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Iterative tomographic reconstruction has been established as a viable alternative for data analysis in phase-
sensitive x-ray imaging based on the edge-illumination principle. However, previously published approaches
did not account for drifts of optical elements during a scan, which can lead to artefacts. Up to now, the strategy
to reduce these artefacts was to acquire additional intermediate flat field images, which were used to correct
the sinograms. Here, we expand the theoretical model to take these effects into account and demonstrate a
significant reduction of (ring)-artefacts in the final reconstructions, while allowing for a significant reduction
of scan time and dose. We further improve the model by including the capability to reconstruct combined
absorption and phase contrast slices, which we experimentally demonstrate to deliver improved contrast to
noise ratios compared to previously employed single shot approaches.

INTRODUCTION

Compared to conventional x-ray radiography, which
provides absorption contrast only, refraction sensitive
x-ray imaging methods deliver phase and absorption
contrasts simultaneously1. This complementarity as
well as the improved soft-tissue contrast provided by
phase-sensitive imaging implies a high potential for
biomedical applications. At least three different meth-
ods are currently under investigation: analyser-based
imaging (ABI)2,3, grating inteferometry (GI)4–6 and
edge-illumination (EI)7,8. Examples for biomedical
applications include mammography9–11, pulmonary di-
seases12–14 and imaging of specimens15,16.

Acquiring a series of radiographic images taken from
different viewing angles and subsequent tomographic re-
construction provides a cross-section of the sample. This
method, called computed tomography (CT), is a staple
in current diagnostic imaging and the refraction sensitive
techniques mentioned above have been successfully com-
bined with tomography15,17,18. In recent years, iterative
approaches to tomographic reconstruction of phase con-
trast data have been intensively studied19–25 as they pro-
vide the potential for using fewer viewing angles, which
enables a considerable reduction of total scan time and
dose.

Here, we will substantially extend the capabilities
of a model for iterative tomographic reconstruction
of data sets acquired with EI. EI constitutes a non-
interferometric phase-sensitive x-ray imaging technique
that takes advantage of the full spectrum provided by in-
coherent laboratory-based x-ray sources26,27. EI utilises
two apertured masks (Fig. 1). The sample mask shapes

a)Electronic mail: p.modregger@ucl.ac.uk

FIG. 1. Sketch of the edge-illumination setup and coordinate
systems of interest. Inset: Typical illumination curves with-
out sample f(m) (dotted line) and with sample s(m) (con-
tinuous line) obtainable by a lateral scan of the pre-sample
mask.

the x-ray beam into beamlets, which are deviated from
the main propagation direction due to refraction. The re-
sulting lateral offset of the beamlets is transformed into
an intensity contrast by the detector mask, which covers
a fraction of the detector pixels. A scan of the sam-
ple mask over one period (i.e., varying m) provides a
Gaussian-like intensity distribution, which is called the
illumination curve (IC). The absorption signal appears
as decreased intensity over the entire IC, while the re-
fraction (i.e., differential phase) signal shifts the IC (see
inset in Fig. 1).

Standard analysis for tomography consists of two steps.
First, one28 or several radiograms15,29 are analysed to
provide joined or separate absorption and differential
phase contrast images for each viewing angle θ. Second,
filtered back projection30 is applied in order to perform
tomographic reconstruction. Using an iterative approach
to data analysis, it was recently demonstrated that to-
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mographic reconstruction can also be achieved in a single
step25.

In the following, we will substantially extend the pre-
viously published model for iterative reconstruction in
EI, which features the suppression of ring artefacts and
opens the possibility for significantly reduced scan times.

THEORY

The first steps of developing the theoretical frame work
have been already been described in literature25,28 and
are reiterated here for the convenience of the reader. The
Radon transform constitutes the mathematical basis for
tomographic reconstruction and can be expressed as the
line integral30

R [h(x, y)] (t, θ) =

∫
L

h(x) d|x| (1)

for an arbitrary, two-dimensional function h(x, y) with
(x, y) the coordinate system fixed to the sample and
x = (x, y). L defines the line of integration, which is
parameterised by the pixel position at the detector t and
the projection angle θ (see Fig. 1).

