus whether it should be there in the first place), and if so whether it is 

44 artificially depleted or overabundant (i.e., below or above the perceived norm of abundance). For 

45 example, the forest cobras of São Tomé Island in the Gulf of Guinea were long believed to represent 

46 an introduced subpopulation of the mainland cobra (Naja melanoleuca), presumed to negatively 

47 affect native wildlife and thus considered for eradication, until phylogenetic and historical analyses 

48 revealed that they are in fact a native endemic species (N. peroescobari), likely to play an important 

49 role in the control of invasive rodents [18]. Conversely, Gulf groupers (Mycteroperca jordani) were 

50 considered naturally rare throughout their range in the Gulf of California, and believed to be 

51 resilient to ongoing levels of exploitation, but historical records and interviews of old fishers 

52 demonstrate that it has been substantially depleted through past overfishing, and that its fishery 

53 needs to be carefully managed [19]. 

54 The growing awareness of the pervasiveness of the shifting baseline syndrome [4–10], and the 

55 subsequent development of historical ecology as an applied discipline [20] translate into rapidly 

56 expanding data regarding the extent to which individual species or their subpopulations have been 

57 impacted by human activities. However, there is currently no framework for bringing all of it 

58 together into a standardised way, which can be used for contrasting human impacts across species 

59 and across regions. Here, we propose such a framework, a method for classifying populations 

60 according to the extent to which they have been impacted by human actions, what we call “EPOCH 

61 assessments” (from Evaluation of POpulation CHange). 

62 EPOCH assessments are related to three existing frameworks: the IUCN Red List of Threatened 

63 Species [21], the Living Planet Index [22,23] and the IUCN Green List of Species [16]. The Red List 

64 assessments are classifications of species according to their risk of extinction [21]. They reflect 

65 human impacts, but only those in the recent past (past 10 years or three generations, whichever is 

66 longer; Supplementary Material), meaning that species may be at low risk of extinction (i.e., 

67 classified as Least Concern) even if strongly affected by past human actions (e.g., southern right 

68 whale Eubalaena australis, strongly depleted by whaling more than three generations ago [24]). The 

69 Living Planet Index is an aggregated measure of species’ local population trends [22], but again it 

70 only considers recent population changes given that (for pragmatic reasons related to data 

71 availability) it takes year 1970 as the baseline. The Green List is a new framework for quantifying 

72 species recovery and conservation success [16,25]. By going beyond avoiding species’ extinctions, 

73 aiming for viable and ecologically functional populations across species’ indigenous range, it places 

74 recovery targets in a broader historical context. Potential dates being considered for the definition of 
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75 the indigenous range include 1500 (prior to the European expansion) and 1750 (the start of the 

76 industrial era) [16], but the discussions in this regard are still ongoing, given that even baselines set 

77 several hundred years before present could underestimate impacts for those species and regions 

78 that were affected previously [26,27]. 

79 Here, we aim to evaluate the cumulative impact of human actions on species’ abundances and 

80 distributions over even longer time periods. In practice, an EPOCH assessment consists of 

81 classifying a population (whole species or an infra-specific subpopulation) into one of 11 proposed 

82 categories, reflecting the extent to which its population size has changed (declined or increased) in 

83 relation to a reference state without human impacts. Rather than defining a specific date as 

84 reference, we propose that the baseline should be tailored to each population, by making the best 

85 use of the available information while taking into account the specific history of known impacts on 

86 the population. As an illustration, we apply this framework to the bowhead whale (Balaena 

87 mysticetus), a widespread species with wide geographic variation in the history of human impacts. 

88 Defining the baseline

89 EPOCH assessments can be undertaken at the level of whole species, or at the level of infra-specific 

90 subpopulations. Subpopulations need not be discrete evolutionary units (e.g., subspecies), but 

91 should be spatially defined (e.g., a given country, a particular oceanic region) and ideally 

92 demographically independent (such that changes in one subpopulation have little effect on the 

93 demography of others; corresponding broadly to the concept of a ‘stock’ in fisheries sciences [28]). 

