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A B S T R A C T

In prostate Diffusion Weighted MRI, differences in susceptibility values exist at the interface between the
prostate and rectal-air. This can result in off-resonance magnetic field leading to geometric distortions including
signal stretching and signal pile-up in the reconstructed images. Using a set of EPI data acquired with blip-up and
blip-down phase encoding gradient directions, model based reconstruction has recently been proposed that can
correct these distortions by using a B0 field estimated from a separate B0 scan. However, change in the size of the
rectal air region across time can occur that can result in a mismatch of the B0 field to the EPI scan. Also, the
measured B0 field itself can be erroneous in regions of low Signal to Noise ratio around the prostate rectal air
interface. In this work, using a set of single shot EPI data acquired with blip-up and blip-down phase encoding
gradient directions, a novel joint model based reconstruction is proposed that can account for changes in the off
resonance effects between the B0 and EPI scans. For ten prostate patients, using a measured B0 field as an initial
B0 estimate, on a 5-point scale (1–5) image quality scores evaluated by an experienced radiologist, the proposed
framework achieved scores of 3.50 ± 0.85 and 3.40 ± 0.51 for b-values of 0 and 500 s/mm2, respectively
compared to 3.40 ± 0.70 and 3.30 ± 0.67 for model based reconstruction. The proposed framework is also
capable of estimating a distortion corrected EPI image even without an initial B0 field estimate in situations
where a separate B0 scan cannot be obtained due to time constraint.

1. Introduction

Prostate diffusion MRI scans are used for tumour detection within a
multi-parametric MRI protocol. However, in some patients the diffusion
scans are of limited use due to geometric distortions including signal
pile-up and signal drop out at the interface between prostate and rectal-
air. These distortions occur due to susceptibility differences at the in-
terface creating an additional off-resonance field (called B0 field) so
that the position-frequency relationship is changed. This results in
signal stretching in areas within the image where the gradient of the B0
field has the same polarity as the phase encoding gradient. Conversely,
signal compression or pile-up occurs in regions where the B0 field gra-
dient direction is opposite to that of the phase encoding gradient.

Several techniques have been proposed to correct for both signal
pile-up and stretching distortions in diffusion EPI images. These tech-
niques acquire the same slice twice with opposite phase encoding
gradient directions, resulting in two data sets, blip-up and blip-down

[1–3]. Image registration based distortion correction methods [1,2]
attempt to correct the distortions by finding the B0 field as a symme-
trical displacement field that will result in identical corrected images
from blip-up and blip-down data sets. In areas of low SNR such as the
region around the prostate rectal-air interface, these techniques may
fail due to registration problems [3–5]. Model based reconstruction
[6,7] provides an alternative that formulates the distortion correction
problem as a model linking the corrupted k-space data to the corrected
image. Using a previous estimate of the B0 field obtained from a se-
parate B0 scan, this technique solves a full inverse problem using
iterative reconstruction and can achieve better reconstruction results in
terms of resolution and distortion correction than image registration
based methods [7]. However, the model based reconstruction frame-
work assumes the B0 field to be static except for an offset resulting from
scanner frequency drifts. In cases of bowel movements and/or rectal gas
changes in the rectal area adjacent to the prostate region between ac-
quisitions of the B0 and the EPI scans, the estimated B0 field may be
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mismatched to the EPI scans. Also, there can be errors in the estimation
of B0 field itself in the low SNR regions [8]. Thus, the model based
distortion correction techniques may benefit from an update of the B0
field estimation as part of the reconstruction problem.

There has been some works on dynamic B0 field estimation in
functional MRI as part of reconstruction process [9–12]. Sutton at al
[10] and Matakos et al. [11] proposed joint image and dynamic B0 field
estimation framework for brain functional MRI that used a set of in-
terleaved gradient echo EPI data sets acquired with different echo times
to facilitate the correction of B0 field errors due to magnetic field drift

and respiratory induced phase oscillations. However, as the EPI data
sets were acquired with only one phase encoding gradient direction,
they did not provide complementary information from opposite phase
encoding direction to be able to correct for signal pile-up artifacts
[1,13].

