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Abstract

Compressive sensing can overcome the Nyquist crite-
rion and record images with a fraction of the usual
number of measurements required. However, conven-
tional measurement bases are susceptible to diffrac-
tion and scattering, prevalent in high-resolution mi-
croscopy. Here, we explore the random Morlet
basis as an optimal set for compressive multipho-
ton imaging, based on its ability to minimise the
space-frequency uncertainty. We implement this ap-
proach for the newly developed method of wide-field
multiphoton microscopy with single-pixel detection
(TRAFIX), which allows imaging through turbid me-
dia without correction. The Morlet basis promises a
route for rapid acquisition with lower photodamage.

Optical imaging at depth has gained a strong impe-
tus in the past decade as it allows access to rich and
intricate molecular information in three dimensions,
even within living animals. This is now a burgeon-
ing need in several fields, including neuroscience [14]
and histopathology [20]. Researchers are particularly
drawn to multiphoton microscopy (MPM), specifi-
cally two-photon and latterly three-photon modes,
which allow deeper penetration into biological tis-
sues [9, 22, 18, 23]. At these depths, the degrada-

tion of beam quality through scattering biological tis-
sues can be overcome by a range of wavefront shaping
methods [13]. However, these methods are challeng-
ing, slow, and are typically single-point correction
schemes, requiring rapid recalibration when consid-
ering any form of wide-field or volumetric imaging.

Rapid MPM can be achieved with temporal focus-
ing (TF), where the axial localisation is performed by
focusing a pulse in time rather than in space [25, 15],
alleviating the need for point-scanning with a facile
use of a diffracting element. Recently, TF has come
to the forefront with the realisation that spectrally
dispersed light preserves spatial fidelity throughout
scattering media due to the temporal pulse compres-
sion being supported only by the in-phase, minimally
scattered photons [10, 1, 21, 16]. Wide-field TF
MPM has been demonstrated as a novel option for
correction-free imaging at a depth of up to seven scat-
tering mean-free-path lengths with two-photon [10]
and may go further using three-photon [11] excita-
tion modes. This advance (termed TRAFIX) was en-
abled with single-pixel detection, wherein structured
patterns are sequentially projected onto the sample
plane, the total diffuse signal is recorded by a single-
pixel detector, and a minimisation algorithm is used
to recover the image. This alleviates the need for
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spatial coherence in the detection path [8], enables
compressive sensing [1], and can also be performed
in parallel, supporting fast acquisition times [21].

Compressive sensing (CS), in its own right, has led
to remarkable achievements [17, 19], with a primary
advantage of allowing for sampling well below that
required by the Nyquist criterion [4, 7, 2]. CS, how-
ever, has been applied primarily to macro imaging,
with little consideration given to high-resolution mi-
croscopy. CS may have a number of advantages in
this area, including a reduction in photodamage [24].
CS requires the use of appropriately chosen struc-
tured illumination patterns as a measurement basis
set. Patterns possessing high spatial frequencies are
challenging to relay through microscopy systems due
to the diffraction limit, resulting in degraded reso-
lution and fidelity and, ultimately, the loss of infor-
mation about the sample. In selecting the optimal
compression basis, one must consider optimisation of
the spatial frequency content, beyond simply using a
basis that best suits CS algorithms.

Optimal spatial and frequency sampling has been
described by Gabor [12], presenting a trade-off be-
tween spatial and frequency localisation that reaches
the uncertainty limit. Real-valued Gabor filters
(Morlets) have been used to generate a basis for com-
pressive imaging, optimising information transfer to
typical frequencies found in photographs [6]. How-
ever, this principle is ideally suited for microscopy,
where the frequency transfer function is well-known.
In this paper, we examine the random Morlet basis (a
convolution of a Gabor filter with a random matrix)
as an optimal basis set in MPM. We demonstrate
that the Morlet basis provides superior performance
to the conventional Hadamard and Random bases,
with CS and when imaging through scattering me-
dia. The elegant formation and optimal performance
of the Morlet basis are likely to stimulate its wider
adoption for compressive wide-field microscopy.

