
Modelling patient flow and outcomes in
community healthcare − a fluid approximation of

a stochastic queueing system

Ryan Palmer, Martin Utley

Clinical Operational Research Unit (CORU),
University College London (UCL), London

e-mail: ryan.palmer.14@ucl.ac.uk

IFORS 2017 - Québec City
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Context: Community healthcare
and healthcare policy

In recent decades, an ambition of healthcare policy has been to
deliver more care in the community sector [6].

I Diverse range of services, operating in different physical
locations

I Common for patients to use a range of services which they
may re-use

I Considered to be crucial in meeting the current and future
challenges that face modern health care services [3]

Challenge: how to organise and deliver these services given:
physical distribution, patients using multiple services, increased
referrals, case mix, and long term care requirements [7].
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Quality measurement in
community healthcare

I Operational capability - waiting time, queue length, resource
utilisation, capacity

I Outcome measures - aspects of a patient’s health or
experience, influenced by a care interaction

I i.e. measurable behaviours, opinions, medical characteristics or
health status

I Used to monitor and evaluate the progression of patients and
the quality of care received

Increasingly used by managers, clinicians and commissioners to
inform quality improvement [2].
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Outcomes in practice and modelling

Uses in healthcare:
I Regularly evaluated as periodically calculated proportions

I Misses time dependent variability in output of service and
outcomes achieved

I Often considered in isolation from other services

I Misleading when considering dynamic patient flow of
stochastic healthcare systems

Common modelling assumptions:

I Operational improvements positively affect outcomes

I Uniform patients
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Rationale and aims

Understand dynamics of patient flow and use of patient outcomes
in evaluating community healthcare

1. Unify two perspectives of quality in a single modelling
framework

I Account for flow of patients in different health states
I Transition in health throughout queueing process important to

understanding demand for and effect of system

2. Establish a concept of the flow of outcomes - how individual
services contribute to a system’s performance

I Flow: bottlenecks, required capacity, waiting times
I Outcomes: how they accrue over time through a combination

of services
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Dynamics of patient flow in community
healthcare

I Multiple services of varying configuration

I Patients reusing the same services - either sequentially or after
care within another service

I Possibility of patients abandoning queue - impatient; seek
healthcare in a non-community setting

I Patients arrive in different health states
I Different capacity to benefit/resource requirement
I Health may improve or decline throughout

I Time dependent demand

Traditional methods do not cope well with these dynamics -
computationally expensive
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Extension and application of a
fluid approximation

We present the application of a deterministic fluid and diffusion
approximation for a stochastic queueing system. A novel
application and extension of work by both S Ding et al. (2015)[1]
and A Mandelbaum et al. (1998, 2002) [4, 5].

I Network of multiple services

I Health states - different parameters

I Application of diffusion equation
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The system - a series of stochastic processes
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The system - a series of stochastic processes

Number of servers split across A parallel queues
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Fluid approximation of patient flow

For analytical tractability, patients served first come first serve in
parallel queues according to health state, a ∈ A.

Capacity Ca,i (t) allocated to each queue at time t, with∑
a∈A Ca,i (t) = ci (t).

Ca,i (u,Z(u)) =


ciZa,Q,i (u)∑A
b=1 Zb,Q,i (u)

, if ci <
∑A

b=1 Zb,Q,i (u) > 0

0, otherwise
(1)

Ca,i (u,Z(u)) =


ciµa,iZa,Q,i (u)∑A
b=1 µbZb,Q,i (u)

, if ci <
∑A

b=1 Zb,Q,i (u) > 0

0, otherwise

(2)

Ca,i (u,Z(u)) =
Za,Q,i (0) + λa,i∑A
b=1 Zb,Q,i (0) + λb,i

× ci (3)
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Fluid approximation of patient flow

I Work within Skorokhod space with J1 metric: intuitively
provides wiggle space within both space and time.

I A natural and convenient formalism for describing trajectories
of stochastic processes that may admit discontinuities, i.e.
trajectories of Poisson processes.

