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Abstract. We integrate into a single optimization problem a risk measure, beyond
the variance, and either arbitrage free real market quotations or financial pricing rules
generated by an arbitrage free stochastic pricing model. A sequence of investment
strategies such that the couple (expected-return,risk ) diverges to (+∞,−∞) will be
called a good deal. The existence of such a sequence is equivalent to the existence
of an alternative sequence of strategies such that the couple (risk,price) diverges to
(−∞,−∞). Moreover, by appropriately adding the riskless asset, every good deal may
generate a new one only composed of strategies priced at one.

We will see that good deals often exist in practice, and the main objective of this
paper will be to measure the good deal size. The provided good deal indices will
equal an optimal ratio between both risk and price, and there will exist alternative
interpretations of these indices. They also provide the minimum relative (per dollar)
price modification that prevents the existence of good deals. Moreover, they will be
a crucial instrument to detect those securities or marketed claims which are over- or
under-priced.

Many classical actuarial and financial optimization problems may generate wrong
solutions if the used market quotations or stochastic pricing models do not prevent
the existence of good deals. This fact is illustrated in the paper, and we point out
how the provided good deal indices may be useful to overcome this caveat. Numerical
experiments are included as well.

1 Introduction

The use of risk functions beyond the variance is becoming more and more fre-
quent in both actuarial and financial studies. Nevertheless, when the most im-
portant arbitrage free pricing models of financial economics (binomial, trinomial
trees, Black and Scholes, stochastic volatility, etc.) and the most important risk
functions (V aR, CV aR, weighted−CV aR, robust−CV aR, spectral measures,
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etc.) are combined in a single problem, one often faces the existence of sequences
of investment strategies (good deals, or GD) whose pairs (expected-return,risk)
diverge to (+∞,−∞). The existence of GD is equivalent to the existence of
alternative sequences of investment strategies whose pairs (risk,price) diverge
to (−∞,−∞). This pathological finding has been analyzed in Balbás and Bal-
bás (2009) and Balbás et al. (2016a), where explicit examples of the sequences
above have been constructed and their performance empirically tested. The
main conclusion was that the divergence of (expected-return,risk) to (+∞,−∞)
is more theoretical than real, but the performance of the constructed GD was
good enough. TheGD were collections of options providing much better realized
Sharpe ratios than their underlying assets.
In this paper we will deal with a couple (ρ,Π) composed of the risk measure

ρ and the pricing rule Π. The pair (ρ,Π) will be called non compatible if it
implies the existence of a GD, and the main objective of this paper will be the
measurement of the GD size by means of a new index denoted by Ñ or Ñ (ρ,Π).
An important precedent in financial theory is the notion of arbitrage. Though
the absence of arbitrage always holds in theoretical approaches, real market quo-
tations sometimes reflect the existence of arbitrage. For this reason some years
ago many authors defined several measures of the arbitrage size. This allowed
them to address interesting questions such as pricing and hedging issues under
transaction costs, cross-market arbitrage, integration between markets, trading
systems, valuation of embedded derivatives, etc. Similarly, the existence of GD
(or the lack of compatibility) must be measured now, because in some sense
it indicates an important lack of balance between the risk that the investor is
facing and the wealth that he/she is expecting. As we will see, these unbalanced
situations may lead to wrong decisions in several fields. For instance, managers
could pay too high prices or compose ineffi cient portfolios, and insurers could
buy non-optimal reinsurance contracts or receive insuffi cient premiums.
The arbitrage measurement has been addressed from several perspectives.

One of them was related to the capital profits generated by an arbitrage strategy
(Balbás et al., 1999). Nevertheless, if the arbitrage strategy can be repeated
time and again, the arbitrage profit will be multiplied time and again also, and
therefore it will become infinity. To prevent this caveat Balbás et al. ( 1999)
measure the arbitrage level as the maximum ratio between the arbitrage income
and the value of the sold assets, i.e., these authors give a relative measure of
the arbitrage degree. Similarly, when (risk,price) diverges to (−∞,−∞) we
will need to maximize the risk/price ratios, otherwise we will face unbounded
optimization problems.
A risk/price ratio is an objective function which does not satisfy many desir-

able analytical properties (continuity, convexity, differentiability, etc.), therefore
its optimization can be simplified by dealing instead with vector optimization
problems involving both risk and price. Since Harry Markowitz published his
seminal results, it is known that multiobjective analyses are useful in many
financial topics. In particular, for portfolio selection several interesting ap-
proaches exist, such as Ballestero and Romero (1996), Ballestero et al. ( 2012),
Dash and Kajiji (2014), among others. With respect to the simultaneous opti-
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mization of both risk and price, we apply well-known results to optimize “risk”
under constraints for “price”(Sawaragi et al., 1985).
The paper outline is as follows. Section 2 sets notations and lists assump-

tions. The index (or measure) Ñ (ρ,Π) is derived in Section 3. The first ap-
proach will apply when no theoretical pricing model is considered, and only a
finite collection of available securities and their market quotations are involved.
The advantage of this approach is clear, since it is suffi cient to choose a robust
(or ambiguous) risk function ρ for the value of Ñ to be model-independent.
Beyond the optimal risk/price ratio, there is a second (or dual) interpretation
of Ñ that must be highlighted. Ñ coincides with the minimum relative (per
dollar) price modification leading to a GD−free market. Moreover, the dual
approach permits an investor to identify the over-priced securities (to be sold
so as to create a GD) and the under-priced ones (to be bought). Modifying the
prices according to the value of Ñ , guarantees the GD absence. A numerical
example illustrates all the theoretical findings. In particular, it shows how easily
GD’s arise in real markets, how to implement a GD, and how prices must be
modified.
The second approach replaces real market quotations with pricing rules gen-

erated by a complete and arbitrage free stochastic pricing model. Completeness
may be relaxed also, as will be indicated. Both the primal (optimal risk/price
ratios) and the dual (minimum relative price modifications) interpretations of
Ñ still apply, but important differences with respect to the model-independent
approach will be also found. Indeed, if the stochastic discount factor (SDF ,
also called pricing kernel, Duffi e, 1988) of the pricing rule Π is not essentially
bounded, and the sub-gradient of the risk function ρ is composed of essentially
bounded random variables, then the existence of a GD is guaranteed, and the
value of Ñ (ρ,Π) will be strictly higher than one. In other words, some mar-
keted claims have a current price which should be modified more than 100%.
Otherwise the lack of compatibility will remain. This seems to be an important
finding because it shows that some marketed claims will be impossible to price
correctly with standard pricing methods. This could explain some empirical
caveats affecting the price of several securities, including vanilla options (Bon-
darenko, 2014). As in the model-independent case, we analyze some important
examples. In particular, we present a complete analysis involving the Black and
Scholes model and the CV aR.
The presence of a GD may provoke irrational solutions in many classical

problems involving prices and risk functions. Section 4 is devoted to illustrating
it with some particular actuarial examples (optimal reinsurance, premium cal-
culation) and some financial examples (asset allocation, risk management). This
section is merely illustrative, we do not claim to fully address the solution of the
caveats presented. To do so would lengthen substantially the paper. Beyond
the presented examples, the Ñ index could be applied to address topics that
were studied years ago by means of the arbitrage measurement, such as market
integration, valuation of embedded options, trading systems, etc. Therefore, the
GD size measurement may open new research lines in finance, insurance, and
fields related to prices, risks and returns.
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The last section gives the main conclusions of the paper.

2 Preliminaries and Notations

Consider the probability space (Ω,F , IP) composed of the set of “states of the
world”Ω, the σ−algebra F and the probability measure IP. Denote by IE (y)
the mathematical expectation of every IR−valued random variable y defined
on Ω. Denote by L2 the Hilbert space of random variables y on Ω such that
IE
(
y2
)
< ∞, endowed with the inner product (x, y) → IE (xy) and the norm

‖y‖2 =
(
IE
(
y2
))1/2

. Let [0, T ] be a time interval. From an intuitive point
of view, one can interpret y ∈ L2 as representing the portfolio pay-off at T
for some arbitrary investor (finance), or claims within [0, T ] for some arbitrary
insurer (insurance). Throughout this paper y will represent the random wealth
at T , although other interpretations would not modify our main conclusions.
If ρ : L2 −→ IR is a risk measure then ρ (y) may be understood as the “risk”
associated with the wealth y. Let us assume that ρ satisfies a representation
theorem in the line with Artzner et al. (1999) or Rockafellar et al. (2006). More
precisely, consider the sub-gradient of ρ

∆ρ =
{
z ∈ L2;−IE (yz) ≤ ρ (y) ,∀y ∈ L2

}
⊂ L2 (1)

composed of those linear expressions lying lower than ρ. ∆ρ is convex and
weakly−compact (Schaeffer, 1970) and ρ is its envelope, in the sense that

ρ (y) = Max {−IE (yz) ; z ∈ ∆ρ} (2)

holds for every y ∈ L2. Furthermore, we assume also that

{1} ⊂ ∆ρ ⊂
{
z ∈ L2; IE (z) = 1

}
(3)

and
∆ρ ⊂

{
z ∈ L2; IP (z ≥ 0) = 1

}
. (4)

These assumptions are equivalent to the usual properties of norm-continuity,
sub-additivity, homogeneity, mean dominance, translation invariance and mono-
tonicity. To sum up, we have the following.

