
R E S E A RCH ART I C L E

The dark side of the force: Multiplicity issues in network
meta-analysis and how to address them

Orestis Efthimiou1 | Ian R. White2

1Institute of Social and Preventive Medicine,
University of Bern, Bern, Switzerland
2MRC Clinical Trials Unit, Institute of
Clinical Trials and Methodology, University
College London, London, UK

Correspondence
Orestis Efthimiou, Institute of Social and
Preventive Medicine, University of Bern,
Bern, Switzerland.
Email: oremiou@gmail.com

Funding information
Medical Research Council Unit Programme,
Grant/Award Number: MC_UU_12023/21;
Swiss National Science Foundation (SNSF),
Grant/Award Number: 180083

Standard models for network meta-analysis simultaneously estimate multiple rela-

tive treatment effects. In practice, after estimation, these multiple estimates usually

pass through a formal or informal selection procedure, eg, when researchers draw

conclusions about the effects of the best performing treatment in the network. In

this paper, we present theoretical arguments as well as results from simulations to

illustrate how such practices might lead to exaggerated and overconfident state-

ments regarding relative treatment effects. We discuss how the issue can be

addressed via multilevel Bayesian modelling, where treatment effects are modelled

exchangeably, and hence estimates are shrunk away from large values. We present

a set of alternative models for network meta-analysis, and we show in simulations

that in several scenarios, such models perform better than the usual network meta-

analysis model.
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1 | INTRODUCTION

Network meta-analysis (NMA) is a statistical tool for synthe-
sizing evidence from multiple studies comparing a range of
alternative treatment options for the same disease.1-4 NMA
offers several distinct advantages over a series of standard
(pairwise) meta-analyses, such as an increase in precision
and power, the opportunity to compare interventions that
have not been compared directly in any studies, and the
capacity to provide a ranking of all competing treatments.
NMA has been increasingly popular, with hundreds of appli-
cation being published every year.5,6

Despite the popularity of NMA, there have been some
concerns regarding the validity of NMA findings. For exam-
ple, Del Re et al7 claimed that considerations related to mul-
tiple testing shed doubts on the validity of results of a
previously published NMA by Cipriani et al.8 This was a
NMA on the efficacy of antidepressant drugs, which found

several important differences between the drugs. Del Re et al
claimed that such findings might be due to multiple testing.
They performed simulations where they replicated the net-
work of antidepressants by Cipriani et al, assuming, how-
ever, no treatment effects between the drugs. Their
simulations showed that 72% of the simulated datasets found
at least one statistically significant treatment comparison
between the treatments, even though in truth there was none.
Thus, they concluded that there is a high chance that the
findings of Cipriani et al are false positives and that there
might be no actual differences between the drugs. Faltinsen
and colleagues9 argue that a consensus is needed on how to
address multiple testing issues in NMA, and they call for
more methodological research regarding the optimal strategy
for addressing this issue in future reviews.

The arguments by Del Re et al are based on the concept
of statistical significance. It should come as no surprise that
using the null hypothesis testing framework in NMA leads to
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problems, given that the NMA model simultaneously esti-
mates multiple relative treatment effects, ie, comparing all
treatments in the network. For example, in a network of
20 treatments, the model estimates 190 different treatment
comparisons.

The concept of statistical significance, however, has
attracted a lot of criticism lately.10,11 For example, as dis-
cussed by Gelman and colleagues,12,13 it is rather unlikely
that any relative treatment effect between different interven-
tions would be exactly zero in the real world (although they
might be practically zero). In that sense, testing the null
hypothesis of zero treatment effects using a fixed threshold
for the p-value actually answers a question for which we
already know the answer. Thus, retiring statistical signifi-
cance11 would solve the multiple testing issue in NMA,
since we would not care anymore about Type I errors.

On the other hand, moving away from a hypothesis test-
ing framework would not fix all issues related to having mul-
tiple comparisons in NMA. Problems are expected to arise
whenever there is some form of selection procedure per-
formed upon the many estimated treatment effects. This is
the case when researchers highlight the most extreme results
from a NMA, or when they try to identify the best per-
forming treatment in the network and quantify its effects ver-
sus a reference treatment. The latter is to the best of our
knowledge common practice, ie, most NMAs are performed
with exactly this aim in mind. To illustrate why this might
be problematic, let us forget about NMA, and imagine a set-
ting where someone simultaneously estimates 100 different
parameters (eg, about the effects of different nutrients to
some health outcome) and uses these estimates to draw some
conclusion, eg, by highlighting in a guideline the nutrient
with the largest effect. Irrespective of whether statistical sig-
nificance is used to dichotomize results, just by chance some
of these 100 estimates will be exaggerated, as compared with
their true values. The selection procedure (picking up the
largest effect and including it in the guideline) is expected to
introduce bias and lead to overstated claims. This is expected
to happen even if each specific estimate on each own is
unbiassed. To draw parallels, when researchers use the
results of a NMA to identify the best performing treatment,
they run the exact same risk as in the nutrients case. In other
words, and irrespective of whether we choose a p-value
threshold to call our findings “statistical significant,” the fact
remains: when we independently estimate a large number of
parameters (as the standard NMA model does), we increase
the probability of getting some extreme results that do not
reflect reality. Such extreme results can then easily be over-
emphasized in publications and subsequently impact clinical
practice, leading to possibly worse patient outcomes and/or
unnecessary increase in costs. This raises serious concerns
regarding the possible clinical implications. For example, the

NMA by Cipriani et al is one of the most highly cited NMAs
ever published, and the findings of this paper might have
guided clinical practice that affected the lives of millions of
patients with depression around the world. Leucht et al
placed NMA on the top of the evidence hierarchy when
developing treatment guidelines,14 and influential organiza-
tions such as the WHO have recently adopted NMA when
drafting guidelines.15 A clear and definite answer as to
whether the scientific community can trust findings from
NMAs is urgently needed.

In this work, we try to answer this question. We start by
discussing the problem theoretically in Section 3. We then

Highlights
What is already known?

• Network meta-analysis (NMA) is a method for
synthesizing evidence from multiple studies that
compare a range of different interventions for the
same disease. NMA simultaneously estimates
many relative treatment effects, ie, among all
competing interventions in the network.

What is new?

• We argue that the standard NMA model might
lead to exaggerated treatment effects regarding
the best ranking treatment. It might also be asso-
ciated with large type I error rates, ie, it can iden-
tify differences between treatments which are in
truth equally effective or safe.

• In this paper, we present a range of Bayesian,
NMA models that account for possible similari-
ties between the treatments by modelling
exchangeable treatment effects.

• We show in theory and in simulations that in sev-
eral scenarios our models can have a much better
performance than the usual NMA model.

Potential impact for RSM readers outside the
authors' field

• Null hypothesis significance testing should be
avoided in NMA.

• When using NMA to synthesize the evidence
regarding a clinical question, researchers can use
our Bayesian models to take into account similar-
ities between the treatments and possibly obtain
better estimates of relative treatment effects.
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review some of the most widely used methods for addressing
multiple testing. Then, we propose a series of new NMA
models by slightly modifying the standard NMA model. Our
models are Bayesian models that incorporate prior informa-
tion about similarities between the treatments, without
requiring strongly informative priors. Such models have pre-
viously appeared in the literature,16-19 but have not been dis-
cussed in the context of multiplicity. We argue that such
models can naturally address the multiplicity issues of the
standard NMA model. These models do not employ any
form of correction for multiple testing, eg, like Bonferroni.
Instead they rely on shrinking effect sizes towards a common
mean. In Section 4, we describe a series of simulations that
we performed in order to illustrate the multiplicity issues of
the standard NMA model, and to compare its performance to
our models. In Section 5, we present the application of this
new model in two real clinical examples.

