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Abstract4

Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global5

climate change. The intensity of UHIs is known to vary with population size and mean annual pre-6

cipitation but a unifying argument is missing, and geographically targeted guidelines for heat miti-7

gation remain elusive. Here we analyze urban-rural surface temperature differences (∆Ts) world-8

wide and find a nonlinear increase of ∆Ts with precipitation that is controlled by water/energy9

limitations on evapotranspiration and that modulates the scaling of ∆Ts with city size. We in-10

troduce a coarse-grained model linking population, background climate, and UHI intensity and11

we show that urban-rural changes in evapotranspiration and convection efficiency are the main12

determinants for warming. The direct implication of these nonlinearities is that mitigation strate-13

gies aimed at increasing green cover and albedo are more efficient in dry regions, while cooling14

tropical cities is a challenge that will require innovative solutions.15
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2 MANOLI ET AL.

Main17

Cities modify their surface energy balance and generally exhibit higher air and surface temperatures18

than the surrounding rural areas1–3. This phenomenon, known as the urban heat island (UHI) ef-19

fect, poses a threat to human health as more than half of the world population now lives in cities4
20

and warming can increase morbidity and mortality5,6, especially during heat waves7. UHIs have21

been extensively studied in North America2,8, Europe9, China10,11, and globally12,13. A link between22

urbanization-induced warming and city size as measured by its population was first proposed in 197323

based on nighttime air temperature data1. With the proliferation of remotely sensed land surface24

temperature measurements, similar relations have been proposed at the global scale13. Local hydro-25

climatic conditions also contribute to the intensity of UHIs2,14, with rising mean annual precipitation26

causing an increase in urban to rural surface temperature differences (∆Ts), a proxy for urban warm-27

ing with respect to the more efficient cooling of the surrounding rural surfaces. Given the complexity28

of urban systems, identifying and isolating the causes of UHIs remains challenging3,15 and the factors29

contributing to the observed changes in ∆Ts across city sizes and hydroclimatic conditions continue30

to be a subject of inquiry and debate2,13,14,16.31

During nighttime, the intensity of UHIs is largely controlled by urban-rural differences in surface32

geometry, thermal properties, and anthropogenic heat3. The causes of daytime ∆Ts are fundamentally33

different and both changes in convection efficiency associated with surface roughness2 and changes34

in the partitioning of latent/sensible heat fluxes associated with local climate-vegetation character-35

istics10,14,16 have been proposed as the main drivers of warming. Some studies suggested that ∆Ts36

increases linearly with precipitation due to changes in aerodynamic resistance, as cities in dry climates37

are more efficient than the barren surrounding in dissipating heat, while the opposite is observed in38

humid regions2. However, the validity of such a linear relation has been questioned. Remote sensing39

measurements from 32 cities in China hint to the existence of a precipitation threshold above which40

∆Ts is insensitive to precipitation changes10. In addition, the aerodynamic explanation of UHIs is41

inconsistent with the observed power law scaling of urban warming with population as an increase in42

building height (associated with larger city sizes17) should enhance convection and increase cooling43

rather than warming. However, the reasoning that “rougher” cities with taller and denser buildings44

are more efficient in exchanging heat and momentum2 is contrary to the observed decrease in rough-45

ness length with urban density18. Numerical simulations have confirmed possible nonlinear responses46

of ∆Ts to precipitation16 but, unlike previous modeling results, the variability of ∆Ts has been ex-47

plained by changes in rural temperature16 rather than convection efficiency2. In short, the causal links48
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GLOBAL URBAN WARMING 3

between ∆Ts, population, city texture, and climate appear to be complicated by hidden thresholds49

and remain uncertain. As a consequence, identifying general guidelines for heat mitigation remains50

a daunting task15 and a fundamental knowledge gap persists in understanding how cooling effects of51

urban vegetation19 and albedo management2 vary across cities and climatic conditions. A case in52

point is the Italian city of Matera which, despite its dense urban fabric and the lowest green cover in53

Europe (only 0.1% of the total area20), exhibits a negative UHI21 while Singapore, with more than54

50% of green spaces22, shows a daytime ∆Ts of +1.9◦C (ref.21). Hence, the efficiency of heat miti-55

gation strategies cannot be direclty inferred from studies on a few selected cities because an adequate56

basis for generalization is missing. More broadly, such global issues need to be tackled with a holis-57

tic perspective to put existing results into geographic context and transfer knowledge across climatic58

gradients, which frames the scope of this work.59

Here, surface temperature anomalies in more than 30000 cities21 are analyzed and used to de-60

velop a mechanistic coarse-grained model that links ∆Ts to population (N ) and mean annual pre-61

cipitation (P ), where N is an aggregate measure for urban infrastructure size and P is a proxy for62

time-integrated surface-atmosphere exchanges and climatic patterns. The model is based on the fact63

that, as a city grows, its structure and functioning are predictably modified23. Different building ma-64

terials are employed, heat storage and evapotranspiration fluxes are altered, and human activity and65

energy consumption increase. The urban fabric (e.g. area, materials, mean building height, height-to-66

width ratio of street canyons) also changes, thus altering reflectivity and emissivity of the city surface67

as well as its roughness and convection efficiency relative to the surrounding (often vegetated) areas.68