Assumption 1 ρ : L2 −→ IR is norm-continuous, sub-additive ( ρ (y1 + y2) ≤
ρ (y1)+ρ (y2) if y1, y2 ∈ L2), positively homogeneous ( ρ (αy) = αρ (y) if y ∈ L2

and α ≥ 0), mean dominating ( ρ (y) ≥ −IE (y) if y ∈ L2), translation invariant
( ρ (y + k) = ρ (y) − k if y ∈ L2 and k ∈ IR) and decreasing ( ρ (y1) ≤ ρ (y2) if
y1, y2 ∈ L2 and IP (y1 − y2 ≥ 0) = 1). �

Consider a closed sub-space Y ⊂ L2 of reachable pay-offs. It includes many
cases. For instance, we can consider that there exists a set T ⊂ [0, T ] of trad-
ing dates, a filtration (Ft)t∈T such that F0 = {∅,Ω} and FT = F , and a
IRm+1−valued adapted price process S = (S0, S1, . . . , Sm) such that every y ∈ Y
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is a marketed claim (or a final wealth replicated by means of a self-financing
portfolio adapted to the filtration). As a second example, we can deal with
a static approach such that T = {0, T} and Y is a finite-dimensional space
generated by m + 1 securities {S0, S1, . . . , Sm} ⊂ L2 available in the market.
Consider also a linear and continuous pricing rule Π : Y −→ IR providing us
with the price Π (y) of every y ∈ Y at t = 0. Under the first framework above
Π (y) coincides with the initial price of the self-financing portfolio leading to the
pay-off y (notice that the absence of arbitrage implies that two adapted and
self-financing portfolios leading to the same pay-off will have the same initial
price). Under the second framework we can consider that Π (y) is just a trivial
linear expression of the initial prices of the available assets. We will assume the
existence of a riskless asset (1 ∈ Y ) and a null interest rate, i.e.,

Π (1) = 1. (5)

Obviously, these assumptions are not at all restrictive. In particular, (5) can be
easily achieved by the usual normalization method.
The properties of ρ (Assumption 1) and Π allow us to establish Proposition

1 below. We will omit the proof because it is similar to one that can be found
in Balbás and Balbás (2009).

Proposition 1 The following statements are equivalent;
a) There exists a sequence (yn)

∞
n=1 ⊂ Y such that Π (yn) ≤ 0, n = 1, 2, . . .

and limn→∞ρ (yn) = −∞.
b) For every a ∈ IR there exists a sequence (yn)

∞
n=1 ⊂ Y such that Π (yn) ≤ a,

n = 1, 2, . . . and limn→∞ρ (yn) = −∞.
c) There exists a sequence (yn)

∞
n=1 ⊂ Y such that ρ (yn) ≤ 0, n = 1, 2, . . .

and limn→∞Π (yn) = −∞.
d) For every a ∈ IR there exists a sequence (yn)

∞
n=1 ⊂ Y such that ρ (yn) ≤ a,

n = 1, 2, . . . and limn→∞Π (yn) = −∞.
e) There exists a sequence (yn)

∞
n=1 ⊂ Y such that limn→∞ρ (yn) = −∞ and

limn→∞Π (yn) = −∞. �

Let us now recall the notion of “compatibility”of Balbás and Balbás (2009).

Definition 2 The couple (ρ,Π) is said to be non-compatible if any of a), b), c),
d) or e) above hold. �

Remark 3 Suppose that (ρ,Π) is non-compatible. Consider the sequence

(yn)
∞
n=1 ⊂ Y

of Proposition 1a. The price of the sequence (yn −Π (yn) + 1)
∞
n=1 remains equal

to 1 (see (5)), i.e.,

Π (yn −Π (yn) + 1) = 1, n = 1, 2, . . . (6)

The risk function satisfies (see Assumption 1)

ρ (yn −Π (yn) + 1) = ρ (yn) + Π (yn)− 1 ≤ ρ (yn)→ −∞. (7)
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Bearing in mind that ρ is mean-dominating, the expected value of yn−Π (yn)+1
satisfies

IE (yn −Π (yn) + 1) ≥ −ρ (yn −Π (yn) + 1)→ +∞. (8)

Combining (6), (7) and (8) we have a sequence of investment strategies whose
risk goes to minus infinity while its expected return goes to plus infinity. �

The “pathology”presented in Remark 3 is not at all strange in asset pricing.
As illustrated by Balbás et al. (2016a), the most common arbitrage-free pricing
models (Black and Scholes, Heston, etc.) reproduced this anti-intuitive behavior
when combined with the most popular coherent risk measures (CV aR, weighted
CV aR, etc.) or the V aR risk measure (despite the fact that V aR does not sat-
isfy Assumption 1). Furthermore, this caveat may also arise if one incorporates
ambiguity in the pricing model (i.e., IP is not perfectly known) and deals with
robust risk measures (Balbás et al., 2016b). Henceforth, strategies producing
the pathology above will be called good deals in this paper.

Definition 4 The sequence (yn)
∞
n=1 ⊂ Y is said to be a GD if all the following

conditions hold:  Π (yn) = 1, n = 1, 2, . . . ,
IE (yn)→ +∞,
ρ (yn)→ −∞.

(9)

�

Remark 5 Keeping in mind Remark 3, it is obvious that (ρ,Π) is compatible
if and only if there is no GD. �

3 Good Deal Indices

A critical assumption in financial theory is the absence of arbitrage in real
markets and asset pricing models. Since real market data sometimes exhibit the
existence of arbitrage, a major topic in finance 20 years ago was the measurement
of the arbitrage size (Prisman, 1986, Davis et al., 1993, Kamara and Miller, 1995,
Chen and Knez, 1995, Kempf and Korn, 1998, etc.). This allowed the authors
to address several interesting questions such as pricing and hedging issues under
transaction costs, cross-market arbitrage, integration between markets, trading
systems, etc. Similarly, the existence of a GD (or the lack of compatibility)
must be measured, because in some sense it indicates a lack of balance between
the risk that the investor is facing and the wealth that he/she is expecting.
As we will see, these unbalanced situations may lead to wrong decisions in
several fields. For instance, investors could end-up paying over-expensive prices
or compose ineffi cient portfolios, and insurers could end-up buying non-optimal
reinsurance contracts or receive insuffi cient premiums.
Going back to arbitrage measurement, we see that different approaches have

been proposed. Some were related to the fundamental theorems of asset pricing
(Chen and Knez, 1995), others were justified by means of micro-structure models
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(Kempf and Korn, 1998), etc. The methodology of Balbás et al. (1999) and
(2000) was related to the profits generated by the arbitrageur. We will be
inspired by this approach in order to measure the GD size, since it will enable
a measure in monetary terms.
If an arbitrage strategy is available and we do not impose any constraint,

then it is easy to prove that the absolute available arbitrage profit becomes
unbounded. For that reason Balbás et al. (1999) measured arbitrage in relative
terms, or by mean of ratios. This caveat also applies when measuring the GD
size. Indeed, Proposition 1 shows that for negative prices one can construct
strategies whose risk goes to minus infinity (Proposition 1a), while for negative
risks one can obtain “infinite profits”(Proposition 1c). Hence, we will propose
relative measures here as well. More accurately, we will measure with respect
to the market value of the sold assets or, equivalently, we will impose a short
position lower than one dollar.

Remark 6 Since both ρ and Π are positively homogeneous, the existence of a
strategy y ∈ Y such that Π (y) ≤ 0 and ρ (y) < 0 will imply that Π (αy) ≤ 0 and
limα→+∞ρ (ay) = −∞, and the caveat of Proposition 1a will hold. Therefore,
the fulfillment of the implication

y ∈ Y, Π (y) ≤ 0 ⇒ −ρ (y) ≤ 0 (10)

is a necessary and suffi cient condition to prevent the existence of a GD. �

3.1 Market data linked indices

In the first approach we will consider a finite set of available securities

{S0, S1, . . . , Sm} ⊂ L2,

S0 = 1 denoting the riskless asset. We will assume that {S0, S1, . . . , Sm} are
linearly independent1 , and their current prices p0 = 1, p1, . . . , pm are observable
in the market. In order to prevent some mathematical problems, along with
Assumption 1, in this section we impose the following assumption.

Assumption 2 IP (Sj ≥ 0) = 1, j = 1, 2, . . . ,m. Consequently, the absence of
arbitrage implies that pj > 0, j = 1, 2, . . . ,m. �

The closed sub-space Y ⊂ L2 will be the linear manifold generated by the
m+ 1 available assets, and the pricing rule Π will be the obvious one:

Π

 m∑
j=0

yjSj

 =

m∑
j=0

yjpj . (11)

1 i.e., there are no non-trivial linear combinations leading to the null asset, or, equivalently,
the range of the covariance matrix of {S1, S2, . . . , Sm} equals m.
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Our index Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
of the GD size is defined as the optimal value

of the following optimization problem2 :

Max − ρ

 m∑
j=0

(xj − yj)Sj




m∑
j=0

pjyj ≤ 1,

m∑
j=0

(xj − yj) pj ≤ 0,

xj , yj ≥ 0, j = 0, 1, . . . ,m,

(12)

where
(

(xj)
m
j=0 , (yj)

m
j=0

)
∈ IRm+1×IRm+1 is the decision variable. The interpre-

tation of (12) is as follows. Every portfolio x− y = (xj − yj)mj=0 is represented
by the vector of purchases x = (xj)

m
j=0 and the vector of sales y = (yj)

m
j=0. The

first constraint imposes a short position lower than 1 dollar (as justified above)
and the second one imposes a non-positive global price. Thus, if the desired
implication (10) were to hold, then the objective function could not be positive,
and the objective maximum value would be reached at x = y = 0 and would

equal Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= 0. The failure of (10) would lead to a positive

value of Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
. More precisely, we have the following result.