2 | EXAMPLE DATASETS

2.1 | A network of antidepressants

Our first example comes from a published NMA by Cipriani
et al,8 on antidepressant drugs for treating unipolar major
depression in adults. The network comprised 111 studies
comparing 12 different active drugs (new-generation antipsy-
chotics). The primary outcome was response to the treat-
ment. This was defined as the proportion of patients who
had a reduction of at least 50% from their baselines score on
the Hamilton depression rating scale (HDRS), or Montgom-
ery-Åsberg depression rating scale (MADRS), or who scored
much improved or very much improved on the clinical global
impression rating scale (CGI) at 8 weeks. The original NMA
found important differences between several of the drugs in
the network. The reason we chose this particular example is
the already discussed concerns raised by Del Re et al .7 Here,

we re-analysed this network using the conventional NMA
model as well as our models, aiming to highlight the differ-
ences between the two approaches, but also to help settle the
difference between Cipriani et al and Del Re et al. The net-
work is depicted in the left panel of Figure 1.

2.2 | A network of neuroleptic drugs for
schizophrenia

Our second example comes from a published network com-
paring five neuroleptic drugs and placebo for patients with
schizophrenia.20 The outcome we will use is binary efficacy,
defined by the authors as “experiencing ≥20%-30% reduc-
tion from baseline score on the Positive and Negative Syn-
drome Scale/Brief Psychiatric Rating Scale or a Clinical
Global Impression of much improved.” Thirty studies were
included in the dataset. The network is depicted in the right
panel of Figure 1.

3 | METHODS

In this section, we begin by describing the standard NMA
model and discuss the multiplicity issue. We then present
some approaches that have been used in the past for
addressing such issues in other contexts. Subsequently, we
propose a way to address the multiple testing issue in NMA,
via modelling exchangeable treatment effects.

3.1 | Multiplicity issues in the standard NMA
model

Usual approaches to fitting a NMA1,21,22 are based on esti-
mating a set of parameters (the “basic parameters” of the
model). These basic parameters are usually set to be the rela-
tive treatment effects of each treatment vs a reference treat-
ment. The reference treatment can be chosen arbitrarily, and

FIGURE 1 Network of antidepressants (left panel) and neuroleptic drugs (right panel)
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the other relative effects in the network (ie, between non-
reference treatments) can be expressed as linear combina-
tions of the basic parameters. If the network contains T
treatments, there will be T − 1 basic parameters. In total,
T(T − 1)/2 different treatment effects can be estimated from
the network.

Let us assume that the dataset comprises S two-armed
studies, where each study i compares treatments t1i and t2i.
Let us also assume that each study reports the observed rela-
tive treatment effect yi and the corresponding standard error
si. The standard common-effect (“fixed-effect”) NMA model
can be written as yi �N dt2i −dt1i ,s

2
i

� �
. d1 is set to zero with-

out loss of generality, in which case dt is the effect of treat-
ment t vs treatment 1. The T − 1 different dt are the basic
parameters of the model. In a Bayesian setting, we usually
assign “vague” (flat) prior distributions to the basic parame-
ters, eg, dt�N(0,1002), for t = 2,3,…,T. A random effects
NMA model which assumes consistency can be written as
follows:

Model I: Standard NMA model

yi �N θi,s2i
� �

θi �N dt2i −dt1i ,τ
2� �

d1 = 0

dt 6¼1,τ�… prior distributionsð Þ

Note that including in model I studies that compare more
than two treatments requires changing the corresponding
univariate normal distributions to multivariate ones. The
model above applies to any type of outcome (continuous,
binary, and time-to-event) and follows a two-stage, contrast-
based approach. In this approach, at the first stage we obtain
study-specific estimates of relative treatment effects, and at
the second stage we perform the NMA. The model can be
modified to accommodate a one-stage analysis, using arm-
based likelihoods; eg, for binary outcomes we could use a
binomial likelihood for each arm in each study. Here, τ

denotes the heterogeneity of treatment effects. Model I
assumes a common τ for all comparisons in the network.23

This is a very usual assumption in NMA, but there are more
general formulations.24 Setting τ = 0 leads to a common-
effect NMA model.

If we use model I to make inference about a prespecified
treatment comparison of interest, each estimated treatment
comparison is unbiassed when seen in isolation, and there
are no multiplicity issues. The problems arise when someone
uses a collection of estimates to perform some form of
selection.

To explore multiplicity, we consider the case of a star
network (ie, when all studies are two-armed and compare
a treatment to the reference) where all relative treatment
effects are zero. If we focus on the case where τ is
known (eg, the common-effect model τ = 0), the T − 1
estimates of the basic parameters are independent. Thus,
if we use the concept of statistical significance to catego-
rize results, we expect that on average a fraction
1 − (1 − 0.05)T − 1 of such NMAs will find at least one
basic parameter to be statistically significant at the usual
5% level. In networks with many treatments, this false
positive rate becomes very large. Eg, if we have a net-
work of T = 20 equally effective treatments, there is a
62% chance of at least one statistically significant finding
for the basic parameters. The expected fraction of NMAs
with at least one statistically significant finding across all
treatment comparison in the network (ie, not limiting to
basic parameters) will of course be even larger. In sum-
mary, if the null hypothesis of no treatment effects in the
network holds, a NMA is expected to have a very large
false positive rate—the more the treatments in the net-
work, the larger this rate. This implies that if model I is
used in conjunction with a statistical significance thresh-
old to answer the question “is any of the treatments in
the network effective/safe?”, or the question “are there
any differences between the treatments in the network?”,
there is a high probability of spurious findings, if treat-
ments have the same effects.

Moving away from the case of star networks, for the case
of networks where nonreference treatments are also directly
compared, the basic parameters are no longer independently
estimated. Eg, a BC study will jointly inform the basic
parameters AB and AC. Thus, the false positive rate for the
basic parameters is no longer straightforward to calculate,
and it will depend on the geometry of the network. Similarly,
extending the model to a random-effects setting (where τ is
estimated) makes the theoretical calculation of the expected
false positive rate nontrivial, because it will depend on the
assumed variance-covariance structure of the random effects,
the number of studies per comparison, and the structure of
the network.

Even if we abstain from categorizing findings according
to their p-values, multiplicity can still be an issue. If T is
large, we expect that by chance alone some of the basic
parameters will receive large positive values, and some will
receive large negative values. The larger the T and the
smaller the precision of the studies, the more extreme such
results are expected to be. Thus, when identifying the best
and worst performing treatment in the network we run the
risk of overestimating the corresponding treatment effects
and ending up with an exaggerated estimate regarding how
well/badly the best/worst treatment performs. This is
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expected to be the case regardless of what measure we use to
identify the best treatment (eg, SUCRAs25 or any other
measure).

The criticism of Del Re et al7 is closely related to what
we have discussed so far in this section. One should note,
however, that the probability

P1 =P NMAshows treatment effects are not zeroð Þ
treatment effects are zeroÞ

is not the same as the probability

P2 =P treatment effects are zeroð j
NMAshows treatment effects are not zeroÞ:

The simulations of Del Re et al and the calculations pres-
ented in this section correspond to P1, but among the two,
the clinically interesting quantity is P2. An attempt to distin-
guish between P1 and P2 naturally leads into a Bayesian way
of thinking, since P2 is a probability only in the Bayesian
sense. Following this simple argument, in the next para-
graphs we discuss how multiplicity can be naturally
addressed within a Bayesian framework.