94 For simplicity, we use throughout the term ‘populations’ to refer to assessment units (whole species 

95 or infra-specific subpopulation), with ‘population size’ referring to the number of all individuals in 

96 the assessed unit. 

97 An EPOCH assessment involves contrasting a population with a reference state, but the choice of 

98 this baseline is not necessarily straightforward. First, species’ ranges and abundances change over 

99 time, both because of human impacts and through natural environmental variation, meaning that 

100 different conclusions will be reached regarding the current state of a population depending on the 

101 baseline against which it is contrasted (e.g., domestic sparrows Passer domesticus, are non-native to 

102 England in relation to 6 Kya baseline [29], while strongly depleted in contrast to a 1976 baseline 

103 [30]). Furthermore, there is wide variation in the history of anthropogenic impacts across regions 

104 (e.g., of the onset of commercial whaling across oceanic basins [31]), as well as across species within 

105 a given region (e.g., of the onset of commercial whaling of right versus blue whales in the North 
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106 Atlantic [31]). One option is to set the baseline as early as possible, such that it precedes all impacts 

107 for all populations. However, given that impacts started millennia ago [32], this creates two 

108 challenges: it places the baseline in eras with non-analogous environmental conditions, meaning 

109 that contrast with the baseline reflects not only human impacts but also natural change; and it 

110 reduces the likelihood that there will be adequate data on which to base the assessments. 

111 Here, we define the baseline not as a date, but as a conceptual reference state: the population size 

112 expected today in the absence of human actions. This is a theoretical counterfactual scenario of 

113 “what would have happened if humans had not interfered”, conceptually equivalent to a ‘virgin’ or 

114 unexploited stock in fisheries sciences [33]. By definition, then, changes in relation to this baseline 

115 measure the cumulative extent of human impacts on population size. 

116 In practice, EPOCH assessments will frequently involve contrasting current abundances or 

117 distributions with those at a period prior to (main known) anthropogenic impacts, but this will be 

118 tailored to the specific population being assessed. For example, assessing large baleen whales will 

119 involve contrasting current population sizes with estimates of what they were prior to industrial 

120 whaling [34], which for bowhead whales (Balaena mysticetus) means going back to 1800 for the Sea of 

121 Okhotsk subpopulation, and to 1600 for the East Greenland–Svalbard–Barents Sea subpopulation 

122 (see below). Conceptually, such dates are not the baselines themselves; instead, going back to them 

123 is a means for estimating what the population size would (or, more accurately, might) be today 

124 without whaling. 

125 For populations that started being impacted when environmental conditions were very different 

126 from today’s, there may not be a suitable pre-impact reference date. For example, estimating the 

127 baseline for the extinct greak auk (Pinguinus impennis) along the European coast would involve 

128 using the best available information to model what its distribution and abundance would be in 

129 today’s climate, rather than simply by reconstructing its Paleolitic, pre-exploitation distribution [35]. 

130 Accordingly, changes driven by purely natural processes (e.g. population decline of Montserrat 

131 oriole, Icterus oberi, subsequent to a volcanic eruption [36]) should not be considered in EPOCH 

132 assessments (unlike what happens in the IUCN Red List, where natural changes are integrated in 

133 assessments of extinction risk). 

134 EPOCH assessments may also involve spatial rather than temporal contrasts, by using abundance or 

135 occurrence in areas of lower impact as means to estimate what the population size would be today 

136 in areas that have been more heavily impacted. For example, Maroo and Yalden used densities from 
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137 relatively intact forest habitats in Białowieża National Park in Poland to infer population sizes of 

138 mammal species in Britain prior to large scale deforestation [37]. Another form of inference involves 

139 extrapolating from better to lesser well-known species. For example, Monsarrat and colleagues took 

140 advantage of the better historical information available for the North Pacific right whale (Eubalaena 

141 japonica), whose industrial exploitation started in the mid-1800s, to estimate the pre-whaling 

142 distribution and abundance of its North Atlantic congeneric (E. glacialis) whose exploitation started 

143 much earlier and is thus much less well documented [38,39]. 

