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2 Abstract  

Speech intelligibility in hearing applications suffers from background noise. One of the most 

effective solutions is to develop speech enhancement algorithms based on the biological traits of 

the auditory system. In humans, the medial olivocochlear (MOC) reflex, which is an auditory neural 

feedback loop, increases signal-in-noise detection by suppressing cochlear response to noise. The 

time constant is one of the key attributes of the MOC reflex as it regulates the variation of 

suppression over time. Different time constants have been measured in nonhuman mammalian and 

human auditory systems. Physiological studies reported that the time constant of nonhuman 

mammalian MOC reflex varies with the properties (e.g. frequency, bandwidth) changes of the 

stimulation. A human based study suggests that time constant could vary when the bandwidth of 

the noise is changed. Previous works have developed MOC reflex models and successfully 

demonstrated the benefits of simulating the MOC reflex for speech-in-noise recognition. However, 

they often used fixed time constants. The effect of the different time constants on speech perception 

remains unclear. The main objectives of the present study are (1) to study the effect of the MOC 

reflex time constant on speech perception in different noise conditions; (2) to develop a speech 

enhancement algorithm with dynamic time constant optimization to adapt to varying noise 

conditions for improving speech intelligibility.  

The first part of this thesis studies the effect of the MOC reflex time constants on speech-in-

noise perception. Conventional studies do not consider the relationship between the time constants 

and speech perception as it is difficult to measure the speech intelligibility changes due to varying 

time constants in human subjects. We use a model to investigate the relationship by incorporating 

Meddis’ peripheral auditory model (which includes a MOC reflex) with an automatic speech 

recognition (ASR) system. The effect of the MOC reflex time constant is studied by adjusting the 

time constant parameter of the model and testing the speech recognition accuracy of the ASR. 

Different time constants derived from human data are evaluated in both speech-like and non-speech 

like noise at the SNR levels from -10 dB to 20 dB and clean speech condition. The results show 

that the long time constants (≥ 1000 𝑚𝑠) provide a greater improvement of speech recognition 

accuracy at SNR levels≤ 10 𝑑𝐵. Maximum accuracy improvement of 40% (compared to no MOC 

condition) is shown in pink noise at the SNR of 10 dB. Short time constants (<1000 ms) show 

recognition accuracy over 5% higher than the longer ones at SNR levels ≥ 15 𝑑𝐵.  

The second part of the thesis develops a novel speech enhancement algorithm based on the 

MOC reflex with a time constant that is dynamically optimized, according to a lookup table for 

varying SNRs. The main contributions of this part include: (1) So far, the existing SNR estimation 

methods are challenged in cases of low SNR, nonstationary noise, and computational complexity. 

High computational complexity would increase processing delay that causes intelligibility 
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degradation. A variance of spectral entropy (VSE) based SNR estimation method is developed as 

entropy based features have been shown to be more robust in the cases of low SNR and 

nonstationary noise. The SNR is estimated according to the estimated VSE-SNR relationship 

functions by measuring VSE of noisy speech. Our proposed method has an accuracy of 5 dB higher 

than other methods especially in the babble noise with fewer talkers (2 talkers) and low SNR levels 

(< 0 dB), with averaging processing time only about 30% of the noise power estimation based 

method. The proposed SNR estimation method is further improved by implementing a nonlinear 

filter-bank. The compression of the nonlinear filter-bank is shown to increase the stability of the 

relationship functions. As a result, the accuracy is improved by up to 2 dB in all types of tested 

noise. (2) A modification of Meddis’ MOC reflex model with a time constant dynamically 

optimized against varying SNRs is developed. The model incudes simulated inner hair cell response 

to reduce the model complexity, and now includes the SNR estimation method. Previous MOC 

reflex models often have fixed time constants that do not adapt to varying noise conditions, whilst 

our modified MOC reflex model has a time constant dynamically optimized according to the 

estimated SNRs. The results show a speech recognition accuracy of 8 % higher than the model 

using a fixed time constant of 2000 ms in different types of noise. (3) A speech enhancement 

algorithm is developed based on the modified MOC reflex model and implemented in an existing 

hearing aid system. The performance is evaluated by measuring the objective speech intelligibility 

metric of processed noisy speech. In different types of noise, the proposed algorithm increases 

intelligibility at least 20% in comparison to unprocessed noisy speech at SNRs between 0 dB and 

20 dB, and over 15 % in comparison to processed noisy speech using the original MOC based 

algorithm in the hearing aid. 
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3 Impact statement 

The auditory neuron feedback loop of the medial olivocochlear reflex has an anti-mask effect. It 

has been suggested that it plays an important role in speech-in-noise perception. One of the key 

factors of the MOC is the time constant as it regulates the variation of attenuation over time. It is 

reported that the MOC reflex has different time constants, and the time constant varies with changes 

in stimulation. Previous studies have developed models to simulate the MOC, and demonstrated 

that the simulated MOC effect could benefit hearing applications. However, the effect of the MOC 

time constants on speech-in-noise intelligibility remains unclear. 

In the present work, we use a model to simulate speech recognition with the aid of the MOC 

reflex by incorporating an existing peripheral auditory model with an ASR system. We found that 

the length of the time constant that yields the highest speech recognition accuracy decreases with 

increasing SNRs. A novel VSE based SNR estimation method is developed to optimize the time 

constant at different SNR levels. The method demonstrates higher estimation accuracy in 

challenging conditions than other contemporary methods. A new MOC reflex model with dynamic 

time constant optimization is developed. The model shows further speech recognition accuracy 

improvement on the ASR system. The model is then further implemented as a speech enhancement 

algorithm that in the future could be used for hearing prostheses (e.g. hearing aids).  

(1) Studying the effect of the MOC reflex on speech-in-noise perception contributes to 

understanding the function of time constants to the MOC reflex performance, and helps to further 

understand the role of the MOC on speech-in-noise perception. Knowledge of the working 

mechanism of the MOC reflex would boost the development of hearing prostheses to minimize the 

performance gap between current devices and the real human auditory system, which would benefit 

people with hearing impairments or even normal hearing. (2) Developing a novel SNR estimation 

method will further the research of estimating the SNR in challenging environments. As a 

consequence, implementation of the more robust SNR estimation method would improve the 

performance of existing speech enhancement algorithms or even lead to new enhancement 

algorithms. In addition, the proposed new metric of the VSE has the potential to be used in other 

research fields (e.g., voice activity detection, speech intelligibility prediction) to boost acoustic 

signal processing techniques. For outside academia, the VSE based SNR estimation algorithm could 

be applied to benefit portable audio signal processing devices because it has higher computational 

efficiency and robustness than most of contemporary algorithms. (3) Developing the MOC model 

with dynamic time constant optimization could be used in the related work of studying the effect of 

the MOC in different SNR conditions, and the MOC model based algorithm contributes to a novel 

enhancement algorithm for speech-in-noise intelligibility improvements in hearing aids.  
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5 Abbreviations 

 

ACh acetylcoline 

ACHR acetylcoline receptor 

 acoustic impendence 

AN auditory nerve  

ASR automatic speech recognition  

BM basilar membrane  

CAS contralateral acoustic stimulation 

CF centre frequency  

CEOAEs click evoked otoacoustic emissions 

CN cochlear nucleus 

CSII coherence speech intelligibility index 

CAP  compound action potential  

dB decibel 

DCT discrete Fourier transform  

DPOAEs distortion product otoacoustic emissions 

DRNL  due resonance nonlinear  

DRW dynamic range window 

ERB equivalent rectangular bandwidth 

FFT fast Fourier transform 

Fig figure  

GOM growth of masking 

HINT hearing in test 

Hz hertz (cycles per second) 