Despite the diversity and complexity of urban systems, universal scaling laws linking urban popula-69

tion to infrastructure size and socio-economic metrics exist and have been confirmed when combining70

data from cities across the entire globe23. How can links between such established scaling laws, ∆Ts,71

and climate-vegetation characteristics be beneficially used to globally address urban-induced warm-72

ing motivates the work here. When coupled to energy and radiative transfer principles, it is shown73

that the aforementioned scaling laws provide logical bases to coarse-grained representations of UHIs.74

This approach constitutes a major departure from empirical analysis that lump different mechanisms75

into statistical correlations, e.g. between ∆Ts and population or urban texture1,12. Likewise, it differs76

from the current state-of-the-science being employed in climate simulations that resolve the physics77

of energy exchanges and atmospheric flows at the street-canyon and building level but cannot cap-78

ture emergent large scale phenomena associated with population and infrastructure dynamics. Our79

findings explain the global variability of UHIs, they complement exisiting micro-scale urban climate80

studies24 and provide guidance for the increasing efforts aimed at greening and cooling world cities,81
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4 MANOLI ET AL.

especially to the large number of metropolises that have not benefitted from intensive observational or82

modelling studies. Also, the approach here offers guidance on where detailed observational and sim-83

ulation studies can be more effective so as to address UHIs across climatic gradients and city sizes.84

The main novelty of the proposed approach is the inclusion of emergent behaviors of urban-biosphere85

systems in a coarse-grained model that explains the observed global patterns of ∆Ts. These patterns86

are then translated to general guidelines for planning and retrofitting of cities5,25.87

Global patterns of urban warming88

The focus of our analysis is on mean daily urban-rural surface temperature differences ∆Ts during89

summertime when the intensity of UHIs and the risk of heat-related mortality are expected to be the90

highest8,13. Also, any links to precipitation are likely to be more evident during summer beacuse91

vegetation is active16. Consistent with prior results10,16 derived from a smaller data set, a nonlinear92

relation between ∆Ts and mean annual precipitation is found (Fig. 1a). The reported linear increase2
93

holds for low precipitation regimes but ∆Ts saturates at high precipitation values exceeding around94

P=1500 mm yr−1. A nonlinear response between ∆Ts and background temperature Ts is also ob-95

served (Fig. 1b) with peak warming occurring at Ts ≈ 22◦C and decreasing UHI intensities for warmer96

climates. A positive correlation between daytime surface UHI intensity and mean air temperature (Ta97

between -10 and 30◦C) have been reported10 suggesting a possible intensification of urban warm-98

ing under future climate change scenarios26. However, an opposite correlation was observed during99

nighttime10 and during the day in 54 US cities27. The global results here show that ∆Ts decreases100

for Ts higher than ≈25◦C. Unlike previous results suggesting that the scaling ∆Ts ∼ N δ is invariant101

with climate2, precipitation is shown to introduce appreciable corrections to the observed exponent δ102

with a weakening of such scaling under wet conditions (Fig. 1c). Specifically, δ is 0.21 globally but103

it varies between 0.15 and 0.34 under wet and dry conditions, respectively. These results agree with104

early work on the impact of soil moisture on the relation between UHI intensity and population28 and105

the values of δ are in agreement with prior scaling exponents reported in the literature13.106

The observed global variability of ∆Ts with mean annual precipitation P and urban population N107

can be expressed mathematically as (see derivation in the Supporting Information, SI):108

∆Ts(P,N) =
1

fs(P )− γ
aT
fa(P )

∆S(P,N); (1)

where f−1s and f−1a [K W−1 m2] represent the surface and air temperature sensitivities to 1 W m−2109
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energy forcing, γ and aT are phenomenological parameters that account for the coupling between Ts110

and Ta, and ∆S [W m−2] is the energy forcing perturbation due to urban-induced changes in surface111

albedo (∆α), emissivity (∆εs), evapotranspiration (∆ET ), convection efficiency (∆ra), and anthro-112

pogenic heat (∆Qah). Eq. 1 provides a parsimonious description of the coupled urban-biosphere113

system (Supplementary Fig. S1) based on general scaling laws for urban form/function and global cli-114

mate relations (see Methods and SI for details). The proposed approach is deemed “coarse-grained”115

because “fine-grained” properties of cities and rural areas are smoothed over in space and time to116

focus on collective phenomena and climatic patterns rather than microscopic (i.e., building to block117

scale) processes. The validity of the model for the purposes of this study can be evaluated by its ability118

to recover the observed patterns of ∆Ts changes with simultaneous changes in background climate119