In this work, we propose a model based joint image and B0 field
estimation that combines the strength of model based reconstruction
with dynamic B0 field estimation. Using a set of single shot EPI data
acquired with blip-up and blip-down phase encoding gradient direc-
tions, the proposed framework can account for changes in the off re-
sonance effects between B0 and EPI scans and can simultaneously
compensate for geometric distortions including both signal pile-up and
drop out in the reconstructed EPI images. Results with and without an
initial measured B0 field are presented, as well as using the model based
reconstruction alone.

2. Material and methods

The proposed framework acquires two EPI data sets (blip-up and
blip-down) with opposite phase encoding gradient directions. For data
acquired with a b-value of 0 s/mm2, starting from an initial B0 field, a
joint estimation framework is proposed that can estimate both the
corrected EPI image and the corrected B0 field. The corrected B0 field is
then used in subsequent steps of phase correction and model based
reconstruction for diffusion weighted data (b-value > 0 s/mm2).

The proposed reconstruction framework has the following three
steps:

Step 1) Dynamic B0 field estimation: Starting from an initial B0 field,
this step estimates the corrected B0 field by iteratively solving a
joint image and B0 field estimation problem. The initial B0 field
can be estimated from a separate dual echo gradient echo scan.
In case, a separate scan is not available, the initial B0 field is set
to 0.

With B0 field inhomogeneities, the corrupted k-space Yj from the jth

coil corresponding to trajectory k(t) at time t can be related to the
undistorted image x via the following model [14].
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where x(rn) and ΔB0(rn) are image and B0 field at position rn, rn denotes
a position vector corresponding to the nth pixel in the image, Cj (j= 1,2,
…,J) is the jth coil sensitivity estimated from a separate low resolution
SENSE reference scan. N is the number of pixels in the image, k(t). rn
denotes the inner product.

For M number of data points in k-space acquired at sampling time
points t1, t2, …, tM, we can expand the above equation in a matrix-
vector notation as:

We can summarize the above equation as:

Y = E B x( )j j
0 (3)

where Yj has dimensions Mx1 and is the acquired distorted k-space from
the jth coil, Ej(ΔB0) is the measurement matrix with dimensions MxN, x
is the undistorted image with dimensions Nx1. The above expression
implicitly takes into account any undersampling that is used for ac-
celerated acquisition such as SENSE, Partial Fourier etc.

Let kup and kdown be the k-space trajectory for blip-up and blip-down
scans, the acquired k-space data Yup

j and Ydown
j at b-value of 0 s/mm2

corresponding to blip-up and blip-down EPI scans for the jth coil are
given as:
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where Eup
j (ΔB0)= Ej(ΔB0) for k=kup and Edown

j (ΔB0)= Ej(ΔB0) for
k=kdown.

By stacking data and encoding operators from all J coils, we can
write:
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The data from both phase encoding directions can be combined into
a single formulation by setting Y=[Yup Ydown]T and E=[Eup Edown]T

=Y E B x( )0 (7)

The proposed joint image and B0 field estimation framework can be
summarized as a minimization problem with optimization over both
image and B0 field [11,15]:

min x Barg ( , )x, B 00 (8)

where Ѱ(x,ΔB0)= ‖Y−E(ΔB0)x‖2+ β1 R(x)+ β2 R(ΔB0)
R(x) and R(ΔB0) are quadratic regularization terms ‖Dx‖2 and

‖DΔB0‖2 respectively, D is the first order finite difference operator that
computes derivatives in all in-plane spatial dimensions; β1, β2 are reg-
ularization weights that provide a balance between resolution and noise
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in the reconstructed image and B0 field, respectively; ||.||2 denotes the
l2 norm.

