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Abstract
InMRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknownwhether
suchbrainabnormalitiesare influencedbygeneticdeterminants thatpartiallyoverlapwith thoseunderlyingAN.Here,weusedabattery
of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to
investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from
genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED
consortium,n = 14,477).Geneticcorrelationsrangedfrom− 0.10to0.23(allp > 0.05).Thereweresomesignsofaninverseconcordance
between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of
ZW10, a gene involved in cell division, andneurotransmitter and immune system relevant genes, in particularDRD2,was significantly
associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to
LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR =
0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for
associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic
architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related
genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN.
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Introduction

Anorexia nervosa (AN) is an often life-threatening,
adolescent-onset eating disorder characterized by severe

emaciation, and typically by severe food restriction. AN mor-
tality rates are the highest in psychiatry [1].

Despite high twin-based heritability estimates of around
50–80% for AN [2], we do not fully understand the
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pathophysiology of the disorder. So far only one common variant
on chromosome 12 and no rare variants above genome-wide
thresholds have been detected in four studies based on up to
3500 AN cases and 15,000 controls [3–6].

In acutely ill patients with AN, reduction of brain tissue is
often readily visible in individual patients’ brain scans. A num-
ber of structural MRI studies (albeit with small sample sizes)
have documented decreases in both gray and white matter vol-
umes (for review, see ref. [7, 8]).More recent, larger studies and
ameta-analysis have confirmedwidespread graymatter volume
reductions in AN, with regional effects especially in reward-
related and somatosensory areas [9–11]. In weight-recovered
patients, subcortical and cortical gray matter deficits seemed
to normalize, but several studies have reported small group
differences even after recovery [9, 12–14].

In light of these structural abnormalities, one question is
whether certain structural brain differences share a similar
genetic architecture with AN and may possibly even reflect
a predisposition for AN. Magnetic resonance imaging (MRI)
measures of brain structure are moderately heritable [15] and
several volumetric measures have high reproducibility and
low measurement error [16]. Ideally, an answer to the above
question might require longitudinal, prospective population-
based studies with brain scans in healthy individuals who will
go on to develop AN later in life. Considering the high cost,
low power, and logistical challenges of such a study, a more
feasible alternative approach would be to examine the genetic
overlap between AN and brain structure. Unfortunately, the
number of existing genetic and neuroimaging studies in AN is
relatively small compared to other major neuropsychiatric dis-
orders. To date, only two imaging genetics studies have been
published [17, 18], suggesting that COMT and 5-HTTLPR
genotype may modulate functional connectivity in AN
patients.

We are now able to leverage results from large-scale,
genome-wide association studies (GWAS) based on tens of
thousands of individuals. Data from GWAS on brain structure
and on genetic risk for AN allows us to investigate the genetic
covariation between brain structure and disease risk.
Investigating this genetic correlation should inform us about
shared genetic influences between brain structure and AN. A
large degree of genetic overlap could indicate potential pleio-
tropic effects, where the same genetic variants influence both
traits. Results could then help to derive or adapt hypotheses
about how brain structure is involved in AN etiology. Several
groups have investigated genetic overlap between structural
brain measures and risk for schizophrenia as well as other
psychiatric disorders [19–22].

In the current study, we followed a roadmap for the analysis
of genetic covariation between brain volumes and AN using a
battery of complementary methods including those suggested
by Franke et al. [20]. To date, well-powered summary esti-
mates are available for eight structural brain measures

(intracranial volume (ICV) and seven subcortical regions)
from published GWAS [16]. Therefore, our analysis focused
on ICV and these regional subcortical volumes. In detail, we
investigated the potential for a shared genetic architecture
based on common genetic variation as well as of an overlap
of individual genetic risk variants between both disorder and
brain measures.

Materials and Methods

In this article, we used independent data from separate GWAS
on brain structure and on genetic risk for AN to study the
genetic covariation between these measures.