and population (Fig. 1a-c and Supplementary Fig. S2). The model has a good fit and accuracy when120

predicting the observed trend of global UHIs across precipitation gradients, closely matching the 1:1121

line and accounting for 74% of the variation (inset in Fig. 1a). The agreement between observed and122

modeled ET (Supplementary Fig. S3) and the modeled impact of background temperature and wind123

speed on urban warming (Fig. 1b and Supplementary Fig. S4, respectively) are also acceptable, thus124

confirming the robustness of the approach here. A conceptual analysis of ∆Ts variability using Eq. 1125

suggests that the observed nonlinear responses of UHIs to background climate (Fig. 1) arise from126

distinct mechanisms, the relative contribution of which vary with precipitation2,29 as now discussed127

using the combined data-model results.128

The shape of the P −∆Ts relation is largely controlled by changes in evapotranspiration (ET). In129

wet climates, energy limitations define an upper bound to ET differences between urban and rural en-130

vironments while, in arid regions, water limitations reduce the magnitude of rural ET thus limiting the131

contribution of ∆ET to ∆Ts (Fig. 1a,d). In dry climates, when the water budget of urban vegetation132

is supplemented by irrigation, ∆Ts becomes negative creating an “oasis” effect30–32. The amount of133

urban vegetation also plays a role as estimates of urban green cover fractions (gc,u) from Europe (EU)134

and South East Asia (SEA) reveal a significant larger green area in cities located in high precipitation135

regimes (see Methods). This dependence of urban greenery on hydroclimate, together with changes136

in air specific humidity with precipitation gradients (see results in the SI), explaisn the concavity of137

the P −∆Ts relation in Fig. 1a.138

As proposed elsewhere2,7, urban-rural changes in convection efficiency also contribute to city139

cooling in dry and warm climates. Given that the height of natural vegetation increases logistically140

with precipitation33, cities in dry regions are aerodynamically rougher than the surrounding rural141

surfaces characterized by deserts or short vegetation and heat dissipation by convection could be more142
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6 MANOLI ET AL.

efficient (see Supplementary Fig. S5). Conversely, cities in wet climates are often surrounded by143

tall forests that exchange heat more efficiently than dense building blocks. In general, the increase144

in convection efficiency of rural/vegetated surfaces with higher precipitation, increases the energy145

redistribution factors fs and fa (through the aerodynamic resistance ra, see SI) thus damping the146

impact of urban-rural changes on the magnitude of ∆Ts.147

Regarding surface albedo, both positive and negative urban-rural differences ∆α have been re-148

ported for single cities3, but previous urban research has predominantly focused on cities in temperate149

mid-latitudes. The new global analysis here suggests that urban albedo has a notable negative depen-150

dence on precipitation, and that world cities overall have a higher albedo than the rural surroundings151

(see Supplementary Fig. S6). Albedo difference therefore contributes to reducing the intensity of152

UHIs, especially in dry regions where the “oasis” effect is observed. Sparse vegetation associated153

with low precipitation regimes generates barren rural areas having lower albedo and higher surface154

temperatures than cities2,34,35. This result agrees with a reported daytime cooling of 0.7◦C associated155

with a reduction of net radiation loading reported for cities in the Southern United States2 and the156

negative UHIs observed in India during the pre-monsoon summer35. Given the observed decrease in157

background albedo with increasing precipitation, ∆α contributes to cooling in wet regions but this158

contribution becomes negligible when compared to the warming effect of ∆ET and ∆ra (see Meth-159

ods). As a global average, precipitation decreases with increasing summer surface temperature above160

20◦C (i.e., not surprisingly precipitation peaks in the tropics where Ts is typically in the range of161

20-30◦C throughout the year while Ts can exceed 50◦C in arid regions, see results in the SI) and162

the modeled P − ∆Ts relation translates into a decrease of UHI intensity with rising background163

temperature Ts (Fig. 1b,e).164

Regarding the impact of city size on urban surface warming, the scaling ∆Ts ∼ N δ is largely165

controlled by changes in convection efficiency and anthropogenic heat fluxes. Compact high-rise166

buildings dissipate less heat than sparse low-rise structures and anthropogenic release of energy is167

higher in large dense cities, thus causing the observed increase in urban “skin” temperature with168

population N . However, the scaling exponent cannot be explained by urban fabric and heat release169

alone as δ is modified by background climate through changes in evapotranspiration and convection170

efficiency that depend on precipitation P . Our analysis suggests that changes in surface convection171

efficiency associated with urban density play a key role in regulating the magnitude of surface UHIs172

(Fig. 1f). This result is in agreement with the fact that, on large spatial and temporal scales, changes173

in surface roughness and evapotranspiration efficiency are found to have impacts of similar magnitude174

on surface temperature differences between forested and cleared land29,36.175
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Heat mitigation strategies176

