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Summary
Background Deep learning has the potential to transform health care; however, substantial expertise is required to 
train such models. We sought to evaluate the utility of automated deep learning software to develop medical image 
diagnostic classifiers by health-care professionals with no coding—and no deep learning—expertise.

Methods We used five publicly available open-source datasets: retinal fundus images (MESSIDOR); optical coherence 
tomography (OCT) images (Guangzhou Medical University and Shiley Eye Institute, version 3); images of skin 
lesions (Human Against Machine [HAM] 10000), and both paediatric and adult chest x-ray (CXR) images (Guangzhou 
Medical University and Shiley Eye Institute, version 3 and the National Institute of Health [NIH] dataset, respectively) 
to separately feed into a neural architecture search framework, hosted through Google Cloud AutoML, that 
automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity, and 
positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative 
performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning 
model developed on a subset of the HAM10000 dataset, we did external validation using the Edinburgh Dermofit 
Library dataset.

Findings Diagnostic properties and discriminative performance from internal validations were high in the binary 
classification tasks (sensitivity 73·3–97·0%; specificity 67–100%; AUPRC 0·87–1·00). In the multiple classification 
tasks, the diagnostic properties ranged from 38% to 100% for sensitivity and from 67% to 100% for specificity. The 
discriminative performance in terms of AUPRC ranged from 0·57 to 1·00 in the five automated deep learning 
models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model 
showed an AUPRC of 0·47, with a sensitivity of 49% and a positive predictive value of 52%.

Interpretation All models, except the automated deep learning model trained on the multilabel classification task of 
the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art 
performing deep learning algorithms. The performance in the external validation study was low. The quality of the 
open-access datasets (including insufficient information about patient flow and demographics) and the absence of 
measurement for precision, such as confidence intervals, constituted the major limitations of this study. The 
availability of automated deep learning platforms provide an opportunity for the medical community to enhance 
their understanding in model development and evaluation. Although the derivation of classification models without 
requiring a deep understanding of the mathematical, statistical, and programming principles is attractive, 
comparable performance to expertly designed models is limited to more elementary classification tasks. Furthermore, 
care should be placed in adhering to ethical principles when using these automated models to avoid discrimination 
and causing harm. Future studies should compare several application programming interfaces on thoroughly 
curated datasets.
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Introduction
Diagnosis, an understanding of the probability for 
presence of illness, depends on data: its collection, 
integration, and interpretation enables accurate 
classification of clinical presentations into an accepted 
disease category. Human diagnosticians achieve 
acceptable accuracy in such classification tasks through 
the learning of diagnostic rules (patterns recorded by 

other human diagnosticians) followed by training on 
real cases for which the diagnostic labels are provided 
(supervised clinical experience). In artificial intelligence 
(AI), the technique of deep learning uses artificial neural 
networks—so-called because of their superficial resem-
blance to biological neural networks—as a computational 
model to discover intricate structure and patterns in 
large, high-dimensional datasets such as medical 
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images.1 A key feature of these networks is their ability 
to fine-tune on the basis of experience, allowing them to 
adapt to their inputs, thus becoming capable of evolving. 
This characteristic makes them powerful tools for 
pattern recognition, classification, and prediction. In 
addition, the features discovered are not predetermined 
by human engineers, but rather by the patterns they 
have learned from input data.2 Although first espoused 
in the 1980s, deep learning has come to prominence in 
the past 10 years, driven in large part by the power of 
graphics processing units originally developed for video 
gaming, and the increasing availability of large datasets.3 
Since 2012, deep learning has brought profound changes 
to the technology industry, with discoveries in areas 
as diverse as computer vision, image caption, speech 
recognition, natural language translation, robotics, and 
even self-driving cars.4–9 In 2015, Scientific American 
listed deep learning as one of their “world changing 
ideas” of the year.10

Until now, the development and implementation of 
deep learning methodology into health care has faced 
three main blockers. First, access to large, well curated, 
and well labelled datasets is a major challenge. Although 
numerous institutions around the world have access 
to large clinical datasets, far fewer have them in a 
computationally tractable form and with reliable clinical 
labels for learning tasks. Second, highly specialised 

computing resources are needed, because the 
performance of deep learning models depend on recent 
advances in parallel computing architectures, termed 
graphic processing units. The architecture of silicon 
customised to these tasks is rapidly evolving with 
software companies increasingly designing their own 
hardware chips, such as tensor processing units, and 
field-programmable gate arrays.11,12 Thus, it is already 
clear that it will be difficult for small research groups, 
working alone in hospital and university settings, to 
accommodate these financial costs and the rapidly 
evolving landscape. Third, specific technical expertise 
and mathematical knowledge is required to develop deep 
learning models. This proficiency is still uncommon. 
A 2019 report13 by Element AI concluded that although 
the number of self-reported AI experts worldwide had 
increased to 36 000, the “supply of top-tier AI talent does 
not meet the demand”.