3.2 | Currently available methods for
correcting for multiple testing

One popular way to fix the multiple testing issue in medical
research is to use some form of correction method. Probably,
the most popular correction method is the so-called
Bonferroni correction (but there are other similar
approaches, eg, see26). Let us assume that we want to test
n independent hypotheses at a desired significance level a
(where usually a = 0.05). Using the Bonferroni method, we
instead test each individual hypothesis on a “corrected” level
equal to a/n. This very simple method comes however with
several drawbacks. Perhaps, the most important one is that
such corrections mitigate the false positive rate at the
expense of statistical power. In other words, the Bonferroni
as well as other alternative methods focus on holding the rate
of type I error (incorrect rejection of the null hypothesis) at
the nominal level, but by doing so they increase the rate of
type II error (failure to reject an incorrect null hypothesis).
Depending on the problem, this increase might be quite
important. For these reasons (among others), the use of cor-
rection methods to attack the multiple testing issue has been
strongly criticized.27,28 For the case of NMA where we esti-
mate T − 1 basic parameters, following the Bonferroni cor-
rection, we would call a basic parameter statistically
significant only if the corresponding P value was lower than
a/(T − 1). This, however, would lead to a dramatic loss of
our power to detect any treatment effects, especially for

larger networks. Moreover, it would lead to the counterintui-
tive case where the interpretation of a result (eg, regarding
the comparison of treatments A and B) would depend on
seemingly irrelevant pieces of information, such as the num-
ber of total comparisons in the network. Eg, the interpreta-
tion of results for A vs B would depend on whether A was
also compared with D in other, independent trials (while it
would not depend on the actual results of these A vs D tri-
als). For these reasons, we believe that the use of Bonferroni
(or any other similar) adjustment in NMA would create more
problems than it would potentially solve.

Another approach to handle the multiple testing issue is
to instead focus on the “false discovery rate”.29 This
approach does not focus on reducing the familywise error
rate (ie, the probability of having at least one false positive)
but controls the proportion of false positives. This is a less
conservative method than the Bonferroni correction, but it
has a larger power. As Gelman et al note,12 such methods
are generally useful in fields like genetics, but they are
expected to be less useful in areas such as NMA, where we
usually do not test for thousands of different hypotheses and
where true effects are less likely to be exactly zero.

In the next paragraph we describe how the introduction
of a small modification to the usual NMA model can miti-
gate the multiplicity issues while bypassing some of the
problems of the aforementioned correction methods. This
approach closely follows a Bayesian multilevel modelling
approach, discussed by Gelman et al.12 In what follows, we
start by outlining this approach and adapt it to the case of
NMA. Note that multilevel hierarchical models that model
exchangeable treatment effects have previously appeared in
the NMA literature, eg, by Dakin et al,16 DelGiovane et al,17

Warren et al,18 Owen et al,19 and Senn et al30 but have not
been discussed in relation to multiplicity issues.

3.3 | Network meta-analysis models with
exchangeable treatment effects

In their paper, Gelman and colleagues12 employ data from
the “Infant Health and Development Program,” an interven-
tion targeted at premature and low-birthweight infants. The
intervention was administered at eight different sites, and the
aim of the analysis was to estimate treatment effects for each
site individually. As the authors discuss, the analysis can be
performed in two extreme ways. One extreme is what they
term “extreme pooling,” which assumes equal (common)
treatment effects across sites. This corresponds to the stan-
dard, “identical parameters” analysis, eg, as described by
Spiegelhalter et al,31 page 92. Extreme pooling avoids the
multiple testing issue but of course fails to answer the ques-
tion at hand, ie, it cannot estimate the treatment effect for
each individual setting. The other extreme, which Gelman
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et al term “no pooling,” is to estimate treatment effects in
each site separately (ie, independently). Spiegelhalter et al
term this “independent parameter” analysis.31 This analysis
can answer the question of interest, but might be problematic
due to multiplicity issues. Gelman et al then describe a mid-
dle ground approach which they term “partial pooling,” and
which involves random effects modelling. Following this
method, the true treatment effects in the sites are assumed to
be exchangeable, ie, to be realizations of a common underly-
ing distribution of treatment effects. Instead of inflating the
uncertainty of each estimate, this approach shifts the point
estimates towards the common mean, effects are shrunk
away from extreme values, and the multiple comparisons
problem gets resolved without completely diminishing the
statistical power. This is the “exchangeable parameters” anal-
ysis in Spiegelhalter et al.31

We now discuss how these ideas can be applied in a
NMA framework. Following the identical treatment effects
approach (extreme pooling), we can assume that the effects
of all treatments in the network vs the reference are the same,
and we can perform a simple pairwise meta-analysis. This
meta-analysis does not suffer from issues related to multi-
plicity and will answer the question “are treatments on aver-
age better than the reference?”. But, it cannot answer the
question “how do different treatments compare to each
other?”. On the other extreme (ie, no pooling), we have the
usual NMA model. This analysis tries to estimate relative
effects between all treatments, but, as we discussed, it
involves estimating a (possibly large) number of parameters,
with all the (previously described) problems that this might
entail. In order to follow a partial pooling (exchangeable
parameters) approach, we propose a set of alternative NMA
models.

More specifically, we describe a set of Bayesian models
that utilize prior information regarding possible similarities
between the treatments. Let us first focus on the usual sce-
nario of a network comprising several active treatments as
well as a clearly defined control treatment, such as placebo,
no treatment, waiting list, treatment as usual, etc. Moreover,
let us assume that the active treatments are somewhat “simi-
lar” to each other (but not to control), eg, that they are
drugs whose molecules have comparable structure; or that
they are treatments known to work through similar biologi-
cal pathways; or that they are similar surgical operations,
etc. In such cases, it might be reasonable to think that the
true effects (with respect to a specific effect measure) of
these similar treatments form a common underlying distri-
bution of effects. A Bayesian random-effects NMA model
with exchangeable treatment effects for the case when only
two-arm studies are present in the dataset can be written as
follows:

Model II: NMA model with exchangeable treatment effects

yi �N θi,s2i
� �

θi �N dt2i −dt1i ,τ
2ð Þ

d1 = 0

dk �N μd ,τ
2
d

� �
for k=2,3,…,T

μd,τd,τ�… prior distributionsð Þ

Weakly informative priors can be employed for μd and τ2d .
Here we have assumed treatment 1 to be the control treat-
ment, ie, to be dissimilar to the rest of the treatments. The
basic parameters of the model (ie, the relative treatment
effects of all treatments vs treatment 1) are no longer
assigned independent prior distributions as in model I, but
are modelled exchangeably. This exchangeability encodes
our prior information about the similarity of treatments.
Model II “pushes” the estimated relative treatment effects of
the different active treatments towards their common mean,
to an extent determined by parameter τd, where τd = 0 corre-
sponds to extreme pooling, while τd ! ∞ corresponds to no
pooling. As discussed by Gelman et al,12 this model will
tend to correct the multiple comparison issue. Moreover, this
model makes intuitive sense: when treatments are similar, it
is reasonable to assume that their relative effects vs the con-
trol follow from a common underlying (normal) distribution,
whose parameters we are estimating from the data. When
there is large uncertainty regarding the effects of a treatment
(eg, when there are only a few small trials that have studied
it), then the corresponding estimates of all treatments vs the
reference will be strongly pulled towards the overall mean.
When uncertainty is small, the corresponding estimate will
be shrunk only a little. In general, when we have a densely
connected network with many studies per treatment compar-
ison, we expect to find small differences between models I
and II. Conversely, in sparse networks with few studies per
comparison, differences might be more pronounced.

The only difference between model II and the standard
Bayesian NMA model I regards the priors for dk. The stan-
dard model assigns independent, flat prior distributions to
the effects of the various treatments. Thus, for example, in
the standard model, an odds ratio (OR) equal to 0.2 regard-
ing treatment X vs control, has the same prior likelihood as
an OR equal to 5. In contrast, in Model II, the prior distribu-
tions of the effect sizes of the similar treatments vs the con-
trol are exchangeable, not independent. This implies, for
example, that if the ORs vs the control for all treatments
except X are found to be centred on 0.2, then we expect the
OR of X vs the control to be also around 0.2. Thus, we would
assign a much higher prior probability to this OR being
around 0.2, rather than it being around 5. Note however that
the marginal (unconditional) prior for this OR remains flat.
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When there are not enough treatments in the network to
allow for a precise estimation of the hyperparameters μd and
τd, the estimated treatment effects using model II will tend to
become similar to the ones estimated using model I. For the
extreme case of T = 2 treatments, models I and II will
become equivalent when it comes to estimating treatment
effects, as long as flat prior distributions are used for all
parameters in both models. In that case they both correspond
to a simple, pairwise meta-analysis model. Thus, meta-
analysts can safely use model II even for the case of small
networks.