HMM hidden Markov model  

HTK hidden Markov model toolkit developed by Cambridge University 

HSR high spontaneous rate  

IIR infinite impulse response 

IHC inner hair cell  

LOC lateral olivocochlear  

LSR low spontaneous rate  

MSC magnitude square coherence 

MLF master label file 

MSpE mean of spectral entropy  

MOC medial olivocochlear reflex  

MSR medium spontaneous rate  

MEM middle-ear muscle  

ms milliseconds = 10-3 seconds 

MBPNL multi band pass nonlinear  

iVSE  noise type identification variance of spectral entropy  

OCB olivocochlear bundle  

OAEs otoacoustic emissions  

OME outer and middle ear 
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OHC outer hair cell  

I/O output divided by input  

RMS root mean square level 

SDR signal to noise and distortion ratio 

SNR signal to noise ratio 

SpE spectral entropy 

SII speech intelligibility index 

SRT speech reception threshold  

SFOAEs stimulus frequency otoacoustic emissions 

SOCs superior olivary complexes  

VSE  variance of spectral entropy  

VCN ventral cochlear nucleus 

vs versus  

WADA waveform amplitude distribution analysis  
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1. Chapter 1: Introduction. 
 

1.1. Motivation  

Sensing acoustic signals is one of the most basic biological traits of animals. An animal’s ability 

to find a mate, locate food, and avoid predators depends on sensing acoustic signals. In the case of 

human, sensing acoustic signals is particularly important as we mainly communicate using speech 

signals. The advent and wide dissemination of speech communication devices such as hearing-aids, 

headphones, and mobile phones significantly benefit people’s daily lives. In turn, the intelligibility 

of transmitted speech in such devices is of main concern. In real cases, the environmental noise 

often corrupts the speech waveform and degrades the intelligibility of speech in speech 

communication devices. Particularly for the hearing impaired, the intelligibility degradation to 

speech caused by noise in hearing aids is even worse (Killion, 1997; Levitt, 1987; Harry Levitt, 

2001). Therefore, improving speech-in-noise intelligibility is highly demanding for hearing 

applications. 

A fundamental approach of reducing the noise effect is to apply a speech enhancement 

algorithm in the signal processing stage of speech communication devices. Over the past decades, 

among numerous speech enhancement algorithms (see chapter 2 for a detailed review), the 

development of single microphone based algorithms (also known as frequency domain speech 

enhancement algorithms) has made significant progress in terms of implementation efficiency. The 

algorithms attenuate the noise signal by reducing the amplifier gain according to the estimated SNR 

or noise power (see review in Loizou, 2013). Although these algorithms have been successfully 

demonstrated to provide improvement in the speech quality, their benefits with regards improving 

intelligibility remain elusive (Bentler et al., 2009; Levitt, 2001;  Hu & Loizou, 2004). One of the 

main reasons is that these algorithms require precise estimation of the SNR, which is defined as the 

power (over a short time interval) ratio between the noise and clean speech, to regulate the amount 

of attenuation. However, in practical cases of low SNR and nonstationary noise conditions, it is 

likely not achievable (Erkelens & Heusdens, 2008; Martin, 2001). Another reason is that these 

algorithms reduce noise by applying non-linear attenuation, which introduces speech distortion (Hu 

& Loizou, 2004; Plapous, Marro, & Scalart, 2006). The final and the most important reason is that 

these algorithms focus on using engineering methods to reduce the intensity of noise (Hu & Loizou, 

2004) that neglect the response of the human auditory system to the effect of noise. 

The human auditory system has remarkable speech-in-noise intelligibility. People with normal 

hearing can achieve a speech recognition accuracy above 50 % at a SNR of 0 dB (Robertson et al., 

2010). One of the reasons might be the fact that the auditory system adapts itself to varying acoustic 

environments. Recent studies have found that there exists an efferent neuron feedback loop 
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originating from the brainstem, which is referred to as the Medial Olivocochlear (MOC) reflex, and 

modulates the amplifier gain in the cochlea of human auditory system (Backus and Guinan, 2006, 

Kim et al., 2001, Yasin et al., 2014). The MOC reflex increases signal-in-noise detection. Much 

research has suggested that the MOC reflex benefits speech in noise perception ( Brown, Ferry, & 

Meddis, 2010; Guinan, 2006, 2018; Chintanpalli et al., 2012). The time constants, which determine 

the activation and recovery time in response to stimulation, are important properties of the MOC 

reflex. Considering that regulating the gain of the cochlear amplification over time influences the 

temporal modulation of the speech waveform, the length of the time constant is expected to be 

important to speech in noise perception. Different time constants have been measured in both 

human and nonhuman mammals (Cooper & Guinan, 2003; Guinan, 2006; Reiter & Liberman, 1995; 

Sridhar, Liberman, & Brown, 1995; Zhao & Dhar, 2011). However, the effect of the MOC reflex 

time constant to speech in noise perception remains unclear (Cooper & Guinan, 2003). Studying 

the effect of the MOC time constant to speech perception would help to better understand the 

mechanism of the MOC reflex. In turn, this would contribute to developing speech enhancement 

algorithms by simulating the MOC reflex for greater improvements to speech-in-noise intelligibility.  

Recently, developing computer models to simulate the signal processing mechanism of the 

auditory system benefits the hearing applications. For example, sound localization (Wall, et al., 

2012), speech representation (Jurgens et al., 2013), and hearing prosthesis (Lopez-Poveda and 

Eustaquio-Martin, 2018). Particularly, the development of MOC reflex models (Ghitza, 2007; 

Lopez-Poveda & Meddis, 2001; Zhang et al., 2001) has provided a new approach to simulating the 

mechanism of the MOC reflex to improve speech-in-noise intelligibility. However, these models 

often use a fixed time constant and the effect of the different MOC time constants remains unclear. 

Physiological studies suggest that different time constants may have different functions in the 

auditory system (Cooper & Guinan, 2003; Guinan, 2006). The MOC time constant varies with 

different stimuli (Sridhar et al., 1995; Liberman, Puria, & Guinan, 1996), which indicates that the 

time constants might be able to adapt to speech perception in varying noise conditions. Moreover, 

it was found that the effect of the MOC to speech perception is associated with the changes of SNR 

(Mertes et.al. 2018). Therefore, studying the effect of the MOC time constants on speech-in-noise 

perception at different SNR levels for developing a MOC reflex model with the time constant 

dynamically optimized might contribute to further improvement to speech-in-noise intelligibility. 

 

1.2. The main goals and research objectives.  

The main goals of this thesis are (1) to study the effect of the time constant of the MOC reflex 

on speech-in-noise perception, and (2) to develop a speech enhancement algorithm based on the 

MOC reflex model with time constants dynamically optimized in varying SNR levels. Previous 
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studies (Clark & Brown, 2014; Meddis et al., 2013; Smalt, Heinz, & Strickland, 2014) have 

developed MOC reflex simulation models, and successfully demonstrated the benefits of the MOC 

reflex to speech in noise perception. However, the models often use fixed time constants, and the 

models often have high computational complexity in order to simulate sufficient details of the 

auditory system. Although few studies implemented simplified models on hearing applications, 

they showed limited improvements at lower SNR levels. One of the reasons might be the models 

are unable to adapt to varying noise conditions. The present thesis aims to propose a modified MOC 

model based speech enhancement algorithm with (1) time constant adaption to varying SNR levels; 

(2) high computational efficiency to reduce processing delays causing speech intelligibility 

degradation; (3) greater speech-in-noise intelligibility improvements compared to existing MOC 

based algorithms. 