One approach to combat these obstacles is the 
increasingly popular technique called transfer learning, 
where a model developed for a specific task is repurposed 
and leveraged as a starting point for training on a novel 
task. Although transfer learning mitigates some of the 
substantial computing resources required in designing a 
bespoke model from inception, it nevertheless demands 
deep learning expertise to deliver effective results. With 
this in mind, several companies released application 

Research in context

Evidence before this study
We did a systematic search of the literature to identify classical 
deep learning models (with bespoke architectures developed by 
human experts) to provide a comparison to models constructed 
using the automated deep learning platform Google Cloud 
AutoML. We searched MEDLINE, Embase, Science Citation Index, 
Conference Proceedings Citation Index, Google Scholar, and 
arXiv from Jan 1, 2012, until Oct 5, 2018. We prespecified a cut-
off of 2012, on the basis of a generally recognised step-change in 
deep learning performance since that time. No language 
restrictions were applied. Studies were included if the authors 
developed a deep learning algorithm on the datasets used in 
their study. The search strategy is available in the appendix. The 
performance of these existing models served as a direct 
comparison to the model we developed.

Our search resulted in five open-source datasets: retinal fundus 
images (MESSIDOR), optical coherence tomography images 
(Guangzhou Medical University and Shiley Eye Institute, 
version 3), images of skin lesions (Human Against Machine 
HAM10000), paediatric chest x-ray images (Guangzhou Medical 
University and Shiley Eye Institute, version 3), and adult chest 
x-ray images (NIH CXR14 dataset).

Added value of this study
Currently, the highly specialised technical expertise necessary to 
develop artificial intelligence (AI) models is scarce. Even transfer 

learning, which builds on existing algorithms, requires 
substantial machine learning experience to achieve adequate 
results on new image classification tasks. This currently limits 
the use of deep learning to a growing, but small, community of 
computer scientists and engineers.

We show, to our knowledge, a first of its kind automated 
design and implementation of deep learning models for 
health-care application by non-AI experts, namely physicians. 
Although comparable performance to expert-tuned medical 
image classification algorithms was obtained in internal 
validations of binary and multiple classification tasks, more 
complex challenges, such as multilabel classification, and 
external validation of these models was insufficient.

Implications of all the available evidence
We believe that AI might advance medical care by improving 
efficiency of triage to subspecialists and the personalisation of 
medicine through tailored prediction models. The automated 
approach to prediction model design improves access to this 
technology, thus facilitating engagement by the medical 
community and providing a medium through which clinicians 
can enhance their understanding of the advantages and 
potential pitfalls of AI integration. We believe that this Article 
is novel in its discussion of the scientific and clinical features. 
Moreover, it addresses health-care delivery aspects and 
challenges of this technology.

https://cloud.google.com/automl/
https://cloud.google.com/automl/
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programming interfaces (API) in 2018, claiming to have 
automated deep learning to such a degree that any 
individual with basic computer competence could train a 
high-quality model.14,15

Because programming is not a common skill among 
health-care professionals, automated deep learning is a 
potentially promising platform to support the dissem-
ination of deep learning application development in 
health care and medical sciences. In the case of 
classification tasks, these products automatically match 
generic neural network architectures to a given imaging 
dataset, fine tune the network aiming at optimising 
discriminative performance, and create a prediction 
algorithm as output. In other words, the input is a 
(labelled) image dataset, and the output is a custom 
classifying algorithm. Yet, the extent to which people 
without coding experience can replicate trained deep 
learning engineers’ performance with the help of 
automated deep learning remains unclear.

In this study, two physicians without any deep learning 
expertise explored the feasibility of automated deep 
learning model development and investigated the 
performance of these models in diagnosing a diverse 
range of disease from medical imaging. More precisely, 
we identified medical benchmark imaging datasets for 
diagnostic image classification tasks and their corre-
sponding publications on deep learning models; used 
these datasets as input; replaced the classic deep learning 
models with automated deep learning models; and 
compared the discriminative performance of the classic 
and the automated deep learning models. Moreover, we 
sought to evaluate the interface that was used for 
automated deep learning model development (Google 
Cloud AutoML Vision API, beta release) for its use in 
prediction model research.16–18

Methods 
Study design and data source
We used five distinct open-source datasets comprising 
medical imaging material to automatically develop five 
corresponding deep learning models for the diagnosis of 
common diseases or disease features. Namely, we trained 
deep learning models on retinal fundus images (the 
MESSIDOR dataset; hereafter referred to as retinal 
fundus image set); retinal optical coherence tomography 
(OCT) images (Guangzhou Medical University and 
Shiley Eye Institute Version 3; hereafter referred to as the 
retinal OCT set); paediatric chest x-ray (CXR) images 
(Guangzhou Medical University and Shiley Eye Institute; 
hereafter referred to as the paediatric CXR set); adult 
CXR images (National Institute of Health [NIH] 
CXR14 dataset; hereafter referred to as the adult CXR set); 
and dermatology images (the Human Against Machine 
[HAM] 10000 dataset; hereafter referred to as the 
dermatology image set).19–22 Moreover, in a proof-of-
principle evaluation, we aimed to test one of the models 
out of sample, as recommended by current guidelines.23 

The current version of the API only allows single image 
upload for model prediction, limiting the feasibility of 
large-scale external validation. However, in an effort to 
emulate external validation in one exemplary use-case, 
the authors used the dermatology image set for training 
and tuning of a deep learning model and tested its 
performance by using a separate skin lesion image 
dataset, the Edinburgh Dermofit Library (hereafter 
referred to as the dermatology validation set).24