Let us now also consider the scenario where there is no
clear control treatment in the network. This is the case for
the network of antidepressants, which we described in
Section 2.1. In such cases, model II is not well suited for the
analysis, because it assumes different priors between com-
parisons vs the reference, and comparisons which are not vs
the reference. This is problematic when there is no clear
choice for the reference treatment. In such scenarios, we can
implement a symmetric version of model II as follows:

Model III: Symmetric NMA model with exchangeable treat-
ment effects

yi �N θi,s2i
� �

θi �N dt2i −d t1ið Þ,τ2
� �

dk �N μd,τ
2
d

� �
for all treatments,k 2 1,2,3,…,Tð Þ

corr dk,dk0ð Þ=0:5 for k 6¼ k0

μd,τd ,τ�… prior distributionsð Þ

Model III can be more compactly written as d = (d1, d2,
…, dT)

'�N(μ, Σd), where μ = (μd, μd, …, μd)
' is a vector with

T identical elements, and Σd is a T × T matrix with τ2d in the
diagonal and 0:5τ2d in all nondiagonal elements. Note that in
this model μd does not contribute to the likelihood and can
be set to zero. Also note that, as one would intuitively
expect, the joint likelihood of treatment effects in model III
is identical to the likelihood of the effects between similar
treatments in model II (ie, after removing the reference treat-
ment 1), with the only difference being a rescaling of τ2d .

Model II can be extended to the case when active treat-
ments (ie, not the control) belong to multiple classes,16,18,19

where C1 is the first class of similar treatments, C2 the sec-
ond class, and so on. For example, in a NMA of interven-
tions for pain relief, one could include placebo, several
nonopioid analgesics (class C1), and several opioid analge-
sics (class C2). Similarly, a NMA could include behavioural
interventions (C1) as well as pharmacological interventions
(C2) for the same condition. In such cases, model II can be
modified to:

Model IV: NMA model with exchangeable treatment effects
for multiple classes

yi �N θi,s2i
� �

θi �N dt2i −dt1i ,τ
2� �

d1 = 0

dk �N μd,x,τ
2
d,x

� �
for all treatments k 2Cx

μd,x,τd,x,τ�… prior distributionsð Þ

In this model, we group the basic parameters that corre-
spond to the treatments of each class, and we assign them a
common prior distribution. Thus, each class Cx is character-
ized by a class effect vs the reference (μd,x) and a class-
specific variance (τ2d,x), which measures the variability of

treatment effects within this class. An additional assumption
that can be used to simplify model IV is to set τd,x to be
common across all classes, ie, τd,x = τd 8 x.16-19 Also, μd,x
could be modelled to be exchangeable across (some of the)
classes. Note that model IV can be used if a class includes a
few, or even a single treatment. Of course, in this case, the
corresponding μd,x and τd,x will not be easy to estimate with
precision, unless we employ some modelling assumption
like the ones discussed above. If all classes in model IV
include a single treatment and μd,x are given independent,
flat prior distributions, model IV is equivalent to the stan-
dard NMA model, when it comes to estimating dk and τ2.

Finally, we can extend our symmetric model III for the
case when treatments belong to multiple classes and there is
no clear control treatment. Let us choose, without loss of
generality, treatment 1 belonging to class C1 to be the refer-
ence treatment of the network. Our symmetric multiclass
model can be written as

Model V: Symmetric NMA model with exchangeable treat-
ment effects for multiple classes

yi �N θi,s2i
� �

θi �N dt2i −dt1i ,τ
2� �

dk �N μd,1,τ
2
d,1

� �
for all treatments k 2C1

corr dk,dk0
� �

=0:5 for all treatments k 6¼ k
0 2C1

dk �N μd,x,τ
2
d,x

� �
for all treatments k 2Cx 6¼C1

μd,1,τd,1,μd,x,τd,x,τ�… prior distributionsð Þ

where again we could simplify by assuming τd,x to be com-
mon, or by setting μd,x to be exchangeable among (some of
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the) classes. This model could be used for example in a
NMA of several opioid and nonopioid analgesics, where no
placebo-controlled studies are included.

3.4 | Considerations regarding statistical
power

Because models II-V incorporate prior beliefs about similari-
ties between some of the treatments, they are expected to
have less power to detect differences between them. In con-
trast, they are expected to have more power to detect differ-
ences between treatments not assumed to be similar. Eg,
using model II instead of I, we may have less power to detect
differences between drugs, but more power to detect differ-
ences between drugs and placebo. Using model III, we
expect to have less power in detecting treatment effects
between any of the treatments in the network. Using models
IV and V, we expect to have less power to detect differences
between treatments within each class, but more power to
detect differences between treatments belonging to different
classes. In Section 4, we use simulations to explore how
models II and III compares to the standard NMA model I,
with respect to the trade-off between the probability of spuri-
ous findings and power.

4 | SIMULATIONS

4.1 | Overview

In this section, we describe the simulations we performed to
illustrate the multiple testing issue in the standard NMA
model (model I), and to compare this model with our pro-
posed models II, III, IV, and V. The primary focus was in
comparing the models under different sets of treatment
effects, but we also varied other factors, such as network
geometry and the existence of random effects.

We performed two simulation studies, each one including
several scenarios. In simulation study 1, we explored the sit-
uation when all treatments were equally effective. The initial
scenarios had one trial per comparison, and hence

heterogeneity was ignored in the analysis. To explore the
impact of heterogeneity, we also generated scenarios with
multiple trials per comparison. For each scenario except sce-
nario D (where we had three treatments in the network), we
explored networks of two contrasting geometries: star net-
works and fully connected networks (Figure 2). Especially
for scenario D, we only generated fully connected networks.
We compared models II and III with three variants of
model I, using two different priors on the treatment contrasts
(flat and informative priors).

In simulation study 2, we explored the situation where
some treatments had different effectiveness. We explored
several scenarios for the treatment effects, for both star and
fully connected networks of 10 treatments. In this study, we
simulated only one trial per comparison, ie, heterogeneity
was ignored. For the analysis with model I, we used only flat
priors. In this simulation study, we also used models IV and
V. For model IV, we assumed two classes of treatments:
treatments 2 to 5 comprised the first class of similar treat-
ments, and treatments 6 to 10 the second; treatment 1 was
the reference. For model V, we assumed two classes, treat-
ments 1 to 5 and 6 to 10.

4.2 | Data generating mechanisms for each
scenario

For each scenario, we simulated 1000 independent datasets.
We only simulated two-armed studies. For each study i, we
simulated an observed relative treatment effect (yi) and a
corresponding standard error (si). The study-specific
observed effects (yi) were generated in different ways
depending on the scenario. For each study, si was generated
using a chi-square distribution with one degree of freedom,
ie, si � 0:5+ 0:2 χ21. For scenarios B, we simulated random
effects. There we assumed a common variance of the random
effects (τ2) for all treatment comparisons in the network, and
we generated it by drawing from a log-normal distribution
τ2�LN(−2.56,1.742) for each dataset. This was based on the
empirical distributions of heterogeneity proposed by Turner
et al.32 Note that we did not use this distribution for the

FIGURE 2 Network structures explored in
simulation studies. Star network (left) and fully
connected network (right)
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analyses (see next paragraph). All data were simulated
in R.33 Codes are available online in https://github.com/esm-
ispm-unibe-ch-REPRODUCIBLE/the_dark_side_of_the_
force. We investigated eight scenarios (noted as A-H in
Table 1). For each scenario X (where X denotes all scenarios
A to H, except C), we simulated data for a star network (ter-
med scenario X.1 in Table 1) and a fully connected network
(X.2).