These findings provide a mechanistic basis for mitigation strategies in different cities around the world,177

even where the urban climate was not intensively studied. To this purpose, we have analyzed temper-178

ature, precipitation, and green cover data for cities in two distinctive climate regions where green179

cover data were available, i.e. EU and SEA (Fig. 2). Despite large differences in green cover between180

EU (gc,u = 0.07±0.05) and SEA (gc,u = 0.48±0.12), observed ∆Ts values are comparable in the two181

regions (1.1±0.6 and 0.8±0.9◦C in EU and SEA, respectively). This evidence questions the effec-182

tiveness of increasing efforts aimed at greening global cities to reduce warming under some climatic183

conditions. Although it could be surprising, such ∆Ts similarity is consistent with the observed non-184

linearity in the P −∆Ts relation that is reasonably predicted by the coarse-grained model. The larger185

values of precipitation in SEA compared to EU (2354±747 versus 775±186 mm yr−1) enhance the186

contribution of ∆ET to ∆Ts. That is, rural areas in SEA are more efficiently cooled by evapotran-187

spiration due to higher water availability than their EU counterparts, making the goal of minimizing188

urban-rural temperature differences harder in SEA. Juxtaposition of this finding to climatic zones189

means that tropical urban environments require a larger extent of green spaces to compensate for the190

greater reduction in latent heat fluxes caused by urbanization.191

A sensitivity analysis of Eq. 1 to changes in urban green cover elucidates this interplay among192

multiple mechanisms and highlights the fundamental role of background climate for the design of any193

UHI mitigation strategy (Fig. 3a) by greening. In dry climates, greening can have a substantial cooling194

effect if urban irrigation is employed19,30. In arid regions, rural land surfaces can be warmer than195

urban areas due to lower albedo, lower convection efficiency, and water-limited evapotranspiration.196

However, the magnitude of this “oasis” effect is largely controlled by the amount of urban vegetation197

and the level of irrigation (Fig. 3 and Supplementary Fig. S7). In wet climates, vegetation is not water198

limited and ET is a dominant component of the rural surface energy balance35 so that, to reduce199

∆Ts, an increasing green cover is needed as P increases (Fig. 3a). Similar nonlinear responses of200

∆Ts to changes in urban albedo and population density are found as illustrated in Fig. 3b-c (see also201

Supplementary Fig. S7, S8). These results suggest that cooling strategies focused on vegetation and202

albedo are more effective in regions with P <1000 mm yr−1 as it is difficult to achieve ∆Ts ≤ 0.5◦C203

at higher precipitation regimes. This work also suggests that the impact of population density on ∆Ts204

is rather small in wet climates when compared to the other factors (e.g., megacities in SEA) but it205

is maximized in arid regions where ∆Ts can be mitigated by irrigation. Larger efforts or different206

strategies (e.g., increasing albedo or convection efficiency) are needed in wet climates because the207
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replacement of natural vegetation with urban surfaces generates a much stronger contribution to urban208

warming11,14.209

Climate-sensitive urban planning210

The importance of urban vegetation as “natural capital” can hardly be disputed37 and its significance211

to provide heat stress relief at the neighborhood scale is well known19. However, background climate212

conditions influence the efficiency of urban vegetation as a city-scale heat mitigation solution. Since213

urban-rural differences in ET increase with precipitation, under wet conditions almost the entire city214

area would need to be replaced with green surfaces to substantially decrease ∆Ts (Fig. 3a). Fur-215

thermore, vegetation can reduce thermal comfort by increasing air humidity in hot tropical regions38,216

although if it offers shade, it can still significantly enhance pedestrian comfort. Thermal comfort is217

associated with air and mean radiant temperatures, air humidity, and wind speed rather than surface218

temperature alone39. Hence, while ∆Ts is a good proxy for UHI intensity at the global scale with the219

advantage of providing a theoretical basis for the factorization of the different mechanisms regulating220

the surface energy balance7, a climate-sensitive design of cities should also account for site-specific221

urban and climate characteristics as well as air-surface temperature feedback. Our global analysis222

inevitably sacrifices such fine-scale processes and detailed numerical simulations remain essential to223

describe the complexity and heterogeneity of real cities from the building to the regional scale40,41.224

High-resolution simulations, however, are computationally expensive, require detailed information225

about city texture and building material, and municipalities around the world are often called to make226

planning decisions without any city-specific analysis. Hence, the coarse-grained approach here can227

provide a first order guideline on expected cooling effects valid across different regions, future climate,228

and population scenarios to complement micro-scale monitoring and modeling studies. Similarly,229

the parallel research track of detailed urban energy balance studies24,41,42 can improve the presented230

coarse-grained representation of urban-biosphere interactions by providing refined urban and climate231

relations.232

Given that urban vegetation improves the provision of other ecosystem services (e.g. reduce pol-233

lution, improve health, recreation, biodiversity, shading, carbon sequestration, water regulation37,43)234

the full extent of its benefits cannot be evaluated based on surface cooling alone. However, it is safe235