Training of health-care professionals using the Graphical 
User Interface
Two physicians (LF and SKW) with no previous coding 
or machine learning experience did the model 
development and analysis after a period of self-study. 
This self-study consisted of basic competence training 
in shell script programming to allow expedient transfer 
of the large medical imag ing datasets into a cloud-
based Google bucket; familiarisation with the Google 
Cloud AutoML online documentation and graphical 
user interface; and preparation of benchmark datasets 
with randomisation of images to corresponding 
training, validation, or testing datasets as applicable. In 
total, each researcher invested approximately 10 h of 
training time. Because of the release cycle evolution of 
the Google Cloud AutoML Vision API during the study 
(alpha release May, 2018, beta release July, 2018), they 
adopted an iterative approach when executing the 
analyses. All analytic steps and interpretations of 
results were done jointly. Interaction with the AutoML 
Cloud Vision platform was through a graphical user 
interface (video).

Patient recruitment and enrolment
We accessed five de-identified open-source imaging 
datasets that were collected from retrospective, non-
consecutive cohorts, showing diseases or disease features 
of common medical diagnoses. Eligibility criteria, patient 
demographics and patient workflow for each of these 
datasets are published elsewhere.19–22

Index test: AutoML Cloud Vision API
The term automated machine learning commonly refers 
to automated methods for model selection or hyper-
parameter optimisation. This is the concept that led to 
the idea of allowing a neural network to design another 
neural network, through the application of a neural 
architecture search.16–18 In deep learning, designing and 
choosing the most suitable model architecture requires a 
substantial amount of time and experimentation even for 
those with extensive deep learning expertise. This time 
and experimentation is because the search space of all 
possible model architectures can be exponentially large 
(eg, a typical ten-layer network could have approximately 
1 × 10 candidate networks). To make this model design 
process easier and more accessible, an approach known 
as neural architecture search has been described.25 Neural 

For more on the retinal optical 
coherence tomography images 
see http://dx.doi.org/10.17632/
rscbjbr9sj.3

See Online for video

https://youtu.be/aeMxJpjml8g
http://dx.doi.org/10.17632/rscbjbr9sj.3
http://dx.doi.org/10.17632/rscbjbr9sj.3
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architecture search is typically achieved using one of 
two methods: reinforcement learning algorithms, and 
evolutionary algorithms. Reinforcement learning algo-
rithms forms the basis of the commercially available API 
evaluated in this study.26

Data handling and analytic approach
We uploaded images of five open-source datasets to a 
Google Cloud bucket in conjunction with a comma-
separated value file indicating the image label, file path, 
and dataset distribution (ie, training, validation, or test 
dataset) using shell script programming. Upload, and 
model development and evaluation are shown in the 
video. Images were allocated to the training, validation, 
and test datasets (80%, 10%, and 10%, respectively) using 
a random number function in Microsoft Excel. In the 
case of the retinal OCT images, where a specific test set 
had been stipulated in a previous report, we mirrored the 
same test set to both provide a direct comparison between 
model performance and to uphold the patient-wise 
independence between the training and test sets.20 
Duplicate images were automatically detected and 
excluded by the API. We did not relabel any of the used 
datasets. All models were trained for a maximum of 
24 compute hours. Except for the retinal OCT set, the 
discriminative performance of each deep learning model 
was evaluated using the randomly specified test dataset, 
and in the case of the deep learning model developed on a 
subset of the dermatology image set, additionally in an 
external validation using an independent open-source 
dermatology dataset (Edinburgh Dermofit Library).

Comparison with benchmark classic deep learning models
To be able to make a direct comparison with the 
performance of classic deep learning models developed 
using traditional non-autoML techniques (deep learning 
models with bespoke architectures for a data and problem 
set developed by human experts), we did a systematic 
search of the literature to identify classical deep learning 
models, composed by deep learning experts, which have 
been trained or validated, or both, on the five open-source 
datasets. The performance of these existing models served 
as a direct comparator with the API. We searched 
MEDLINE, Embase, Science Citation Index, Conference 
Proceedings Citation Index, Google Scholar, and arXiv 
from Jan 1, 2012, until Oct 5, 2018. Studies were included if 
they developed a deep learning algorithm on the datasets 
used in this study. No language restrictions were applied. 
The search strategy is available in the appendix (p 1). We 
prespecified the cut-off of 2012, on the basis of a step-
change in deep learning performance; a deep learning 
model called AlexNet won a visual recognition challenge, 
the ImageNet Large-Scale Visual Recognition Challenge, 
for the first time.27 If a study provided contingency tables 
for the same or for separate algorithms tested in a specific 
classification task, we assumed these to be independent 
from each other. We accepted this, because we were 

interested in providing an overview of the results of various 
studies rather than providing accurate point estimates.