The absorption signal A after transmission through the
sample constitutes the negative exponential of the pro-
jected (i.e., Radon transformed) x-ray attenuation coef-
ficient µ(x, y)

A(t, θ) = exp (−R [µ(x, y)]) . (2)

The accumulated phase shift Φ(t, θ) of the x-rays during
transmission through the sample is given by

Φ(t, θ) = R [Kδ(x, y)] , (3)

where K is the modulus of the wave vector of the as-
sumed monochromatic x-ray beam and δ(x, y) is the lo-
cal refractive index decrement. The observable refraction
signal α(t, θ) is proportional to the derivative of the phase
signal31

α(t, θ) = − 1

K
∂tΦ(t, θ) = ∂tR [δ(x, y)] . (4)

Now, let us denote intensity of ICs acquired without a
sample present in the x-ray beam as f(t,m) with m, the
lateral offset of the sample mask (i.e., the scan parame-
ter) and t, the pixel position at the detector. Note that
f ’s dependency on t takes into account local mask im-
perfections. The sample’s absorption signal, A(t, θ), de-
creases the total signal while the refraction signal, α(t, θ),
shifts the experimentally obtainable ICs s(t, θ,m). Both
effects can be modeled by

s(t, θ,m) = A(t, θ)f (t,m− zα(t, θ)) , (5)

where z is the sample to detector distance and we have
assumed negligible scattering from the sample, which

would additionally broaden the ICs13,32. Substituting
the absorption and refraction signal defined above, yields
this model’s prediction for the observable sinogram smod

based on the attenuation coefficient µ and refractive
decrement δ:

smod(t, θ,m) = exp (−R [µ(x, y)])

× f (t,m− z∂tR [δ(x, y)]) .
(6)

In25, the flat field IC f was further simplified by a first or-
der Taylor approximation at the mask position m, which
we will forgo here. This implies that our model will be
better suited for larger refraction angles.

The Taylor approximated version of eq. (6) formed the
basis for iterative tomographic reconstruction in25. This
was done by minimising the cost function

S = ||sexp(t, θ,m)− smod(t, θ,m)||2 (7)

with a batch gradient iterative approach including an ad-
ditional noise reduction term. Chen et al. demonstrated
that the absorption and phase signal can be retrieved
independently from a scan with a single mask position
m.

However, this model does not account for a shifting
mask position during a tomographic scan, which can oc-
cur due to mechanical vibrations or drift. Since these
can lead to significant artefacts in the tomographic re-
constructions33, we will include an additional degree of
freedom in the argument of f denoted mo(θ), which mod-
els an offset position for each projection angle θ of a rigid
mask (i.e., a constant offset over the field of view).

Similarly, reconstructed slices can show strong ring
artefacts, which can occur due to a mismatch between
the actual flat field ICs f(t,m) during a tomographic scan
and the reference ICs acquired before, where the latter is
used for iterative reconstruction in eq. 6. This mismatch
may result from systematic mechanical errors in the op-
tical elements or from insufficient photon statistics for
the reference ICs. A heuristic approach for taking this
effect into account is to include another degree of free-
dom in the argument of f denoted mr(t). This approach
works as follows. In an ideal experiment without noise,
ring artefacts would occur by using the locally shifted flat
field ICs f(t,m − mr(t)) instead of the correct f(t,m).
Conversely, including mr(t) in the model allows for re-
ducing ring artefacts during iterative reconstruction.

Finally, we will take advantage of the previously pub-
lished approach to retrieve a combined absorption/phase
contrast image by assuming the phase signal of the sam-
ple to be proportional to the absorption signal, i.e.,
µ(x, y) = γδ(x, y) = h(x, y)34. It was shown that the
projected electron density ρ(t, θ) can be retrieved from a
projection s(t, θ,m) acquired on a single offset position
m by calculating28

ρ(t, θ) ∝ γ−1 log

[
F−1

[
F [s(t, θ,m)/f(m)]

1 + iqzγ−1f ′(m)f(m)

]]
(8)

with F the Fourier transform with respect to t, its inverse
F−1 and q the variable conjugate to t. Here, we have also
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omitted the free space propagation part, which can be
neglected for laboratory-based setups. Standard filtered
back projection30 can then be applied to the retrieved
sinogram ρ(t, θ) in order to reconstruct a tomographic
slice. Here we will use this well established single shot
approach as a reference for comparison later.

While the utilised assumption of proportionality be-
tween absorption and phase contrast is strictly true only
in the case of a single homogeneous material present in
the beam and precludes a quantitative interpretation for
more complex material systems, in practice qualitative
interpretation of the images such as morphological infor-
mation (e.g. pore size distribution) is frequently of in-
terest. Further, this assumption has been demonstrated
to improve image quality for EI in some cases33 and sim-
plifies the iterative reconstruction as the number of re-
trieved values are only half compared to the previously
published method25.