144 In summary, the best approach for defining the baseline should be tailored to the specific 

145 population being assessed, taking into account its known history of human impacts, and making the 

146 best use of the available information. A one-size-fits-all temporal baseline at a given date is not 

147 needed or indeed useful, because our aim is not to understand changes since that date, but to 

148 investigate the extent of overall change in population size attributable to anthropogenic impacts. 

149 Categories of population change

150 If current and baseline population sizes could be quantified precisely, comparing the two would be 

151 a simple matter of expressing the former as a percentage of the latter. In practice, however, the 

152 baseline population size (and often also the current one) will seldom be known. Nonetheless, there 

153 may still be sufficient data to make a judgement of the broad relationship between the two, and thus 

154 classify populations into different categories of change in relation to the baseline. We are here 

155 inspired by the IUCN Red List: a framework for classifying species into broad threat categories even 

156 when it is not possible to quantify extinction risk precisely. 

157 Our proposed EPOCH classification system (Figure 1) includes 11 categories, ten of which are 

158 defined as intervals of percentage of population change in relation to the baseline. Little Changed 

159 (between 30% decline and 30% increase) applies to populations for which either there are no known 

160 human impacts, or there are good reasons to assume such impacts did not cause substantial (>30%) 

161 population change. Five categories apply to populations for which there is evidence of substantial 

162 depletion attributable to human activities: Moderately Depleted (30-60% decline), Highly Depleted 

163 (60-80% decline), Severely Depleted (80-95% decline), Nearly Extirpated (95-100% decline) and 

164 Extirpated (100% decline). The thresholds for these categories were selected to give increasing 

165 resolution (i.e. the classes become narrower) as populations approach extirpation (Figure S2), while 

166 matching as possible those of the IUCN Red List’s to facilitate integration of the two frameworks 

167 (see Supplementary Materials for more details). Conversely, thresholds for the four categories of 
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168 substantial increase give higher resolution to lower rates of increase: Moderately Increased (30-100% 

169 increase), Highly Increased (100-1000% increase), Severely Increased (>1000% increase), and Newly 

170 Present. The last of these categories applies to established (self-generating) populations whose 

171 presence can be attributed to humans, irrespective of the intention (or lack thereof) of the 

172 introduction process. Hence, it includes alien populations (invasive or not) as well as populations 

173 translocated for conservation purposes (e.g. kakapo Strigops habroptilus translocated to predator-free 

174 islands in New Zealand [40]; Figure 1, Table S1). The final category, Undetermined, applies to 

175 populations for which it is plausible that they were affected by human activities (i.e. population 

176 change likely ≠ 0%), but for which it is not possible to assess if this has resulted in substantial change 

177 (i.e., populations for which it is not clear if change ≥ 30% decline; and those for which it is not clear if 

178 change ≥ 30% increase).

179 EPOCH assessments in practice 

180 Ideally the data underpinning an EPOCH assessment consists of a census of the whole population 

181 today and prior to human impacts. In practice, such data seldom – if ever – exist. Instead, estimates 

182 of current as well as baseline population sizes, or the relationship between the two, need to be 

183 inferred from the best available data (Table S1). 

184 Useful data sources include population time series, which in a few rare cases come from whole 

185 population census. For example, censuses of wandering albatrosses Diomedea exulans on Bird Island 

186 show that the population has declined by about 74% since the early 1960s [45]. Much more 

187 commonly, trends are obtained from measures of relative abundance, for example Catch Per Unit 

188 Effort data indicate that black musselcrackers Cymatoceps nasutus declined by more than 30% in 

189 South Africa between ca. 1960 and 2009 [44]. Other proxies of change in total population size come 

190 from data on changes in spatial extent, for example in range area (e.g. a >50 fold increase in the 

191 range of the Great-tailed grackle Quiscalus mexicanus in the United States since 1880 [41]), or in linear 

192 extent (e.g. a 71% reduction from the 1870s to 2015 in the linear river extent occupied by the Indus 

193 river dolphin Platanista gangetica minor [50]). Some of these proxies can come from comprehensive 

194 spatial datasets such as atlases [51], but more commonly they correspond to generalisations from 

195 known spatial records, for example through convex polygons around known records [52] or species’ 

196 distribution models combining field records and environmental information [53]. 