The main research flow is described as below. To study the effect of the MOC reflex time 

constant on speech perception, a computer model is developed to simulate the human speech 

recognition process. It is done by developing a signal processing interface to incorporate an existing 

automatic speech recognizer (ASR) with an existing peripheral auditory model (Meddis, 2014). The 

auditory model includes a MOC reflex model to test the effect of MOC time constants on speech in 

noise intelligibility (Meddis, 2014). Our testing results shows that the length of the best MOC reflex 

time constant, which provided the greatest improvement in speech recognition accuracy, depends 

on the SNR level. To optimize the MOC time constant for varying SNRs, a new SNR estimation 

method is developed to have more robust performance in real environments. Then, the performance 

of the SNR estimation method is further improved using a nonlinear filter-bank with simulated the 

cochlear compression. The SNR estimation algorithm is incorporated with a modified 

computationally efficient MOC reflex algorithm to simulate the MOC reflex with the time constant 

dynamically optimized in varying SNR levels. The model is tested with the ASR system. Finally, 

the model is modified as a speech enhancement algorithm, and implemented on a hearing aid model 

to test its benefits to speech-in-noise intelligibility. The main research objects are concluded as 

follows:  

 

 Using a computer model to study the effect of the MOC reflex on speech intelligibility. An existing 

peripheral auditory model (Ferry & Meddis, 2007; Lopez-Poveda & Meddis, 2001; R Meddis, 

O’Mard, & Lopez-Poveda, 2001) was combined with an existing ASR system (Young et al., 2015). 

The main research object is to use a feature extracting interface (computer program) to extract 

features from the auditory model output for ASR training and testing. 

 

 Studying the effect of the MOC reflex on different types of auditory nerve (AN) fibers (HSR, MSR, 

and LSR). The influence of the MOC reflex to speech recognition accuracy of the ASR with 
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features extracted from the outputs of different types of AN fiber is studied in different noisy 

conditions (in different noise types, and at a range of practical SNR levels). 

 

 Studying the effect of MOC reflex with different time constants on speech perception in different 

noise conditions. The speech recognition accuracy of the ASR in different types of noise at a range 

of practical SNR levels with the MOC reflex using different time constants is evaluated. 

 

 Developing a novel SNR estimation method for optimizing MOC time constant. The existing SNR 

estimation methods have high computational complexity and low accuracy in low SNRs and 

nonstationary noise, which are the common cases in real environments. A SNR estimation method, 

which has high robustness against nonstationary noise with high computational efficiency by 

measuring the entropy based feature is developed. 

 

 Improving the proposed SNR estimation method using a filter-bank with compression. Inspired 

by the benefit of the compression of the human auditory filter-bank to speech in noise perception 

(Milekhina et al., 2017; Kates, 2010), this study applies a nonlinear filter-bank with compression 

to improve the SNR estimation accuracy of the proposed SNR estimation method.  

 

 Using a modified MOC reflex model with dynamic time constant optimization. This model aims 

to illustrate and verify the principle of adapting the MOC time constant to different SNR levels 

for better speech-in-noise perception improvement. A modified MOC reflex model with a 

dynamically optimized time constant is developed. 

 

 Developing a MOC based enhancement algorithm and test it with a hearing aid model. The MOC 

reflex with optimized constants is intended to be implemented in hearing prostheses for improving 

speech-in-noise intelligibility. The modified MOC model (with optimized time constants) is 

further synthesised as a speech enhancement algorithm for portable devices. The proposed speech 

enhancement algorithm is implemented and tested with a hearing aid model.  

 

1.3. Novelties  

This thesis makes an attempt of systemically studying the effect of the MOC reflex time 

constant on speech-in-noise perception. The time constant is one of the most important properties 

of the MOC reflex (Backus & Guinan, 2006). However, the effect of the time constant to speech-

in-noise intelligibility remains unclear due to the limitation of the research methods (Cooper & 

Guinan, 2003). Although previous models (Ferry and Meddis, 2001; Brown et al., 2009; Clark et 
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al., 2012) studied the effect of the MOC reflex on speech-in-noise intelligibility, the effect of the 

MOC time constant length on speech-in-noise intelligibility has not been particularly investigated. 

The present study found that the length of the MOC time constant that attributed higher speech 

recognition accuracy is related to the SNR levels. This finding is new and original (chapter 3). 

This thesis develops a novel variance of spectral entropy (VSE) based SNR estimation 

method, in contrast to the conventional SNR estimation method using the power and spectrum 

based features, which have low accuracy in nonstationary noise. In Chapter 4, the variance of the 

spectral entropy (VSE) is first developed in this thesis for SNR estimation. VSE is independent of 

noise power and characterizes a signal variability that is more robust than conventional methods in 

nonstationary noise. Moreover, VSE based SNR has been improved using a filter-bank with 

compression (presented in Chapter 5), while the literature has rarely studied or used the benefits of 

compression for improving SNR estimation.  

This thesis develops a modified MOC reflex model with dynamic time constants 

optimization. Although numerous models of the MOC reflex have been developed, the time 

constant of the MOC is generally simulated with no adaption to changes in noise conditions. 

Chapter 6 develops a modified MOC reflex model with time constants dynamically optimized in 

response to variations in SNR. 

This thesis develops a speech enhancement algorithm based on the MOC reflex with a 

dynamically optimized time constant. In Chapter 7, a new speech enhancement algorithm based 

on the MOC reflex with optimized time constant is developed according to the MOC model 

developed in Chapter 6. The proposed algorithm was implemented on an existing software based 

hearing aid model and showed improved speech-in-noise intelligibility. 

 

1.4. Original contributions 

The present study contributes to understanding of the effect of the MOC reflex time 

constant on speech-in-noise intelligibility. Both physiological and psychophysical studies have 

found that the MOC reflex has different time constants (Backus & Guinan, 2006; Cooper & Guinan, 

2003; Zhao & Dhar, 2011), and that the MOC reflex time constants vary with the changes of the 

stimulus (Lopez-Poveda, 2018). However, their exact functions remain unknown. By studying the 

effect of the MOC reflex time constant on speech in noise intelligibility, this thesis provides an 

effort to understanding the function of the MOC reflex time constants, that boosts the study of the 

effect of the MOC reflex on speech in noise intelligibility.  

This thesis develops a new SNR estimation algorithm with high SNR estimation 

accuracy in low SNR levels and nonstationary noise. SNR estimation is fundamentally required 
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in most of speech enhancement algorithms (Loizou, 2013). However, the conventional SNR 

estimation algorithms are challenged by the cases of low SNR and nonstationary noise (Hendriks, 

Heusdens & Jensen, 2010). This thesis provides a new VSE based SNR estimation algorithm. This 

method has higher computational efficiency, and has fewer SNR estimation errors than 

conventional SNR algorithms in low SNR levels and in nonstationary noise. It is suitable for 

different speech signal processing devices.  

This thesis proposes a modified MOC reflex model with dynamic time constant 

optimization. The MOC reflex models developed in the literature either without simulating the 

time constants of the MOC reflex (Brown et al., 2009), or used a fixed time constant (Clark et al., 

2012). Based on the research results in this thesis, Chapter 6 proposes a MOC model which has 

dynamically optimized time constants to adapt to changes of SNR levels. The proposed MOC 

model is one of the pioneered works that simulate the MOC time constant variation in varying noise 

conditions.  