Proposition 7 Problem (12) is feasible, bounded and solvable3 , with an optimal
value Ñ

(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
≥ 0. Furthermore, (ρ,Π) is compatible (or GD

free, Remark 5) if and only if Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= 0.

Proof. The objective function is obviously continuous (see Assumption 1) and
the feasible set is obviously non-void (x = y = 0 satisfies the problem con-
straints), bounded and closed (and therefore compact) because every pj is pos-
itive. Hence, (12) is solvable due to the Weierstrass Theorem. Since x = y = 0

is feasible and ρ (0) = 0, the inequality Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
≥ 0 becomes

obvious.
Suppose that Ñ

(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
> 0. Then, the solution (x∗, y∗) of

(12) satisfies

ρ

 m∑
j=0

(
x∗j − y∗j

)
Sj

 < 0

2As usual, the optimal value of a maximization (minimization) problem will be the supre-
mum (infimum) of the objective function in the feasible set. This value may become +∞
(−∞).

3An optimization problem will be said to be feasible if the constraints generate a non-
void feasible set. A feasible minimization (maximization) problem will be said to be bounded
if the objective function has a finite infimum (supremum) in the feasible set. A bounded
minimization (maximization) problem will be said to be solvable if its infimum (supremum)
value is attainable in the feasible set.
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and
∑m
j=0

(
x∗j − y∗j

)
pj ≤ 0, the implication (10) does not hold, and Remark 6

implies that there is a GD. Conversely, suppose that Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
=

0 and let us see that (10) will hold. If (10) failed then we could take y ∈ Y with
Π (y) ≤ 0 and −ρ (y) > 0. y is a linear combination of {S0, S1, ..., Sm} so

y =

m∑
j=0

(xj − yj)Sj ,

for some xj , yj ≥ 0, j = 0, 1, 2, ...,m. If
∑m
j=0 pjyj ≤ 1 then

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
≥ −ρ (y) > 0

and we have a contradiction. If
∑m
j=0 pjyj > 1 then we could take x′j =

xj/(
∑m
j=0 pjyj) and y

′
j = yj/(

∑m
j=0 pjyj), and we would have the same con-

tradiction because ρ is positively homogeneous. �

Problem (12) is concave. Bearing in mind Assumption 1, (1), (2), (3) and
(4), and proceeding as in Balbás and Balbás (2009) or Balbás et al. (2010), one
can prove the existence of a linear dual problem characterizing the solutions of
(12). Hence, let us present the result below, omitting the proof as it is similar
to the ones in the above cited references.

Theorem 8 Consider the following optimization problem

Min λ

 pjµ− IE (Sjz) ≥ 0, j = 0, 1, . . . ,m,
pj (µ− λ)− IE (Sjz) ≤ 0, j = 0, 1, . . . ,m,
λ ≥ 0, µ ≥ 0, z ∈ ∆ρ,

(13)

where (λ, µ, z) ∈ IR× IR× L2 is the decision variable.
a) Problem (13) is feasible, bounded and solvable, and the optimal values of

(12) and (13) coincide, i.e., the maximum value of (12) equals the minimum
value of (13).

b) Suppose that (x∗, y∗) is (12)-feasible and (λ∗, µ∗, z∗) is (13)-feasible. Then,
(x∗, y∗) solves (12) and (λ∗, µ∗, z∗) solves (13) if and only if the complementary
slackness conditions below hold:

m∑
j=0

(
x∗j − y∗j

)
IE (Sjz) ≥

m∑
j=0

(
x∗j − y∗j

)
IE (Sjz

∗) , ∀z ∈ ∆ρ,

λ∗
(

1−
∑m
j=0 pjy

∗
j

)
= 0,

µ∗
(∑m

j=0

(
x∗j − y∗j

)
pj

)
= 0,

x∗j (pjµ
∗ − IE (Sjz

∗)) = 0, j = 0, 1, . . . ,m,
y∗j (IE (Sjz

∗)− (µ∗ − λ∗) pj) = 0, j = 0, 1, . . . ,m.

(14)

�
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Corollary 9 Consider the following problem

Min λ

 µ− λ ≤ IE

(
Sj
pj
z

)
≤ µ, j = 0, 1, . . . ,m,

0 ≤ µ− λ ≤ 1, 1 ≤ µ, z ∈ ∆ρ.
(15)

a) Problem (15) is feasible, bounded and solvable, and the optimal values for
(12) and (15) coincide.

b) Suppose that (x∗, y∗) is (12)-feasible and (λ∗, µ∗, z∗) is (15)-feasible. Then,
(x∗, y∗) solves (12) and (λ∗, µ∗, z∗) solves (15) if and only if the complementary
slackness conditions below hold:

m∑
j=0

(
x∗j − y∗j

)
IE (Sjz) ≥

m∑
j=0

(
x∗j − y∗j

)
IE (Sjz

∗) , ∀z ∈ ∆ρ,

λ∗
(

1−
∑m
j=0 pjy

∗
j

)
= 0,

∑m
j=0 pjx

∗
j =

∑m
j=0 pjy

∗
j ,

x∗j

(
µ∗ − IE

(
Sj
pj
z∗
))

= 0, j = 0, 1, . . . ,m,

y∗j

(
IE

(
Sj
pj
z∗
)
− (µ∗ − λ∗)

)
= 0, j = 0, 1, . . . ,m.

(16)

�

Proof. Indeed, if (λ, µ, z) is (13)-feasible and λ > µ then (µ, µ, z) is feasible too
(see (4)) and the objective function decreases, so the constraint µ− λ ≥ 0 will
not be at all restrictive. Besides, (3) along with the first constraint of (13) for
j = 0 trivially lead to µ ≥ 1. Moreover, (3) along with the second constraint of
(13) for j = 0 trivially lead to µ − λ ≤ 1. Lastly, µ ≥ 1 implies that the third
condition in (14) is equivalent to the third one in (16). �

Corollary 10 (ρ,Π) is compatible if and only if there exists z∗ ∈ ∆ρ such that

IE

(
Sj
pj
z∗
)

= 1, for j = 0, 1, 2, . . . ,m.

Proof. Indeed, if (ρ,Π) is compatible then Proposition 7 shows that the solution
(λ∗, µ∗, z∗) of (15) satisfies λ∗ = 0. Thus, the constraints of (15) imply that

IE

(
Sj
pj
z∗
)

= µ∗, for j = 0, 1, 2, . . . ,m. In particular, for j = 0 we have (see (3))

1 = IE (z∗) = µ∗.
Conversely, suppose that the existence of z∗ ∈ ∆ρ holds. Then, take (x∗, y∗) =

(0, 0) and (λ∗, µ∗, z∗) = (0, 1, z∗), and it is easy to verify that they are feasible
and satisfy (16), so the optimal value of (15) will become

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= λ∗ = 0,

10



and Proposition 7 shows that (ρ,Π) is compatible. �

If (ρ,Π) is not compatible one could try to modify (pj)
m
j=0 so as to recover

compatibility. According to Corollary 9, if (λ∗, µ∗, z∗) is the solution of (15),
p∗j = IE (Sjz

∗), for j = 0, 1, 2, . . . ,m could be a good alternative. Next, let us
show that, in some sense, this is “the best alternative”, since it minimizes the
maximum relative (or per dollar) price modification.

Corollary 11 Consider a dual solution (λ∗, µ∗, z∗) and take p∗j = IE (Sjz
∗), for

j = 0, 1, 2, . . . ,m. Suppose that4

p∗j > 0, j = 0, 1, . . . ,m. (17)

Then:
a) p∗0 = 1.

b) Ñ
(
ρ, (Sj)

m
j=0 ,

(
p∗j
)m
j=0

)
= 0, i.e., if Π∗ is given by Π∗

(∑m
j=0 yjSj

)
=∑m

j=0 yjp
∗
j then (ρ,Π∗) is compatible.

c)

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= Max

{
p∗j
pj
− p∗i
pi

; i, j = 0, 1, . . . ,m

}
. (18)

In particular,
(
p∗j
)m
j=0

= (pj)
m
j=0 if and only if (ρ,Π) is compatible.

d) Consider an arbitrary
(
p∗∗j
)m
j=0
∈ IRm+1. If p∗∗0 = 1, p∗∗j > 0, for j =

0, 1, . . . ,m, and Ñ
(
ρ, (Sj)

m
j=0 ,

(
p∗∗j
)m
j=0

)
= 0 , then

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
≤Max

{
p∗∗j
pj
− p∗∗i

pi
; i, j = 0, 1, . . . ,m

}
.

Proof. a) It trivially follows from (3).
b) It trivially follows from Corollary 10.

c) As in the proof of Corollary 10, if Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= 0 then

pj = IE (Sjz
∗) = p∗j , for j = 0, 1, 2, . . . ,m, and therefore the right hand side of

(18) equals zero too. Suppose that Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
> 0. Consider the

solutions (x∗, y∗) and (λ∗, µ∗, z∗) of (12) and (15). Obviously, (x∗, y∗) 6= (0, 0),
and the second and third conditions of (16) imply that x∗ 6= 0 and y∗ 6= 0. If
x∗j1 > 0 and y∗j2 > 0 then (16) implies that

IE

(
Sj1
pj1

z∗
)

= µ∗, IE

(
Sj2
pj2

z∗
)

= (µ∗ − λ∗) .