197 These are the same proxies used in the IUCN Red List for estimating or inferring past population 

198 trends to assess extinction risk, but at deeper temporal scales. Given that conventional ecological 
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199 records rarely go back more than just a few decades [54], EPOCH assessments require mobilising a 

200 broader set of data sources, not only as potential sources of records on species, past occurrences or 

201 abundances, but also for reconstructing past environmental conditions and the timeline of human 

202 impacts. These include: oral histories (e.g., fishers’ anecdotes, to understand the timeline and extent 

203 of decline of the Gulf grouper Mycteroperca jordani [19]); records from extractive industries (e.g. 

204 whaling log books, to reconstruct the pre-exploitation distribution [55] and abundance [38] of right 

205 whales); historical records (e.g., from letters, journals, diaries and books, to reconstruct the pre-

206 European distribution of South African mammals [56]); archaeological records (e.g., 

207 archaeozoological assemblages from New Zealand, to investigate the impacts of pre-European 

208 Maori exploitation on populations of marine species [57]); palaeontological data (e.g. pollen, to 

209 reconstruct the past extent of European forests and the timeline of their decline [58]); and genetic 

210 data (e.g. genetic diversity, to shed light on the timing and extent of demographic declines in 

211 terrestrial vertebrates [59]). As different types of data sources have different strengths and 

212 limitations, a better understanding of population change comes from combining multiple lines of 

213 evidence while understanding the limitations of each data type [10]. 

214 The antiquity of human impacts in many regions means that it will rarely be possible to estimate 

215 population change in relation to a perfect baseline of complete absence of human impacts. 

216 Pragmatically, EPOCH assessments should approach this theoretical baseline as closely as feasible 

217 based on the available information. This may mean, for example, using a relatively recent 

218 population trend to estimate population change even if earlier impacts are suspected but poorly 

219 documented. At the very least, this helps to anchor the baseline in anticipation of future changes. In 

220 any case, assessments must make explicit the approach employed for estimating change in relation 

221 to the baseline, both as justification of the assessment and to provide a basis for future revisions as 

222 new information becomes available. 

223 Dealing with uncertainty

224 Even though the categories of population change are broad (Figure 1), a paucity of available data on 

225 past population status, environmental conditions or human impacts will render difficult the 

226 categorisation of many species and subpopulations. There may, for example, be evidence of 

227 population decline, but uncertainty regarding the exact magnitude of such change (e.g. historical 

228 records detecting a change in abundance from “common” to “rare” [19]). Stepping further back in 

229 time brings substantial additional uncertainty, not only because data inevitably become scarcer, but 

230 also because the casual links between human impacts and population change can become more 
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231 difficult to ascertain or confirm. Indirect effects are particularly complex to take into account, for 

232 example cascading effects such as increases in mesopredator populations when large predators have 

233 been extirpated (e.g., red fox Vulpes vulpes in Britain [37]).

234 Climate variation poses particular challenges when attempting to distinguish natural from 

235 anthropogenic change. For example, thousands of bowhead whales Balaena mysticetus apparently 

236 were killed in the Gulf of Saint Lawrence and Strait of Belle Isle in the 16th and 17th centuries, but 

237 they no longer occur there. It is not clear whether their current absence from this region reflects a 

238 range contraction after the end of the Little Ice Age or extirpation caused by whaling (or a 

239 combination of both) [60]. These challenges only become more pronounced when stepping even 

240 further back in time, as testified by the still ongoing debate on the relative effects of human hunting 

241 versus climate change in Pleistocene megafauna extinctions [61,62]. 

242 We encourage making uncertainty explicit, by indicating not only the most likely category based on 

243 the available information, but also specifying other plausible categories, if applicable (see examples 

244 in Table S1). We also recommend erring on the side of underestimating rather than overestimating 

245 change and thus past human impact, particularly in assessments based on more uncertain data 

246 (such as historical anecdotes). Following the same principle, populations for which no impacts are 

247 known, or their magnitude is believed not to have caused substantial change, should by default be 

248 placed in the Little Changed category. In contrast, the Undetermined category is reserved for 

249 situations for which it is plausible that the population has been affected by human activities, but it is 

250 not possible to ascertain whether this has resulted in significant change in population status (e.g., 

251 see Omura’s whale [49] in Table S1).