The new developed speech enhancement algorithm with optimized time constant 

provides greater speech intelligibility improvement in hearing aids. There is increasing interest 

in simulating the MOC reflex to improve speech perception in noise ( Brown et al., 2010; Clark & 

Brown, 2014; Smalt et al., 2014). Although some of the studies have further implemented MOC 

based enhancement algorithms in hearing prostheses and demonstrated their benefits (Lopez-

Poveda & Eustaquio-Martín 2018; Meddis et al., 2013), the potential of the time constant has not 

been fully addressed. Our proposed speech enhancement algorithm has the MOC time constant 

automatically optimized according to the estimated SNR and demonstrates greater speech-in-noise 

intelligibility improvement.  

1.5. Layout of the thesis 

The rest of the thesis is organized as follows. The background is presented in Chapter 2. To 

begin with, the anatomy of the auditory system is briefly introduced by going through both the 

afferent pathway and efferent pathway of the auditory system. Since the MOC reflex of the efferent 

auditory system is the main objective of this thesis, the literature studying the MOC reflex is 

reviewed. The method for studying the MOC reflex, the response of the MOC, the time constant of 

the MOC, and the effect of the MOC on speech perception are specifically introduced based on the 

previous physiological and psychophysical findings. Since this thesis focuses on improving speech-

in-noise intelligibility, the definition of speech intelligibility and the aspects that affect speech 

intelligibility are also introduced. Finally, the state of the art of current speech enhancement 

algorithms and their limitations to speech in noise intelligibility improvements are reviewed and 

discussed. 
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Chapter 3 presents the work of using a computer model to study the effect of the different 

MOC reflex time constants on speech-in-noise perception and types of AN fibers on MOC 

introduced speech-in-noise perception improvement. To select an appropriate peripheral auditory 

model for studying the MOC reflex, pros and cons of the existing peripheral auditory models and 

MOC reflex models are reviewed. The selected peripheral auditory model is incorporated with an 

ASR system. The basic principle of the hidden Markov model based ASR system is introduced. 

This chapter then provides the details of building a signal processing interface for extracting ASR 

training and testing features from the peripheral auditory model output. Four experiments including: 

(1) testing the validation of the computer model, (2) studying the effect of the MOC reflex on 

different AN fiber types, (3) studying the effect of the MOC reflex time constant, and (4) 

investigating the effect of the MOC reflex time constant on the variation of MOC related attenuation 

are presented. Finally, the results are discussed and analysed. 

Chapter 4 presents a novel method for estimating the global SNR of noisy speech. According 

to the testing results in Chapter 3, using a SNR estimation algorithm to regulate the time constant 

of the MOC reflex can improve the speech intelligibility in noise. This chapter starts with a review 

of previous SNR estimation algorithms. The limitations of the conventional SNR estimation 

algorithm are discussed. Then, the proposed approach of using VSE to address the limitations of 

the conventional algorithms are demonstrated. Particularly, the details of the proposed SNR 

estimation method for increasing the SNR estimation accuracy are provided. Finally, the 

performance of the proposed SNR algorithm is evaluated with clean speech, and in different noise 

conditions at a range of SNR levels. The performance of the proposed method is compared with 

other contemporary methods.  

Chapter 5 improves the VSE based SNR estimation algorithm using a nonlinear filter-bank. 

In Chapter 4, the VSE is calculated using the outputs of a linear filter-bank. However, we found 

that SNR estimation accuracy was degraded by the variation of the VSE-SNR relationship function, 

which is determined by the properties of the filter-bank. Chapter 5 implements a simulated human 

auditory filter bank (Lopez-Poveda & Meddis, 2001) for calculating the VSE. This study starts with 

an introduction of the filter-bank. Then, the method of using the nonlinear pathway of the dual 

resonance nonlinear (DRNL) filter-bank for VSE based SNR estimation is demonstrated. The 

performance of the proposed method is evaluated in babble noise containing different numbers of 

talkers at different SNR levels. The evaluation results are compared with other existing SNR 

estimation methods as well as the VSE based method using a linear filter-bank (developed in 

Chapter 4). Finally, the benefits and the corresponding reason of using the nonlinear filter-bank for 

VSE based SNR estimation are discussed.  
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Chapter 6 proposes a model of the MOC reflex with dynamic time constant optimization in 

varying SNR levels. This study aims to illustrate and verify the principle of optimizing the MOC 

time constant to improve speech intelligibility in different noise conditions. To begin with, a 

modified MOC reflex algorithm with high computational efficiency is developed. Then, the method 

of calculating the best time constant according to the estimated SNR level is developed. After that, 

two experiments are implemented to evaluate the performance of the new proposed MOC algorithm 

and the performance of the new MOC reflex with an optimized time constant at speech recognition 

in different noise conditions. Finally, the validation of the testing results and rationales of the 

improvements are discussed. 

Chapter 7 proposes a speech enhancement algorithm developed by integrating all the research 

results from previous chapters. The proposed speech enhancement algorithm is implemented and 

evaluated in an existing hearing aid model (Meddis et. al., 2013). To begin with, the speech 

enhancement algorithm is demonstrated, which was developed by simplifying the MOC reflex 

model presented in Chapter 6. Then, the structure of the hearing aid model and the details of 

implementing the MOC based speech enhancement algorithm in the hearing aid are demonstrated. 

After that, the calculation of the objective speech intelligibility metric (Kate and Arehart, 2009) is 

detailed. Finally, three experiments are presented to evaluate the performance of the proposed 

speech enhancement algorithm by measuring the objective metric of the processed noisy speech.  

Finally, Chapter 8 provides a general conclusion of this thesis. An overview of the whole Ph.D. 

project is given by remarking upon and drawing conclusions regarding the main points of each 

chapter. The overview is followed by a discussion regarding the overall principle of using the MOC 

reflex model with optimized time constants to improve speech in noise intelligibility. Proposals are 

introduced for future work, concerning further developing speech enchantment algorithms or 

improving on the present study.  
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2. Chapter 2: Background  
 

This chapter has the following purposes: (1) to provide an overview of the human auditory 

system; (2) to present the main objectives (MOC reflex and MOC reflex time constant) of this thesis 

in the context of current acknowledge; (3) to introduce speech intelligibility and its measurements; 

and (4) to provide details of the state of the art in speech enhancement. 

2.1. Anatomy of the auditory system 

An appropriate place to begin is by introducing the anatomy of the human auditory system. 

The auditory system in humans can be briefly classified into two parts according to the signal 

transmitting direction: (1) the afferent pathway, which is the input loop of the auditory system for 

conducting sound from the environment to the brainstem; and (2) the efferent pathway, which 

contains feedback loops for regulating the response of the auditory system to stimulus. 

2.1.1 The afferent pathway 

The afferent pathway of the auditory system consists of four main components (Figure 2-1): 

external ear, middle ear, inner ear, and central auditory nervous system. These components process 

and transmit the acoustic signal in a cascade that finally converts the sound pressure into the 

responses of neurons (Yost, 1991). 

External ear 

The structure of the human external ear is shown in Figure 2-1. It consists of the pinna, 

concha, external canal, and tympanic membrane to collect and amplify the acoustic pressure from 

the environment over a certain frequency range. The pinna contours influence the head-related 

transfer function to the acoustic resource that aids the auditory system to determine the direction and 

location of the acoustic signal. The resonances of the concha and the external canal complement each 

other to provide an amplification of acoustic pressure at the frequency range between 1.5 Hz to 7000 

Hz (Shaw, 1974). The tympanic membrane converts the pressure wave into mechanical vibrations 

that deliver the acoustic signal into the middle ear.  