The above joint image and B0 field problem can be solved iteratively
using a two stage alternating minimization scheme [11,15,16] that
splits the joint problem into two sub-problems. In the first stage within
each iteration, the image update is estimated using a previous field
estimate. In the second stage, we minimize over the B0 field using the
estimated image from the first stage. Mathematically, the image update
xk in the kth iteration (k=1,2, …,K) is estimated using a previous field
estimate B k

0
1 as:

= +argmin Rx Y E B x x( ) ( )kk
x 0

1 2
1 (9)

Using estimate xk, the updated B0 field in the kth iteration B k
0 is

estimated as:

= +argmin RB Y E B x B( ) ( )k k
0 B 0 0

2
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By using the assumption that the dynamic changes between the
current and updated estimates of the B0 field are small, Eq. (10) can be
linearized using first order Taylor series expansion [11] to formulate it
in a similar form as Eq. (9). The details of linearization procedure are
given in Appendix I. The standard Conjugate Gradient (CG) method can
then be used to solve both sub problems in Eqs. (9) and (10).

The convergence of the CG iterations is achieved when either the
maximum number of iterations is reached or the normalized residual
r= E Ex E Y

E Y

H H
H

2
2 (||.||2 denotes the l2 norm) in the current iteration be-

comes smaller than ϵ (ϵ being a small number). The B0 field in the final
Kth iteration (ΔB0,corr) is then used in the subsequent phase correction
and model based reconstruction steps for data acquired at b-value > 0.

Step 2) Phase correction: For diffusion weighted data (b-value > 0 s/
mm2), a phase correction has to be performed because even
small physiological motion occurring during diffusion sensiti-
zation gradients can cause phase changes that may lead to
signal cancellation when data from opposite phase encoding
gradient directions is combined, leading to signal drop out in
the final reconstructed images.

Using the corrected B0 field (ΔB0,corr) found in Step 1 of the pro-
posed framework, the model based reconstructions xup and xdown of the
separate blip-up and blip-down phase encoding gradient direction scans
are given as:

= +min Rx Y E B x xarg ( ) ( )up up upx 0,corr
2

1 (11)

= +min Rx Y E B x xarg ( ) ( )down down downx 0,corr
2

1 (12)

With k-space data Ydown as reference, Yup is corrected with the phase
correction ΔФ obtained by taking the Hermitian inner product between
the two reconstructions xup and xdown [7].

Step 3) Model based reconstruction

Using the corrected ΔB0,corr, the phase corrected Diffusion weighted
data Yup and Ydown from blip-up and blip-down phase encoding gradient
directions can be combined into a single formulation Y=E(ΔB0,corr)x
by setting

= =Y Y Y E B E B E B[ ] and ( ) [ ( ) ( )]up down up down0,corr 0,corr 0,corr
TT

Model based reconstruction using the corrected ΔB0,corr is per-
formed on k-space data Y by solving the following minimization pro-
blem [7]:

+argmin RY E B x x( ) ( )x 0,corr
2

1 (13)

The above reconstruction from diffusion weighted data is performed
for each b-value and diffusion direction.

2.1. Experiments

Ten male patients (median weight 83 (range: 68–98) kg and age 73
(57–94) years old were recruited from the clinical prostate imaging
pathway and were consented for additional image acquisitions. The
study was approved by the local Ethics committee and written signed
consent was obtained from all patients for the research scans. Patients
were placed feet first into the scanner. No antispasmodic agent was
administered.