Samples

Subcortical Brain Volume GWAS Summary Statistics
from the Enhancing NeuroImaging Genetics
Through Meta-Analysis Consortium (ENIGMA)

ENIGMA MRI summary measures from genetic association
analyses of ICVand seven subcortical volumes [16] were avail-
able online at http://enigma.usc.edu/research/download-
enigma-gwas-results/. These analyses were based on brain
MRI scans and genome-wide genotype data for 13,170 subjects
from 28 cohorts Online Resource, section 1.1 and Table S1).
All participants in all cohorts in this study gave written in-
formed consent and sites involved obtained approval from local
research ethics committees or Institutional Review Boards. In
the original analysis, GWAS statistics from each of the 28 sites
had been combined using a fixed-effect inverse variance-
weighted meta-analysis as implemented in METAL [23].

Anorexia Nervosa GWAS Summary Statistics from the Eating
Disorders Working Group of the Psychiatric Genomics
Consortium (PGC-ED)

Anorexia nervosa (AN) cases met DSM-IV criteria for either
lifetime AN (restricting or binge-purge subtype) or lifetime
eating disorders ‘not otherwise specified’ AN-subtype (i.e.,
exhibiting the core features of AN) [24]. Summary measures
were available on genetic association analyses on AN diagno-
sis (https://www.med.unc.edu/pgc/results-and-downloads)
[4]. These analyses were based on AN phenotype and
genome-wide genotype data for 3495 AN cases and 10,982
control subjects from 12 cohorts [3, 6] (Table S2). To our
knowledge, PGC-EDAN cohorts did not overlap with cohorts
in the current ENIGMA GWAS. Participants clustered with
subjects of known European ancestry. Genomic data were
imputed to a reference panel (1000 Genomes, phase 3), using
SHAPEIT [25] for phasing and IMPUTE2 for imputation
[26]. Tests of AN association within datasets were performed
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using an additive model in PLINK [27] with the first ten prin-
cipal components as covariates. Fixed-effects meta-analysis
across the 12 datasets was carried out usingMETAL [23] with
inverse variance weighting. For more information, see Online
Resource section 1.2 and reference [4].

Statistical Analysis

Linkage Disequilibrium Score Regression

Linkage disequilibrium score (LDSC) regression [28] was
used to assess genome-wide common variant heritability and
genetic correlations between AN and subcortical volumes. In
detail, LDSC assesses whether inflation in GWAS test statis-
tics is due to polygenicity or other confounding biases such as
cryptic relatedness or population stratification. For this analy-
sis, each dataset was filtered to only include markers overlap-
ping with HapMap Project Phase 3 SNPs (Noverlap =
1,161,164), as these tend to be well-imputed across studies
and alleles will match those listed in the data used to estimate
the LD score. No SNPs had out-of-bound p values or were
strand-ambiguous. Because ENIGMA subcortical brain vol-
ume and PGC-ED AN measures were based on European
samples, we used pre-computed LD scores for European pop-
ulations, as provided on the LDSC website (https://github.
com/bulik/ldsc). Standard errors were estimated using a
block jackknife procedure and used to calculate p values.
p values were adjusted for seven tests (eight brain regions
minus the amygdala; see Franke et al., [20] and Results
below) to account for multiple testing.

Genetic Risk Score Analysis

We used the grs.summary function developed by Johnson [29]
and implemented in PRSice (version 1.25, ref. [30]), which
approximates the regression of a response variable (i.e., risk
for AN based on PGC-ED GWAS) onto an additive multi-
SNP genetic risk score. Risk score coefficients are weighted
by single SNP regression coefficients estimated from one set
of GWAS results (here: ENIGMA subcortical brain volume).
We investigated the effect at four p value thresholds (1*10−4,
1*10−3, 1*10−2, 5*10−2) and adjusted for 28 tests (eight brain
regions minus the amygdala * four thresholds) to account for
multiple testing.

Sign Test

We employed a sign test as an additional method to investigate
a potential overlap of positive or inverse direction effects of
SNPs between both datasets at p value thresholds (1*10−4,
1*10−3, 1*10−2, 5*10−2). Using the binom.test function from
the stats package in R, we tested the significance of the num-
ber of SNPswith opposite direction effects between datasets at

these four thresholds over the total number of SNPs. p values
were adjusted for 28 tests (eight brain regions minus the
amygdala * four thresholds) to account for multiple testing.