Pattern efficiency in TRAFIX relies on two prin-
ciples: the suitability of the basis for CS, and the
resilience of the patterned wavefront to propagation
and scattering, which we describe in turn. CS is
achieved by recognising that most signals are close-
to sparse in some domain [2]. Briefly, we consider
our linearised image vector x to comprise a sparse

signal s in some domain, Ψ (here, the discrete co-
sine transform domain), such that x = Ψs. Given
that the majority of images are compressible, it is
likely that many coefficients of s are close to zero [2].
Thus, images with N total pixels, can be acquired
with M < N measurements, where M exceeds the
number of non-zero coefficients of s. We do this by
constructing a measurement basis Φ, comprising M
rows of linearised patterns with N columns. Project-
ing each row sequentially onto the sample generates
measurements on the photodetector given by y =
Φx = ΦΨs = Θ s. We estimate the image x̂ using l1-
norm minimisation: x̂ = Ψ·arg min||s||1, s.t.Θ s = y,
i.e., by finding the most sparse s that can gener-
ate the measurements in y. The efficacy of CS lies
in designing Φ such that any linear combination of
columns of Θ = ΦΨ are mutually incoherent (i.e.,
posses low correlation between any two columns) [5].
Orthonormal bases, such as the Hadamard, perform
well when fully sampled (M = N); however, when
under-sampled (M < N), lead to a Θ that is not mu-
tually incoherent. Interestingly, random matrices are
mutually incoherent and, as such, can be used for a
substantially higher compression [2].

For high-resolution applications, patterns to be im-
aged into the sample space are susceptible to degra-
dation arising from spatial filtering in the objective’s
back focal plane. Conventional CS patterns, such
as the random pattern, possess very broad spatial
frequency spectra. This leads to the loss of high-
frequency components in both illumination and de-
tection, a discrepancy between the generated and the
projected Ψ, and thus the loss of image quality. The
proposed random Morlet patterns can be contained
primarily within the entrance pupil of the objective,
thus, they will be transmitted faithfully.

The Morlet wavelet is described by a real-valued,
centred, zero-mean Gabor filter:

g(x, y) = N · exp

{
−x

2 + y2

2σ2

}
×

cos
{πnp

2σ
[x cos θ + y sin θ]

}
, (1)

where the first exponential term is a Gaussian with a
given space-frequency bandwidth, σ, and the second
term sets a modulation along a given direction θ that

2



shifts the wavelet in the frequency domain; np is the
number of peaks of the Morlet wavelet; and, N in a
normalisation factor, chosen such that |g| = 1.

A basis is generated from a set of Morlet wavelets
with σ and np chosen randomly from a normal dis-
tribution, convolved with an array of normally dis-
tributed random values [6]. The resultant basis, in-
spired by Gabor’s filters [12], allows for fine spa-
tial features to be sampled, whilst minimising the
required spatial frequency bandwidth required. In
particular, it is important to confine the frequency
content of the basis to that supported by the imag-
ing system. For a Morlet pattern illuminating the
sample, we can approximate its field in the Fourier
plane as the Fourier transform of g(x, y) evaluated at
spatial frequencies (x2/λf, y2/λf). A Morlet wavelet
in the Fourier plane is described by:

G(x2, y2) ∝ exp

{
− 1

2σ2
f

[
(x2 − af cos θ)2 + (y2 − af sin θ)2

]}
,

(2)
where: σf = fλ/2πσ and af = fλnp/4σ represent
the frequency bandwidth and the frequency shift, re-
spectively. Given a particular back aperture radius,
R = f ·NA, it is trivial to select σ and np that fit, for
instance, af + 2σf < R. By contrast, a binary Ran-
dom basis will uniformly overfill the back aperture to
the Nyquist spatial frequency.

Fig. 1 illustrates the experimental set-up of
TRAFIX, where a pulsed laser source (Chameleon
Ultra II, Coherent) illuminates a digital micromirror
device (DMD; DLP9000, TI). The laser is tuned to
a central wavelength of 800-nm, with a 140-fs pulse
duration and an 80-MHz repetition rate. The DMD
is imaged onto a blazed reflective diffraction grating
(DG; 600 lines/mm, Thorlabs), which spatially dis-
perses the light in the back aperture of the objective.
The dispersed pulse is spatio-temporally refocused in
the sample plane by a lens (L; f=400 mm) and an
air immersion objective (20×, 0.75 NA, Nikon). The
axial resolution is approximately 7 µm in the absence
of scattering media [10]. The multiphoton signal is
diffusely collected by a photomultiplier tube (PMT;
PMT2101, Thorlabs). In-house built MATLAB and
C# software is used to generate the basis, and se-
quentially project it on the DMD and record the

PMT signal. CS using l1-norm minimisation is per-
formed using the open source ‘l1-magic’ toolbox [4]
and approximated using the ‘NESTA’ algorithm [3].