to state that heat mitigation strategies in urban environments experiencing large precipitation should236

focus on maximizing shading38,44 and ventilation45 rather than evaporative cooling. As highlighted237

by previous studies7 and confirmed by the results here, the aerodynamic properties of cities also con-238
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tribute to regulating the intensity of UHIs. However, how complex, non-uniform, urban geometries239

influence the exchange of heat and momentum at the land surface is still a subject of open research,240

especially at the scales that are relevant for urban design40. Our analysis confirms that albedo manage-241

ment is also a viable option to reduce warming at the city scale2,46 but, given the seasonality of urban242

warming9, albedo modifications can promote winter cooling and increase energy demand, especially243

in cold regions41.244

Hence, given the inefficiency of “one size fits all” solutions47 and the fact that cities will face245

higher costs for climate change adaptation due to UHIs48, urban planning should be well aware of the246

nonlinearities discussed here and explicitly incorporate population dynamics and different climatic247

contexts in the design of heat mitigation strategies. In a recent Environment Strategy, the Mayor of248

London has set the target of increasing the city’s green cover to 50% by 205049. According to our249

results, this is a reasonable target to reduce warming in a city such as London, that is relatively dry250

compared to the tropics, but it is not sufficient to cool tropical cities where warming is observed even251

when the green cover exceeds 50% (as in the case of Singapore). In warm arid and semi-arid regions,252

the intensity of UHIs is often negligible or even negative as observed in Matera, which experiences253

a hot-summer mediterranean climate. Yet, high background temperatures may pose serious risks for254

public health6 and urban vegetation can be beneficial to strengthen negative UHIs further. The need255

for urban irrigation, however, can cause water scarcity that could be exacerbated in future climate50,256

shifting the anthropogenic pressure on local water resources.257

Conclusions258

The science of cities has proceeded through an interplay between novel scaling theories about size259

and population, energy and radiative conservation principles, aerodynamics, eco-hydrology, and the260

acquisition of diverse data sources at scales and resolutions unimaginable only three decades ago.261

Comprehensive analyses aimed at identifying global patterns, trends and complex interactions shap-262

ing an urbanizing planet are certainly profiting from such an interplay, as demonstrated by the global263

analysis here. This study reveals that urban-rural systems exhibit emergent global scale behaviours264

which can be described by a coarse-grained representation of the underlying social and physical pro-265

cesses. Global climate change and population growth represent some of today’s major challenges266

for cities and our approach offers a novel framework to forecast and mitigate the combined effects267

of these two stressors on metropolitan areas worldwide. The intensity of UHIs is shown to be non-268

linearly modulated by mean annual precipitation and population size with associated changes in heat269
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10 MANOLI ET AL.

release, albedo, convection efficiency, and evapotranspiration explaining the observed global patterns270

of urban-rural surface temperature anomalies. City-level strategies aimed at reducing warming should271

account for these inherent system nonlinearities as local climate-vegetation characteristics influence272

the efficiency of different cooling solutions being planned now and in the foreseeable future. Cooling273

the rapidly expanding tropical cities in Africa and South Asia remains a challenge that will require274

innovative design solutions beyond increasing urban green areas and modifying albedo.275
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Figure legends390

Figure 1: Impact of background climate and population size on urban warming and its compo-
nents. Observed (markers) and modeled (lines) nonlinear relations between ∆Ts and (a) mean annual
precipitation P , (b) background temperature Ts, and (c) urban population N . The attribution of ∆Ts
to changes in surface albedo (∆α), evapotranspiration (∆ET ), convection efficiency (∆ra), surface
emissivity (∆εs), and anthropogenic heat (∆Qah) as a function of (d) P , (e) Ts, and (f)N is also illus-
trated. A 1:1 comparison of observed and modeled ∆Ts is presented in panel a (inset). The coefficient
of determination R2 for this 1:1 comparison is also shown. In panels a-b and d-e, model results are
featured for a constant urban green cover gc,u = 0.15 (solid lines) and gc,u proportional to P (dashed
lines). Model results are obtained considering an urban irrigation index Ir,u=0.2 (see SI for details). A
linear regression summarizing other data sets for daytime UHIs2 is shown for reference (yellow line
in panel a). The scaling of ∆Ts with population is shown in panel c-f for wet and dry conditions (solid
and dashed lines, respectively). The scaling exponent δ is calculated by fitting the observations (with
Pthr,1=700 and Pthr,2=1500 mm yr−1) while the model results are shown for comparison considering
two exemplary precipitation levels (P=400 and 1800 mm yr−1). Error bars indicate ± 1 SEM.
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Figure 2: Urban warming and green spaces in Europe (EU) and South East Asia (SEA). Map of
summertime UHI intensity in (a) world cities, (b) EU, and (c) SEA. Observed probability distribution
of (d) ∆Ts, (e) population N , (f) mean annual precipitation P , and (g) urban green cover gc,u. Large
circles in panels b-c indicate cities with green cover data20,22 used to compute the statistics in panels
d-g.
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Figure 3: Impact of background climate on the efficiency of heat mitigation strategies. Modeled
sensitivity of ∆Ts to changes in (a) urban green cover, (b) urban albedo, and (c) population density.
Binned data from EU and SEA cities are also presented in panel a (diamonds). Error bars indicate ±
1 STD. Results are illustrated for Ir,u=0.2 and, in the case of panels b-c, for a constant green cover
gc,u=0.15 (see Supplementary Fig. S7, S8 for the impact of different urban irrigation levels and gc,u
values).