Consider a sequence of models where the n-th model denoted by
the superscript (n) has an arrival rate of λa,in for new patients in
health state a and the total number of servers is nci . The scaled
fluid process is defined as:

Z̄a,m,i (t) :=
Z

(n)
a,m,i (t)

n
,

where a ∈ {1, ...,A}, i = 1, ..., J and m ∈ {Q,R,F ,O,D, L}
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Fluid approximation of patient flow

Within this space and scaling the system for n→∞, we can define
the fluid limit:

za,Q,i (t) = za,Q,i (0) + λa,i t +
A∑

b=1

sb,a,R,i δb,R,i

∫ t

0
zb,R,i (u) du

+
A∑

b=1

sb,a,F ,i δb,F ,i

∫ t

0
zb,F ,i (u) du

+
A∑

b=1

sb,a,O,i δb,O,i

∫ t

0
zb,O,i (u) du

− µa,i
∫ t

0
min (za,Q,i (u),Ca,i (u, z(u))) du

− θa,i
∫ t

0
(za,Q,i (u)− Ca,i (u, z(u)))+ du
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Fluid approximation of patient flow

za,R,i (t) = za,R,i (0)− δa,R,i
∫ t

0
za,R,i (u) du

+ pa,i

A∑
b=1

sb,a,l ,i θb,i

∫ t

0
(zb,Q,i (u)− Cb,i (u, z(u)))+ du

za,F ,i (t) = za,F ,i (0)− δa,F ,i
∫ t

0
za,F ,i (u) du

+ ra,i ,i

A∑
b=1

sb,a,s,i

∫ t

0
µb,i min (zb,Q,i (u),Cb,i (u, z(u))) du
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Fluid approximation of patient flow

za,O,i (t) = za,O,i (0)− δa,O,i
∫ t

0
za,O,i (u) du

+
J∑

j=1; j 6=i

A∑
b=1

sb,a,s,j ra,j ,i

∫ t

0
µb,j min (zb,Q,j(u),Cb,j(u, z(u))) du

za,L,i (t) = za,L,i (0)

+ (1− pa,i )
A∑

b=1

sb,a,l ,i θb,i

∫ t

0
(zb,Q,i (u)− Cb,i (u, z(u)))+ du

za,D,i (t) = za,D,i (0) + ra,i ,D

A∑
b=1

sb,a,s,i µb,i

∫ t

0
Cb,i (u, z(u)) du
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Fluid approximation of patient flow

Analytical expressions cannot be found for the above, however can
be solved iteratively using common numerical schemes.

I Rewrite
za,Q,i (t), za,R,i (t), za,F ,i (t), za,O,i (t), i = 1, ..., J, a = 1, ...,A
as z(t) = φ(z(t))

I Let z(0)(0) = 0

I Calculate z(k+1) = φ(z(k)), k = 0, 1, ... using a common
numerical scheme

I Stop when difference between z(k+1) and z(k) is deemed
sufficiently small
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Simulations

Computed in MATLAB, produced a Discrete Event Simulation for
the basic stochastic system and extension with health states

I Compare fluid model to simulation

I Basic model - rebook and follow up [1]
I Explore parameter space for community healthcare

I Triangulation of models

I Extended to include health states - single service
I Assess accuracy of extension
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Simulations - Basic case
Small system with small probability of re-use

Effective traffic intensity: ρ̂ = λ
cµ(1−q)
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Simulations - Basic case
Larger probability of re-use
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Simulations - Introduction of outcomes

Introduction Fluid approximation Simulations Discussion and conclusion



Simulations - System with outcomes
Time dependent behaviour - arrival spikes
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Measures from fluid approximation
of patient flow

I Number of patients, over time, in:
I Services (or orbits)

I Health states

I Waiting times, number in the system, waiting time
distribution - using Erlang A or R, Virtual Waiting Time [5]

I Per service

I Production of outcomes: number of patients discharge from a
service/system in a given health state over time

I Loss over time
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Types of analyses

I Capacity allocation - i.e. optimisation:

1. Balance across queues for equitable wait times

2. Reduce net loss

3. Prevent resource intensive re-joins

I Production of outcomes:

1. Begin to understand how a network of services work together
to ”produce” patients with good health

2. Seek balance across multiple services
I Identify bottlenecks

I Holistic view of operational measures
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Limitations and future work

Limitations:

I A deterministic analogue of a stochastic system

I Errors for none heavily loaded systems

I Less accurate for smaller systems

Future directions:

1. Joint use of services - could an extension capture this?

2. Can the patient flow and outcomes of patients with multiple
morbidities be informatively modelled?

3. Combining with optimisation methods - can useful
information be gained for service planning?
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Conclusions

Extending a fluid approximation of stochastic systems to a network
of services, including patient health, is beneficial since:

I Model key dynamics of community healthcare

I Overcomes computational burden and time expense of other
methods

I Provides time dependent analysis of system outputs
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