4 (17) will hold if IP (z∗ > 0) = 1. Analogously, if Assumption 2 is replaced by the stronger
property IP (Sj > 0) = 1, for j = 1, 2, . . . ,m, then (17) will hold because IP (z∗ ≥ 0) = 1 due
to (4) and z∗ 6= 0 due to (3). Lastly, bearing in mind the constraints of (15), (17) will also
hold if µ∗ − λ∗ > 0.
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Hence,
p∗j1
pj1
−
p∗j2
pj2

= µ∗ − (µ∗ − λ∗) = λ∗.

For an arbitrary couple (i, j), and keeping in mind the constraints of (15), we
have that

p∗j
pj
− p∗i
pi
≤ µ∗ − (µ∗ − λ∗) = λ∗.

Thus, the right hand side of (18) equals λ∗. Hence the result becomes obvious

because Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= λ∗, owing to Corollary 9a.

d) Corollary 10 implies the existence of z∗∗ ∈ ∆ρ such that p∗∗j = IE (Sjz
∗∗),

for j = 0, 1, 2, . . . ,m. It is obvious that

µ∗∗ = Max

{
IE

(
Sj
pj
z∗∗
)

; j = 0, 1, . . . ,m

}
= Max

{
p∗∗j
pj

; j = 0, 1, . . . ,m

}
µ∗∗ − λ∗∗ = Min

{
IE

(
Sj
pj
z∗∗
)

; j = 0, 1, . . . ,m

}
= Min

{
p∗∗j
pj

; j = 0, 1, . . . ,m

}
make (λ∗∗, µ∗∗, z∗∗) (15)-feasible. Therefore, Ñ

(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= λ∗ ≤

λ∗∗ = µ∗∗ − (µ∗∗ − λ∗∗), i.e.,

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
≤

Max

{
p∗∗j
pj

; j = 0, 1, . . . ,m

}
−Min

{
p∗∗j
pj

; j = 0, 1, . . . ,m

}

= Max

{
p∗∗j
pj
− p∗∗i

pi
; i, j = 0, 1, . . . ,m

}
.

�

Remark 12 Corollary 11 may be interpreted in terms of “fair prices”. Indeed,
denote by (λ∗, µ∗, z∗) a solution of (15). If (ρ,Π) is non compatible then one
can build portfolios with negative risk and zero or negative prices (Proposition
1). According to (16), this is possible if one precisely buys those securities

such that IE

(
Sj
pj
z∗
)

= µ∗ and sells those satisfying IE

(
Sj
pj
z∗
)

= µ∗ − λ∗. In

other words, according to the risk measure ρ, if IE

(
Sj
pj
z∗
)

= µ∗ (IE
(
Sj
pj
z∗
)

=

µ∗ − λ∗) then Sj is under-priced (over-priced), and, according to Corollary 11,
the new prices p∗j = IE (Sjz

∗), for j = 0, 1, 2, . . . ,m will provide us with the
lowest relative modification leading to “fair prices” (or GD−free prices). Note
that p∗j = IE (Sjz

∗) = µ∗pj ≥ pj if x∗j > 0 (p∗j = IE (Sjz
∗) = (µ∗ − λ∗) pj ≤ pj if

y∗j > 0). �
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3.2 Numerical experiment

Let us illustrate the results of Section 3.1 with a very simple example. We deal
with an arbitrage free and almost model-independent option market; we will
see that some premiums must decrease more than 0.4% in order to prevent the
existence for a GD. Furthermore, the GD is static, which means that once it
is implemented, the portfolio does not have to be rebalanced before the options
maturity5 .
As above, suppose that S0 = 1 is a riskless asset and consider a security S1

whose behavior is given by a geometric Brownian motion (GBM) with a current
price of 1, a drift of 1% and and volatility of 60%. Consider also a derivative
market where European calls can be traded. The unique maturity is 1/4 years
(three months), and the available strikes are {0.82; 0.84; 0.86; . . . ; 1.4}, i.e., the
lowest one equals 0.82, the highest one equals 1.4, and the increment between
two consecutive strikes equals 0.02. Globally, there are 32 available securities
(the riskless asset, the underlying asset and 30 European calls). Suppose that
the Black and Scholes model perfectly fits the data, i.e., all of the market prices
equal the theoretical ones given by Black and Scholes formula. Accordingly,
these are given by6 :

0.221151109; 0.207527141; 0.194479893; 0.182013559; 0.170128799
0.158822968; 0.14809037; 0.137922549; 0.12830858; 0.119235385
0.110688033; 0.102650044; 0.095103673; 0.088030189; 0.08141012
0.075223495; 0.069450051; 0.064069422; 0.059061311; 0.054405635
0.050082646; 0.046073045; 0.042358062; 0.038919533; 0.035739953
0.032802518; 0.030091156; 0.027590546; 0.025286127; 0.023164098

 .

Since the Black and Scholes model is arbitrage free, this market is arbitrage free
as well. Consider an investor who is interested in verifying the compatibility
between prices above and the CV aRα risk measure, α being the level of confi-
dence. Suppose that α = 79%. Despite the fact that this investor can verify that
the quotations above lead to a constant implied volatility σ = 0.6, and therefore
the data confirm in this case the Black and Scholes model, let us assume that
he/she is still very ambiguous with respect to that. Accordingly, he/she will ac-
cept deviations between the predictions of the log-normal distribution and the
realized value of S1 in three months. He/she considers that the error between
the probabilities of the log-normal distribution and the real probabilities may
become 100%. In other words, for every Borel subset B ⊂ IR, the real probabil-
ity of the event S1 ∈ B will be laying within the spread [0, 2IP (S1 ∈ B)], where
IP (S1 ∈ B) is the theoretical probability under log-normality. In such a case,
instead the CV aR79% risk measure, the investor will use the robust CV aR79%

5According to the empirical evidence, the available theoretical arbitrage free pricing models
have many problems to match real market prices in active and liquid derivative markets
(Bondarenko, 2014). Perhaps, the theoretical models should prevent the existence of a GD as
well.

6The given matrix provides us with the price of the 30 available European calls. Obviously,
the call price decreases as the call strike increases.
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(denoted RCV aR79%). In general,

RCV aRα (y) := Max

{
CV aR(Q,α) (y) ; 0 ≤ dQ

dIP
≤ 2

}
, (19)

where Q is a IP−continuous probability measure and CV aR(Q,α) (y) is the
CV aRα of y under Q. Balbás et al. (2016b) shows that the RCV aRα (y)
above is well defined for every y ∈ L2, along with the fulfillment of Assumption
1. Moreover the sub-gradient (1) is given by{

z ∈ L2; 0 ≤ dQ

dIP
≤ 2, 0 ≤ z ≤ 1

1− α

(
dQ

dIP

)
, IE (z) = 1

}
. (20)

It is easy to see that the set above coincides with{
z ∈ L2; 0 ≤ z ≤ 1

1− (1 + α) /2
, IE (z) = 1

}
. (21)

Since this is the sub-gradient of the CV aR(1+α)/2 risk measure (Rockafellar et
al., 2006), RCV aRα = CV aR(1+α)/2 and the high ambiguity level of this exam-
ple only implies that the level of confidence must be increased appropriately. In
particular, for α = 79% one has (1 + α) /2 = 89.5%, and our investor will verify
the compatibility between the given market and the CV aR89.5% risk measure.
The equality RCV aR79% = CV aR89.5% implies that the existence of ambi-

guity only forces a larger level of confidence. Nevertheless, it is important to
point out that we are dealing with an ambiguous setting. (19) leads to

CV aR89.5% (y) = RCV aR79% (y) = Max

{
CV aR(Q,79%) (y) ; 0 ≤ dQ

dIP
≤ 2

}
,

and therefore the GD existence for CV aR89.5% will imply the GD existence for
every CV aR(Q,79%). With the confidence level α = 79% the GD existence does
not depend on the probability measure Q, or, in other words, every found GD
will be still a GD if one makes errors when estimating the probabilities. In
this sense, the GD is model-independent, and will also satisfy Definition 4 for
models beyond the Black and Scholes one.
In order to verify the existence of GD, we can solve the linear Problem (15),

with ∆ρ given by (21) for α = 79% (see Anderson and Nash, 1987). The optimal
value becomes

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= 0.004203112 ≈ 0.42% (22)

and the existence of a GD (or the lack of compatibility, Remark 5) is implied
by Proposition 7.
Once the lack of compatibility is confirmed, (16) enables us to give an explicit

GD and the list of under-priced (over-priced) securities. In fact, it is easy to
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check that this list here is:



Assets_Sold_by_the_GD
Call_Strike_0.96
Call_Strike_1.16
Call_Strike_1.3
Call_Strike_1.36





Assets_Bought_
_by_the_GD
Riskless_Asset
Call_Strike_1
Call_Strike_1.06
Call_Strike_1.2
Call_Strike_1.28
Call_Strike_1.34
Call_Strike_1.38
Call_Strike_1.4


. (23)

Accordingly, and bearing in mind that every modification of prices preventing
the GD will conserve the same riskless rate (Corollary 11), the over-priced
securities are the European calls with strikes 0.96, 1.16, 1.3 and 1.36, while
the calls with strikes 1, 1.06, 1.2, 1.28, 1.34, 1.38 and 1.4 are under-priced
(Remark 12). The solution of (15) gives µ∗ = 1 and µ∗ − λ∗ = 0.995796888, so
(16), Corollary 11 and Remark 12 allow us to implement the minimum relative
modification of prices preventing the GD existence. The price of the seven
under-priced calls should remain the same (µ∗ = 1), while the price of the four
over-priced calls should be multiplied by 0.9958 (µ∗ − λ∗ ≈ 0.9958). Thus, in

this example Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
gives the relative price variation of the

expensive assets (see (22)). Once z∗ is known, the rest of prices should decrease
according to the results of Corollary 11. We do not address this straightforward
modification here in order to shorten the exposition7 .