Simulation study 1 assumed zero treatment effects in the
network and included scenarios A, B, C and D. In scenarios
A, we simulated a network of 10 treatments, one study per
comparison, giving a total of nine studies for scenario A.1
and 45 studies for scenario A.2. In scenarios B, we assumed
10 treatments, and we simulated three studies per compari-
son, assuming heterogeneity. In scenarios C, we only had
two competing treatments, and each dataset included five
studies. In scenarios D, we assumed three treatments in the
network, one study per comparison. In simulation study
2 (scenarios E-H), we assumed nonzero treatment effects in

the network. We only used networks of 10 treatments. In
scenarios E, we assumed one of the treatments to be the con-
trol, and the relative effects of all other treatments vs the
control were assumed equal. In scenarios F, we split the
treatments in two groups (treatments 1-5 and 6-10). Treat-
ments in the same group were assumed to be equally effec-
tive, and we assumed different effectiveness between groups.
In scenarios G, all treatments had different effectiveness. In
scenarios H, we assumed two groups of treatments (treat-
ments 2-5 and 6-10) and a control treatment (treatment 1).
Treatments in the same group had equal efficacies vs the
control. The details of the data generating mechanisms in
each scenario are presented in Table 1.

4.3 | Methods of analysis

For simulation study 1, in each simulated dataset, we fitted
model I, ie, the standard Bayesian NMA model with flat
(uninformative) priors dk�N(0,1002) for all k 6¼ 1. We

TABLE 1 Overview of the data-generating mechanisms for all scenarios we explored in our simulations

Name Description of Simulated Data
Type of
Network

Random
Effects

Studies per
Comparison Treatment Effect in Study i

SIMULATION STUDY 1: zero treatment effects

A.1 10 treatments. No treatment effects. Star ✘ 1 yi �N 0,s2i
� �

A.2 Fully connected

B.1 10 treatments. No treatment effects. Star ✓ 3 yi �N θi,SE2
i

� �
, θi�N(0, τ2)

B.2 Fully connected

C 2 treatments. No treatment effects. – ✘ 5 yi �N 0,s2i
� �

D 3 treatments. No treatment effects. Fully connected ✘ 1 yi �N 0,s2i
� �

SIMULATION STUDY 2: nonzero treatment effects

E.1 10 treatments. Equal effects of all
active treatments vs a control
(treatment 1).

Star (vs
treatment 1)

✘ 1 yi �N ψ i,s
2
i

� �

ψ i = 0 for active vs active
ψ i = 1 active vs controlE.2 Fully connected

F.1 10 treatments.
Treatments 1-5 were worthless
treatments (group 1).

Treatments 6-10 were effective
treatments (group 2).

Star (vs
treatment 1)

✘ 1 yi �N ψ i,s
2
i

� �

ψ i = 0 if both treatments in study
were in group 1 or both in group 2

ψ i = 1 if one treatment in group 1 and
the other in group 2

F.2 Fully connected

G.1 10 treatments. All treatment effects in
the network are nonzero.

Star (vs
treatment 1)

✘ 1 For study i, comparing treatments t1i
vs t2i

yi �N ψ t2ι −ψ t1ι ,s
2
i

� �
where ψ t = 0 if

t = 1, and
ψ t = 0.9+0.1 × t if t > 1

G.2 Fully connected

H.1 10 treatments. 2 classes of treatments,
2-5 (class 1) and 6-10 (class 2).
Treatments within each class had
equal effects vs treatment 1.
Treatment effects vs treatment 1
were set equal to 1(2) for class 1(2),
respectively.

Star (vs
treatment 1)

✘ 1 For study i, comparing treatments t1i
vs t2i

yi �N ψ t2i −ψ t1i ,s
2
i

� �
where ψ t = 0 if

t = 1; ψ t = 1 if t in class 1; ψ t = 2 if
t in class 2.

H.2 Fully connected
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repeated the analysis with the same model, using informative
priors dk�N(0,1). This was to check whether reasonably
informative priors can mitigate issues related to multiplicity
without having to resort to more complicated modelling.
Next, we analysed each dataset with models II and III, using
vague priors for the extra parameters, ie, μd�N(0,10) and
τd�U(0,2). For scenarios B and C, where we simulated mul-
tiple studies per comparison, we used the random-effects
version of these models, with a vague prior for the standard
deviation of random effects, τ�U(0,5). For the other scenar-
ios, we used the common-effect version of all models. For
simulation study 2, in each simulated dataset, we fitted
model I with flat priors, dk�N(0,1002). We then repeated the
analyses with the common-effect versions of models II and
III, assuming vague priors, μd�N(0,10) and τd�U(0,2).

4.4 | Fitting details

We fitted all models in R using the package rjags. For
each model, we fitted two independent chains, 15 000 itera-
tions per chain, with a burn-in period 5000 iterations. In a
sensitivity analysis, to ensure our results were robust, we
also used the netmeta34 command in R33 to fit the stan-
dard NMA model in a frequentist setting. The code we used
for model fitting is also available online in https://github.
com/esm-ispm-unibe-ch-REPRODUCIBLE/the_dark_side_
of_the_force.

4.5 | Measures of model performance

After performing the described analyses in each of the 1000
datasets, we extracted the posterior median estimate, the
corresponding standard deviation, and the 95% credible
intervals (CrI) for all treatment effects. In each analysis, we
also identified the best and worst treatment based on the
SUCRA values for ranking treatments.25

Based on the extracted information, for each scenario of
simulation study 1 (where treatments were equally effective)
and for each method of analysis, we calculated (a) the mean
absolute error for the basic parameters (treatment effects vs
treatment 1); (b) the mean bias of the basic parameters; (c)
the mean estimate and mean standard deviation for the best
vs the worst treatment in the network; (d) the mean estimate
and mean standard deviation for the best treatment in the
network vs the reference; (e) the percent of datasets that
showed with confidence that there were nonzero effects in
the network, where in truth there were none. For (e), we
checked whether the 95% CrI of the estimated relative treat-
ment effects in the network (among any two treatments)
included zero. For scenarios of simulation study 2 (where
we assumed nonzero treatment effects in the network) and
for each method of analysis, we calculated (e) as the percent

of datasets that showed with confidence that there were non-
zero effects among treatments that were in truth equally
effective, and we additionally calculated (f) power, ie, the
percentage of treatment effects that were shown with confi-
dence to be nonzero (95% CrI excluding zero), when in truth
they were nonzero.

4.6 | Results from the simulations

4.6.1 | Main findings

A summary of the findings from simulation 1 is shown in
Table 2. In scenarios A and B, where we assumed the
10 treatments in the network to be equally effective, models
II and III clearly outperformed the standard NMA model
I. Model I was associated with higher mean absolute errors;
it gave more exaggerated treatment effects regarding the best
vs worst treatment, and best vs reference; it also had the larg-
est percentage of datasets showing with confidence that there
are nonzero treatment effects among some of the treatments
in the network. The results from scenario C showed the
equivalence of model I with flat priors and model II, when
T = 2. In scenario D, where we had a network of only three
equally effective treatments, model III clearly outperformed
model I. All models were unbiassed in all scenarios A to D.

A summary of the findings from simulation 1 is shown in
Table 3. In scenarios E, where we assumed all treatment
effects vs the reference to be equal, model II performed over-
all the best. The standard NMA model (model I) gave the
most exaggerated estimates regarding the best treatment and
had the highest rate of false positive findings.

In scenarios F, where treatments were split in two groups,
models V performed best. Model I had the worst perfor-
mance in terms of exaggerating the effects of the best treat-
ment, and also false positive findings. Models II and III had
the smallest power.

In scenario G.1, where all treatment effects in the net-
work were nonzero and the network was star-like, model I
was the worst in terms of mean absolute error and exaggera-
tion of treatment effects, and second worst in power. Model
II had the best performance overall, followed by IV. In sce-
nario G.2, all models performed comparably, but model II
had the lowest, and model IV the largest power.

In scenarios H, model IV had overall the best perfor-
mance. Model I had the largest mean absolute error, it
showed the most exaggerated results regarding the effects of
the best treatment and had the largest false positive rate.

