UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition

Jiamprasertboon, A; Dixon, SC; Sathasivam, S; Powell, MJ; Lu, Y; Siritanon, T; Carmalt, CJ; (2019) Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Electronic Materials , 1 (8) pp. 1408-1417. 10.1021/acsaelm.9b00190. Green open access

[thumbnail of Low-Cost One-Step Fabrication of Highly Conductive ZnO.pdf]
Preview
Text
Low-Cost One-Step Fabrication of Highly Conductive ZnO.pdf - Published Version

Download (5MB) | Preview

Abstract

Low-cost, high-efficiency, and high quality Cl-doped ZnO (ZnO:Cl) thin films that can simultaneously function as transparent conducting oxides (TCOs) and photocatalysts are described. The films have been fabricated by a facile and inexpensive solution-source aerosol-assisted chemical vapor deposition technique using NH4Cl as an effective, cheap, and abundant source of Cl. Successful ClO substitutional doping in the ZnO films was evident from powder X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry results, while scanning electron microscopy reveals the impact of Cl doping on the ZnO thin film morphology. All ZnO:Cl films deposited were transparent and uncolored; optical transmittance in the visible region (400−700 nm) exceeded 80% for depositions using 5−20 mol % Cl. Optimal electrical properties were achieved when using 5 mol % Cl with a minimum measured resistivity of (2.72 ± 0.04) × 10−3 Ω·cm, in which the charge carrier concentration and mobility were measured at (8.58 ± 0.16) × 1019 cm−3 and 26.7 ± 0.1 cm2 V−1 s −1 respectively, corresponding to a sheet resistance (Rsh) of 41.9 Ω□−1 at a thickness of 650 nm. In addition to transparent conducting properties, photocatalytic behavior of stearic acid degradation in the ZnO:Cl films was also observed with an optimal Cl concentration of 7 mol % Cl, with the highest formal quantum efficiency (ξ) measured at (1.63 ± 0.03) × 10−4 molecule/photon, while retaining a visible transparency of 80% and resistivity ρ = (9.23 ± 0.13) × 10−3 Ω·cm. The dual functionality of ZnO:Cl as both a transparent conductor and an efficient photocatalyst is a unique combination of properties making this a particularly unusual material.

Type: Article
Title: Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition
Open access status: An open access version is available from UCL Discovery
DOI: 10.1021/acsaelm.9b00190
Publisher version: https://doi.org/10.1021/acsaelm.9b00190
Language: English
Additional information: This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. https://creativecommons.org/licenses/by/4.0/
Keywords: doped ZnO, anion doping, transparent conducting oxides, photocatalysts, aerosol-assisted chemical vapor deposition, thin films
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery.ucl.ac.uk/id/eprint/10082055
Downloads since deposit
73Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item