Methods391

Urban characteristics. Global estimates of urban-induced changes in surface temperature are ob-392

tained from the Global Urban Heat Island Data Set 2013 (ref.21). A surface UHI is defined as the393

land surface temperature (LST) difference between the urban area and a 10 km buffer region in the394

surrounding rural area (∆Ts). The dataset includes zonal (i.e., urban and buffer zones) averages of395

summer daytime maximum and nighttime minimum LST extracted from MODIS LST 8-day com-396

posites at 1 km resolution. This provides daytime and nighttime UHI intensities (∆Ts,d and ∆Ts,n,397

respectively) for more than 30000 cities. Summer is defined as the period between July and August398

(2013) in the northern hemisphere and January to February (2013) in the southern hemisphere. The399

urban area is estimated from nighttime lights, settlement points, and their associated population counts400

in 1990, 1995 and 200021. Hence, the focus is on urban agglomerates, which may include satellite401

cities and towns. This ensures the identification of consistent territorial units51 and the validity of402

the urban scaling relations (e.g., between population and urban areas51–53). In this study, population403

estimates for the year 2000 are used. Regarding the intesity of UHIs, summertime mean daily con-404

ditions are considered so that ∆Ts = (∆Ts,d + ∆Ts,n)/2. The choice of daily average temperatures405

is motivated by two reasons: (i) to be consistent with the focus on climatic patterns and long-term406

averages (i.e. daytime/nighttime conditions are smoothed over on seasonal timescale); (ii) to ensure407

Preprint accepted in Nature



18 MANOLI ET AL.

that all the model assumptions are satisfied (e.g. during daytime/nighttime heat storage effects are408

typically non-negligible and short-term fluctuations in wind speed and atmospheric stability become409

more relevant, see model development in the SI). Observed daily and daytime UHI intensities differ410

in magnitude by 1-2◦C but they exhibit the same global patterns (see Supplementary Fig. S3) and they411

fall within the confidence intervals of the model simulations (Supplementary Fig. S2). Thus, for the412

purpose of this study, daily ∆Ts is considered an appropriate metric of UHI intensity. Similarly, stud-413

ies on UHIs at climate scales16 and heat-related mortality54 typically focus on mean daily conditions,414

although nighttime UHIs can also have significant impacts on public health55.415

Urban-rural albedo differences are calculated using 16-day shortwave black-sky (BSA) and white-416

sky (WSA) albedo values extracted from the MODIS albedo product (MCD43B3.005)56. The 16-day417

albedo values at a spatial resolution of 1 km are used to calculate monthly mean BSA and WSA in418

urban and buffer areas during the summer of 2013 (using the same urban extent polygons of the global419

UHI dataset). The monthly mean blue-sky albedo (α) is then determined with the direct radiation ra-420

tio and monthly mean BSA/WSA57. Note that the albedo of urban surfaces generally varies between421

0.09 and 0.273,58. Most cities have albedos in the range of 0.20-0.35 or, in the case of hot regions,422

0.30-0.4559,60 and typical values of urban-rural albedo differences range between -0.09 and +0.03423

(with a mean value of -0.05, ref.3). MODIS observations confirm the overall range but suggest that,424

globally, the distribution of ∆α is skewed towards positive values, i.e. cities on average are more425

reflective than the surrounding (Supplementary Fig. S9). A similar result was found for cities across426

North America2,14. MODIS data also reveal that both urban and rural albedo (α and αu, respectively)427

decrease with increasing precipitation P (Supplementary Fig. S10). This rural trend can be explained428

by the increase in forest cover with increasing P , while the urban trend can be explained by the more429

widespread use of white surfaces in hotter and drier climates. A weak decrease of αu with population430

N is also observed (Supplementary Fig. S10), which is interpreted as the result of shading and radi-431

ation trapping mechanisms associated with the 3D structure of cities3,61. However, MODIS-derived432

albedo is biased towards clear sky conditions, observations over cities have numerous uncertainties,433

and rural values can be influenced by water surfaces and nearby settlements. Therefore, the results434

here should be considered valid for general global patterns only.435

Urban green cover data for 398 cities in the EU and 111 cities in SEA are retrieved from Eurostat20
436

and Richards et al.22, respectively (Supplementary Fig. S11). Green urban area and population have437

a superlinear scaling in EU cities52, while a sublinear scaling is found in the tropics (Supplementary438