Including the three improvements listed above, yields
the proposed model for iterative tomographic reconstruc-
tion:

smod(t, θ,m) = exp (−R [h])

× f (t,m−mo(θ)−mr(t)− zγ∂tR [h]) .,
(9)

where the dependency of h on (x, y) was suppressed for
readability. Retrieving the combined contrast h(x, y)
from the experimentally obtained sinogram sexp(t, θ,m)
can now be achieved by an iterative minimisation of the
cost function

S = ||sexp(t, θ,m)− smod(t, θ,m)||2 + λ||h(x, y)||2, (10)

where the second term constitutes a regularisation term
that minimises noise with a simple L2-norm. Please note
that the number of degrees of freedom for the reconstruc-
tion does not increase significantly by including mo and
mr as additional parameters. For example, if the num-
ber of acquired projections is Nθ and the number of pix-
els at the detector is Nt, then the number of voxels in
the slice h(x, y) to be retrieved would be Nt ×Nt, while
mo(θ) constitutes only Nθ and mr(t) only Nt additional
parameters.

We have used the limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) implementation35 in the
SciPy library for Python36 to minimise the cost func-
tion (eq. 10). The knowledge of the gradients of S with
respect to h(x, y), mo(θ) and mr(t) greatly improves it-
eration speed. Using the abbreviations

fs(t, θ,m) = exp(−R[h])

× f ′(t,m−mo(θ)−mr(t)− zγ∂tR[h)])
(11)

and

D(t, θ,m) = [sexp(t, θ,m)− smod(t, θ,m)] (12)

the gradients are, with respect to h(x, y)

∇hS =2
∑
t,θ,m

D(t, θ,m)

× [smod(t, θ,m)∇R[h]− zγfs(t, θ,m)∇∂tR[h]] ,
(13)

with respect to mo(θ)

∇m0
S = 2

∑
t,m

D(t, θ,m)fs(t, θ,m), (14)

and with respect to mr(t)

∇mr
S = 2

∑
θ,m

D(t, θ,m)fs(t, θ,m). (15)

The Radon transforms and their gradients occurring in
eqs. (9)-(15) can be regarded as sparse matrix operations
that can be efficiently computed by using lookup tables.
The lookup tables were computed prior to iterative recon-
struction and used to calculate the corresponding Radon
transforms and gradients.

EXPERIMENTAL RESULTS

The experiments were performed in-house with the
laboratory-based EI implementation at University Col-
lege London37. Two different experiments with different
type of samples and different setup configurations were
carried out to demonstrate the versatility of the proposed
approach.

In the first experiment, we have imaged three dif-
ferent types of plastic spheres (i.e., polystyrene (PS),
polypropylene (PP) and poly methyl methacrylate
(PMMA)) as a straight forward example. The source
was a Rigaku M007 rotating anode (Rigaku Corpora-
tion, Japan) with a Mo target and operated at 40 kV
and 20 mA. The Hamamatsu C9732DK flat panel (Hama-
matsu, Japan) was used as a detector with a pixel size of
50 µm. Both masks were manufactured by electroplating
of Au on a graphite substrate (Creatv Microtech Inc.,
USA) featuring a pitch of 38 µm for the sample mask
and 48 µm for the detector mask, respectively. The to-
tal setup length was 85 cm and the sample to detector
distance was 20 cm.

In order to obtain the experimental flat field ICs
f(t,m) the sample mask was scanned over one period
with 33 steps. The tomographic scan was performed
with the sample mask on a slope position of the ICs (i.e.,
m = 9µm offset from the maximum position; see inset
of Fig. 1) and over 360 degrees under continuous rota-
tion of the sample with a speed of 1 deg/s leading to a
total scan time of 6 min. During the scan, 300 projec-
tions were acquired with an exposure time of 1.2 s each.
Subsequent iterative reconstruction of the acquired data
set was carried out with γ = 3 for both reconstruction
methods and λ = 5×10−3 for the iterative method, which
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were manually found by visual inspection. The retrieved
tomographic slice consisted of Nt×Nt = 220×220 voxels.
The iteration was carried out until satisfying convergence
was reached, which took 58 iteration steps and 93 s on a
single core of a standard modern desktop PC.

2 mm

a PP PMMA

PS

2 mm

b

FIG. 2. Tomographic reconstruction of three different plastic
samples with (a) the single shot approach (eq. 8) and (b)
iterative tomographic reconstruction (eqs. 9 & 10) from the
same data set. A very significant reduction of ring artefacts
in (b) is clearly visible.