Statistical analysis
The AutoML Cloud Vision API provides metrics that are 
commonly used by the AI community. These are recall 
(sensitivity) or precision (positive predictive value) for 
given thresholds and the area under the precision recall 
curve (AUPRC). Additionally, confusion matrices are 
depicted for each model, cross-tabulating ground truth 
labels versus the labels predicted by the deep learning 
model. Where possible, we extracted binary diagnostic 
accuracy data and constructed contingency tables and 
calculated specificity at the threshold of 0·5. Contingency 
tables consisted of true-positive, false-positive, true-
negative, and false-negative results. If a dataset tackled a 
multiclass problem, we constructed two-by-two tables for 
each of the disease labels versus normal. For consistency, 
we adhered to the typical test accuracy terminology: 
sensitivity (recall), specificity, and positive predictive 
value (precision). The classification tasks were chosen 
according to their popularity in the current AI literature 
for the purpose of comparability to state-of-the-art deep 
learning models. Where possible, we plotted contingency 
tables against the ones reported by other studies using 
the same benchmark datasets to develop deep learning 
models.

A priori, we attempted to compare the classification 
performance between state-of-the-art deep learning 
studies and our results. However, although the published 
reports provided areas under the receiver operating 
characteristic curve (AUC ROC), the AutoML Cloud 
Vision API reports the AUPRC. Although the points of the 
two types of curves can be mapped one-to-one and hence 
curves can be translated from the ROC space to the 
prediction space (if the confusion matrices are identical) 
differences in the confusion matrices and the level of 
reporting impeded us from doing a comparison on the 
level of AUC. Instead, we compared the performance on 
the level of sensitivity and specificity at the same threshold 
as had been used in the previous reports.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results 
We assessed performance of automated deep learning 
in archetypal binary classification tasks, and found 
diagnostic properties and discriminative performance 
were comparable in the case of the investigated binary 
classification tasks.

Task 1 involved classification of diabetic retinopathy 
versus normal retina on fundus images. The retinal 

See Online for appendix
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fundus image dataset involved 1187 images, with 
533 normal fundus images (R0 cases), 153 images 
showing mild diabetic retinopathy (R1 cases), 247 moderate 
diabetic retinopathy (R2 cases), and 254 severe diabetic 
retinopathy (R3 cases). 13 duplicate images were 
automatically excluded by the API. The automated deep 
learning model trained to distinguish healthy fundus 
images from fundus images showing diabetic retinopathy 
(R0 from R1, R2, and R3 cases) reached an AUPRC 
of 0·87, and best accuracy at a cut-off value of 0·5 with a 
sensitivity of 73·3% and a specificity of 67% (table 1).

Task 2 involved classification of pneumonia versus 
normal on paediatric CXR. The paediatric CXR set 
provided by Guangzhou Medical University and Shiley Eye 
Institute involved 5827 of 5232 patients’ CXR images 
(1582 showing normal paediatric chest x-rays, and 
4245 showing pneumonia). The API detected and excluded 
eight duplicate images. The AUPRC of this automated 
deep learning model was 1, best accuracy was reached at 
a cut-off value of 0·5 with a sensitivity of 97% and a 
specificity of 100%.

We next assessed performance of automated deep 
learning in multiple classification tasks. The two models 
trained to distinguish multiple classification tasks showed 
high diagnostic properties and discriminative performance.

Task 1 involved classification of three common macular 
diseases and normal retinal OCT images. The retinal OCT 
set provided by Guangzhou Medical University and Shiley 
Eye Institute involved 101 418 images of 5761 patients. 
31 882 images depicted OCT changes related to neovascular 
age-related macular degeneration (791 patients), 11 165 to 
diabetic macular oedema (709), 8061 depicted drusen 
(713 patients), and 50 310 were normal (3548 patients). 
175 images were identified as duplicates and excluded by 
the API. The AUPRC of the automated deep learning 
model trained to distinguish these four categories was 
0·99, while best accuracy was reached at a cut-off value of 
0·5, with a sensitivity of 97·3%, a specificity of 100%, and a 
positive predictive value (PPV) of 97·7%.

Task 2 involved classification of seven distinct 
categories of skin lesions using dermatoscopic images. 
The dermatology image set involved 10 013 images of 

Prevalence* True 
positives

False 
positives

True 
negatives

False 
negatives

Area under the 
precision-recall 
curve

Positive 
predictive 
value

Sensitivity Specificity

MESSIDOR: fundus images (2014)

Presence vs absence 
of DR

55% 48 18 36 18 0·87 73% 73% 67%

Guangzhou Medical University and Shiley Eye Institute: retinal OCT images (2018)

Overall 100% NR NR NR NR 0·99 98% 97% 100%

CNV vs others 25% 246 2 973 1 NR 99% 100% 100%

Drusen vs others 24% 208 0 975 23 NR 100% 90% 100%

DMO vs others 25% 247 1 974 0 NR 100% 100% 100%

Normal vs others 26% 250 0 975 0 NR 100% 100% 100%

Guangzhou Medical University and Shiley Eye Institute: paediatric CXR images (2018)

Pneumonia vs 
normal

74% 412 6 153 10 1 97% 97% 100%

NIH CXR14: adult CXR images (2017)

Overall NR NR NR NR NR 0·57† 71% 38% NR

HAM10000: dermatology image set (2018)

Overall 100% NR NR NR NR 0·93 91% 91% NR

Actinic keratosis vs 
others

3% 25 9 961 8 NR 74% 76% 99%

Basal cell carcinoma 
vs others

5% 46 8 943 6 NR 85% 88% 99%

Nevus vs others 67% 655 47 286 15 NR 93% 98% 86%

Melanoma vs others 11% 75 12 879 37 NR 86% 67% 99%

Dermatofibroma vs 
others

1% 7 3 988 5 NR 70% 58% 100%

Vascular lesion vs 
others

1% 13 0 989 1 NR 100% 93% 100%

Benign keratosis vs 
others

1% 91 10 883 19 NR 90% 83% 99%

NR=not reported. DR=diabetic retinopathy. CNV=choroidal neovascularisation. DMO=diabetic macular oedema. OCT=optical coherence tomography. *Number of given cases 
as percentage of test dataset. †Averaged across different classes of this multiclass model. 