Scanning was performed on a 3T scanner (Achieva, Philips
Healthcare) equipped with 16 anterior +16 posterior channel receive
coil array. Single shot EPI data in both blip-up and blip-down phase
encoding directions were acquired with a SENSE factor of 2. The EPI
scans had the following parameters: resolution=2×2×4mm3,
FOV=180–220×180–220× 55–90mm3, partial Fourier acquisition
with half scan factor of 0.75, TE/TR=55ms/2000ms, phase encoding
direction=Anterior-Posterior (AP) axis with fat shift in the direction
‘P’ for blip-up and direction ‘A’ for blip-down scans, b-values= 0 and
500 s/mm2, number of isotropic diffusion directions (3 for b-value of
500 s/mm2), number of averages (1 and 3 for b-values of 0 and 500 s/
mm2, respectively),phase-encode bandwidth per pixel= 20.6–21.5 Hz/
pixel, scan time=40 s (for both blip-up and blip-down scans). For re-
ference, axial T2 weighted images were acquired using a turbo spin
echo scan with the following parameters: resolution= 2x2x4 mm3,
FOV=180–220×180–220× 55–90mm3, SENSE acceleration
factor= 2, TE/TR=100ms/4700ms, scan time=40 s. For calcula-
tion of the B0 field, a separate 3D dual echo gradient echo scan was
acquired at the end of scanning session with the following parameters:
resolution=2×2×2mm3,
FOV=200–250×200–250× 70–120mm3, flip angle= 60, right to
left phase encoding direction, SENSE acceleration factor= 1, echo time
difference ΔTE=2.3ms, TE1/TE2/TR=4.6ms/6.9ms/8.7ms, scan
time=1min. Volume shimming was performed in all scans to cover
the whole prostate and surrounding areas. To keep the same shimming
from one scan to the next, SAMEPREP option was selected in the
scanner software that forces to use the same preparation data for all the
scans. In our scans, the patients were asked to lie still and no breathing
management was used.

2.2. Data post processing

To save the raw data together with the relevant information needed
for the reconstruction framework, a software patch was implemented
using ReconFrame software (Gyrotools Zurich, CH). EPI phase correc-
tion was performed using the ReconFrame tool to correct for ghosts
originating from the opposing directions of alternate readouts.
Subsequent post processing was implemented in MATLAB. The coil
sensitivities were calculated using ReconFrame tool by dividing in-
dividual coil images by the body coil images followed by smoothing and
extrapolation as proposed in SENSE paper [17]. The measured B0 field
was processed using the quantitative susceptibility mapping toolbox
[18] that estimates a B0 field map by a weighted least squares fit of
temporally unwrapped phases in each voxel over echo time. A robust
spline based smoothing [19] was applied to the B0 field map in the
image domain to smooth out noisy components. The volumes from B0
field map and T2-weighted images were resampled to match the EPI
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scan resolution and the associated field of view. The resampled B0 field
map was further refined by compensating for any frequency offset that
may exist due to scanner frequency drift or coordinate shift in scanner
software [7].

2.3. Joint image and B0 field estimation

For joint image and B0 field estimation, we alternated 30 times
between updating the image and then updating the field map. In each
update of image or B0 field, 50 sub iterations of CG method were per-
formed. For the CG method, the matrix vector multiplications used for
computing the gradients in CG were performed efficiently with time
segmentation and FFT algorithms available in Fessler's Image
Reconstruction Toolbox [20]. To balance between resolution and noise
amplification, the regularization parameters β1 and β2 in Eqs. (9) and
(10) were chosen to achieve a specific target spatial resolution [21,22],
such that the Full Width at Half Maximum (FWHM) of Point Spread
Function (PSF) was 1.01 pixels for image estimation and 1.2 pixels for
B0 field estimation, respectively. The computation of PSF was done by
using quadratically penalized shift invariant least squares method as
implemented in function qpwls_psf.m of Fessler's Image Reconstruction
Toolbox [20].

To investigate the dependence of the proposed framework on the
initial B0 field estimate, the proposed joint B0 and image reconstruc-
tions were performed both without an initial estimate (i.e. initial B0
field as zero) and with an initial estimate set to measured B0 field. The
joint reconstructions were compared against the uncorrected re-
construction without B0 field (setting ΔB0 to 0 in Eq. (9) and model
based distortion corrected reconstruction using a measured single B0
field map. The same value for the regularization parameter β1 was used
both for joint and uncoupled reconstructions.

For qualitative assessment, the images reconstructed with different
methods were presented in a random order and blinded to the re-
construction method to avoid subjective assessment. A radiologist with
25 years of experience scored each image in terms of overall image
quality on a 5-point scale (1:poor, 2: below average, 3: average, 4:above
average, 5:excellent) [23].