252 Worked example: bowhead whale

253 For widespread species, the timeline and intensity of human impacts can vary substantially across 

254 subpopulations. In these cases, the best way of capturing this variation is through infra-specific 

255 EPOCH assessments. The collective value of these assessments will be much increased if 

256 subpopulations are defined to ensure that they do not overlap geographically while covering the 

257 entire historical range of the species, in which case they can be mapped to show levels of human 

258 impact across the species’ range. 

259 As an illustration, we present here (Figure 2) EPOCH assessments for subpopulations of the 

260 bowhead whale (see Supplementary Materials for details and additional references). Because of its 
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261 high oil yield and valuable baleen, the bowhead whale was one of the most prized targets of 

262 industrial whaling, but the timeline of its exploitation and recovery (or lack thereof) is highly 

263 variable across its circumpolar range. For example, bowheads in the East Greenland–Svalbard–

264 Barents Sea region were exploited commercially for three centuries, from the early 1600s to the early 

265 1900s. Despite subsequent protection, the population has not recovered since: just a few hundred 

266 remain [46] out of a pre-whaling population estimated at ca. 50,000 individuals [47], and we thus 

267 classify it as Nearly Extirpated. In contrast, industrial exploitation in the Bering–Chukchi–Beaufort 

268 Seas took place in just a few, more recent decades, from 1848 to 1921. Although this subpopulation 

269 also collapsed from over-exploitation, it has since recovered to levels estimated to be close to the 

270 original ca. 20,000 individuals [63], and we thus consider it Little Changed. 

271 Subpopulations are units of assessment, but that does not mean they are necessarily homogeneous. 

272 In the case of the bowhead whale, we distinguish within the historical range of the Eastern Canada–

273 West Greenland subpopulation (ECWG) the region encompassing the Strait of Belle Isle and Gulf of 

274 St. Lawrence (BISL). Indeed, whereas the broader ECWG population seems to have partially 

275 recovered from whaling and is now Moderately Depleted, bowheads have not re-occupied the BISL 

276 region to where they previously migrated [60] and we thus map it as Extirpated in this area (but see 

277 above for the potentially confounding effects of climate change, and [64] for recent observations 

278 south of the usual recent Arctic range). 

279 Combining subpopulation assessments into a species-level assessment should make the best use of 

280 the available information. In the case of the bowhead whale, a status of Little Changed is obtained if 

281 change in overall range extent is used as a surrogate for change in population size (9% decline), 

282 whereas combining information on the historical range size of each subpopulation with its category 

283 of population change results in a classification of Moderately Depleted (ca. 58% decline), while 

284 using estimates of current and past population size for each subpopulation yields a Highly Depleted 

285 status (ca. 66% decline; details in Supplementary Material; Table S2). As this last approach is the one 

286 that makes the best use of available data, Highly Depleted is the classification that prevails. 

287 Understanding the degree of depletion of bowhead whales across populations is not only key to 

288 gauging the magnitude and distribution of past human impacts on the species (Figure 2), but it is 

289 also key to understanding the structure and functioning of Arctic ecosystems, thus to better predict 

290 how they will respond to future changes. For example, bowhead depletion is believed to have 

291 released large quantities of zooplankton biomass, with cascading effects towards a foodweb 

292 dominated by pelagic fishes and planktivorous seabirds [65,66]. In places where bowhead 
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293 populations are recovering, a reverse ecosystem shift may be under way, with declines in the 

294 populations of some species [65]. If not placed in an historical context of bowhead overexploitation 

295 (equivalent to using the present as baseline), such ecosystem changes could be misattributed to 

296 other, more recent, human impacts (e.g., climate change, pollution). The historical context is also key 

297 to the definition of appropriate future conservation and management goals for bowheads, even as 

298 Arctic ecosystems are foreseen to change dramatically due to climate change. For example, even 

299 though the core area of suitable habitat for bowhead whales is predicted to decline by half from 

300 what it is now by the year 2100 due to climate change [67], this does not mean the bowhead 

301 population will necessarily decline in relation to today. Instead, the populations that are currently 

302 the most depleted may still have margin for substantial increase as they recover from 

303 overexploitation.