Fig. 2 demonstrates a clear suppression of ring arte-
facts provided by the proposed iterative approach (b)
as compared to the result of the single shot algorithm
(a). Further, the iterative approach provides visually less
noise, which we confirmed by determining the contrast to
noise ratio (CNR) between the different materials. The

area single shot iteration difference

PP-PMMA 6.7 8.7 + 30%

PP-PS 1.5 2.0 + 33%

PMMA-PS 5.2 6.7 + 29%

TABLE I. CNR between the different areas (first column) of
the single shot reconstruction (second column), the iterative
reconstruction (third column) and the relative difference be-
tween the latter two (fourth column). Iterative reconstruction
provides improved CNR of about 30% between the materials.

CNR is defined as

CNR =
|h̄1 − h̄2|√

std(h1)2 + std(h2)2
(16)

with h̄ the mean of an area and std(h) its standard devi-
ation. Tab. I lists the CNRs between the different struc-
tures as determined by a circular area with a radius of
40 voxels. The iterative approach provides an increase of
about 30% between the materials.

In order to assess the validity of the offsets for the lat-
eral mask position m0(θ) and for the suppression of ring
artefacts mr(t) retrieved by iterative reconstruction, we
have compared them to predicted values as follows. For
the offset of the lateral mask position mo(θ), we used a
background area of the acquired sinogram. Here, the off-
set of the lateral mask position during a scan due to drift
or vibrations will appear as intensity variations I in de-
pendence of the projection angle θ. Thus, the known flat
field IC f(t,m) can be used to transform the intensity
variations into a lateral offset mo(θ) by using its inverse,
i.e. mo(θ) = f−1(t, I), and numerical interpolation. We
found an excellent agreement between the thusly pre-
dicted and iteratively retrieved values for m0(θ) (Fig. 3a)
featuring a correlation coefficient of r = 0.98.

Predicting the offset for ring artefact suppressionmr(t)
is not straight forward since the sample and ring arte-
fact information overlap in the sinogram. However, we
demonstrated self consistency of the retrieved mr(t) val-
ues in the following way. We used the iteratively retrieved
slice h(x, y), the retrieved offset mo(θ), the experimental
flat field IC f(t,m) in eq. (9) with mr(t) ≡ 0 in order to
obtain a sinogram that was virtually unaffected by ring
artefacts. The difference between this sinogram and the
experimentally acquired one then quantified the intensity
modulations due to the ring artefacts, which were again
transformed into the estimated offsets via the flat field
IC f(t,m). Fig. 3b shows a very good agreement be-
tween the estimated and the retrieved offsets mo(t) with
a correlation coefficient of r = 0.85. The large correlation
coefficients found here and in the numerical simulations
above validated our suggested extension for iterative to-
mographic reconstruction.

For the second experiment, we repurposed a previously
acquired data set of a freeze-dried rabbit esophagus as
an example for a biomedical sample and the versatility
of the proposed approach. Details of sample preparation
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FIG. 3. Predicted offsets of the lateral mask position mo(θ)
(a) and of the ring correction position mr(t) (b) and the cor-
responding values retrieved by iterative reconstruction of the
slice shown in Fig. 2b. Predicted and retrieved values were
highly correlated, i.e. r = 0.98 for (a) and r = 0.85 for (b).
Mean values were subtracted for easier comparison.

and ethical approval can be found elsewhere15. We used
the same x-ray source as above but operated at 40 kV
and 25 mA. The detector was a Pixirad-2 photon count-
ing detector (PIXIRAD Imaging Counters s.r.l., Italy)
featuring a pixel size of 62 µm. The periods of the masks
were 79 µm and 98 µm, respectively. Total setup length
was 2 m and the sample to detector distance was 0.4 m.

The flat field ICs f(t,m) were acquired with 30 steps
evenly distributed over one period of the sample mask.
The tomographic scan was performed with the sample
mask on a slope position of the ICs (i.e., m = 10µm
offset from the maximum position) and over 180 degrees
in 900 steps (Nθ = 450 of which were used here) with
2 s exposure per projection. Sample dithering was used
with 8 steps to improve spatial resolution38. An addi-
tional flat-field was taken at each projection angle for
the purpose of flat field tracking33, which was not used
for the data analysis in this study. Due to the over-
head of moving the motors this resulted in a total scan
time of ≈ 18 h. The reconstructed slice consisted of

Nt × Nt = 720 × 720 voxels and iterative reconstruc-
tion was performed with γ = 20, λ = 2× 10−2 and took
47 steps and about 20 min.

2 mm

a

2 mm

b

FIG. 4. Tomographic reconstruction of an rabbit esophagus
provided by single shot analysis (a) and iterative reconstruc-
tion (b). A substantial reduction of ring artefacts is clearly
visible.