3. Results

For patient 1, results for the proposed joint reconstruction without
an initial B0 field estimate are shown in Fig. 1 for data acquired at b-
values of 0 and 500 s/mm2. Without distortion correction, the variation
in B0 at the prostate rectal air interface resulted in significant artifacts

Fig. 1. In-vivo reconstruction results for patient 1. a) The reference T2-weighted image, b) uncorrected reconstructions without B0 field map at b-value of 0 s/mm2

and 500 s/mm2. c) Using the joint B0 and image estimation without an initial B0 estimate, the final distortion corrected image and distortion corrected B0 field are
shown in left and centre columns, respectively. The distortion corrected image for b-value of 500 s/mm2 is shown in the right column. Most of the distortions that
are visible in uncorrected reconstructions are corrected with the proposed method.
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and blurring in the reconstructions (Fig. 1b). The proposed framework
was able to correct for most of the distortion artifacts in the final re-
constructed images even in case of starting with a zero initial B0 field
estimate (Fig. 1c).

For ten patients, the reconstruction results are shown for b-values of
0 and 500 s/mm2 in Figs. 2 and 3, respectively. For patient 2 and pa-
tient 5, significant errors in the measured B0 field map resulted in im-
perfect distortion corrections in the model based reconstruction. With
erroneous B0 field map as an initial estimate, the proposed joint re-
construction framework was able to correct for those imperfections.
There was no obvious bulk motion observed in any of the patient
prostate scans.

A comparison of measured B0 field maps and the B0 field maps es-
timated using the proposed framework is shown in Fig. 4 for selected
patients to include both cases a) when measured B0 is accurate and
results in reasonable distortion correction (patient 8), and b) when
measured B0 has significant errors that result in imperfect distortion
correction (patient 2 and patient 5) and joint reconstruction helps to
correct these errors.

A summary of image quality scores for different reconstruction
methods corresponding to b-value of 0 s/mm2 and b-value of 500 s/
mm2 are given in Fig. 5a and b, respectively. In the uncorrected re-
construction, the image quality scores were 1.90 ± 0.99 and
1.60 ± 0.51. When no B0 field map was available, the proposed joint
reconstruction was able to achieve significant improvement in image
quality scores (3.00 ± 0.67 and 2.90 ± 0.57). When a B0 field map is
available, the joint reconstruction still leads to an improvement in the
average image quality score (3.50 ± 0.85 and 3.40 ± 0.51 versus
3.40 ± 0.70 and 3.30 ± 0.67 for model based reconstruction).

4. Discussion

A novel joint reconstruction framework is proposed that combines
the strength of model based reconstruction [7] with dynamic B0 field
estimation [11]. The power of complementary encoding information
available from both blip-up and blip-down directions enables the cor-
rection of both signal pile-up and signal stretching artifacts within the
diffusion EPI images. The joint B0 field and image estimation method
used in our proposed framework allows for compensation of the in-
accuracies in the B0 field due to motion or physiological changes near
the prostate-rectal interface between the EPI and B0 scans. Further-
more, in the case of not having an initial B0 field estimate, by alter-
nating between the stages of B0 field update and image update, the
proposed method is able to correct the distortions in most of the pa-
tients. This is the main advantage of the proposed method as it elim-
inates the need of a separate B0 scan. In cases where a B0 scan is
available, starting with the measured B0 field map, the proposed
method performs better than all the other reconstructions. Thus, the
proposed framework can be beneficial either when a B0 scan is per-
formed or in cases where a B0 scan cannot be performed due to time
constraints. Our proposed method estimates the changes in the B0 field
as a single update that occurs between B0 scan and one set (blip-up and
blip-down) of EPI scans. In case of having multiple sets of b-
value=0 s/mm2 EPI data acquired in an interleaved manner (for ex-
ample, in DWI applications requiring long scans due to many b-values,
diffusion directions and number of averages, Diffusion Tensor Imaging,
functional MRI etc.), the proposed joint reconstruction could be used to

estimate corrected B0 fields and corrected EPI images corresponding to
each EPI data set.