304 Conclusions 

305 EPOCH assessments will be more easily carried out for species for which human impacts are better 

306 documented, including those most visible in the historical record (e.g., large charismatic mammals 

307 [68]), those with good records of recent industrial exploitation (e.g., marine mammals and large 

308 fishes [34,69]) and those that fossilise well (e.g., molluscs [70]). This framework is nonetheless 

309 designed to integrate a wide diversity of data types, including information with relatively high 

310 levels of uncertainty, to ensure that it can also be applied in circumstances of relative data paucity. 

311 Furthermore, it is applicable even to species for which nothing is known about their past: the 

312 baseline can be anchored today, as the reference in future EPOCH assessments. 

313 The immediate application of EPOCH assessments is as a framework for reviewing and synthesising 

314 evidence on how human actions have changed the abundance and distribution of whole species or 

315 of subpopulations. Assessments can then be combined across populations within a given area, and 

316 across regions, to investigate taxonomic or spatial variation in human impacts (in a similar way to 

317 using Red List assessment to investigate taxonomic and spatial variation in extinction risk; e.g. [71]). 

318 When combined across multiple species, or applied to species known to have key functional roles in 

319 ecosystems [72], this new approach will also contribute to understanding how the composition and 

320 structure of ecosystems has changed in response to human activities, applicable for example to 

321 assessments under the IUCN Red List of Ecosystems [73]. By providing a clearer picture of the 

322 composition and structure of intact ecosystems, EPOCH assessments can thus contribute to 

323 understanding of the ecological and evolutionary mechanisms that have shaped biodiversity [74]. 
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324 These insights obtained from the incorporation of baseline data into population status assessments 

325 will in turn support conservation and management decisions, at both the species and the ecosystem 

326 level. EPOCH assessments themselves are merely informative, not prescriptive, given that 

327 population baseline sizes and distributions do not automatically translate into achievable or even 

328 desired conservation targets in the world as it is today or as it is bound to become in the foreseeable 

329 future [75]. Indeed, conservation targets must necessarily integrate other factors such as ecological 

330 interactions, economic costs and benefits, technical feasibility, and societal acceptance. This said, 

331 perceptions of whether species belong to the native fauna of a region, and if so whether they are 

332 considered depleted or overabundant in relation to the expected norm, and thus if ecosystems are 

333 seen as intact or degraded, can and do feed into the scientific argument underpinning many 

334 conservation and management interventions, as well as affecting public acceptance of, and support 

335 for, such interventions [9]. 

336 Hence, at the single-species level, assessments of the cumulative level of population change through 

337 time in response to both ancient and recent human impacts can help to set ambitious but realistic 

338 targets for the recovery of populations, for example in the context of Green List of Species 

339 assessments [25,27], as well as to provide reference points to define sustainable exploitation levels, 

340 for example in fisheries [33]. Combined into multi-species indicators, EPOCH assessments can 

341 become the basis of indices of ecosystem degradation, help to identify areas of particularly intact 

342 communities (e.g., under the C criterion of the Key Biodiversity Areas Standard [76]), as well as 

343 inform targets for wider ecosystem recovery, for example as part of restoration [77] or rewilding 

344 efforts [78]. With the United Nations having just declared 2021-2030 the Decade of Ecosystem 

345 Restoration [79], ensuring that future conservation efforts take into account the history of past 

346 changes is more pertinent than ever.

347
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556 Figure captions

557

558 Figure 1: EPOCH categories of population change, with respective thresholds (percentage of change in 

559 population size in relation to a conceptual baseline in the absence of human actions) and illustrative 

560 examples (see Table S1 for more details).