Figure 1: Principle of TRAFIX. (a) Optical set-up.
BE: beam expander; DMD: digital micromirror de-
vice; RL: relay lenses; DG: diffraction grating; L: lens;
DM: dichroic mirror; EP: entrance pupil; Obj: ob-
jective; S: sample; and, PMT: photomultiplier tube.
Numbered locations correspond to (1) the image on
the DG, (2) the Fourier plane of the Obj, and (3) the
sample image plane. (b-d) Simulated field intensity
in free space of a Hadamard, Random and Morlet
pattern, respectively, at locations (1-3). Clipping by
the EP is illustrated by a blue circle.

Fig. 1(b–d) illustrates representative patterns from
Hadamard, Random and Morlet bases, respectively,
evaluated using Fourier optics in free space. The pixel
size was chosen to Nyquist sample the diffraction
limit (∼500 nm). A pattern is shaped by the DMD
(location (1)), and a Fourier plane (FP) is formed
by lens, L, at the back focal plane of the objective
(location (2)) (DC component omitted for clarity).
The periodic structure of the Hadamard pattern in
Fig. 1(b) leads to a broad structured field intensity in
the FP, whilst the Random pattern in Fig. 1(c) leads
to a speckle pattern in the FP. It is evident that both
patterns overfill the entrance pupil of the objective,
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which is marked by the blue circle (15-mm diameter).
This leads to a substantial portion of the field being
filtered out by the aperture before reaching the sam-
ple. Thus, the patterns look considerably distorted
at the sample image plane (location (3)). Patterns
with a pixel size exceeding the diffraction limit can
be transmitted, however, they would sub-sample the
Nyquist frequency twofold. Fig. 1(c) illustrates that
the Morlet field at the FP can be effectively transmit-
ted through the objective, leading to the image plane
at the sample and the DG being nearly identical.

We experimentally evaluate the bases on 4.8-µm
green fluorescent polystyrene beads (G0500, Thermo
Scientific). The beads were suspended in water, dried
onto a cover slip and sealed using UV-curing opti-
cal adhesive (68, Norland), minimising photobleach-
ing to less than 5% in 2 hours of continuous imag-
ing. Fig. 2(a-c) shows the beads imaged with 64×64-
pixel bases (4096 patterns) over a 45-µm field-of-
view with various levels of compression, compared
to a reference image taken by an EMCCD camera
(iXonEM+ 885, Andor) (Fig. 2(d)). The illumina-
tion intensity and PMT integration time were con-
stant for all recordings; thus, the images are scaled
to the same noise floor. Image quality is quantified
as the peak signal-to-noise ratio (PSNR) (Fig. 2(e)),
defined as: 10 log10(max(I)2/MSE), where I is the
image intensity and MSE is the mean squared error
between the image and the camera reference. Qual-
itatively, and from the PSNR, we can see that the
Hadamard basis performs well without compression;
however, image fidelity declines rapidly with com-
pression. Even at 25% compression (i.e., using 3/4
of the total patterns), image quality drops more than
twofold. The Random basis performs consistently
with compression; however, since it comprises the
highest spatial frequency bandwidth of all bases, the
maximum achievable PSNR is reduced overall. The
most significant benefit is observed using the Morlet
basis, demonstrating the highest PSNR and a high
resilience of image quality to compression. Remark-
ably, even at 87.5% compression, individual beads
can be resolved and localised, with a dynamic range
above the Hadamard and Random bases at 25% com-
pression. We note that since the Random and Mor-
let bases are not orthonormal, CS recovery at no to

low compression leads to an overdetermined measure-
ment matrix whose inverse is ill-conditioned. To over-
come this, the no-compression acquisitions Figs. 2(b-
1) and (c-1) are decomposed into two 50% compres-
sion datasets, which are averaged together.

Figure 2: TRAFIX images of 4.8-µm beads using
64×64-pixel (a) Hadamard, (b) Random and (c) Mor-
let bases, with 0, 25, 50, 75, 87.5 and 93.75% com-
pression marked by labels (1-6), respectively. The
red-outlined inset (d) is a reference camera image.
The scale bars are 10 µm. (e) Image quality (PSNR)
as a function of compression.