SNP Effect Concordance Analysis

SNP effect concordance analysis (SECA) tests for pleiotropy,
concordance, and ‘pleiotropy-informed’ conditional false dis-
covery rate (FDR) results between two sets of GWAS sum-
mary results [31]. SECA estimates whether (a) there is an
excess of SNPs associated with the respective phenotype in
both datasets (pleiotropy); (b) the directions of effect are in
agreement across datasets (concordance); and (c) single SNPs
in dataset 2 (here: PGC-ED AN) gain in significance after
conditioning on their strength of association in dataset 1 (here:
ENIGMA subcortical brain volumes; conditional results).
Concordance analysis in SECA tests for positive concordance
(i.e., whether a larger ORAN relates to a larger BETAsubcortical).
However, since wewere interested in the opposite relationship
between these variables (i.e., whether a ORAN greater than one
relates to a negative BETAsubcortical), we derived and used the
inverse of the ORAN in the concordance analysis. For all
SECA analyses, overlapping SNPs between both datasets
(N = 7,868,363) were pruned for LD using a p value informed
method, a 1 Mb window and r2 > 0.1 (all default settings in
SECA). This resulted in N = 26,558 SNPs, which were en-
tered in the analysis. p values were adjusted for seven tests
(eight brain regions minus the amygdala; see Franke et al.,
[20] and Results below) to account for multiple testing.

Mendelian Randomization

To investigate potentially causal relationships between subcor-
tical brain volumes and AN, we applied a two-sample
Mendelian Randomization (MR) approach, which only re-
quires GWAS summary level data. MR is a method of investi-
gating causal relationships by using genetic variants as instru-
mental variables [32]. The main assumptions and strengths of
the technique have been outlined in detail elsewhere [33–35].
Briefly, to select SNPs that are strong instrumental variables
(relevance assumption), we investigated only brain volumes
and SNPs where the genetic variants associated with brain vol-
ume at a genome-wide level significant level (caudate (1 SNP),
hippocampus (2 SNPs), putamen (4 SNPs, of which 3 were
available in the AN GWAS summary data), and ICV (1
SNP); as reported in Hibar et al. [16]). We were not able to
investigate the causal effect of AN on brain volumes, as the
AN-linked variant (rs4622308) was not available in the subcor-
tical GWAS summary data. Due to the limited number of
strongly associated genetic variants per structure, we used the
Wald ratio method and hence were unable to investigate pres-
ence of horizontal pleiotropy as a potential violation of the MR
exclusion restriction assumption. To limit confounding due to
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population stratification (a potential violation of the indepen-
dence assumption), we used GWAS summary data based on
largely European populations. The TwoSampleMR package in
R (also available as part of the MR-Base (www.mrbase.org)
platform [36] was used for all MR analyses.

Results

The following analyses were based on summary statistics for
(a) eight brain volume measures of 13,170 participants from
the ENIGMA consortium and (b) AN case-control data from
3495 AN patients and 10,982 healthy individuals. We focused
on ICV and all subcortical regions (caudate, hippocampus,
pallidum, nucleus accumbens, putamen, thalamus, amygdala)
that were investigated in [16], and hence had GWAS summary
data available.

Linkage Disequilibrium Score Regression

Linkage disequilibrium score (LDSC) regression examines
the relationship between two sets of GWAS test statistics
using linkage disequilibrium. Restricting our analyses to
Hapmap3 SNPs (as recommended, see methods) left
1,161,164 SNPs in the ENIGMA datasets and 1,217,311 in
the AN dataset with a total of 1,094,348 overlapping SNPs.
SNP-based heritability estimates for the traits were 26% (cau-
date, 95% CI [18; 34]), 15% (hippocampus [95% CI 7; 23]
and pallidum [95% CI 7; 24]), 9% (nucleus accumbens, 95%
CI [1; 17]), 31% (putamen; 95% CI [21; 41]), 14% (thalamus;
95% CI [6; 22]), 18% (ICV; 95% CI [9; 27]), and 23% (AN;
95% CI [16; 31]; Table 1). The GWAS-estimated heritability
for the amygdala volume was not significantly different from
zero (− 2%, 95% CI [− 9; 4]). This structure was therefore
omitted from the following analyses. Using LDSC regression,
we did not identify a significant genetic correlation between
any of the remaining seven brain volumes and AN (Table 1).