7The dual solution z∗ is an exotic derivative of S1, namely,

z∗ =



9.523809524, 0.732390081 < S1 < 0.756345122
9.523809524, 0.771634941 < S1 < 0.786508847
9.523809524, 0.947638208 < S1 < 0.962000836
6.0890897, 1.006619358 < S1 < 1.022152267
9.523809524, 1.071497097 < S1 < 1.089092088
1.228932079, 1.089092088 < S1 < 1.107403466
9.091953283, 1.157082562 < S1 < 1.178912787
5.882406772, 1.227117704 < S1 < 1.25412988
3.889725707, 1.316447058 < S1 < 1.353379522
2.694707294, 1.373837141 < S1 < 1.420023944
2.634172493, 1.420023944 < S1 < 1.446520681
2.732181867, 1.446520681 < S1 < 1.509427691
0.923565011, 1.509427691 < S1 < 1.54799097
2.472733554, 1.54799097 < S1 < 1.593797149
5.22380624, 1.593797149 < S1 < 1.650491631
5.386339925, 1.837722647 < S1 < 2.085596933
0, Otherwise
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3.3 Pricing model linked indices

The approach of Section 3.1 has interesting advantages because it applies to
real market data and one does not have to impose any assumptions beyond
the absence of arbitrage. Nevertheless, there are also some drawbacks. Indeed,
the example of Section 3.2 led to two sets of under and over-priced securities,
respectively (see (23)). Suppose that we add a new call option (new strike and
same maturity) and the number of available assets becomes 33. Further assume
that the new option is again priced according to Black and Scholes formula.
Lastly suppose that we compute the new value of the GD−index Ñ , along with
the sets of under and overpriced securities. Can we guarantee that the equality
Ñ ≈ 0.42% and the conclusion of (23) will still hold? We will see that the
answer is “no”(Theorem 19), which means that the given index does not reflect
“a global maximum GD−size for the Black and Scholes model”. The given
index is model-free and based only on the available market quotations, but it
would also be interesting to give an index for the Black and Scholes pricing
model itself.
We provide a new GD−index for complete pricing models, i.e., cases such

that Y = L2. Interesting examples are, among others, the binomial model and
the Black and Scholes model. If the model is incomplete we can often assume
that there is an extension of Π to the whole space L2 which still prevents the
absence of arbitrage. This extension, still denoted by Π, implies that such in-
complete cases also fit in our general framework. The existence of the extension
holds, for instance, if the set Ω only contains finitely many states (Harrison
and Kreps, 1979). Therefore, cases such as the usual trinomial models are also
included in our analysis. If Ω contains infinitely many states then the exis-
tence of Π is also possible. For instance, though “formally”stochastic volatility
models are incomplete, in practice the existence of volatility dependent assets
is assumed, making them complete. Otherwise it would be impossible to use
these models so as to give a unique price of the usual derivatives. Further de-
tails about the existence of Π under general conditions for Ω may be found in
Luenberger (2001).
The Riesz representation theorem (Schaeffer, 1970) implies the existence of

a unique zΠ ∈ L2 such that

Π (y) = IE (yzΠ) (24)

holds for every y ∈ L2. Usually zΠ is called SDF , and it must satisfy

IP (zΠ > 0) = 1 (25)

in order to prevent arbitrage (Duffi e, 1988). Furthermore, (24) and (5) trivially
imply that

IE (zΠ) = 1. (26)

In order to prevent some mathematical problems, along with Assumption 1,
in Sections 3.3 and 3.4 we impose here also the following Assumption 3.
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Assumption 3 There exists (µ, z) ∈ IR×∆ρ such that IP (z ≤ µzΠ) = 1. �

Assumption 3 frequently holds in practice. For instance, it holds if ρ is CV aR
or weighted−CV aR and zΠ is the SDF of the binomial model, the Black and
Scholes model, or the standard complete extension of many trinomial models
or many stochastic volatility models. Though it is diffi cult to give an economic
interpretation of this technical assumption, the existence of the required (µ, z)
significantly shortens the rest of the exposition. If (µ, z) did not exist then (28)
could be unfeasible, and Theorem 13 would become much more complex. As
explained above, since the existence of (µ, z) holds for the most important risk
measures and pricing models, we have chosen to impose Assumption 3 in order
to simplify the study.
The new index Ñ (ρ,Π) of the GD size is the optimal value of the optimiza-

tion problem

Max − ρ (x− y)

 Π (y) ≤ 1,
Π (x− y) ≤ 0,
x, y ∈ L2, x, y ≥ 0.

(27)

Obviously, (27) is always feasible and Ñ (ρ,Π) ≥ 0 because (x, y) = (0, 0)
satisfies the required constraints. Next, let us give a main result whose proof is
similar to those of Theorem 8 and Corollary 9.

Theorem 13 Consider the following problem:

Min λ

{
(µ− λ) zΠ ≤ z ≤ µzΠ,
0 ≤ µ− λ ≤ 1, 1 ≤ µ, z ∈ ∆ρ,

(28)

where (λ, µ, z) ∈ IR× IR× L2 is the decision variable.
a) Problem (28) is feasible, bounded and solvable, and the optimal values of

(27) and (28) coincide.
b) Suppose that (x∗, y∗) is (27)-feasible and (λ∗, µ∗, z∗) is (28)-feasible. Then,

(x∗, y∗) solves (27) and (λ∗, µ∗, z∗) solves (28) if and only if the following com-
plementary slackness conditions hold:

IE ((x∗ − y∗) z) ≥ IE ((x∗ − y∗) z∗) , ∀z ∈ ∆ρ,
λ∗ (1− IE (y∗zΠ)) = 0,
IE ((x∗ − y∗) zΠ) = 0,
x∗ (µ∗zΠ − z∗) = 0,
y∗ (z∗ − (µ∗ − λ∗) zΠ) = 0.

(29)

�

Corollary 14 The statements below are equivalent:
a) (ρ,Π) is compatible.
b) Ñ (ρ,Π) = 0.
c) (x∗, y∗) = (0, 0) solves (27).
d) The solution (λ∗, µ∗, z∗) of (28) satisfies λ∗ = 0.
e) The solution (λ∗, µ∗, z∗) of (28) satisfies µ∗ = 1.
f) The solution (λ∗, µ∗, z∗) of (28) satisfies z∗ = zΠ.
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Proof. a) ⇒ b) If (ρ,Π) is compatible then Implication (10) holds. Thus, if
(x, y) is (27)-feasible the second problem constraint implies that −ρ (x− y) ≤ 0.
Since (0, 0) is (27)-feasible, b) becomes obvious.

b)⇒ c) (0, 0) is (27)-feasible, and −ρ (0) ≥ 0, so (0, 0) solves (27) when the
optimal objective equals 0.

c)⇒ d) If (x∗, y∗) = (0, 0) solves (27) then the optimal value of (28) vanishes.
d)⇒ e) If the optimal value of (28) vanishes, then the first constraint leads

to z∗ = µ∗zΠ. Taking expectations, and keeping in mind (3) and (26), we have
that µ∗ = 1.

e) ⇒ f) If µ∗ = 1, then the first constraint of (28) implies that z∗ ≤ zΠ.
Since both random variables have the same expectation (see (3) and (26)), we
have that z∗ = zΠ.

f)⇒ a) Suppose that z∗ = zΠ. It is very easy to verify that (x∗, y∗) = (0, 0)
and (λ∗, µ∗, z∗) = (0, 1, zΠ) are feasible and satisfy (29). If (x∗, y∗) = (0, 0)
solves (27), then (10) must hold, and therefore (ρ,Π) must be compatible (see
Remark 6). Indeed, if (10) fails because Π (y) ≤ 0 and ρ (y) < 0 for some y ∈ L2,
then (x, y) = (y+, y−) prevents (0, 0) from being a solution to (27). �

Corollary 10 has a “parallel”result in the new framework.

Corollary 15 (ρ,Π) is compatible if and only if zΠ ∈ ∆ρ.

Proof. If (ρ,Π) is compatible then Corollary 14f implies that zΠ ∈ ∆ρ. Con-
versely, if zΠ ∈ ∆ρ then the proof of the implication f) ⇒ a) in Corollary 14
applies again. �

Remark 16 Corollary 14 shows that the lack of compatibility often holds. For
instance, if ρ is the CV aR then every element in ∆ρ is essentially bounded (see
(21)), and therefore ρ will not be compatible with any pricing model whose SDF
is unbounded (Black and Scholes, stochastic volatility models in continuous time,
etc.). This result was already pointed out by Balbás et al. (2016a) and others
with different proofs. With a similar argument one can show that the weighted
CV aR (Rockafellar et al., 2006) and the robust CV aR (Balbás et al., 2016b) are
often non compatible with the usual continuous time pricing models of financial
economics. �

Next let us show that Ñ (ρ,Π) may be understood as a “minimum relative
(per dollar) price modification” preventing the existence of a GD. In order
words, let us give a result similar to Corollary 11.