Fig. S12). It can be surmised that different “greening” patterns are observed in the two regions due439

to different climatic and socio-economic factors (e.g. population growth rates, development stage).440
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These dissimilarities make it difficult to identify a unique relation linking green space area to urban441

characteristics at the global scale (Supplementary Fig. S12). Nevertheless, gc,u clearly increases with442

mean annual precipitation (Supplementary Fig. S13) suggesting that local hydroclimate plays a key443

role in the amount of urban greenery.444

Background climate. Monthly meteorological data of air and surface temperature (Ta and Ts, re-445

spectively), incoming and net shortwave radiation (Rsw and Rsw,net), wind speed (Ws), specific hu-446

midity of air (qa), and atmospheric pressure (patm) for year 2013 are retrieved from the Modern Era447

Retrospective-Analysis for Research and Applications (MERRA)62 and used to define background448

climate conditions (Supplementary Fig.S14). The spatial resolution of MERRA (0.5◦ × 0.667◦) en-449

sures that climatic variables represent the background regional conditions without any influence from450

urban areas. Rural albedo is computed also from MERRA data as α = 1 − Rsw,net

Rsw
(for comparison451

with the MODIS albedo product) while specific humidity at saturation (qsat,s) is estimated from Ts452

and patm. Mean annual precipitation P and mean summer precipitation Ps are retrieved both from the453

Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis63 and MERRA62 (see Sup-454

plementary Fig. S15 for a comparison of the two datasets). Data confirm the strong spatial correlation455

between Ts and Ta (see Supplementary Fig. S16a which is consistent with temporal correlations illus-456

trated elsewhere9) and reveal robust relations linking background climate-vegetation characteristics457

to mean annual precipitation (Supplementary Fig. S16, S17).458

Data analysis. To integrate data from different sources (see Supplementary Table S1 for a sum-459

mary), urban and climate variables are homogenized with the CIESIN dataset considering the coor-460

dinates of each city (as latitude/longitude of the centroid of the urban extent). Specifically, mete-461

orological variables retrieved from MERRA are interpolated on the city coordinates using a linear462

interpolation for 2D gridded data. Green cover data are merged with the CIESIN data considering463

city names and coordinates (when available). All monthly time series are averaged during summer464

2013. The use of multiple data sources introduce uncertainties because of possible discrepancies in465

methodology and/or urban boundaries. However, this study intentionally focuses on global averages466

rather than city-specific conditions so that random biases across cities and climates are minimized22.467

A data binning procedure is employed to identify changes in ∆Ts as a function of P , Ts, Ws and468

N . To remove the effect of population and analyze only the signal of climate, ∆Ts data are filtered for469

N > Nth, with Nth = 105 (thereby reducing the number of cities to 3519). The scaling of ∆Ts with470

N is determined for dry and wet conditions considering two precipitation thresholds (i.e. P < Pth,1471

and P > Pth,2, see Fig. 1c and Supplementary Fig. S18). A sensitivity analysis is performed to assess472
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the impact of different precipitation thresholds on the observed scaling (Supplementary Table S2).473

Given the large number of observations, binned results are illustrated in terms of mean values and474

related standard error of the mean (SEM = STD√
n

, where STD is the standard deviation and n the475

number of observations).476

Results presented in the SI (Supplementary Fig. S19) corroborate previous studies showing that477

daytime and mean daily ∆Ts values vary with P but nighttime UHIs are not correlated with pre-478

cipitation2,16. Similarly, the observed nonlinear Ts − ∆Ts relation does not hold during nighttime479

(Supplementary Fig. S20). These observations also demonstrate that changes in surface temperature480

∆Ts are more sensitive to mean annual precipitation P rather than mean summer precipitation Ps,481

confirming that P here has to be interpreted as a proxy of the overall vegetation cover and hydro-482

climatic conditions of a given region. These are better described by annual precipitation rather than483

summer precipitation. From a hydrological perspective, this is related to slowly evolving soil water484

dynamics that regulates ET fluxes during summer seasons64,65 and to the existing covariation between485

annual precipitation and vegetation productivity66 that controls the evaporation potential.486

Mathematical model. Eq. 1 is derived from the energy balance over a rural land-surface considering487

urbanization as a perturbation from the rural base state2. Model development and parameterization488

are presented in the SI. Model variables and parameters are listed in Supplementary Table S3, S4.489

Given the objective of exploring the sensitivity of ∆Ts to as few as possible “summary variables” (i.e.490

mean annual precipitation P and urban population N ) a set of climate relations Γc = Γc(P ) linking491

the meteorological variables Γc = {Ta, Ts, α,Rsw, qsat,s, qa} to P is derived from fitting background492

climate data (using the nonlinear least-squares regression in MATLAB, i.e. nlinfit function). A non-493

linear relation between the urban vegetation fraction gc,u andP is also derived from EU and SEA green494

cover data (Supplementary Fig. S13). Urban irrigation is modeled by means of an irrigation index Ir,u495