Table 1: Summary of the diagnostic properties and the discriminative performance of all five automated deep learning models
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skin lesions of 10 013 patients (327 images depicted 
actinic keratosis, 514 basal cell carcinoma, 6703 naevus, 
1113 melanoma, 115 dermatofibroma, 142 vascular lesion, 
and 1099 benign keratosis consisting of seborrheic 
keratosis, solar lentigo, and lichen-planus like keratoses). 
There were no duplicate images detected. The AUPRC of 
the automated deep learning model trained to distinguish 
these seven categories was 0·93, while best accuracy 
was reached at a cut-off value of 0·5, with a sensitivity 
of 91% and a positive predictive value of 91%.

We then assessed performance of automated deep 
learning in multilabel classification tasks, and found the 
automated deep learning model trained to perform this 
task on the adult CXR dataset showed poor diagnostic 
properties and a discriminative performance near chance 
(AUPRC 0·57, best accuracy at a cut-off value of 0·5, with 
a sensitivity of 38% and a positive predictive value of 71%). 
The NIH CXR14 comprised 11 542 cases of atelectasis, 
2399 of cardiomegaly, 3323 of consolidation, 1862 of 
oedema, 8036 of effusion, 1734 of emphysema, 1215 of 
fibrosis, 156 of hernia, 11 785 of infiltration, 2923 of mass, 
3009 of nodule, 1216 of pleural thickening, 325 of 
pneumonia, and 2199 of pneumothorax, and 60 304 with 
no findings of 112 120 patients. 12 duplicates were detected 
and excluded by the API.

We compared the diagnostic properties and the 
diagnostic performance of algorithms trained using 
automated deep learning on the retinal fundus image, 
retinal OCT, paediatric CXR, adult CXR, and dermatology 
image datasets compared with best performing deep 
learning algorithms (table 2). Interestingly, all best 
performing algorithms used transfer learning. Some 
automated deep learning models showed comparable 
diagnostic properties at a threshold of 0·5 to state-of-the-
art deep learning algorithms in published literature. 
For example, using the OCT dataset, automated deep 
learning achieved a sensitivity of 97% and a specificity 

of 100% (vs a sensitivity of 98% and a specificity of 
97% published by Kermany and colleagues20); using the 
paediatric CXR dataset, automated deep learning reached 
a sensitivity of 97% and a specificity of 100% (vs a sensitivity 
of 93% and a specificity of 90% published by Kermany and 
colleagues20). Other models showed lower diagnostic 
properties; ie, using the multilabel classification task of the 
NIH CXR14 dataset in which automated deep learning 
reached sensitivity of 38%, a positive predictive value of 
71%, and an AUPRC of 0·57 (vs an AUC of 0·87 published 
by Guan and colleagues28); or using the retinal fundus 
image dataset, in which automated deep learning reached 
a sensitivity of 73% and a specificity of 67% (vs a sensitivity 
of 86% and a specificity of 97% published by Li and 
colleagues29). The thresholds were reported in two cases.28,30 
Although it is difficult to determine why multilabel 
classification model perfor mance was significantly worse, 
a number of factors might have contributed to this poor 
performance, including dataset image or labelling ground 
truth quality, or less likely an inherent weakness of the 
AutoML platform for multilabel classification.

The AutoML Cloud Vision API provides confusion 
matrices in the case of single-label classification tasks to 
uncover label categories in which the model performs 
insufficiently. The model trained to distinguish the four 
ophthalmic diagnoses from OCT images (Guangzhou 
Medical University and Shiley Eye Institute), classified 
drusen as choroidal neovascularisation (CNV) in 10% of 
cases, implicating a more urgent referral than needed. The 
model trained on the dermatology image set on the other 
hand, misclassified 28·6% of melanomas as naevus, 
which in a real-world setting would result in less urgent 
referral for further work-up and delayed, or worse, missed 
diagnosis. Moreover, this model also had a high mis-
classification rate (41·7%) for images showing dermato-
fibromas. Tables 3 and 4 show the corresponding confusion 
matrices for the OCT and dermatology image set and the 
figure shows cases from each model where the incorrect 
label was predicted are shown in tables 3 and 4.

In the case of the deep learning model developed on a 
subset of the dermatology image set, we additionally did 
an external validation using the dermatology validation 
set. As the latter set did not include benign keratosis as a 

Drusen CNV 
(predicted 
label)

DMO Normal

Drusen 0·9 0·1 ·· ··

CNV ·· 0·996 0·004 ··

DMO (true label) ·· ·· 1 ··

Normal ·· ·· ·· 1

CNV=Choroidal neovascularisation. DMO=Diabetic macular oedema.OCT=optical 
coherence tomography.