561

562 Figure 2: EPOCH assessments of four subpopulations of bowhead whale (Balaena mysticetus): Bering–

563 Chukchi–Beaufort Seas (BCB, Little Changed, 1800 baseline); Okhotsk Sea (OS, Severely Depleted, 1800 

564 baseline); East Greenland–Svalbard–Barents Sea (EGSB, Nearly Extirpated, 1600 baseline); and Eastern 

565 Canada–West Greenland (ECWG, Moderately Depleted, 1500 baseline). We map separately the region of 

566 the Strait of Belle Isle and Gulf of St. Lawrence (BISL), which is part of ECWG, as it is no longer occupied 

567 (thus mapped as Extirpated). See Supplementary Materials for details. 

568
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Kakapo (Strigops habroptilus) in Codfish Island/Whenua Hou, New Zealand. No 
ancient records of the species there. Refuge populations established through 
conservation translocations from 1987 onwards [40]. Baseline: 1980.

Great-tailed grackle (Quiscalus mexicanus) in the United States. Records show an 
expansion from southern Texas in 1880 to 20 States by 2002 (>50 fold range 
increase), attributed to its capacity to readily exploit human-modified habitats 
[41]. Baseline: 1880.
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Omura’s whale (Balaenoptera omurai), whole species. Recently described (2003), 
and poorly known. May have been affected by past commercial whaling and other 
ongoing threats, but extent to which threats might have affected the population is 
unknown [49].

Red fox (Vulpes vulpes) in Great Britain. The Mesolithic population size was 
estimated at ca. 73,000 individuals, contrasted to ca. 240,000 in 1995, an increase 
attributed to favourable habitat conversion and extinction of large predators [37]. 
Baseline: Białowieża forests (as surrogates for a Mesolithic baseline). 

Common starling (Sturnus vulgaris), whole species. With a wide native range in the 
Palearctic region (21.8 km2) it was introduced to many other parts of the world 
(inc. North America, South Africa, Australia, New Zealand; 18.5 km2) [42] 
corresponding to 85% range expansion. Baseline: 1500 (pre-European expansion).

Gray whale (Eschrichtius robustus) in the eastern North Pacific. Commercial 
whaling (mid-1800s – early 1900s) led to population collapse, but it has strongly 
recovered since. Current population (ca. 27,000 individuals) [43] is within range of 
estimates of pre-whaling population size [34]. Baseline: 1800.

Black musselcracker (Cymatoceps nasutus), whole species. Declines in Catch Per 
Unit Effort are indicative of a population decline of over 30% within three 
generation lengths (48 years prior to 2009) [44]. Baseline: 1960.

Wandering albatross (Diomedea exulans) in Bird Island, South Georgia. Annual 
censuses reveal a decline in the number of breeding pairs from about 1700 (1962-
1964), to 772 (2014/15), attributed mainly to longline fisheries [45]. Baseline: 
1962.

Gulf grouper (Mycteroperca jordani), whole species. Consistent anecdotal records 
strongly support a sharp decline: change in fishers’ perception from 
“common/abundant” to “naturally rare”; memories of best catches/day indicate > 
10-fold reduction [19] Baseline: 1940s.

Bowhead whale (Balaena mysticetus) in East Greenland–Svalbard–Barents Sea. 
Commercial whaling (1611-1911) led to population collapse from which it did not 
recover: current population in the low hundreds [46], in contrast with a pre-
whaling population of ca. 50,000 [47]. Baseline: 1600.

Gray whale (Eschrichtius robustus) in the North Atlantic. No longer present, but 
past presence (up to mid-1700s) attested by bone records and a few historical 
records. The latter present it as a target of whaling [48]. Baseline: ca. 1 AD.
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EPOCH assessments of four subpopulations of bowhead whale (Balaena mysticetus): Bering–Chukchi–
Beaufort Seas (BCB, Little Changed, 1800 baseline); Okhotsk Sea (OS, Severely Depleted, 1800 baseline); 
East Greenland–Svalbard–Barents Sea (EGSB, Nearly Extirpated, 1600 baseline); and Eastern Canada–West 
Greenland (ECWG, Moderately Depleted, 1500 baseline). We map separately the region of the Strait of Belle 

Isle and Gulf of St. Lawrence (BISL), which is part of ECWG, as it is no longer occupied (thus mapped as 
Extirpated). See Supplementary Materials for details. 
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