Corollary 17 Consider a solution (λ∗, µ∗, z∗) of (28), suppose that IP (z∗ > 0) =
1, and take Π∗ (y) = IE (yz∗) for every y ∈ L2. Then:

a) Π∗ (1) = 1.
b) Ñ (ρ,Π∗) = 0. Thus, (ρ,Π∗) is compatible.
c)

Ñ (ρ,Π) ≥ Sup {Π∗ (x)−Π∗ (y) ; x, y ≥ 0, Π (x) = Π (y) = 1} , (30)
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and the equality holds if (27) is solvable8 . In particular, Π∗ = Π if and only if
(ρ,Π) is compatible.

d) If z∗∗ ∈ L2, IE (z∗∗) = 1, IP (z∗∗ > 0) = 1, Π∗∗ (y) = IE (yz∗∗) for
every y ∈ L2, there are no solutions to (28) whose third component is z∗∗,
and Ñ (ρ,Π∗∗) = 0 , then

Ñ (ρ,Π) ≤ Sup {Π∗∗ (x)−Π∗∗ (y) ; x, y ≥ 0, Π (x) = Π (y) = 1} . (31)

Proof. a) It trivially follows from (3).
b) If z∗ replaces zΠ in (28) then it is obvious that (λ∗ = 0, µ∗ = 1, z∗) becomes

(28)-feasible, and therefore Ñ (ρ,Π∗) = 0.
c) As in the proof of Corollary 14, if Ñ (ρ,Π) = 0 then z∗ = zΠ, and

therefore Π∗ = Π and the right hand side of (30) equals zero too. Suppose that
Ñ (ρ,Π) > 0. Take x, y ≥ 0 with Π (x) = Π (y) = 1. The constraints of (28)
imply that

µ∗ − λ∗ = (µ∗ − λ∗) IE (zΠy) ≤ IE (z∗y) ≤ µ∗IE (zΠy) ,
(µ∗ − λ∗) IE (zΠx) ≤ IE (z∗x) ≤ µ∗IE (zΠx) = µ∗.

Consequently,

IE (z∗x)− IE (z∗y) ≤ µ∗ − (µ∗ − λ∗) = λ∗ = Ñ (ρ,Π) .

Moreover, if (x∗, y∗) solves (27), the second, third, fourth and fifth equalities in
(29) lead to (recall that λ∗ > 0):

µ∗ − λ∗ = (µ∗ − λ∗) IE (zΠy
∗) = IE (z∗y∗) ,

IE (z∗x) = µ∗IE (zΠx) = µ∗.

Thus, IE (z∗x)− IE (z∗y∗) = µ∗ − (µ∗ − λ∗) = λ∗ = Ñ (ρ,Π) .
d) Suppose that (λ, µ, z∗∗) is never (28)-feasible for 0 ≤ µ−λ ≤ 1 and µ ≥ 1.

Then, for every µ ≥ 1 the inequality z∗∗ ≤ µzΠ will not hold, because if it held
then λ = µ would make (λ = µ, µ, z∗∗) (28)-feasible. Thus, for every µ ≥ 1 there
exists xµ ≥ 0 in L2 such that IE (z∗∗xµ) > µIE (zΠxµ). Moreover, IE (zΠxµ) > 0
due to (25). Replacing xµ with xµ/ IE (zΠxµ) if necessary, and still denoting xµ,
one can suppose that IE (zΠxµ) = 1 and IE (z∗∗xµ) > µ. Taking yµ = 1 (riskless
security) we have

IE (z∗∗xµ)− IE (z∗∗yµ) ≥ µ− 1,

which tends to +∞ as so does µ. Hence, the right hand side of (31) is unbounded
and (31) becomes obvious.
Suppose that (λ, µ, z∗∗) is (28)-feasible for some 0 ≤ µ − λ ≤ 1 and µ ≥ 1.

Take
µ∗∗ = Inf {µ ≥ 1; z∗∗ ≤ µzΠ} , (32)

8We see that (27) is not necessarily solvable, i.e., it does not necessarily attain its optimal
value. This is a difference between Problems (12) and (27) (Proposition 7 and Theorem 19).
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and it is obvious that
z∗∗ ≤ µ∗∗zΠ. (33)

If µ∗∗ = 1 then (33) implies that z∗∗ ≤ zΠ, and (3) and (26) will imply that
z∗∗ = zΠ. Whence, (λ∗∗ = 0, µ∗∗ = 1, z∗∗ = zΠ) would solve (28), contradicting
the assumptions. Thus,

µ∗∗ > 1. (34)

Take
λ∗∗ = Inf {λ; 0 ≤ µ∗∗ − λ ≤ 1, (µ∗∗ − λ) zΠ ≤ z∗∗} . (35)

The set above is non void because it obviously contains λ = µ∗∗. Furthermore,

0 ≤ µ∗∗ − λ∗∗ ≤ 1

and
(µ∗∗ − λ∗∗) zΠ ≤ z∗∗ (36)

obviously hold. Suppose that µ∗∗ − λ∗∗ = 1. Then, (36) implies that zΠ ≤ z∗∗,
and (3) and (26) imply that z∗∗ = zΠ. Once again we get a contradiction
because (λ∗∗ = 0, µ∗∗ = 1, z∗∗ = zΠ) will solve (28), and therefore

0 ≤ µ∗∗ − λ∗∗ < 1. (37)

Keeping in mind (34) and (37), we can take ε > 0 such that

0 ≤ µ∗∗ − (λ∗∗ − ε) < 1, µ∗∗ − ε > 1.

(32) and (35) lead to the existence of xε, yε ≥ 0 in L2 such that IE (z∗∗xε) >
(µ∗∗ − ε) IE (zΠxε) and IE (z∗∗yε) < (µ∗∗ − (λ∗∗ − ε)) IE (zΠyε). Therefore, nor-
malizing so that Π (xε) = Π (yε) = 1, and still denoting xε and yε,

IE (z∗∗xε)− IE (z∗∗yε) > (µ∗∗ − ε) IE (zΠxε)− (µ∗∗ − (λ∗∗ − ε)) IE (zΠyε)
= (µ∗∗ − ε)− (µ∗∗ − (λ∗∗ − ε)) = λ∗∗ − 2ε.

Moreover, since (33), (34), (36) and (37) make (λ∗∗, µ∗∗, z∗∗) (28)-feasible, λ∗∗ ≥
λ∗ must hold, and therefore IE (z∗∗xε)− IE (z∗∗yε) > λ∗ − 2ε = Ñ (ρ,Π)− 2ε. If
ε converges to zero we will have (31). �

Remark 18 As in Remark 12, one can use the Corollary 17 so as to recover
“fair prices”. Indeed, if Π∗ replaces Π then compatibility will hold, the over-
priced marketed claims, characterized by

Π∗ (y) = IE (yz∗) = (µ∗ − λ∗) IE (yzΠ) = (µ∗ − λ∗) Π (y) ,

(see (29)) will recover a “fair price” once the initial one Π (y) is multiplied by
µ∗ − λ∗, and the under-priced marketed claims, characterized by

Π∗ (x) = IE (xz∗) = µ∗IE (xzΠ) = µ∗Π (x) ,

will recover a “fair price”once the initial one Π (x) is multiplied by µ∗.
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3.4 Lack of compatibility between CVaR and Black and
Scholes or other continuous time pricing models

Bearing in mind Remark 16, it may be interesting to give the value of Ñ (ρ,Π)
for some important risk measures and pricing models, which is the purpose of
this section.
Along with Assumptions 1 and 3, in this section we also impose Assumption

4 below.

Assumption 4 There does not exists any (β, z) ∈ IR×∆ρ such that β > 0 and
IP (βzΠ ≤ z) = 1. �

Assumption 4 frequently holds in practice. For instance, it holds if zΠ is
not essentially bounded (Black and Scholes, stochastic volatility, etc.) and ∆ρ

is composed of essentially bounded random variables (CV aR, and very often
RCV aR and the weighted CV aR, see (20) and (21)). Besides, Assumption 4
enables us to simplify Problem (28).

Theorem 19 a) (ρ,Π) is not compatible.
b) Consider the following problem:

Min µ

{
z ≤ µzΠ,
1 ≤ µ, z ∈ ∆ρ,

(38)

where (µ, z) ∈ IR× L2 is the decision variable. Then, (λ∗, µ∗, z∗) solves (28) if
and only if λ∗ = µ∗ and (µ∗, z∗) solves (38). Consequently, (38) is bounded and
solvable, and its optimal value equals Ñ (ρ,Π).

c) If (µ∗, z∗) solves (38) and IP (z∗ > 0) = 1, then Problem (27) is not solv-
able, although it is bounded and its optimal value is Ñ (ρ,Π) > 0.

d) Suppose that α ∈ (0, 1), (µ∗, z∗) is (38)-feasible and ρ = CV aRα. Then,
(µ∗, z∗) solves (38) if and only if

z∗ (ω) = Min

{
µ∗zΠ (ω) ,

1

1− α

}
(39)

out of a IP−null set. Furthermore, IP (z∗ > 0) = 1 and therefore Problem (27)
is not solvable.

e) Suppose that α ∈ (0, 1), (µ∗, z∗) ∈ (1,∞) × L2 and ρ = CV aRα. Then,
(µ∗, z∗) solves (38) if and only if

IE (Min {µ∗zΠ, 1/ (1− α)}) = 1 (40)

and (39) holds.