(Supplementary Fig. S21) that modulates ET varying between 0 (natural conditions) and 1 (no water496

supply limitations so that ET matches potential evapotranspiration). Changes in urban characteristics497

with city size are described by scaling laws linking urban area Au, mean building height hc,u, urban498

roughness, and urban anthropogenic heat Qah,u to N (ref. 3,17,23). Previous studies reported a499

sublinear-to-linear scaling of urban area with population (scaling exponent varying between 0.56 and500

1.04, ref. 51,53,67), which is confirmed here at the global scale (estimated exponent of 0.62-0.82, see501

Supplementary Fig. S22). The mean building height and roughness are employed in the calculation of502

the aerodynamic resistance ra,u (together with the building density ρb, see Supplementary Fig. S23)503

and the effective emissivity εs,u of the urban surface (through the sky view factor vsky, Supplementary504
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Fig. S24). Anthropogenic heat Qah,u is calculated based on population density3, i.e. ρN = N/Au505

(Supplementary Fig. S25).506

The use of these urban scaling relationships and global climatic trends (Supplementary Table S5, S6)507

with the surface energy balance provides a novel coarse-grained description of the urban-biosphere508

system. In analogy with statistical physics, where temperature is a coarse-grained representation of509

the kinetic energy of a system of microscopic particles, our approach focuses on global space-time av-510

erages rather than single cities. Hence, the applicability of the model is limited for specific locations,511

especially when site characteristics play a dominant role in regulating local microclimate (e.g., topog-512

raphy, ventilation, water bodies). In addition, supplementary results show that, while valid for a wide513

range of wind speed conditions, the applicability of the simplified approach might be limited at low514

Ws values because the increase in ra causes an increase in UHI intensity associated with lower energy515

redistribution factors fs and fa (Supplementary Fig. S4). Possible impacts of urbanization on local516

rainfall generation mechanisms42,68 are also neglected. Despite these limitations, when the model517

assumptions are satisfied (i.e., no local specific conditions) and accurate urban/climate characteristics518

are available, the model can produce reasonable estimates of city-specific UHI intensities (G.M. et519

al., in preparation). Note also that the global analysis here focuses on summertime conditions only.520

This is motivated by (i) the CIESIN data availability that provides a homogenized dataset at the global521

scale and (ii) the fact that the risk of heat-related mortality is the highest during summer. However,522

given the observed seasonality of UHIs8,9 and its implications for selecting different heat mitigation523

strategies41,69, our coarse-grained approach can be extended to describe the inter-annual variability of524

∆Ts (G.M. et al., in preparation). Additional information on the coarse-grained UHI model can be525

found in the SI.526

Model calibration and validation. Model calibration was performed as follows. First we gener-527

ated a quasi-random set of 11 calibration parameters (see Supplementary Table S3, S4) using the528

Sobol quasi-random sampling method (function sobolset in MATLAB). Then, we ran Monte Carlo529

simulations with the generated parameter set (1000 samples) and compared the model results with the530

observed P −∆Ts relation (Fig.1a). Calibrated parameters were selected by choosing the simulation531

with the highest coefficient of determination (R2=0.74). Model validation was performed by compar-532

ing observed and modeled changes in ∆Ts with background temperature (R2=0.81) and population533

(Fig.1b-c). Given that the green cover gc,u was considered a calibration parameter but a non-linear534

relation between urban green cover and precipitation also exists, model performance is assessed con-535

sidering gc,u both constant and proportional to P (see Supplementary Fig. S2).536
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Code availability. The MATLAB code (https://www.mathworks.com/products/matlab.537

html) of the coarse-grained UHI model is available on Code Ocean (https://doi.org/10.538

24433/CO.9808462.v1).539

Data availability540

The Global Urban Heat Island Data Set 2013 is available at https://doi.org/10.7927/541

H4H70CRF (accessed on 07/12/2017). MERRA data are retrieved from https://disc.gsfc.542

nasa.gov/daac-bin/FTPSubset2.pl (downloaded on 04/03/2018) while GPCC data are543

available at https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html (ac-544

cessed on 13/09/2016). MODIS albedo data are available at https://gcmd.nasa.gov/records/545

GCMD_MCD43B3.html (accessed on 15/07/2018). Urban green cover data for EU and SEA cities546

are available, respectvely, at https://ec.europa.eu/eurostat/statistics-explained/547

index.php/Urban_Europe_-_statistics_on_cities,_towns_and_suburbs_-_green_548

cities#Further_Eurostat_information (accessed on 14/06/2017) and https://doi.549

org/10.1016/j.landurbplan.2016.09.005 (accessed on 29/09/2017) . A summary table550

containing the urban and climate characteristics of the cities analyzed is also made available on Code551

Ocean.552
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