The proposed method may be further improved by having slightly
different echo times for the two EPI scans such that centre of k-space in
the two EPI scans is sampled at two different echo times [10,11]. For
gradient echo scans, this time shift has been shown to facilitate better
initial B0 field estimation that can help for better convergence of joint
estimation. For the spin echo EPI sequences used in our framework, a
time shift may be achieved by shifting the timing of the refocussing
pulse using pulse sequence development tools. In our proposed frame-
work, the joint B0 and image reconstruction was done only for EPI data
acquired at b-value of 0 s/mm2. Reconstructing images jointly for all b-
values and one B0 map may result in better reconstruction performance
at the expense of increased computational complexity.

The proposed framework used computationally efficient quadratic
regularization with first order differences. This results in slightly
blurred reconstructions in both image and B0 field updates. Better
regularizers such as l1 norm based minimization [24] may achieve
better results. In our framework, standard CG based optimization was
used to solve the sub problems in the joint reconstruction. In future, the
CG based optimization might be replaced with alternatives such as
quasi Newton methods that ensure the global cost function decreases.

Our proposed reconstruction method solves the full inverse problem
constrained to the acquired original raw k-space data rather than the
scanner reconstructed images. Image based distortion correction
methods (such as Topup method [1]) are designed for practical cases
where the imaging community do not have access to k-space data and
only the scanner reconstructed distorted images are available. The
Topup method reconstructs undistorted images based on image regis-
tration based optimization. This may result in an erroneous calculation
of the B0 field attributed to the lack of a unique solution between the
corresponding locations in the blip-up and blip-down images especially
in regions with severe signal pileup, leading to artifacts or blurring in
the final images [3]. Moreover, the Topup reconstructed images may
also contain the bias from noise when magnitude images are combined
[25–28]. Our proposed reconstruction avoids this bias due to complex
summation/averaging done implicitly via the encoding operators. This
is likely to be beneficial for high b-value DWI images with low SNR.

The proposed framework can correct for changes or errors in the B0
field due to any potential origin such as scanner frequency drift or
motion etc. However, it does not correct for physiological motion ef-
fects that may occur between the EPI blip-up and blip-down scans. In
some cases, modification to the B0 field might compensate for the
motion effects, for example, a rigid translational shift in the PE direc-
tion can be compensated by an offset correction in the B0 field.
Integrating the framework with motion field estimation and correction
[29,30] may further make the method robust against both distortion
and motion corruption effects.

Distortion correction in prostate diffusion MRI is challenging in
some patients due to erroneous measured B0 field that is used to com-
pensate for off-resonance effects. The proposed framework improves
the overall image quality by combining the strength of model based
reconstruction with dynamic B0 field estimation. Validation of proposed
framework was performed successfully in ten clinical patients. The
proposed framework offers a potential to improve the diagnostic value
of prostate images for tumour detection in diffusion weighted imaging -
a technique that is now commonly used for detecting prostate cancer.

Fig. 2. In-vivo reconstruction results for 10 patients (P1 to P10) for data acquired at b-value of 0 s/mm2. The reference T2-weighted image (left column), uncorrected
reconstruction (no B0 map), distortion corrected reconstruction with measured B0 field map (measured B0 map), proposed model based joint reconstruction results
without initial B0 estimate (initial B0 zero) and with initial B0 estimate set to measured B0 field map (initial B0 from map) are shown.
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Fig. 3. In-vivo reconstruction results for 10 patients (P1 to P10) for Diffusion Weighted data acquired at b-value of 500 s/mm2. The reference T2-weighted image (left
column), uncorrected reconstruction (no B0 map), distortion corrected reconstruction with measured B0 field map (measured B0 map), proposed model based joint
reconstruction results without initial B0 estimate (initial B0 zero) and with initial B0 estimate set to measured B0 field map (initial B0 from map) are shown.
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Fig. 4. Example B0 fields. The reference T2W image and measured B0 field map are shown in the first and second columns. The B0 fields obtained from the joint
reconstruction framework without initial B0 estimate (initial B0 zero) and with initial B0 estimate set to measured B0 field map (initial B0 from map) are shown in
third and fourth columns, respectively. In Patients 2 and 5, the jointly estimated B0 fields yield improved reconstructions (see Figs. 2 and 3 for details). In Patient 8,
the joint reconstruction without initial B0 estimate (initial B0 zero) was of inferior quality compared to the other reconstructions.