Proof. a) If (ρ,Π) were compatible then Corollary 14 shows that (λ∗, µ∗, z∗) =
(0, 1, zΠ) would solve (28), and therefore it would be (28)-feasible. Thus, zΠ ∈
∆ρ should hold and β = 1 would contradict Assumption 4.
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b) If (λ, µ, z) is (28)-feasible, then Assumption 4 trivially implies that λ = µ.
Then, the equivalence between Problems (28) and (38) becomes straightforward
and b) trivially follows from Theorem 13.

c) Take the solution (λ∗, µ∗, z∗) of (28). Statement a) and Corollary 14 imply
that µ∗ > 1, and Assumption 4 and the constraints of (28) imply that µ∗−λ∗ =
0. If (x∗, y∗) solved (27) then (29) would imply y∗z∗ = 0, and IP (z∗ > 0) = 1
would imply IP (y∗ = 0) = 1. Notice that λ∗ = µ∗ > 1 and IP (y∗ = 0) = 1
contradict the second condition of (29), so (27) cannot be solvable. The rest of
the proof trivially follows form Theorem 13.

d) Suppose that (µ∗, z∗) solves (38). Then z∗ ≤ µ∗zΠ obviously must hold,
and z∗ ≤ 1/ (1− α) holds because z∗ ∈ ∆ρ (see (20) with

dQ
dIP = 1). Hence,

z∗ ≤Min {µ∗zΠ, 1/ (1− α)} . (41)

Suppose that (41) is not an equality. Then,

1 = IE (z∗) < IE (Min {µ∗zΠ, 1/ (1− α)}) .

Consider ε > 0 with µ∗− ε > 1 (recall that µ∗ > 1 due to a) and Corollary 14e)
and IE (Min {µ∗zΠ, 1/ (1− α)})− ε > 1. Obviously,

Min {µ∗zΠ, 1/ (1− α)} −Min {(µ∗ − ε) zΠ, 1/ (1− α)}
≤ µ∗zΠ − (µ∗ − ε) zΠ = εzΠ.

Thus, bearing in mind (26),

IE (Min {(µ∗ − ε) zΠ, 1/ (1− α)}) ≥ IE (Min {µ∗zΠ, 1/ (1− α)})− ε > 1. (42)

Since IP ((µ∗ − ε) zΠ > 0) = 1 due to (25),

IP (Min {(µ∗ − ε) zΠ, 1/ (1− α)} > 0) = 1

becomes obvious, and IP (Min {(µ∗ − ε) zΠ, 1/ (1− α)} ≤ 1/ (1− α)) = 1 is ob-
vious too. Thus, (42) leads to

Min {(µ∗ − ε) zΠ, 1/ (1− α)}
IE (Min {(µ∗ − ε) zΠ, 1/ (1− α)}) ∈ ∆ρ,

and
Min {(µ∗ − ε) zΠ, 1/ (1− α)}

IE (Min {(µ∗ − ε) zΠ, 1/ (1− α)}) ≤ (µ∗ − ε) zΠ

implies that (
µ∗ − ε, Min {(µ∗ − ε) zΠ, 1/ (1− α)}

IE (Min {(µ∗ − ε) zΠ, 1/ (1− α)})

)
is (38)-feasible. We have a contradiction because (µ∗, z∗) solves (38). Hence
(41) is an equality, and (39) holds.
Conversely, if (39) holds and (µ∗, z∗) does not solve (38) then the solution

(µ, z) of (38) satisfies µ < µ∗, and the proved implication leads to

z = Min {µzΠ, 1/ (1− α)} . (43)
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Recalling (3), we have the following chain of relations:

1 = IE (z∗) = IE (Min {µ∗zΠ, 1/ (1− α)})
≥ IE (Min {µzΠ, 1/ (1− α)}) ≥ IE (z) = 1

and therefore

Min {µ∗zΠ, 1/ (1− α)} = Min {µzΠ, 1/ (1− α)} .

Hence, µ < µ∗ and (25) imply that µzΠ ≥ 1/ (1− α), and (43) leads to z =
1/ (1− α). Therefore, IE (z) = 1/ (1− α) > 1, and we have a contradiction with
(3).

e) If (39) and (40) hold then (µ∗, z∗) is (38)-feasible. Therefore, (µ∗, z∗)
solves (38) due to d).
Conversely, suppose that (µ∗, z∗) solves (38). Then, (39) follows from d).

Besides, z∗ ∈ ∆ρ implies that IE (z∗) = 1, so (39) leads to (40). �

Remark 20 Theorem 19 shows how different the indices Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
given in Section 3.1 and Ñ (ρ,Π) of Section 3.3 are. While

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
can take any non negative value, and the null value will sometimes hold, Ñ (ρ,Π)
will be almost always strictly positive (Theorem 19a) and strictly higher than
1 = 100% (Theorem 19b). In particular, for ρ = CV aRα, keeping in mind
Corollary 17 and Theorem 19d, if the pricing rule is modified so as to prevent
the existence of a GD, the relative (per dollar) price modification might be larger
than 100% for some marketed claims. Otherwise the existence of a GD could
remain true, though it is important to point out that Corollary 17 just provides
an upper bound, rather that the exact price relative variation. Anyway, (31)
justifies that every substitution of zΠ must be implemented with a solution of
(38) (see also Remark 22 below). �

Remark 21 Expressions (39) and (40) significantly facilitate practical compu-
tations of

(
µ∗ = Ñ (ρ,Π) , z∗

)
if ρ = CV aRα. In real examples, and according

to Theorem 19d) and 19e), the key condition to estimate µ∗ is the equality

IE (Min {µ∗zΠ, 1/ (1− α)}) = 1. (44)

It seems clear that Monte Carlo simulation methods may be useful so as to
match (44), though we do not include here any numerical illustrations in order
to shorten the exposition. �

Remark 22 Let us focus on the Black and Scholes model. Without loss of gen-
erality, if one looks for a GD only composed of European style derivatives9 , then

9Remark 20 applies for more complex derivatives.
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one can simplify the structure of the probability space (Ω,F , IP). Indeed, assume
that Ω = (0, 1) and IP is the Lebesgue measure on the Borel σ−algebra of this
set. The value at T of the underlying asset will have a log-normal distribution
given by

S (ω) = WExp

((
r − σ2

2

)
T + σ

√
TΦ−1 (ω)

)
, (45)

for ω ∈ (0, 1), where W > 0 denotes the current price, and r and σ denote the
drift and volatility, while Φ : IR 7−→ (0, 1) is the cumulative distribution function
of the standard normal distribution.
This simplification cannot be implemented when pricing path dependent or

American style derivatives. In both situations the dynamic evolution of the
GBM plays a critical role. Thus, when we choose the simple probability space
(Ω,F , IP) above, we know that we are missing information. However, our sim-
plification is interesting because the exposition is shortened, making it much
simpler, and it provides closed formulas for z∗. We will still obtain solutions of
(27) and (28) that will allow the investor to create the sequences of Proposition
1 or satisfying (9). The only restriction is that our sequences will be composed
of European style derivatives and might become sub-optimal if more complex
securities are involved.
It is known that zπ is also log-normal and it is the first derivative of the one

to one strictly increasing function (Wang, 2000)

(0, 1) 3 ω ↔ g (ω) = Φ
(
γ + Φ−1 (ω)

)
∈ (0, 1) , (46)

where
γ =

r

σ

√
T . (47)

Computing the derivative in (46) we have that

zΠ (ω) = Exp

(
−γ

2

2
− γΦ−1 (ω)

)
, (48)

for ω ∈ (0, 1), which allows to check easily that (0, 1) 3 ω ↔ zΠ (ω) ∈ IR is
continuous and strictly decreasing. Since it is strictly decreasing and µ∗ > 1,

the computation of
(
µ∗ = Ñ (ρ,Π) , z∗

)
reduces to the estimation of p ∈ (0, 1)

such that (see (39), (40) and (44)):

p

1− α +
1

(1− α) zΠ (p)

∫ 1

p

zΠ (ω) dω = 1. (49)

In fact, if one solves (49) then

µ∗ =
1

(1− α) zΠ (p)
, z∗ (ω) =


1

1− α, ω ≤ p

µ∗zΠ (ω) , ω ≥ p
.
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In order to solve (49) one can change the variable ω = Φ (u− γ) in the integral.
Straightforward algebra leads to the new equation

p

1− α +
1

(1− α) zΠ (p)
Φ
(
−γ − Φ−1 (p)

)
= 1, (50)

which may be solved with numerical methods. Solving (50) for the parameters
used in Section 3.2, i.e., α = 89.5%, r = 1%, σ = 60%, T = 1/4 and (see (47))
γ = 0.007900634, yields a result that satisfies µ∗ > 1. In Section 3.2 we obtained

Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
≈ 0.42%. With the same drift, volatility, expiration

date, pricing model and risk measure we can obtain Ñ (ρ,Π) = µ∗ > 100% >
0.42%. Obviously, the GD size increases because now we are considering every
y ∈ L2 as a reachable pay-off, and in Section 3.2 we only dealt with finitely
many options. The GD size increases and so does the set of available securities.
Nevertheless, the difference

100%− 0.42% = 99.58%

is really relevant. According to Corollaries 11 and 17, the minimum relative
price modification preventing the GD existence might significantly increase as
the number of available options tends to infinity, though it is important to point
out that Corollary 17 only provides an upper bound, rather that the exact price
relative variation. Anyway, (31) and µ∗ > 100% justify that every substitution
of zΠ must be implemented with a solution of (38) (see Remark 20 above). �
Remark 23 (Beyond the log-normal distribution) Though Remark 21 yields
a general enough estimation method, the simplification of Remark 22 may be
interesting when dealing with European style derivatives. In such a case (45) and
(48) are not strictly necessary, and the methodology may be extended beyond the
Black and Scholes model. Instead of (45), assume that S1 is the random value at
T of a stochastic pricing process. Suppose that the model has been calibrated and
we have chosen a unique SDF zπ such that (24) applies. Suppose finally that
the cumulative distribution function F : (U, V ) −́→ (0, 1) of the random variable
S1 is a one to one continuous bijection for some −∞ ≤ U < V ≤ ∞10 . Then,
the simplification in (45) may be adapted to this new framework, in the sense
that one can take

S1 (ω) = F−1 (ω) ,

where ω is uniformly distributed on (0, 1). Moreover, zπ may be also understood
as a function (0, 1) 3 ω−́→zπ (ω) ∈ (0,∞). This setting allows us to easily
extend the methodology of Remark 22. �

4 Some Actuarial and Financial Implications

Many classical problems in finance and insurance deal with risk optimization.
This section will be devoted to illustrating how classical problems may become
10This assumption is not at all restrictive. It holds for many continuous distributions

(exponential, normal, log-normal, gamma, Pareto, etc) used in Financial Economics.