Table 3: The confusion matrix for the model developed on the OCT image 
dataset provided by Guangzhou Medical University and Shiley Eye 
Institute

Model architecture Threshold Sensitivity Specificity

MESSIDOR: fundus images (2014)

Google Cloud AutoML Automated deep learning 0·5 73% 67%

Li et al30 VGG-s and Conv1-Fc8 0·5 86% 97%

Guangzhou Medical University and Shiley Eye Institute: retinal OCT images

Google Cloud AutoML Automated deep learning 0·5 97% 100%

Kermany et al20 Inception V3 NR 98% 97%

Guangzhou Medical University and Shiley Eye Institute: paediatric CXR images

Google Cloud AutoML Automated deep learning 0·5 97% 100%

Kermany et al20 Inception V3 NR 93% 90%

NIH CXR14: adult CXR images (2017)

Google Cloud AutoML Automated deep learning 0·5/0·7 38%/23% NR

Guan et al29 ResNet-50 and 
DenseNet-121

0·7 NR NR

NR=not reported. OCT=optical coherence tomography.

Table 2: Image classification performance of algorithms trained using automated deep learning 
compared to best performing algorithms found in the literature
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label, these images were removed from the dermatology 
image set used for training.

The automated deep learning model showed poor 
diagnostic properties and a discriminative performance 
near coin tossing (AUPRC 0·47, best accuracy at a cut-off 
value of 0·5, with a sensitivity of 49% and a positive 
predictive value of 52%). Of note, the sensitivity for 
melanoma classification is 11% with a misclassification 
rate of 63·7%.

Interestingly, naevus was the most likely classification 
in all cases, followed by the ground truth. The only 
exception was the case of actinic keratosis, where its 
ground truth diagnosis was the third most probable 
diagnosis to be predicted (10·6% likelihood). The 
prevalence of images showing naevus was 76% in the 
developmental dataset, compared with 36% in the dataset 
used for external validation. To investigate the effect of 
class imbalance between the dermatology image set and 
dermatology validation set, we undersampled the naevus 
class by 3000 images and assessed the resulting change 
in accuracy. Only minimal improvements were noted in 
its discriminative perfor mance and diagnostic properties 
(data available on request). The external validation of the 
model trained on a subset of the dermatology image set 
are shown in tables 5 (discriminative performance and 
diagnostic properties) and table 6 (confusion matrix).

Discussion
This Article shows that physicians with no coding 
experience can use automated deep learning to develop 
algorithms that can do clinical classification tasks to a level 
comparable with traditional deep learning models that 
have been applied in existing literature. Most of the 
automatically developed deep learning models, except for 
that trained on the multilabel classification task of the adult 
CXR set, showed comparable discriminative performance 
and diagnostic properties to state-of-the-art performing 
deep learning algorithms. The web interface was intuitive 
to use (video), although a substantial limitation was the 
inability to batch-test data after the model was created.

From a methodological viewpoint, our results—as is 
also the case with the results reported in state-of-the-art 
deep learning studies—might be overly optimistic, 
because we were not able to test all the models out of 

sample, as recommended by current guidelines.23 
Moreover, for external validation, the present version of 
the API only allows single image upload for prediction, 
limiting large scale external validation. This reduces its 
usability for systematic evaluation in prediction model 
research considerably, given the high numbers of images 
that these datasets comprise.

To circumvent this issue, we emulated an external 
validation of the model constructed using the dermatology 
image set and found a substantial reduction in the 
performance of the deep learning model. The limited 
performance of automated deep learning models in that 
case (also in the multilabel classification task) might be 
related to idiosyncrasies of the datasets used to train the 
models. To obviate concerns over class imbalance in 
our external validation, we undersampled accordingly; 
however, this did not substantially alter the model’s 
discriminative perfor mance. The reasons for the weak 
performance in the external validation remain unclear: 
one possibility is the variation in image resolution 
(although the dermatology validation set images were 
acquired in a standardised digital fashion, the dermatology 

Figure: Cases from each model where the incorrect label was predicted
(A) Case of drusen, which was predicted as neovascular age-related macular degeneration. (B) Presence of diabetic 
retinopathy predicted as normal. (C) A melanoma predicted as a naevus. (D) Pneumonia predicted as normal. 
(E) A pleural effusion predicted as normal. Case B does not have detectable features of its label while E is equivocal.

A

C E

B

D

Melanoma Naevus Benign 
keratosis

Actinic keratosis 
(predicted label)

Basal cell 
carcinoma

Dermatofibroma Vascular skin 
lesion

Melanoma 0·67 0·286 0·027 ·· 0·018 ·· ··

Naevus 1 0·978 0·003 0·001 0·004 0·003 ··

Benign keratosis 0·027 0·091 0·827 0·045 ·· 0·009 ··

Actinic keratosis (true label) ·· 0·061 0·121 0·758 0·061 ·· ··

Basal cell carcinoma 0·019 0·019 0·038 0·038 0·885 ·· ··

Dermatofibroma 0·167 0·167 ·· 0·083 ·· 0·583 ··

Vascular skin lesion ·· ·· ·· ·· 0·071 ·· 0·929

Table 4: The confusion matrix for the model developed on the dermatology image set.
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image set was more heterogeneous with a large proportion 
of digitised images), an issue which can be addressed, to 
some extent, through image preprocessing. Although the 
Google Cloud AutoML platform will select an appropriate 
network architecture, less attention is paid to adjustment 
of the input data format, such as levels per pixel and image 
aspect ratio.