In summary, in almost all cases, the standard NMA
model (model I) led to the most exaggerated claims regard-
ing treatment effects of the best treatment in the network.
This exaggeration was especially pronounced for star net-
works, rather than fully connected ones. In scenarios, where
no treatment effects were simulated, model I gave the largest
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TABLE 2 Overview of results for simulation study 1 (zero true treatment effects in the network). For all scenarios except B.1 and B.2 we used
the fixed effects version of all models

# Model

Mean Absolute
Error (Basic
Parameters)

Mean Bias
(Basic
Parameters)

Mean Estimate For
Best Vs Worst
Treatment ± SD

Mean Estimate Best
Treatment In the
Network Vs Reference
± SD

% of NMAs Showing
with Confidence
Nonzero Treatment
Effects

A.1 Model I (flat
priors)

0.57 0.01 2.16 ± 1.12 1.10 ± 0.77 61.9%

Model I
(informative
priors)

0.36 0.00 1.30 ± 0.78 0.66 ± 0.55 35.1%

Model II 0.24 0.01 0.63 ± 0.58 0.32 ± 0.37 8.2%

Model III 0.16 0.01 0.45 ± 0.51 0.23 ± 0.33 2.4%

A.2 Model I (flat
priors)

0.22 −0.02 0.59 ± 0.29 0.28 ± 0.25 61.6%

Model I
(informative
priors)

0.19 −0.01 0.56 ± 0.28 0.27 ± 0.24 55.8%

Model II 0.17 −0.01 0.28 ± 0.23 0.13 ± 0.16 9.0%

Model III 0.07 0.00 0.17 ± 0.19 0.08 ± 0.14 2.3%

B.1 Model I (flat
priors)

0.37 −0.01 1.32 ± 0.74 0.65 ± 0.52 42.6%

Model I
(informative
priors)

0.28 −0.01 1.01 ± 0.61 0.49 ± 0.43 32.9%

Model II 0.17 −0.01 0.40 ± 0.39 0.19 ± 0.23 4.3%

Model III 0.11 0.00 0.29 ± 0.36 0.14 ± 0.22 0.7%

B.2 Model I (flat
priors)

0.17 −0.01 0.43 ± 0.21 0.22 ± 0.18 62.6%

Model I
(informative
priors)

0.15 0.00 0.41 ± 0.20 0.20 ± 0.18 60.2%

Model II 0.13 0.00 0.20 ± 0.17 0.10 ± 0.12 11.0%

Model III 0.05 0.00 0.13 ± 0.14 0.07 ± 0.11 1.9%

C Model I (flat
priors)

0.23 −0.02 0.23 ± 0.28 – 5.8%

Model I
(informative
priors)

0.21 −0.02 0.21 ± 0.27 – 4.5%

Model II 0.22 −0.02 0.22 ± 0.28 – 5.5%

Model III 0.16 −0.02 0.16 ± 0.24 – 0.0%

D Model I (flat
priors)

0.48 0.00 0.45 ± 0.54 0.23 ± 0.27 14.5%

Model I
(informative
priors)

0.32 0.00 0.32 ± 0.46 0.16 ± 0.23 8.5%

Model II 0.40 0.00 0.40 ± 0.51 0.20 ± 0.25 10.0%

Model III 0.24 0.00 0.24 ± 0.40 0.12 ± 0.20 2.3%
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TABLE 3 Overview of results for simulation study 2 (nonzero true treatment effects in the network)

# Model

Mean Absolute
Error (Basic
Parameters)

Mean Bias
(Basic
Parameters)

Best vs Worst
Treatment

Best vs Reference
Treatment

% of NMAs Showing
with Confidence
Nonzero Treatment
Effects Among
Equally Effective
Treatments Power

Mean
Estimate
± SD

True
Value

Mean
Estimate
± SD

True
Value

E.1 Model I 0.57 0.01 2.37 ± 0.92 1.00 2.14 ± 0.77 1.00 58.9% 36.7%

Model II 0.24 0.01 1.32 ± 0.45 1.32 ± 0.45 3.0% 69.7%

Model III 0.32 −0.11 1.37 ± 0.52 1.37 ± 0.52 13.0% 46.4%

Model IV 0.32 0.00 1.55 ± 0.56 1.53 ± 0.54 17.0% 54.0%

Model V 0.35 −0.08 1.50 ± 0.56 1.49 ± 0.55 54.8% 22.5%

E.2 Model I 0.22 −0.02 1.28 ± 0.28 1.00 1.28 ± 0.28 1.00 55.6% 93.2%

Model II 0.17 −0.02 1.08 ± 0.24 1.08 ± 0.24 2.4% 98.8%

Model III 0.32 −0.27 0.92 ± 0.30 0.92 ± 0.30 28.5% 76.1%

Model IV 0.19 −0.03 1.14 ± 0.56 1.14 ± 0.56 17.3% 97.3%

Model V 0.24 −0.15 1.06 ± 0.28 1.06 ± 0.28 28.9% 87.7%

F.1 Model I 0.68 0.01 2.69 ± 1.04 1.00 1.90 ± 0.74 1.00 51.5% 22.7%

Model II 0.46 0.00 1.30 ± 0.62 1.13 ± 0.51 26.4% 11.7%

Model III 0.39 −0.08 1.20 ± 0.62 1.04 ± 0.51 14.8% 9.2%

Model IV 0.47 0.00 1.68 ± 0.69 1.33 ± 0.51 11.3% 31.2%

Model V 0.43 −0.01 1.53 ± 0.63 1.30 ± 0.51 2.9% 36.6%

F.2 Model I 0.60 0.00 1.46 ± 0.28 1.00 1.15 ± 0.28 1.00 48.0% 94.0%

Model II 0.57 0.01 1.32 ± 0.28 1.09 ± 0.27 39.9% 92.4%

Model III 0.21 −0.06 1.28 ± 0.28 1.10 ± 0.25 37.6% 92.2%

Model IV 0.58 0.00 1.25 ± 0.24 1.10 ± 0.22 12.8% 99.0%

Model V 0.55 0.00 1.20 ± 0.22 1.15 ± 0.28 5.7% 99.5%

G.1 Model I 0.61 0.01 2.73 ± 0.84 1.80 2.61 ± 0.76 1.80 – 16.5%

Model II 0.32 0.00 1.79 ± 0.47 1.79 ± 0.47 – 17.9%

Model III 0.36 −0.10 1.93 ± 0.54 1.92 ± 0.53 – 16.0%

Model IV 0.38 0.00 2.00 ± 0.53 1.99 ± 0.53 – 18.0%

Model V 0.42 −0.08 2.00 ± 0.54 1.99 ± 0.54 – 18.7%

G.2 Model I 0.30 −0.01 1.88 ± 0.28 1.80 1.88 ± 0.28 1.80 – 40.5%

Model II 0.27 0.01 1.74 ± 0.27 1.74 ± 0.27 – 31.5%

Model III 0.26 −0.17 1.67 ± 0.29 1.67 ± 0.29 – 38.0%

Model IV 0.27 −0.03 1.74 ± 0.26 1.74 ± 0.26 – 43.0%

Model V 0.31 −0.11 1.67 ± 0.29 1.67 ± 0.29 – 43.1%

H.1 Model I 0.68 0.01 3.02 ± 0.82 2.00 2.90 ± 0.74 2.00 46.5% 32.4%

Model II 0.47 0.00 2.13 ± 0.51 2.13 ± 0.51 8.5% 29.3%

Model III 0.41 −0.09 2.25 ± 0.55 2.25 ± 0.54 17.8% 29.5%

Model IV 0.47 −0.01 2.33 ± 0.51 2.32 ± 0.51 5.7% 41.6%

Model V 0.51 −0.08 2.34 ± 0.52 2.32 ± 0.51 7.5% 44.9%

H.2 Model I 0.40 −0.02 2.21 ± 0.28 2.00 2.21 ± 0.28 2.00 43.0% 95.0%

Model II 0.38 −0.02 2.13 ± 0.28 2.13 ± 0.28 35.2% 93.9%

Model III 0.24 −0.12 2.06 ± 0.28 2.06 ± 0.28 38.6% 94.2%

(Continues)
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proportion of networks that found nonzero relative treatment
effects. In the next sections, we provide some additional
results for some of the scenarios.