Middle ear 

The middle ear contains the malleus, incus, and stapes. These components amplify the 

collected acoustic signal to overcome the acoustic impedance between air and the fluid-filled cochlea. 

The amplification is mainly contributed by the area difference between the tympanic membrane and 

the malleus. Approximately two-thirds of the total area (approximately 55 mm2 in humans (Yost, 

1991)) of the tympanic membrane is stiffly connected to the apical part of the malleus. However, the 
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area of the stapes footplate is only about 3.2 mm2, which is considerably smaller than the effective 

area of the tympanic membrane. The large area of the tympanic membrane increases the force 

collected from acoustic pressure to drive the middle ear displacement, whilst the small area of the 

stapes footplate increases the pressure to activate the oval window at the basin of the cochlea (Yost, 

1991).  

Inner ear 

The essential organ of the inner ear is the cochlea. It has a tiny shell-shaped structure (as 

shown in Fig. 2-2) to transduce the acoustic signal from mechanical vibrations into electrochemical 

neuronal signals. The inner tube of the cochlea is filled with fluid to generate fluid motion, which 

originates at the oval window by the movement of the stapes footplate and dissipates at the round 

window. The fluid motions elicit the vibration of the basilar membrane (BM) which is a stiff element 

that separates the cochlear duct (a cavity filled with fluid) and the scala tympani (another fluid filled 

cavity which extends from the round window to the apex of the cochlea) (Yost, 1991). 

The width of the BM increases from base to apex so that the displacement at different locations 

along the BM represent the individual frequency components of the acoustic signals. The BM in 

humans is about 34 mm long from the base to the apex (Wrightson & Keith, 1918), it is wider, more 

flaccid, and under no tension at the apical end. The base end is narrower and stiffer than the apical 

 

Figure 2-1. The cross-sectional view of the human auditory system from pinna to auditory nerve 

(adapted from https://audiologyassociatesinc.com). 
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end (Bekesy, 1967). Fig. 2-3 shows the vibration of the BM in response to acoustic stimuli at different 

frequencies. The response of the BM can be modelled as a traveling wave. The location on the BM 

that shows the maximum displacement to a pure tone at a specific frequency is unique. Specifically, 

low frequency tones elicit maximum displacement closer to the BM apex (as shown at the right side 

 

Figure 2-3. Instantaneous patterns of travelling waves on a schematic diagram of the BM in response to 

pure tones at three different frequencies of 60, 300, and 2000 Hz. Note that the location of maximum 

displacement is near the apex for low frequency tones and near the base for high frequency. 

 

60 Hz

300 Hz

2000 Hz

Middle Ear 

 

Figure 2-2. Cross-section of the middle ear and inner ear (adapted from https://blog.medel.com). 
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of Fig. 2-3), while high-frequency sounds elicit maximum displacement close to the base (as shown 

at the left side of Fig. 2-3). 

 Fig. 2-4 shows the interconnection between the BM (light purple) and hair cells. BM 

displacement drives the organ of corti (OoC) that elicits an electrochemical potential change in the 

hair cells. The electrochemical potential changes in hair cells generate the chemical transmitters, which 

are received by the ANs.  

Central auditory nervous system  

Two types of ANs separately innervate the inner hair cells (IHC) and outer hair cells (OHC). 

The Type 1 ANs are connected to IHCs, and transmit information faster than type 2 ANs, which are 

connected to OHCs and have a thick and myelinated structure. Type 1 ANs represent about 95 % of 

total ANs (about 30,000 in humans), whilst type 2 ANs only represent 5% (Squire et al., 2012). The 

hair cells innervate the ANs by releasing chemical transmitters, which initiate electrical potential 

changes in AN fibers. The response of the AN fibers is a phase locked spike. It increases with 

increasing sound level. However, the ANs themselves can generate spike spontaneously. The 

sensitivity of the AN, which is characterized by the spontaneous firing rate (SR), varies. The SR is 

defined as the rate of firing of an AN fiber when there is no stimulus presented to stimulate the ANs. 

Based on the SR, three main groups of ANs are defined (low SR: <0.5 spike/s; medium SR: 0.5 to 17.5 

spike/s; and high SR: >17.5 spike/s). The higher brain levels extract information from these spikes to 

form the perception of the stimulus. It is suggested that the response properties of the different types 

of ANs are important to acoustic signal processing schemes (Murray B. Sachs & Young, 1979; 

Winslow & Sachs, 1988; Zilany & Bruce, 2006).  

 

 Figure 2-4. Cross-section of the cochlea (replotted from (Lasky &Williams, 2005)). 
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2.1.2 The efferent pathways 

There also exist descending neural pathways, which deliver feedback control signals from 

the brainstem to the cochlea, to regulate the response of the afferent system to the changing acoustic 

environment. So far, the known efferent pathways are the Middle-ear muscles reflex (MEM), Lateral 

olivocochlear reflex (LOC), and MOC reflex.  

Middle-ear muscles (MEM) reflex  

The MEM reflex suppresses the response of the middle ear by increasing the stiffness of the 

stapedius and tensor tympani muscles (Mukerji et al., 2010). As shown in Figure 2-5, it starts with  

the response of the IHC to acoustic stimulus, in which the action potential of the IHC is propagated 

to the first order neurons (spiral ganglion cells) and the ANs to as yet unidentified interneurons in the 

ventral cochlear nucleus (VCN) (Fekete, 1984; Lee et al., 2006). The cochlear nucleus (CN) is located 

in the pontomedullary junction of the dorsolateral brainstem in humans. It has been found that the 

neurons of the CN cross through the SoC and project directly to the MEM motoneurons, located near 

the motor nucleus of the facial nerve. The details of the CN to MEM motoneurons are not well-

understood (Mukerji et al., 2010). The MEM motoneurons then project to the middle ear along the 

facial nerve. In non-human animals (mostly cats and rabbits) both the stapedius and tensor tympani 

muscles respond to the MEM reflex (Møller, 1964; Wersall, 1958), however, in humans, only the 

stapedius muscle contracts directly in response to the MEM reflex (Zakrisson & Borg, 1974). 

  

 

 
Figure 2-5. The anatomy structure of the MEM reflex 
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Lateral olivocochlear (LOC) and Medial olivocochlear (MOC) reflex 

Parallel to the MEM reflex, there exisit olivocochlear efferents reflexes. They start from 

olivocochlear efferents, which originate in the superior olivary complexes (SOCs), and project to 

the cochlea via the vestibular nerve. Within the cochlea, the olivocochlear efferents enter the basal 

turn of the cochlea along the auditory afferent nerves, and terminate in the organ of corti. Based on 

the current understanding of the olivocochlear efferents, the reflexes are classified into lateral 

olivocochlear (LOC) and medial olivocochlear (MOC) efferents based on the location of their 

parent cell bodies in the SOCs and the terminating location in the cochlea.  

Figure 2-6 A shows the structure of the MOC and LOC reflexes (although figure 2-6 is based 

on animal studies, there are numerous human based studies that indicate that the human efferents 

have a similar structure (see review in Guinan, 2006; Lopez-Poveda, 2018)). Thin and 

unmyelinated LOC fibers connected to the right cochlea originate predominately on the right side 

of the brain stem. Their axons travel through the vestibular nerves, and innervate the auditory nerve 

under the IHC. Similarly, thick and myelinated MOC fibers of the right cochlea are located at the 

medial part of the SOC on both sides, and also project to the cochlea via the vestibular nerve. 