Fig. 5. Image quality assessment of proposed framework: Bar plots showing average expert scores for overall image quality (1: poor to 5: excellent) for different
reconstruction methods (uncorrected reconstruction (No B0 map), Model based distortion corrected reconstruction using measured B0 field map (measured B0), joint
reconstruction with initial B0 field set to zero (initial B0 zero) and joint reconstruction with initial B0 field set to measured B0 map (initial B0 from map) are shown in
(a) and (b) for b-value of 0 s/mm2 and b-value of 500 s/mm2, respectively. The associated standard deviations are also indicated. The proposed joint reconstruction
with measured B0 field map as an initial estimate performed better on average than all other reconstructions.
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Appendix A. Linear approximation to dynamic changes in B0 field

Let ω=2πΔB0, Eq. (1) is rewritten as:

=
=

t t e eY k C r x r( ( ), ) ( ) ( )j
n

N j
n n

i t i tk r r
0

1 2 ( ( ). ) ( )n n (A1)

The above Eq. (A1) is updated to include the dynamic change in ω as:

=
=

t t e e eY k C r x r( ( ), ) ( ) ( )j
n

N j
n n
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0
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where is the reference or initial estimate of the B0 field.
If the difference between ω and is small, we can use first order Taylor approximation:
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Eq. (A2) becomes:

=

+

=

=

=

t t e e

i t e e

i t e e

Y k C r x r

C r x r r

C r x r r

( ( ), ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j

n

N
j

n n
i t i t

n

N
j

n n
i t i t

n

n

N j
n n

i t i t
n

k r r

r k r

r k r

0

1
2 ( ( ). ) ( )

0

1
( ) 2 ( ( ). )

0

1 ( ) 2 ( ( ). )

n n

n n

n n
(A3)

For M number of data points in k-space acquired at sampling time points t1, t2, …, tM Eq. (A3) can be written in matrix vector form as:

= +Y A C x B x C B x C( , ) ( , , ) ( , , )j j j j (A4)

where A C( , )j and B x C( , , )j are MxN matrices with elements
= e ea C r( )j

n
i t i tr k r

m,n
^ ( ) 2 ( ( ). )n m m n and

bm,n=i t e eC r x r( ) ( ) ( )m
j

n
i t i t

n
r k r( ) 2 ( ( ). )n m m n , m= 1,2,..,M and n=1,2, …,N

By stacking data and encoding operators from all J coils and both blip-up and blip-down phase encoding gradient directions, we can write:

= +Y A x B x B x( ) ( , ) ( , ) (A5)

Similar to Eq. (8), the equivalent joint minimization problem can be expressed as:

+ +min R RY A x + B x B x xarg ( ) ( , ) ( , ) ( ) ( )x,
2

1 2 (A6)

The above problem can be solved iteratively using two stage alternating minimization scheme.
In the first stage, the image estimate xk in the kth iteration (k=1,2,..,K) is found by using previous field map estimate = =ωk−1. Thus, Eq.

(A6) reduces to:

= +min Rx Y A x xarg ( ) ( )k k
x

1 2
1 (A7)

In the second stage, an updated field map estimate ωk in the kth iteration is found by setting x=xk in Eq. (A6)

= +min RY A x + B x B xarg ( ) ( , ) ( , ) ( )k k k k kk k k1 1 1 1 2
2 (A8)

The above expression is summarized as:

= +min RY B xarg ( , ) ( )k kk 1 2
2 (A9)

where = +Y Y A x B x( ) ( , )k k k kk1 1 1

Both Eqs. (A7) and (A9) are of similar form and this linear approximation means that both can be solved efficiently using standard Conjugate
Gradient methods.
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