25



unbounded if one faces lack of compatibility. As a consequence, one must recover
compatibility before making decisions. Otherwise the problem solution will not
make economic sense or lead to wrong decisions.
We will select a few actuarial and financial problems. This is not at all an

exhaustive collection of potential applications, but the purpose of this section
is just illustrative; One must prevent the existence of a GD. Furthermore, for
the same reason, we will not present global solutions of the proposed problems,
which would require a significantly longer paper.

4.1 Actuarial examples

Let us focus on a couple of actuarial classical topics. The first one is the op-
timal reinsurance problem. Since Borch (1960) and Arrow (1963) proved that,
under adequate assumptions, the stop-loss contract minimizes the standard de-
viation of the ceding company final wealth, this problem has been time and
again revisited by many authors. The most recent approaches deal with general
risk measures rather than the standard deviation (see, amongst many others,
Zhuang et al., 2016, Weng and Zhuang, 2017, etc.), and sometimes also incorpo-
rate the effect of the financial market (Guan and Liang, 2014, Peng and Wang,
2016, etc.). Let us point out how the incorporation of the financial market effect
may lead to non well-posed optimization problems.
Under the notations of Sections 2 and 3 let us consider that the random

variable u0 ∈ L2 represents the claims to be paid by a insurer within the time
period [0, T ]. Decompose u0 = ur + uc, where ur, uc ∈ L2 denote the retained
and ceded risk in the reinsurance contract, respectively. If y ∈ Y is the pay-off
provided by the financial market, the insurer final wealth will equal y − ur.
Thus, if C > 0 represents the capital to diversify between the financial market
and the reinsurance contract, the optimal reinsurance problem may become

Min ρ (y − ur)

 Π (y) + (1 +K) IE (u0 − ur) ≤ C,
0 ≤ ur ≤ u,
y ∈ Y, ur ∈M,

(51)

where (y, ur) is the decision variable, K > 0 denotes the loading rate and M
denotes the set of risks z ∈ L2 such that z and u0 − z are co-monotone with
u0
11 . The objective function of (51) implies that the reinsurer prices according to

the “expected value premium principle”. This assumption may be significantly
relaxed and the rest of the example will remain true, but we present here simply
an illustrative example.

Proposition 24 If there is a GD then Problem (51) is unbounded, i.e., there
are sequences of feasible decisions whose risk diverges to −∞.
11Recall that u0 and u1 are co-monotone if

IP {[u0(ω1)− u0(ω2)] [u1(ω1)− u2(ω2)] ≥ 0} = 1.
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Proof. Consider the sequence (yn)
∞
n=1 ⊂ Y satisfying (9), and take (yn − 1)

∞
n=1 ⊂

Y and ur = u0 ∈M. Then (yn − 1, ur) is feasible because

Π (yn − 1) + (1 +K) IE (u0 − ur) = 0 ≤ C.

Moreover, Assumption 1 implies that

limn→∞ρ (yn − 1− ur) ≤ ρ (−1− ur) + Limn→∞ρ (yn) = −∞,

and Problem (51) is unbounded. �

Proposition 24 above shows that very important classical actuarial problems
do not make sense under the presence of a GD. Actually, the provided proof
only indicates that the insurer must retain the global actuarial risk because it
will be compensated in the financial market12 .
From a theoretical viewpoint, optimal reinsurance approaches involving both

actuarial risk and asset pricing models must deal with GD free models. Oth-
erwise the solution will not exist or will not make sense. A potential solution
overcoming this caveat could be to recover the GD absence by modifying the
pricing rule according to the lines of Corollary 17.
Approaches involving both actuarial risk and static financial strategies that

involve real market quotations also need to fulfill the condition that the in-

dex Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
= 0. If it does not hold, then some additional

restrictions should be incorporated to the y variable in (51) in order to prevent
unbounded solutions. For instance, one could consider an upper bound to the
short position value, in line with the constraint imposed in (12). Once these
additional restrictions have been incorporated, the existence of a GD will have
positive effects on the reached risk level, in the sense that the minimum value
of the objective ρ (y − ur) will decrease. The global fall of ρ (y − ur) will be
closely related to the value of Ñ

(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
.

As a second actuarial example, consider an insurer wanting to set the loading
rate K to be charged to a set of policies. Denoting by (ui)

N
i=1 ⊂ L2 the random

claims associated with these policies, the global portfolio premium becomes
(1 +K)

∑N
i=1 IE (ui). If this money is invested in the financial market, and y ∈ Y

is the random reached pay-off, the final insurer wealth will become y−
∑N
i=1 ui.

Thus, the insurer problem may become

Min K


Π (y)− (1 +K)

∑N
i=1 IE (ui) ≤ 0,

ρ
(
y −

∑N
i=1 ui

)
≤ 0,

y ∈ Y, K ∈ IR,

(52)

where (K, y) is the decision variable. As in Proposition 24, and bearing in mind
Proposition 1, if (ρ,Π) is non compatible it is easy to see that (52) is unbounded,

12Notice that the independence between the financial market and the global indemnification
did not have to be imposed.
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i.e., there are sequences of feasible solutions implying that K diverges to −∞.
Hence, the comments about the optimal reinsurance problem apply again. The
insurer may modify the pricing rule if a pricing model is used, or he/she must
incorporate bounds in the short position value when dealing with real market
quotations.

4.2 Financial Examples

Since Rockafellar and Uryasev (2000) gave a simple procedure to minimize
CV aR, many studies in portfolio choice and asset allocation have extended the
classical approach of Markowitz with the standard deviation replacing it by an
alternative risk measure or robust risk measure (V aR, CV aR, RCV aR, etc.).
Amongst the many others, interesting examples are Stoyanov et al. (2007),
Haugh and Lo (2001), Dupacová and Kopa (2014), Balbás et al. (2016b), Zhao
and Xiao (2016), etc. Expression (9) shows that GD existence implies the avail-
ability of sequences of investment strategies whose expected return diverges to
+∞ while their risk diverges to −∞. Once again we face unbounded problems
and theoretical results without economic sense. In Balbás et al. (2016b) the
authors propose to enlarge the ambiguity level of the investor. Alternatively,
for non ambiguous agents one could deal with the ideas of this paper. Corol-
laries 11 and 17 propose ways to modify the pricing rules, while Problems (12)
and (27) propose solutions to make the problems bounded. Anyway, according
to the empirical analysis yielded by Balbás et al. (2016a), the intuition is that

high values of Ñ
(
ρ, (Sj)

m
j=0 , (pj)

m
j=0

)
or of Ñ (ρ,Π) will imply that the investor

might be able to create strategies with a very attractive return/risk ratio.
Many more classical financial problems may be treated with risk measures.

For instance, pricing and hedging issues (Goovaerts and Laeven, 2008, Balbás
et al., 2010), risk management (Ahn et al., 1999, Constantinides et al., 2011),
regulatory capital etc. All of these often lead to unrealistic solutions in the
presence of a GD, which implies that the pricing rules will have to be changed.
If there are no pricing processes involved, and only market quotations are being
considered, appropriate bounds must be imposed. Both, constraints in line
with Problems (12) and (12), and constraints related to the limit order book
will have to be considered. It may be important to point out that the additional
constraints of Problems (12) and (12) will be quite similar to those related to
the restrictions of the limit order book.

Conclusion

The existence of a GD is anti-intuitive and should not make any economic sense,
but it often holds in practice. The GD size has been measured for both real
market quotations and theoretical pricing models. In both cases the provided
index has optimized the strategy risk with respect to the value of the sold assets,
which means that we are measuring in monetary and relative terms.
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If only real market quotations are involved and the risk measure is robust
then the approach is also model-independent. In this case the GD measure
has a dual interpretation in terms of the minimum relative (per dollar) price
modification preventing the GD existence. Moreover, it yields information to
identify which are the over-priced and the under-priced securities. Numerical
examples in the paper illustrate these cases.
If a pricing model is involved then the dual interpretation above still applies,

as well as the comments about over or under priced pay-offs, but there are also
very important differences with respect to the model-independent case. Firstly,
if the SDF is not essentially bounded then GD existence will always hold if the
risk measure sub-gradient is composed of essentially bounded random variables.
Secondly, the GD size (i.e., the index value) will be much higher. Actually, it
will be higher than 100%, while this value is quite diffi cult to reach with a finite
collection of real market data. Explicit formulas of the GD size are given here
for the Black and Scholes model.
Lastly, it is important to remark that theGD existence may provoke patholo-

gies in many classical actuarial and financial problems. Concrete examples have
been provided. The developed methodology allows the agent to overcome these
pathologies and prevent wrong decisions.
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