We further evaluate the capacity of these bases to
image through scattering media. Fig. 3 shows 4.8-
µm beads imaged through a 360-µm thick scattering
phantom (mean-free-path length, ls = 115 µm), de-
scribed in [10]. At this thickness, multiple scattering
of the two-photon signal scrambles spatial informa-
tion such that no discernible image can be formed
at the camera. However, using single-pixel detec-
tion alleviates the need to preserve spatial informa-
tion, thus, beads can still be resolved (Figs. 3(a-d)).
Since the phantom is not perfectly flat, not all beads
are in the focal plane. Fig. 3(d) visualises the in-
tensity across a bead in focus for all bases. We
quantify image quality as the contrast-to-noise ratio
(CNR), calculated as the difference in the mean inten-
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sity of the bead and the background, over the stan-
dard deviation of the background noise, i.e., CNR =
(Ībead − Ībg)/σbg. With no compression, Hadamard,
Random and Morlet bases generate a CNR of 6.5, 10
and 13, respectively. Unlike the PSNR in Fig. 2(e),
the Hadamard performs poorly. In Fig. 3(a), we can
see that the Hadamard basis generates a non-uniform
point-spread function (PSF). The periodic nature of
the Hadamard basis may lead to a discrete proportion
of the patterns being either transmitted or lost. In
Fig. 3(a), this is manifested as larger scale pixelation.
Interestingly, with 87.5% compression, no discernible
image can be reconstructed from the Hadamard, and
the CNR becomes 0.2, 4.9 and 9.8, for each respective
basis. It is evident that the Morlet basis generates su-
perior image quality, with and without compression
through scattering. Fig. 3(h) demonstrates that even
at high compression and through scattering, the bead
is clearly identified.

Figure 3: TRAFIX images of 4.8-µm beads through
360 µm of a scattering phantom, with (a-d) no com-
pression and (e-h) 87.5% compression; using 64×64-
pixel (a,e) Hadamard, (b,f) Random and (c,g) Morlet
bases, with corresponding (d,h) line plots from the
regions indicated by the colored dashed lines. (e) is
omitted in (h) for clarity. The scale bars are 5 µm.

A particular advantage of CS in MPM is that
the use of fewer patterns minimises photobleach-
ing, which is an important consideration for sensitive
markers, for in vivo, and for long-term imaging appli-
cations. Whilst the illumination profiles are different
for each basis, the mean irradiance of each pattern is
equivalent. We have now measured photobleaching of
64×64-pixel bases on a uniform film of super-yellow

polymer. The rate of photobleaching was the same
for each basis to within a 6% error. If the time of ex-
posure is limited, the Morlet basis should permit the
highest sampling resolution for a given image qual-
ity. Fig. 4 demonstrates this by imaging 10-µm beads
without scattering over a 220-µm field-of-view with
a constrained acquisition of 3072 patterns. Equiva-
lent PSNR (Fig. 2(e)) is obtained from Hadamard,
Random and Morlet bases with 25%, 67% and 82%,
respectively. Within these limits, we can employ 64-,
96- and 128-pixel wide bases, respectively. Given the
larger sampling, we employ the substantially more ef-
ficient NESTA algorithm [3] that approximates the
l1-minimisation problem, whilst adhering to a set
spatial smoothness, ||y − Φx||l2 < ε. Figs. 4(d–f)
show a close up of the beads. It is evident that there
is a progressive increase in the sampling resolutions,
with the Morlet basis clearly delineating beads with
the least pixelation.

Figure 4: TRAFIX images of 10-µm beads with-
out scattering over a 220-µm field-of-view using 3072
patterns (equal acquisition time). (a) 64×64-pixel
Hadamard, (b) 96×96-pixel Random, (c) 128×128-
pixel Morlet bases, corresponding to 25%, 67% and
82% compression. (d,e,f) are the respective magnified
insets of (a,b,c), marked by the red-dashed square.
The scale bars are 50 µm for (a,b,c) and 10 µm for
(d,e,f).

In this paper, we have demonstrated that the ran-
dom Morlet basis presents an elegant and optimal
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solution to compressive imaging in microscopy. CS
is central to the recent flurry of demonstrations that
combined wide-field temporal focusing with pattern
illumination to achieve correction-free multiphoton
imaging at improved depths [10, 1, 21, 11]. We have
demonstrated that unlike many other conventional
CS applications, a substantial consideration must be
given to the fidelity of the measurement basis as it
is relayed through the focusing system and scattered
by the sample.

The Morlet basis, designed to optimise wavefront
propagation through a microscopy system, likely
leads to an overall superior performance in image
quality and a higher resilience to compression. Whilst
we have demonstrated this for samples of beads, a
more in depth study of the performance of the Mor-
let basis in biological samples would be valuable.
Furthermore, the Morlet basis minimises power loss,
which is important to MPM, where high illumina-
tion power is difficult to achieve over a wide field-
of-view with affordable laser sources. The high com-
pression achievable with the Morlet basis results in a
substantial reduction in illumination time and, thus,
a likely reduction in photodamage [24]. A further
study of photobleaching in biological samples would
be instructive, as photodamage is a particular area
of concern for two-photon and latterly three-photon
microscopy. In this area, as well as due to its opti-
mal performance, the Morlet basis is well-positioned
to make a considerable impact for compressive wide-
field single-pixel multiphoton imaging.
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