Fig. 4 demonstrates a substantial reduction of ring
artefacts provided by iterative reconstruction compared
to standard single shot analysis. In fact, some sample
details (e.g., at the center of rotation) that are not visi-
ble in the single shot slice are recovered by the iterative
approach. However in this example, the separation of
the sample from the background is slightly worse for the
iterative result. Numerical investigations not shown here
revealed that this a consequence of using a larger pro-
portionality factor between absorption and phase signals
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(i.e., γ = 20 instead of γ = 3 used above). Still, the
slice provided by iterative reconstruction is significantly
preferable for consecutive data analysis.

As mentioned above, the scan for the utilised data set
was set up for flat-field tracking in order to reduce ring
artefacts, which requires the acquisition of additional
flat-field images during the tomographic scan. Moving
the sample out and back into the field of view caused
a significant time overhead as can be seen by compar-
ing the actual scan time of 18 h to the time used for
pure data acquisition of 900 × 8 × 2 s = 4 h. Since we
demonstrated that iterative reconstruction renders flat
field tracking obsolete, the proposed approach has the
potential to decrease total scan times by a factor of more
than four.

NUMERICAL SIMULATIONS

To further demonstrate the validity of the proposed
iterative approach we used numerical simulations with
parameters that model the experiment described above.
The numerical simulations were carried out in two parts.

First, the forward simulation of the observable inten-
sity was based on eq. (9) and yielded the sinogram used
as input for the subsequent iterative reconstruction. The
simulated sample (i.e., h(x, y)) consisted of three circles
with different materials and eqs. (1)-(4) were used to sim-
ulate the Radon transform of the absorption, A(t, θ), and
refraction contrast, α(t, θ), respectively. The flat field IC
(i.e., f(t,m)) was modelled as a Gaussian distribution
and the scan parameter, m, was chosen on one inflec-
tion point. Random offsets for the lateral mask position,
mo(θ), and for inducing ring artefacts, mr(t), were in-
troduced into the flat field IC. The simulated sinogram
was then calculated by linear interpolation of f(t,m) in
eq. (9) with the input data described above. Finally,
Poisson noise was added to both the sample sinogram,
s(t, θ,m) as well as the flat field IC f(t,m).

Second, iterative tomographic reconstruction was car-
ried out based on eqs. (9) and (10). The sinogram con-
sisted of Nt = 180 detector pixels and Nθ = 90 projec-
tions. The proportionality factor was chosen to match
one of the materials (i.e., γ = 10) and iteration was per-
formed until convergence was achieved.

Fig. 5 demonstrates the influence of the different
utilised parameters for artefact suppression on itera-
tively reconstructed slices. The single shot reconstruc-
tion (Fig. 5a) based on eq. (8), included for comparison,
shows clear ring artefacts. These artefacts are signifi-
cantly reduced by iterative reconstruction that uses both
noise regularisation and includes the offsets as additional
parameters (cmp. Fig.5 d). Further, the input offsets
were highly correlated with the iteratively retrieved val-
ues (r = 0.9965 for mo and r = 0.9075 for mr).

In addition, we turned off either the noise reduction
term in Fig. 5b, i.e. setting λ = 0, or the offsets in
Fig. 5c, i.e. setting mo = mr = 0. The expected ef-

a b

c d

FIG. 5. Influence of different suppression parameters on itera-
tive reconstruction investigated by numerical simulations. (a)
single shot reconstruction for comparison, (b) iterative recon-
struction without artefact suppression (i.e., m0 = mr = 0),
(c) without noise suppression (i.e., λ = 0) and with both ring
artefact and noise suppression.

fects (occurrence of ring artefacts or significant noise)
demonstrates that the additional degrees of freedom in
the iterative reconstruction have their desired effects.

CONCLUSIONS

We have substantially extended and experimentally
validated a previously developed model for iterative to-
mographic reconstruction of data sets acquired with an
x-ray edge-illumination setup. We included additional
degrees of freedom that account for offsets in the sample
mask position due to drift or vibrations and that allows
for a significant reduction of ring artefacts. This rendered
flat field tracking obsolete and allows for a reduction of
total scan time. In addition, we incorporated the pos-
sibility to retrieve a combined absorption/phase signal,
which was demonstrated to yield higher inter-material
CNRs than established single shot approaches to data
analysis. Further, we showed the versatility of the pro-
posed iterative reconstruction frame work by successful
application to different experimental setups as well as
scan types/parameters.
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