Genetic Risk Score Analysis

Next, we tested the effect of additive multi-SNP genetic
risk scores, weighted by ENIGMA subcortical brain vol-
ume betas, onto PGC-ED AN, to see whether risk for
altered subcortical brain volume is related to risk for
AN. No effects were observed after correcting for 28 tests
(seven brain regions * four thresholds). For four brain
regions (hippocampus, pallidum, thalamus, and ICV),
nominal effects were observed, but the amount of ex-
plained variance was negligible (less than 0.034%). See
Table 1, Fig. 1a and Table S3 for further details.

Sign Test

Testing for an accumulation of positive or negative direction
effects of SNPs in the PGC-ED AN and ENIGMA datasets at
four different ENIGMA p value thresholds (1*10−4, 1*10−3,
1*10−2, 5*10−2), we could not identify any significant effects
after adjusting for multiple testing. There was a nominally
significant effect (pthreshold < 0.05 = 0.019) for the thalamus,
where we found a higher proportion of SNP alleles with a
negative effect on brain volume (BETA < 0) and an increased
risk for AN (OR > 1) than would be expected by chance. This
effect was not found when restricting the analyses to SNPs
passing thresholds based on the AN GWAS results instead.
See Table 1 and Table S4 for further details.

SNP Effect Concordance Analysis

SNP effect concordance analysis (SECA) extracts subsets of
independent SNPs (present in both datasets) to test at 12 dif-
ferent p value thresholds (resulting in 144 subsets) for an
excess of SNPs associated in both datasets (pleiotropy), for
concordance of effect directions, and for conditional effects.
After LD-pruning, 26,558 SNPs were left in the analysis.
There was an overall effect for an inverse concordance be-
tween the thalamus and AN (i.e., SNP effects related to small-
er thalamus volume and larger ORAN), which remained sig-
nificant only at a trend level after correcting for seven tests
(uncorrected pconcordance = 0.009; Table 1 and Fig. 1b). There
were no other signs of pleiotropy or concordance between any
of the remaining volumes and AN (Table 1). Testing for con-
ditional effects, we identified individual SNPs that gained in
association significance with AN after conditioning on their
strength of association with subcortical volume for the cau-
date, hippocampus, nucleus accumbens and the pallidum. In
detail, rs3863294 on chromosome 11—located close to the
genes ZW10 (involved in cell division) and TMPRSS5 (highly
expressed in brain tissue) and also in the vicinity of neuro-
transmitter and immune system relevant genes such asDRD2,
HTR3B, HTR3A, and NCAM (Fig. S1)—was significantly as-
sociated with AN only after conditioning on its association
with caudate volume (pFDR-noCond = 0.324 to pFDR-caudCond =
0.0246). Follow-up analyses on functional effects of
rs3863294 on DNA methylation or gene expression indicated
an influence on DNA methylation linked to ZW10 in blood,
but not in brain tissue and an effect on gene expression of
TMPRSS5 in brain tissue and of DRD2 in peripheral tissue
(Online Resource section 2.4).

Similarly, rs7945461—linked to LRRC4C which is impor-
tant in axonal and synaptic development—gained significance
after conditioning on hippocampal volume (pFDR-noCond =
0.272 to pFDR-hipp-Cond = 0.0208). Two SNPs that were condi-
tional on volumes of the nucleus accumbens and the pallidum
(rs6708971; pFDR-noCond = 0.127 to pFDR-accumb-Cond = 0.009;
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and rs873507; pFDR-noCond = 0.093 to pFDR-pall-Cond = 0.034)
were located in intergenic regions. For further details on these
conditional analyses, see Online Resource section 2.5.

Mendelian Randomization

To assess potential causal effects of brain volume on AN,
genetic variants linked to each of the four brain volumes with
genome-wide level markers were used as instruments. Wald
ratios did not indicate causal effects of any brain volume on
risk for AN (Table S5).

Discussion

We evaluated the relationship between common genetic vari-
ants implicated in subcortical brain volumes and those asso-
ciated with a clinical diagnosis of AN. The sample sizes were
the largest yet applied to these questions. With a comprehen-
sive set of analyses, we found weak evidence for strong ge-
netic correlations at a global level (that is, common variant
genetic architecture) and suggestive evidence for effects of
single genetic markers.