However, unlike the LOC fibers, the MOC fibers innervate the OHC (as shown in figure 2-6 B).  

Although the exact number of LOC and MOC fibers varies between individuals, the number 

of LOC fibers is higher than that of MOC fibers in both human and nonhuman mammals (reviewed 

in Lopez-Poveda, 2018). For example, in humans, there are about 1,000 LOC fibers and 380 LOC 

fibers (Arnesen, 1984). In cats there are about 868 LOC fibers and 498 MOC fibers (Arnesen & 

Osen, 1984).  

 

 
Figure 2-6. The anatomy of the olivocochlear efferents (replotted from Dickerson et al., 2016). 
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Both the LOC and MOC fibers have the crossed (contralateral) and uncrossed (ipsilateral) 

structure in binaural hearing. In most mammals, the majority of the LOS fibers are connected to 

the ipsilateral cochlea, whilst most of the MOC fibers project to the contralateral cochlea. The 

distribution density of the LOC and MOC fibers along the cochlea varies between species. 

Generally, the MOC fibers are more concentrated at the centre of the cochlea than at the end, whilst 

the LOC fibers are more evenly distributed over the cochlea (See detailed reviews in Lopez-Poveda, 

2018). Each MOC fiber can connect to more than one OHC; in cats each MOC  fiber can project to 

23–84 OHCs, over the cochlea length of about 3.2 mm, which corresponds roughly to an octave 

band of the afferent fibers (Liberman & Brown, 1986). In guinea pigs, each MOC fiber can connect 

with 14–69 OHCs, which is nearly two octaves, and the number of connected OHCs decreases with 

increasing CF (Brown, 2014).  

 

2.2 The MOC reflex  

2.2.1 Measuring the MOC reflex: techniques and issues 

Most of the measured efferents responses are considered to be caused by the MOC fibers due 

to the structural differences between the MOC and LOC fibers ( Guinan, 2006). It is difficult to 

separate the response of the efferents attributed to either the LOC or the MOC fibers. LOC fibers 

are thinner and unmyelinated, whilst the MOC fibers are thicker and myelinated. Unmyelinated 

fibers often have small compound action potentials (CAP), consequently, the responses of the 

unmyelinated fibers are difficult to record. Various methods have been conducted in the literature 

to measure the character of the MOC reflex. Generally, the existing methods can be classified into 

physiological methods, psychophysical methods, and otoacoustic emissions (OAE) based methods. 

Physiological methods  

In physiological methods, one of the most popular approaches is to measure the reduction 

of the BM displacement with the effect of MOC response. The MOC is elicited by the electrodes 

provided in the efferent neurons. Laser based measurement systems measure the displacement of 

the BM. The BM displacement of both with and without the MOC stimulation are recorded. The 

measured differences characterize the effect of the MOC reflex to the response of the BM (Russell 

& Murugasu, 1997). The effect of the MOC to BM response to inputs at a frequency either higher 

or below the CF are also studied. The physiological method has the advantage of avoiding the 

disturbance of MEM reflex as it directly stimulates the efferent neurons. However, current 

techniques makes physiological method only applicable to nonhuman mammals, because it requires 

surgical operation to place the laser measurement device and insert electrodes in efferent neurons 

that may cause permanent damage to the subjects.  
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Another approach is to measure the reduction of CAP of AN fibers in response to 

stimulation (pure tones or clicks) by placing electrodes near the round window. (Kawase & 

Liberman, 1993;  Guinan & Stankovic, 1996). CAP is the sum of the electrical potentials changes 

of many recruited fibers in response to a single stimulation. This approach is regarded as a relatively 

accurate method for measuring the MOC effects at low, near threshold levels, because CAPs from 

low level stimulus are dominated by the response of HSR AN fibers (Guinan, 2018). Recently, the 

CAP has been developed to measure the effect of the MOC in humans (Najem et al., 2018; 

Lichtenhan et al., 2016; Smith et al., 2017; Verschooten et al., 2017). The measured human results 

are consistent with the conclusion that MOC effects on CAPs are similar in human and experimental 

animals.  

However, the CAP in humans is still difficult to be measured, and it requires complex data 

processing to reduce estimation errors (Lichtenhan et al., 2016). Moreover, Guinan, (2018) argued 

that the measured results of the CAP method to middle level sound cannot reflect the MOC effects 

on the HSR AN fibers. The largest effect of the MOC on AN response is at 45–75 dB SPL. However, 

for the HSR, which is the major type (in number) AN fibers, at the sound level 45–75 dB SPL the 

firing of AN fibers is saturated and shows little change to the MOC effect.  

MOC measurement using OAEs 

Compared to the methods discussed above, the OAEmethods are regarded as the easiest way 

to measure the MOC reflex in humans (Guinan, 2018). OAEs are defined as the acoustic energy 

generated by the cochlea in response to stimulus that can be recorded in the outer ear canal. The 

basic principle of using OAEs to assess the MOC effect is that the MOC reflex reduces the gain of 

the cochlea that would be reflected by the changes in the OAEs. Generally, OAEs are generated in 

two mechanisms, reflection emission and distortion product otoacoustic emission (DPOAEs). 

DPOAEs are typically generated using two different frequency tones 𝑓1  and 𝑓2  (𝑓2 > 𝑓1), and 

measure the distortion product of the difference of two frequencies (2𝑓2 − 𝑓1). In fact, the distortion 

emissions are generated by the nonlinearity of the cochlea. The cochlear nonlinearity creates a 

distortion product in the OHC voltage. This distortion product is then converted to a distortion 

product of Ooc motion by the OHC somatic motility. This motion creates distortion-product 

travelling waves, and results in 2𝑓2 − 𝑓1 distortion product OAEs, which can be measured in the 

ear canal (reviewed in Guinan, 2018). The DPOAEs are relatively easy to be used because they are 

separated in frequency from the evoking tones. However, when measuring the DPOAEs the two 

components, which are the two-resource nature of the DPOAEs should be separated, otherwise it 

would cause errors in estimating the activity of the MOC reflex due to the cancelation of the two 

components (Guinan, 2018). 
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Reflections emissions are the reflection of the cochlea to the traveling wave energy which 

can be generated by a short click (CEOAEs) or a signal tone (SFOAEs). The CEOAE is the easiest 

OAEs method for measuring the MOC reflex, because the click and OAE are separated in time. 

The measured difference with and without the MOC stimulation reflects the influence of MOC 

activation. The separation can be achieved using multiple measurement methods (reviewed by 

Vetešník et al., 2009). SFOAEs are more difficult to measure than CEOAEs and DPOAEs. This is 

because SFOAEs overlap the evoking tones in both the time and frequency domains. The MOC 

effect on SFOAEs can be measured in different ways. The simplest way is to measure the ear-canal 

sound pressure with and without the MOC stimulation and take the vector difference (∆SFOAEs). 

The original evoking tone is then cancelled by the vector difference (Guinan et al., 2003.). However, 

this method has a disadvantage that the ∆SFOAEs also depend on the changes of amplitude in the 

evoking stimulus. To remove the disturbance of the amplitude changes, the measured ∆SFOAEs 

need to be normalized by dividing ∆SFOAEs by the magnitude of SFOAEs itself. If both the 

SFOAEs and the ∆SFOAEs with and without MOC are measured, then the MOC reflex can be 

expressed as a change in SFOAE amplitude and phase. A major limitation of all the OAE based 

methods is that the results underestimate the MOC effects. The OAEs measured MOC strength is 

much smaller than that measured using CAPs (Puria, Guinan, & Liberman, 1996). 