4.6.2 | Reversal of effects

For scenarios G, where all treatments were assumed to be
differently effective, we calculated the percent of estimates
for which the 95% CrI did not include zero, but showing a
wrong direction of effects (eg, when treatment 2 was found
to be worse than treatment 1, although in truth it was better).
For scenario G.1, using model I, we found that 1.1% of all
estimated treatment effects across all datasets showed a
reversed effects. For all other models, this was below 0.00%.
Similarly, for G.2, the percentages were 0.03%, 0.00%,
0.02%, 0.00%, and 0.06% for models I to IV, respectively.
These results highlight another possible advantage of model-
ling treatment effects exchangeably.

4.6.3 | Treatment rankings

In all scenarios of simulation study 1, due to the way we
generated the data in this scenario treatments were identical.
Thus, we would ideally like to see on average small differ-
ences between the maximum and minimum SUCRA value
in each NMA. This, however, was not the case for model
I. For example, in Scenario A.1, the mean value for the max-
imum SUCRA was 0.84 (ranging from 0.63 to 1.00), while
for the minimum SUCRA 0.16 (from 0.00 to 0.39). Using
model I with informative priors instead, SUCRA values were
largely unaffected. Conversely, with model II, max
(SUCRA) was 0.72 (0.56 to 0.97) and min (SUCRA) was
0.27 (0.02 to 0.46); with model III, max (SUCRA) was 0.67
(0.54 to 0.95), and min (SUCRA) was 0.32 (0.05 to 0.47).

4.6.4 | Further findings

Aiming to show the equivalence between model I with flat
priors and model II in scenario C, we calculated the mean
absolute difference of the estimated treatment effects across
all datasets between these two models, and we found it to be

0.002. The mean absolute difference of the corresponding
standard deviations was 0.001. These results confirm what
we theoretically anticipate, ie, models I and II are equivalent
when T = 2.

5 | APPLICATION TO REAL
DATASETS

5.1 | Antidepressants

We used the data from Cipriani et al8 to fit the usual random
effects NMA model I. Following the original publication, we
chose fluoxetine to be the reference treatment for the model.
We also fitted the symmetric random-effects NMA model
III. We opted for the symmetric model because there was no
placebo or other obvious control treatment in the network.
We fitted the models in R, using the rjags package. For
both models, we used τ�U(0,3) as a prior for the standard
deviation of random effects. For model III, we assumed
μd�N(0,1) and τd�N(0,1)I(0, ), ie, the positive part of
N(0,1). We used two independent chains per analysis, and
we performed 50 000 iterations per chain, discarding the first
15 000.

In both models, the posterior median for τ was 0.11 [95%
CrI 0.01; 0.20]. For model III, τd was estimated as 0.23
[0.12; 0.44]. All results regarding relative treatment effects
are shown in Table 4. As expected, model III pulled esti-
mates towards the null, ie, it was more conservative. Taking
for example mirtazapine vs reboxetine, model I estimated an
odds ratio (OR) 2.04 [1.52; 2.78], while model III gave 1.61
[1.19; 2.22]. Similarly, for fluvoxamine vs mirtazapine, the
standard model estimated 0.71 [0.55; 0.93], while the new
model 0.78 [0.61; 0.97]. The ranking of the treatments based
on the SUCRA values was very similar in the two models
and is shown in Table 5.

Based on the results of Table 4, we conclude that there is
a strong evidence of difference in efficacy between some of
the antidepressants. These results are unlikely to be false
findings due to multiplicity.

In a series of sensitivity analysis, we (a) fitted the stan-
dard NMA model I after choosing a different treatment to be

TABLE 3 (Continued)

# Model

Mean Absolute
Error (Basic
Parameters)

Mean Bias
(Basic
Parameters)

Best vs Worst
Treatment

Best vs Reference
Treatment

% of NMAs Showing
with Confidence
Nonzero Treatment
Effects Among
Equally Effective
Treatments Power

Mean
Estimate
± SD

True
Value

Mean
Estimate
± SD

True
Value

Model IV 0.37 −0.03 2.07 ± 0.25 2.07 ± 0.25 6.5%

Model V 0.42 −0.15 1.96 ± 0.26 1.96 ± 0.26 16.7% 97.2%
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the reference, and with τ�U(0,5); (b) fitted model III using
less informative prior distributions: τ�U(0,5), μd�N(0,10),
and τd�U(0,2); and (c) fitted the random-effects version of
model II. These sensitivity analyses did not give substan-
tially different results for most comparisons. In practice, one
might want to perform additional analyses using models IV
and/or V, after splitting the drugs into classes. However,
given that the main focus of this paper is on the methods, we
did not pursue this any further.

We provide the code and data that we used for model
fitting both for R and for OpenBUGS35 in https://github.
com/esm-ispm-unibe-ch-REPRODUCIBLE/the_dark_side_
of_the_force.

5.2 | Neuroleptic drugs

We used the data by Klemp et al20 described in Section 2.2
to first fit the usual random effects NMA model I. We also
fitted our NMA model II. We chose model II over the sym-
metric model III, because in this example there was an obvi-
ous control treatment in the network, ie, placebo. We fitted
the models the same way as in Section 5.1.

The estimate for τ was similar in the two models. In the
standard model, it was 0.20 [0.02; 0.41], while in model II it
was 0.22 [0.03; 0.42]. In model II, τd was estimated 0.09
[0.01; 0.74], and μd was 0.87 [0.45; 1.26]. The estimated
treatment effects are shown in Table 6. In both models, all
drugs were shown to be more efficacious than placebo.
However, results from model II pointed to smaller differ-
ences between some of the active treatments. For example,
the OR for aripiprazole vs clozapine was 0.63 [0.40; 1.00]
using the standard model, while using model II it was esti-
mated to be 0.73 [0.47; 1.09]. This highlights that model II
might be more conservative in identifying differences
between active treatments. The ranking of the treatments was
unchanged using the two models and is shown in Table 7.

6 | DISCUSSION

In this paper, we highlighted the possible implications of the
multiplicity issue in NMA. We presented the problems asso-
ciated with multiplicity using both theoretical arguments as
well as simulations. We showed that the model commonly
used for NMA may give exaggerated estimates of the effects
of the treatment identified to be the best in the network. It
may also be associated with a high probability of (falsely)
showing differences between treatments, when actually there
is none.

The problems stem from the fact that the NMA model
simultaneously estimates tens (or even hundreds, depending
on the network size) of relative treatment effects. By chance
alone, some of these estimates may be very large. Any

TABLE 5 Ranking of antidepressants using SUCRA values

Drug Model I Model III

Mirtazapine 0.91 0.89

Escitalopram 0.87 0.88

Venlafaxine 0.82 0.82

Sertaline 0.77 0.77

Citalopram 0.52 0.54

Bupropion 0.48 0.43

Milnacipran 0.36 0.40

Paroxetine 0.35 0.32

Fluvoxamine 0.31 0.32

Duloxetine 0.31 0.31

Fluoxetine 0.30 0.30

Reboxetine 0.00 0.02

TABLE 6 Results for the neuroleptic drugs network. All relative treatment effects are ORs for response (and 95% credible intervals). Lower
triangle: estimates from the standard NMA model I. OR > 1 favours the column-defining treatment. Upper triangle: estimates from model II. OR >
1 favours the row-defining treatment

Aripiprazole 0.73[0.47; 1.09] 1.18[0.86; 1.61] 0.78[0.56; 1.05] 2.13[1.59; 2.86] 0.77[0.56; 1.04]

0.63[0.40; 1.00] Clozapine 1.64[1.05; 2.44] 1.06[0.78; 1.49] 2.94[2.00; 4.35] 1.05[0.76; 1.49]