There were signs of an inverse concordance between thal-
amus volume and risk for AN (i.e., SNP effects related to
smaller thalamus volume and larger ORAN). For individual
genetic variants, we identified a variant in the vicinity of neu-
rotransmitter, development and immune system relevant
genes such as ZW10, TMPRSS5 and DRD2, HTR3B,

HTR3A, and NCAM to be significantly associated with AN
only after conditioning on its association with caudate vol-
ume. Another variant linked to LRRC4C, important in axonal
and synaptic development, gained significance after condi-
tioning on hippocampal volume.

Several reasons could explain why we did not detect a
major genetic overlap between AN and subcortical volumes
in the current study. In this study, we focused on volume
alterations in subcortical regions which are potentially impli-
cated in AN, but other neuroimaging phenotypes, such as
measures of cortical thickness or surface area as well as
resting-state functional or anatomical connectivity, may also
be informative. Similarly, genetic risk for AN might relate to
specific cell types or structures that do not easily relate to those
properties detected by the structural imaging approach applied
in this study. Second, it is possible that the samples in the
PGC-ED GWAS are somewhat heterogeneous with respect
to disease severity or subtype. More robust differences might
be found when larger sample sizes and deeply phenotyped
data allow us to focus on, e.g., subtype effects (restrictive
versus binge-purge) or select individuals with more severe
and enduring psychopathologies or those with particularly
high genetic risk for AN. Third, the data analyzed in this study
are largely based on adult samples. Heritability estimates vary
with age and the degree of genetic overlap between subcorti-
cal volume and AN may be larger in younger populations.
Fourth, we evaluated only common genetic variation. It is
possible that rare variants play a role in the shared genetic
architecture between brain volume and AN. Last but not least,

Fig. 1 a Genetic risk score analysis results for four subcortical brain
volumes with nominally significant results. p value criteria used to
threshold ENIGMA input data are plotted on the x-axis, the amount of
variance of AN liability explained (R2) on the y-axis. The color bar
indicates the level of significance for a GRS effect on AN. b SECA

analysis indicated significant concordance effects between AN (x-axis)
and thalamus volume (y-axis). For computational purposes, ORAN was
inversely coded, so that red indicates concordance of SNP effects between
increased risk for AN and lower thalamus volume
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it is indeed possible that there is no link between the genetics
of subcortical volumes and AN. However, the results of the
conditional analysis draw such a conclusion into question.

Our results are similar to other studies that reported a lack
of a shared genetic basis between brain volumes and schizo-
phrenia as well as major depression [20, 22]. However, anoth-
er recent study reported an enriched contribution of schizo-
phrenia GWAS loci to intracranial volume (a global measure
of brain morphology; Lee et al. [21]). The latter study also
included several other psychiatric traits as part of an explor-
atory analysis and found no associations between risk for AN
and intracranial volume. It is likely that genetic variants that
are linked to complex disorders such as AN may exert their
effects through various biological pathways affecting different
systems to varying degrees. This high level of heterogeneity
might prevent us from identifying more distinct genetic sig-
nals on brain volume. Alternative methods such as those de-
scribed in Smeland et al. [37] and Lee et al. [21], or parallel
ICA [38], some of which are able to delineate independent
genetic signals on distinct brain networks might provide a
potentially promising approach to study the relationship be-
tween brain volume and AN.

Despite our negative findings, several studies have reported
genetic correlations between AN and different clinical traits.
A significant twin-based genetic correlation between AN and
OCD has been observed using data from the population-based
Swedish Twin Registry (additive genetic correlation = 0.52;
ref. [39]) and has since been replicated with a SNP-based
genetic correlation by the PGC consortium (rg = 0.53; ref.
[40]). A recent study [4] has found positive genetic correla-
tions between AN and a range of psychiatric traits including
schizophrenia and neuroticism, perhaps reflecting genetic risk
for general psychopathology. Negative genetic associations
were observed with several Bunfavorable^ metabolic pheno-
types (such as fasting insulin, fasting glucose or insulin resis-
tance), suggesting that metabolic factors might be involved in
dysregulation of weight and appetite in AN.