MOC measurement using psychophysical methods  

The basic principle of using psychophysical methods to assess the MOC effect is to predict 

the MOC caused cochlear gain changes on the basis of the measured masking threshold (Yasin, 

Drga & Plack, 2014). Generally, the psychophysical methods for assessing the gain of the cochlea 

in humans can be classified into growth of masking (GOM), temporal masking (TMC) curve, and 

fixed duration masking curve (FDMC). In the GOM method, the level of an off-frequency masker 

at the masking threshold is measured as a function of the signal level. Since the cochlear response 

to an off-frequency signal is considered to be linear, the measured GOM function provides the 

estimated cochlear I/O function at the signal frequency (Krull & Strickland, 2008;  Oxenham & 

Plack, 1997; Oxenham, Plack & Oxenham, 2001; Rosengard et al., 2005; Roverud & Strickland, 

2010). In the TMC method (Nelson, Schroder& Wojtczak, 2001), the masking threshold level for 

off-and on-frequency forward maskers is a function of the masker silence interval. A plot of off- 

VS on- frequency paired by the silence interval provides an estimated cochlear I/O function. In the 

FDMC method (Yasin et al., 2013), the masker level at the threshold is obtained for on- and off-

frequency forward maskers for different complementary durations of signal and masker, with a 

combined masker and signal duration of 25 ms and Masker to signal (M-S)  interval of 0 ms. 

Because the masker and signal are contained within 25 ms, the FDMC method should produce 

estimates of the inferred BM I/O function without confounding efferent effects. FDMC has been 

successfully used to measure the effect of the MOC in human subjects (Yasin et al., 2014). In 
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FDMC, the effect of the MOC could be accessed by presenting a precursor, which is often a 

broadband noise, before the masker for activating the MOC reflex. The main advantage of the 

psychophysical method is that it can be used to access the effect of the MOC reflex in humans. 

However, the experiment process is time consuming as the testing time for each subject is often 

over tens of hours (Yasin et al., 2014). 

General issues 

One of the general issues existing in all the methods listed above is the inadequate SNR in 

the measurements (Guinan, 2018). The effect of MOC reflex is commonly assessed by taking the 

difference between physiological variables measured with and without the MOC stimulations. 

Taking the difference between the two quantities can add errors from both measurements. The 

added errors then become the errors of a new quantity (the difference), which is much smaller than 

the original measured ones. The SNR of each measurement should be high enough to guarantee the 

validity of the difference. For example, Guinan (2018) suggested that to detect a 1 dB MOC change, 

the SNR of each measured quantity should be >22 dB. Another general issue is the measurement 

drift (changes over time or different subjects). To avoid the drift from having a significant effect, 

multiple alternations of MOC measurement should be done, and which condition is the first should 

be randomly selected. The third issue is the disturbance introduced by the activation of MEM, 

which is commonly avoided by using stimulations with levels below the MEM threshold. However, 

MEM activation can be found at levels 10–15 dB below the MEM threshold measured with clinical 

instruments, and even a weak action of the MEM can have a big effect on the MOC measurement 

(Feeney, Keefe & Marryott, 2003). 

2.2.2 The response of the MOC reflex  

This section introduces the properties of the MOC in response to different stimuli. Based on 

current understanding of the efferent system, the MOC response can be classified by how it varies 

over the different stimulation frequencies, different stimulation levels, and time.  

Response to simulations at different frequencies 

The MOC response provides a frequency-specific negative feedback to a narrow frequency 

region (around the stimulus frequency) of the cochlea. In response to pure tones at different 

frequencies, the MOC response has a turning curve slightly broader than that of the afferent neuron 

fibers with similar CFs (Liberman & Brown, 1986). However, the frequency responses of the 

ipsilateral and contralateral MOC are different. Lilaonitkul & Guinan (2009) used the OAE method 

to measure the frequency turning of the MOC response in humans. They measured the ipsilateral, 

contralateral, and bilateral responses of the MOC at the frequency around 1000 Hz by measuring 

the MOC introduced SFOAEs suppression. They found that the largest MOC response of the 



Chapter 2 

 

37 

 

ipsilateral MOC to tones and narrowband elicitor is centred at the probe frequency, whilst for the 

contralateral and bilateral MOC the largest response were for elicitors about half an octave below 

the SFOAEs probe frequency. They also reported that both the MOC ipsilateral and contralateral 

responses to elicitor frequencies between 500 and 2000 Hz are particularly effective to SFOAEs 

suppression for probe frequencies near 500 Hz and 1000 Hz. However, at a probe frequency of 

4000 Hz, the highest response for ipsilateral and bilateral MOC is to the elicitor frequency of 4000 

Hz. The contralateral response is at a maximum to elicitors with frequencies between 500 Hz and 

4000 Hz. Similarly, Zhao & Dhar, (2011) reported that the contralateral MOC is the most effective 

to elicitors with frequencies between 500 Hz and 1000 Hz when using the OAE method with 

different probe frequencies. A psychological study (Drga, Plack & Yasin, 2016) reported that the 

cochlear gain at the frequency of 4000 Hz was reduced by the ipsilateral MOC to an elicitor with 

frequencies up to 0.5 octaves above and below the probe frequency. Lopez-Poveda, (2018) 

concluded that the current studies suggest that the MOC response in humans is most effective to an 

elicitor with frequencies between 500 Hz and 2000 Hz.  

Response to simulations at different levels 

The MOC response provides both elicitor level (the MOC stimulation) and probe level (MOC 

response) specific suppression. For different elicitor levels, the intensity of the MOC suppression 

increases with the elicitor levels. In a nonhuman mammals based study, Liberman (1988) measured 

that the discharge rate of the MOC neurons (both ipsilateral and contralateral) increases with the 

increasing elicitor level between 20 dB and 90 dB. Particularly, the increase in the discharge rate 

is almost linear with the elicitor level below 60 dB, whilst the increasing slope is reduced at the 

higher elicitor level. In humans, Backus & Guinan (2006) used the OAE method to assess the MOC 

introduced OAE suppression at different elicitor levels. The data showed a relatively linear increase 

of MOC suppression as elicitor levels increased from 40 dB to 60 dB. A psychological method 
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based human study (Yasin et al., 2014) also reported that the amount of MOC introduced cochlear 

gain reduction increases with increasing precursor level.  