1.20[0.83; 1.69] 1.89[1.27; 2.78] Haloperidol 0.65[0.51; 0.92] 1.79[1.33; 2.50] 0.64[0.49; 0.93]

0.73[0.52; 1.02] 1.15[0.80; 1.67] 0.60[0.48; 0.79] Olanzapine 2.78[2.04; 3.70] 0.99[0.79; 1.23]

2.08[1.54; 2.86] 3.33[2.17; 5.00] 1.75[1.30; 2.38] 2.86[2.17; 3.85] Placebo 0.36[0.27; 0.48]

0.72[0.51; 1.00] 1.14[0.78; 1.64] 0.60[0.46; 0.79] 0.99[0.78; 1.23] 0.34[0.26; 0.45] Risperidone

TABLE 7 Ranking of neuroleptic drugs using SUCRA values

Drug Model I Model II

Clozapine 0.90 0.84

Risperidone 0.76 0.77

Olanzapine 0.73 0.75

Aripiprazole 0.39 0.41

Haloperidol 0.23 0.23

Placebo 0.00 0.00
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selection procedure following the estimation (eg, identifying
the best ranking treatment, or focusing on “statistically sig-
nificant” results) will lead to exaggerated findings. These
issues will be more pronounced when the number of treat-
ments in the network is large.

In this paper, we discussed how a set of alternative
Bayesian NMA models can be used to address problems
associated with multiplicity. The key difference between
these models and the standard NMA approach is that the for-
mer model treatment effects exchangeably, ie, assuming that
the true effects of the treatments are realizations of one or
more common underlying normal distributions. This small
modification to the standard NMA model is enough to miti-
gate the multiplicity issue. The price to pay is a possible
decrease in the statistical power to detect differences
between treatments assumed to be similar (although there
might be an increase in the power to detect differences
between nonsimilar treatments).

Simulations showed that in a range of different scenar-
ios, our models had a better performance than the standard
model. The latter gave in almost all cases the larger mean
absolute error regarding the estimates of the basic parame-
ters; it gave the most exaggerated estimates regarding the
relative effects of the best treatment vs the reference, and
best vs worst treatment. Also, it was worse in terms of the
trade-off between false positives (falsely identifying differ-
ences among equally effective treatments) and power. Eg,
in scenario E.1 (star network, all treatments had equal
effects vs the reference), when we switched from model I
to model II, we saw that the effects of the best treatment vs
reference were estimated with a much smaller error, power
almost doubled (from 37% to 69%), while false findings
reduced from 55% to 3%. Likewise, in scenario G.1, where
all treatments were generated to have different effective-
ness, exaggeration of effects was much more pronounced
in model I, while power was more or less similar across all
models.

One limitation of our simulations is that we did not
include scenarios with multi-arm studies. Note however that
the problems with multiplicity arise in NMA when some
form of selection among the estimated effects is performed,
regardless of whether these estimates used data from multi-
arm studies. At the same time, as we saw in simulations,
when the network includes a lot of information (eg, when it
is more densely connected), the exaggeration of the effect of
the best treatment is expected to be smaller. In that sense,
keeping the number of studies and number of patients per
study-arm constant, networks with multi-arm trials are
expected to give less exaggerated effects than networks with
two-arm studies only. Also, let us note that the power rates
we found for some of the scenarios are unrealistically large.
This was an artefact of the (arbitrary) choices for the data

generating mechanisms, and the fact that for some scenarios
we considered fully connected networks. In practice, it is
rather unlikely that a network of 10 treatments will ever be
fully connected, and the high power we showed in some sce-
narios should not be interpreted as a general feature of
NMA. In addition, readers should keep in mind that the aim
of our simulations was to compare the relative performance
of the models, not to assess the absolute power of NMA in
usual conditions of data availability.

The practice of dichotomizing evidence according to
“statistical significance” has been heavily criticized lately.
We also think that researchers should abstain from character-
izing evidence as statistically significant or not, and we
showed in our simulations that this practice can be especially
problematic in NMA, for all models we used. However, as
we presented in this article, the multiplicity issue in NMA is
not limited to multiple testing. Thus, although dropping the
notion of statistical significance is a step in the right direc-
tion, it is by itself not enough to safeguard us against all mul-
tiplicity issues in NMA. In this paper, we showed how
utilizing prior information regarding similarities among
treatments can help address the issue and possibly lead to
more trustworthy NMAs.

One important aspect of our models is that they require
some subjective decisions to be made. The decision of which
treatments to include in the network (or how to group treat-
ments in models IV and V) may be more important in our
models as compared with standard NMA. Eg, with model II,
including in the network an older drug that is less efficacious
might lead to more conservative estimates about the newer
drugs. In this scenario, however, if the older drug is substan-
tially different from the newer drugs (eg, in terms of the mol-
ecule structure), it might make more sense to include it in a
separate class, ie, using model IV.

Also, the assumption of exchangeability of treatment
effects might be subject to criticism, eg, in cases where
drugs use different biological pathways. Furthermore,
exchangeability might be a difficult concept to convey to cli-
nicians. One approach might be to ask questions such as

“You are trying to assess treatment X, and you are told
that treatment Y is effective/ineffective/safe/unsafe. Would
this information about Y impact your judgement about X?”

“You are trying to assess treatment X, and you are told
that one of the other treatments in the network is
effective/ineffective/safe/unsafe. Would you need to know
which other treatment it was?”

Answers “yes” and “no,” respectively, would support
an exchangeability assumption. Decisions about exchange-
ability among treatments need to be taken a priori, by
content experts, taking into account existing knowledge
about the nature of treatments (and not the results of the
studies in the network). Moreover, these decisions should
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be clearly reported and justified, preferably in the protocol
stage of the review. Of course a Bayesian analysis will
always include some level of subjectivity, but to our view
this is not a disadvantage, as long as all decisions are
transparent.

An obvious question at this point is whether one should
prefer one of our NMA models for the primary analysis, over
the standard NMA model. We think that whenever there is
prior knowledge regarding possible similarities among some
of the treatments in the network, our models should be con-
sidered. The answer might also depend on the nature of the
research question. For example, for the case of a NMA of a
serious safety outcome (eg, mortality), where several drugs
are compared with placebo, researchers might be more inter-
ested in increasing the power to detect differences vs pla-
cebo, rather than between drugs. In such case, our models
might be more appropriate to use.

Another case where our models might be very useful is
when for some treatments there is limited and/or biassed
evidence. Imagine that there is available only a single study,
or a few small studies, of a new drug vs placebo. Assume
that in these studies, due to publication bias (or due to other
biases, or due to chance alone), the effect of the new drug
is grossly exaggerated. This may be a relatively common
situation; Fanelli et al showed that earlier studies often
show inflated results.36 In a case like this, the standard
NMA model may identify this drug as being the best in the
network and may estimate large treatment effects vs all
other drugs. Conversely, our models will give less biassed
estimates in this scenario, by pushing the effectiveness of
this drug towards the mean effectiveness of the rest of
the drugs.

The models we have described could be further extended
for the case when we have information about predictors at
the level of the treatments. Eg, let us assume that we have a
network of similar drugs being compared with placebo, and
that there is available information regarding a treatment char-
acteristic that is expected to affect the outcome, such as the
duration of the treatment. In that case, instead of pulling the
treatment effects towards the overall mean, we could use a
multilevel regression model to pull treatment effects towards
the regression line. In cases where treatments in the network
cannot be assumed similar (so that our hierarchical models
cannot be used), we think that the considerations presented
in this paper can still be useful in highlighting the potential
issues with performing a NMA to identify the best per-
forming treatment and also in using the concept of statistical
significance in NMA.

To summarize, we think that the models we proposed are
a useful addition to a network meta-analyst's arsenal of sta-
tistical methods, and that in several scenarios they should be
preferred over the standard NMA model.

DATA AVAILABILITY STATEMENT

We provide the code and data that we used for model fitting
both for R and for OpenBUGS35 in https://github.com/esm-
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