To our knowledge, this is the first assessment of the 
feasibility and usefulness of automated deep learning 
technology in medical imaging classification tasks done 
by physicians with little programming experience. In this 
study, we showed best effort to comply with the reporting 
guidelines for prediction model research, and for 
developing and reporting machine learning predictive 
models.23,31 A strength of the study is that we tested one 
exemplary model for robustness in an out-of-sample 
cross validation, because internal validation and random-
split sample validation has been claimed to overestimate 
test performance. Another strength is that our results 
can easily be explored by others, given the use of public 
datasets and the available free trial use of the AutoML 
Cloud Vision API.

The sampling used in the in-sample cross validation 
has been claimed to introduce bias and exaggerate 
estimates of diagnostic performance.32 Furthermore, 

the API was not able to depict saliency maps, and 
consequently we were not able to interrogate the model 
for the image areas it considered most important for its 
prediction.33 This black box classification does not provide 
any information useful for clinical purposes.34 Moreover, 
the specifics of the models used by the API are not 
transparent, which constitutes a barrier to their evaluation 
and the reproducibility of this study.35,36 We were not 
able to extract or calculate all metrics and measures 
of uncertainty conventionally used in prediction model 
research in all cases (ie, specificity or confidence 
intervals), which impedes comparison to the current best 
technology other than deep learning. Moreover, explicit 
information on how the API determined certain metrics 
was scarce; for example, it was not clear how the AUPRC 
for a multiclassification model was calculated. There was 
also no ability to randomise training, test, and validation 
groups, while maintaining patient grouping in cases 
where multiple images might have come from the same 
patient. We noted that best accuracy was consistently 
achieved at a threshold of 0·5 by the API. This is likely the 
default threshold to which the API is optimised: a setting 
that is inaccessible to the user during model development. 
In clinical practice, thresholds should be set according to 
the role of the diagnostic test and the consequences of a 
misdiagnosis. Therefore, the ability to adjust the preferred 
threshold is an important function for creating a fit-for-
purpose API. Model interpretability is an active area of 
research within the field of AI and machine learning. 
Although possible solutions have been proposed, further 
work is needed to reach a consensus solution. Such 
research is outside the scope of this work.37,38

Besides Google’s AutoML Cloud Vision API, a number 
of vendors have released similar automated deep learning 
platforms, including both established technology 
corporations (eg, Amazon SageMaker, Baidu EZDL, 
IBM Watson Studio) and start-ups (Oneclick.ai, 
Platform.ai). Our study pertained to only one API, 
Google’s AutoML, because this was among the first 
publicly available neural architecture search-based 
engines released, and was freely available on a trial basis. 

Basal cell 
carcinoma

Naevus Actinic 
keratosis

Melanoma 
(predicted 
label)

Vascular 
skin lesion

Dermatofibroma

Basal cell 
carcinoma

0·28 0·552 0·113 0·008 0·042 0·004

Naevus 0·003 0·973 0·003 ·· 0·009 0·012

Actinic keratosis 0·203 0·683 0·106 0·008 ·· ··

Melanoma (true 
label)

0·039 0·789 0·013 0·118 0·039 ··

Vascular skin 
lesion

0·033 0·582 ·· 0·022 0·363 ··

Dermatofibroma 0·108 0·477 0·015 0·031 0·046 0·323

Table 6: The confusion matrix of the external validation of HAM10000-trained algorithm on the 
Edinburgh Dermofit Library dataset

Prevalence* True 
positives

False 
positives

True 
negatives

False 
negatives

Area under the 
precision-recall 
curve

Positive 
predictive 
value

Sensitivity Specificity

Overall 100% NR NR NR NR 0·47 52% 49% NR

Actinic keratosis 13% 13 30 772 110 NR 30% 11% 96%

Basal cell 
carcinoma

26% 67 39 647 172 NR 63% 28% 94%

Nevus 36% 322 360 234 9 NR 47% 97% 39%

Melanoma 8% 8 8 846 68 NR 50% 11% 99%

Dermatofibroma 7% 21 5 855 44 NR 81% 32% 99%

Vascular lesion 10% 33 46 788 58 NR 42% 36% 94%

NR=not reported. *Number of given cases as percentage of test dataset. 

Table 5: The diagnostic properties and discriminative performance of the external validation of the algorithms trained using automated deep learning on 
the dermatology image set
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Although this report is a proof-of-concept evaluation of 
health-care professional-led deep learning, it is unclear 
whether other APIs might provide greater discriminative 
performance. Assessment of other platforms is an 
objective of our future research.