We detected an inverse concordance between genetic de-
terminants of thalamus volume and AN. Gray matter atrophy
in the thalamus in AN has been reported in previous studies
[10, 14] and diffusion-based MRI investigations have fre-
quently implicated alterations of white matter tracts
connecting the thalamus and especially fronto-parietal regions
with AN [41–43]. Studies using functional MRI have also
found differences in thalamus functioning in AN [44], indi-
cating that this region might be involved in motivation-related
behavior in AN. Moreover, thalamo-frontal circuit abnormal-
ities in AN (measured using an fMRI-based resting-state func-
tional connectivity approach) were linked to cognitive control
and working memory performance in patients [45]. Reduced
local thalamic network efficiency (indicated through de-
creased connectivity strength and increased path length) in
patients with AN was further supported using an approach

that modeled the entire brain as a complex network [46, 47].
These results are in line with a model for human awareness
and subjectivity by Craig et al. [48], which postulates that
afferent representations of the physiological state of the body
ascend from the spinal cord via the brain stem and the thala-
mus to the insula. Therefore, reduced connectivity in a net-
work including the thalamus might reflect a modified calibra-
tion of signals such as body size or hunger and may subse-
quently contribute to typical AN symptoms. Such abnormal-
ities in signal processing might be genetically determined,
arise during neurodevelopment and manifest in altered thala-
mus volumes and connectivity. However, considering largely
trend level effects in our analyses, as well as the fact that we
could not investigate causal associations through Mendelian
randomization due to the absence of strong genetic loci asso-
ciated with thalamus volume, we cannot draw any conclusions
about the causality or direction of effect (i.e., whether reduced
thalamus volume is a risk factor or consequence of AN or
whether this association is due to confounding).

We also found that genetic variant rs3863294, located close to
the genes ZW10 (involved in cell division) and TMPRSS5 (high-
ly expressed in brain tissue) and also in the vicinity of neurotrans-
mitter and immune system relevant genes such as DRD2,
HTR3B, HTR3A, and NCAM, was significantly associated with
AN after conditioning on its genetic association with caudate
volume. A direct link between rs3863294 and these genes de-
serves further investigation. However, it is interesting to note that
prior candidate gene studies suggest that many genes found in
this region could be associated with AN. For instance, genetic
variants associated with the serotonergic system (linked to the
genesHTR3A andHTR3B)may be associatedwith the restrictive
subtype of AN [49] and genetic variants of genes involved in the
dopaminergic system (e.g., DRD2) might play a role in the sus-
ceptibility for AN in some populations [50, 51]. Interestingly the
caudate is a brain structure that is strongly modulated by ascend-
ing dopaminergic projections [52] and implicated in reward pro-
cessing [53, 54]. A number of PET studies indicate that aberrant
striatal dopamine function may contribute to the behavioral phe-
notype in AN [55], although findings might be specific to the
stage of recovery. For instance, the interaction between dopamine
receptor and serotonin transporter bindingwas predictive of harm
avoidance in recovered eating disorder patients [56, 57]. AN-
related alterations in dopaminergic reward-related brain regions
such as the caudate have also been shown using fMRI and mon-
etary rewards, taste- or food-related stimuli [58]. However, the
direction of change (increased or decreased activation) varied
across studies [59–64].

Last, the genetic variant rs7945461—linked to LRRC4C,
important in axonal and synaptic development [65, 66]—
gained significance after conditioning on hippocampal vol-
ume. LRRC4C mRNA is abundant in hippocampal pyramidal
neurons and dentate granule cells [67] and several studies
have reported hippocampal volume reduction in acute AN
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patients relative to controls [7]. There has been no direct link
so far between cognitive function and hippocampal alterations
in AN [68], but there might be an indirect effect via estrogen-
related hormone levels, which have been associated both with
cognitive performance in AN [69] and with hippocampal vol-
ume regeneration upon weight restoration [14].

Conclusion

In this comprehensive set of analyses, we found weak evi-
dence for a relationship between common genetic variants
implicated in AN and those associated with subcortical brain
volumes at a high level (that is, common variant genetic ar-
chitecture), but some suggestive evidence for effects of single
genetic markers. Despite the sample sizes being the largest yet
applied to these questions, more detailed multimodal brain-
and genome-wide studies are needed to dissect the potential
impact of genetic risk for AN on brain structure or function.
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