Currently, studies on AutoML, including ours, have to 
rely on publicly available datasets. Although using them 
allows for comparison of performance between different 
algorithms, these are not without concern. For many 
classification tasks, and particularly for validation 
purposes, the existing datasets tend to be too small and not 
representative of the general population. Moreover, data 
quality in general could be improved. A full evaluation of 
dataset limitations is beyond the scope of this Article; 
however, inconsistent labelling and duplicate images bore 
direct pertinence to our study. Issues such as equivocal 
labels (figure), image confounders (presence of chest 
drain in images of pneumothorax), and label semantics 
(nodule vs mass, consolidation vs pneumonia) have been 
noted previously in datasets used for deep learning.39 Apart 
from the dermatology image set, all datasets contained 
duplicate images. Conveniently, Google’s AutoML Cloud 
Vision API will automatically detect, indicate, and exclude 
the relevant images; however, clinicians need to be 
cognisant to this possibility, because other APIs might not 
have this feature and generate spurious evaluation metrics. 
Because the quality of the results obtained using deep 
learning models substantially depends on the quality of 
the dataset used in the model development, it is imperative 
that patient demographics and information about the way 
the data was collected (ie, patient flow and whether 
multiple images from the same patient were present) is 
presented, because the validity and generalisation of the 
models would otherwise be difficult to assess. The splitting 
of test and training when done on a per-patient or per-test 
set basis might substantially affect model accuracy. 
However, in our study we were only able to provide limited 
dataset descriptions, using what has been published by 
their creators.

With the availability of new and carefully administered 
datasets, many validity problems could be resolved. Great 
hopes lay in data-sharing initiatives, as promoted by many 
peer-reviewed journals, or those from the Dataverse 
Network Project and the UK Data Archive.40,41 On the other 
hand, these initiatives struggle with issues of confidentiality 
and anonymity when publishing or sharing data relating 
to individuals. Moreover, regulatory restrictions still 
remain. Fortunately, developments both in the UK with 
the NHS Digital Guidance and the call for Health 
Insurance Portability and Accountability Act compliance24 
in the USA have clarified the framework for many 
public Cloud systems. The EU General Data Protection 
Regulation is another possible barrier to an efficient use of 
published data; however, because many studies will be 
dealing with ephemeral processing of de-identified data, 
we do not believe that the General Data Protection 
Regulation is likely to pose a substantial hindrance.

We confirmed feasibility, but encountered various 
methodological problems that are well known in research 
projects performing classification tasks and predictions. 
We believe that concerted efforts in terms of data quality 
and accessibility are needed to make automated deep 
learning modelling successful. Moreover, as the technology 
evolves, transparency in the reporting of the models and a 
careful reporting of their performance in methodologically 
sound validation studies will be pivotal for a successful 
implementation into practice. Finally, the extent to which 
automated deep learning algorithms must adhere to 
regulatory requirements for medical devices is unclear.35

Although the development of deep learning prediction 
models was feasible for health-care professionals without 
any deep learning expertise, we would recommend the 
following developments for automated deep learning: 
transparency of the model architectures and technical 
specifications in use; reporting of established performance 
parameters in prediction model research, such as 
sensitivity, specificity reporting of the label distribution in 
random-split sample validations done automatically (in 
cases in which the subsets have not been stipulated by the 
user explicitly); depiction of all incorrectly and correctly 
classified images (ie, true-positive, false-negative, false-
positive, and true-negative cases); a robust solution to 
allow systematic external validation; and the addition of 
granular tools to randomise data splitting for training and 
validation, while maintaining grouping of images on a 
patient or visit basis.

The availability of automated deep learning might be a 
cornerstone for the democratisation of sophisticated 
algorithmic modelling in health care. It allows the 
derivation of classification models without requiring a 
deep understanding of the mathematical, statistical, and 
programming principles. However, the translation of 
this technological success to meaningful clinical effect 
requires concerted efforts and a careful stepwise approach 
to avoid biasing the results. Deep learning experts and 
clinicians will need to collaborate in ensuring the safe 
implementation of artificial intelligence. The sharp 
contrast of the model’s discriminative performance in 
internal versus external validation might foretell the 
ultimate use case for automated deep learning software 
once the technology matures. As researchers and clinicians 
have excellent access to images and patient data within 
their own institutions, they might be able to design 
automated machine learning models for internal research, 
triage, and customised care delivery. Automating these 
processes might avert the need for costly external 
prospective validation across imaging devices, patient 
populations, and clinician practice patterns. By contrast, 
large-scale, standardised, deep learning algorithms will 
necessitate worldwide, multi variable validations of expertly 
tuned models. Thus, there is considerable value to 
these small data approaches customised to a specific 
geographical patient population that a given clinic might 
encounter. This might be where automated deep learning 
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finds its niche in the medical field. Importantly, this could 
make models susceptible to selection bias, overfitting, and 
a number of other issues from imprecise model training 
or patient selection. Novices should adhere to ethical 
principles when designing these models to avoid 
discrimination and causing harm.42,43 Therefore, regulatory 
guidelines are needed for both medical deep learning and 
clinical implementation of these models before they might 
be used in clinical practice. In summary, although our 
approach seems rational in this early evaluation, the 
results of this study cannot yet be extrapolated into clinical 
practice.
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