The measured amount of MOC suppression (refer to MOC strength) in humans differs from 

that of nonhuman mammals. For nonhuman mammals, Russell & Murugasu (1997) measured the 

maximum MOC introduced attenuation of the BM in guinea pigs is about 40 dB, whilst Cooper & 

Guinan (2003) measured that the MOC attenuation on Guinea pig BM is up to about 30 dB. This 

MOC strength level difference might be caused by differences in the BM displacement recording 

method (see further discussion in (Guinan, 2018)). In cats, Guinan & Stankovic (1996) measured 

the MOC effect by recording the discharge rate of AN fibers. They measured that the MOC 

introduced attention to the firing of the AN fibers is up to 30 dB. However, in humans, the measured 

MOC strength is much smaller. In an OAE based study, Zhao & Dhar (2011) measured a MOC 

strength of 1–2 dB in response to contralateral noise. In contrast, the human MOC strength 

measured in afferent AN CAPs is larger than that measured using the OAE method. Verschooten 

et al., (2017) measured MOC strength up to 20 dB. Similarly, Yasin et al. (2014) measured MOC 

caused cochlear gain reduction up to about 20 dB. In summary, the measured MOC strength in 

humans is lower than that in nonhuman mammals. However, the measured MOC strengths between 

human and nonhuman mammals are different might because they used different MOC stimulation 

methods. For example, in nonhuman mammals, the MOC is activated by using an electrical signal 

to stimulate the efferent neuron directly, whilst in human based studies the MOC was activated 

mainly using contralateral noise. The electrical signal is often more effective than an acoustic signal 

for eliciting the MOC response (Guinan, 2018). Moreover, the MOC strength difference may also 

be caused by the difference in measuring methods. It was found that the measured MOC strength 

using OAE is lower than that measured using CAP (Puria et al., 1996).  
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Figure 2-7. Measured MOC effect at different stages of the auditory system. (a) Amplitude growth 

functions for BM responses to tones near the BM’s CF (18kHz) immediately before (solid) and during 

(dashed) electrical stimulation of MOCE fibers. (data taken from Guinan & Copper 2006). (b) The level 

shift (amount of level by which the sound level must be increased with efferent stimulation to produce the 

same BM displacement as that without efferent stimulation) at CF (15 kHz) as a function of sound level 

(data taken from Russell & Murugasu, 1997). and (c) The level shift (amount of level by which the sound 

level must be increased with efferent stimulation to produce the same HSR AN firing rate as that without 

efferent stimulation) at CFs(from 3–24 kHz) as a function of sound level (data taken from Guinan & 

Stankovic, 1996) 
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The response of MOC is also probe (stimulus) level specific, which means that the amount of 

MOC (driven by a fixed elicitor level) related attenuation varies over different probe levels. In 

nonhuman animal based studies, Cooper & Guinan (2006) reported that the MOC effect in the BM 

decreases as the probe level increases, and the maximum effect was at a probe level below 50 dB 

(as shown in Figure 2-7 a). However, in contrast to the finding reported in (Cooper & Guinan, 

2006), Russell & Murugasu (1997) (as shown in Figure 2-7 b) measured the gain reduction of the 

cochlea at different sound levels in guinea pigs. Since the MOC is elicited by the same format of 

electrical stimulus, the MOC response can be regarded as being stimulated by the same elicitor 

level. The results showed that the MOC response introduced the maximum cochlear gain reduction 

at the sound level around 60 dB. Similarly, Guinan & Stankovic, (1996) studed MOC caused firing 

rate inhibition AN in cat ,. They found thatthe maximum MOC effect was shown at the sound level 

between 50 and 70 dB (as shown in Figure 2-7 c). Guinan (2018) pointed out that the AN based 

measurements are more related to the MOC effect than to different sound levels. He tried to explain 

this conflict by hypothesizing that the motion near the top of the OoC is larger than the BM motion 

and dominated the self-mixing laser signal, so that the self-mixing laser measurements showed 

MOC inhabitation of the motion near the top of the OoC, not the BM motion. This conflict indicates 

that there is still an incomplete understanding of the MOC response to varying probe levels.  

2.2.3 The time constants of the MOC reflex  

The response of the MOC reflex to stimulation is not instantaneous. The time from when 

the MOC strength increase starts to when it reaches its steady level, and the time from the offset of 

the stimulation to the inactivation of the MOC reflex are defined as the time constants of the MOC 

reflex. 

The time constants in nonhuman mammals 

In nonhuman mammal based studies, a pioneer study of the MOC time constant was 

contributed by Wiederhold & Kiang (1970). They measured the suppressive effect of the MOC 

reflex on a single AN fiber in cats by using an electrical signal to simulate the olivocochlear bundle 

(OCB), and recorded the response of the AN discharge rate over time. They found that the response 

time of MOC suppression built up to its maximum level within 100 ms, and the MOC suppression 

reduced gradually over 100 ms after stimulation offset. Later on, Warren and Liberman (1989), 

measured the effect of the MOC reflex on the AN response. The MOC was elicited using both 

contralateral tones and broadband noise. They measured that the suppression of the MOC requires 

approximately 100–200 ms to develop and to decay, which is slightly higher than that reported by 

Wiederhold and Kiang (1970). In the study of contralateral MOC response (Puria et al., 1996), it 

was found that the time required for the MOC effect to achieve its steady level is within 1.2 s, and 

it disappears in less than 0.62 s. In the study of (Liberman et al. 1996), an OAE adaption time of 
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130 ms and 150 ms were found with the ipsilateral and contralateral MOC response respectively. 

However, the relationship and difference between ipsilateral and contralateral MOC time constant 

remain unclear. 

Beside the fast response time of about 100 ms of the MOC reflex, another long response 

time with a length of tens of seconds, which is referred to as the “slow effect” of the MOC, has also 

been discovered in previous studies. The very first study of the MOC slow effect was contributed 

by Reiter and Liberman (1995). They used electrical shocks to simulate the OCB of guinea pigs 

and recorded the response of the CAP of the ANs. They found that in the face of long lasting OCB 

stimulation, an additional long suppression of the MOC appears with a time constant of 30 to 70 s, 

which can persist for 1 or 2 mins after the termination of the stimulation. A further MOC slow effect 

study was provided by Sridhar et al (1995). They used a different format of the shock paradigm to 

stimulate the OCB, and found the same slow onset and slow offset of the MOC suppression using 

a different shock paradigm. However the length of the fast effect elicited by continuous shocks 

(90 s) is slightly shorter than that stimulated intermittently (100 s). A more recent MOC slow effect 

study was published by Cooper & Guinan (2003) who reported a similar time constant of 10–100 s. 

However, they found a phase difference between the fast and slow effects. They measured the phase 

change of MOC response in comparing to the control test, and found that the slow effect has phase 

lags, whilst the fast effect has phase lead (for more details see Cooper & Guinan 2003). This 

indicated that a separate mechanism underlies the fast and slow effects. 

The time constants in human  

In humans, Kim et al. (2001) measured the DPOAE changes in humans over time (5.5 s) 

with the elicitor at 2, 4, and 5.7 kHz. They modelled the time constant of the decrease of the DPOAE 

with two exponentials of time constant of 69 ms and 1510 ms. Kim argued that the DPOAE changes 

were caused by the ipsilateral MOC by referring the measured DPOAE decrease to DPOAE 

adaption found by Liberman et al. (1996). Yasin et al. (2014) used the psychological method to 

measure the decay time constant of the MOC reflex. They measured the masking threshold to 

predict the gain of the cochlea. The effect of the MOC reflex to the cochlear gain was measured by 

presenting the precursor before the masker. They found that the recovery of the cochlear gain from 

inhibition can be characterized by the time constants of 116 ms and 135 ms for precursor levels of 

60 dB and 80 dB. More recently, Otsuka et al. (2018) used CEOAs to measure the effect of the 

MOC reflex in humans. By placing the noise at the contralateral ear, they measured that the onset 

of the MOC effect from inactive to its steady level is less than 400 ms.  

The slow effect of the MOC has also been discovered in humans. Backus and Guinan (2006) 

measured the suppression of the SFOAE caused by ipsilateral, contralateral, and bilateral broadband 

noise. They found that the increase of suppression to its steady level after the presence of the 
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broadband noise is within 277± 62 ms, and the decrease of the suppression to inactive after the 

offset of the noise was within 159 ±  62 ms. They also found that for the “best” cochlea the onset 

time constant could be separated into “fast” (70 ms), “medium” (330 ms) and “slow” (25 s). 

Moreover, (Zhao & Dhar, 2011) reported that MOC effect in humans could also be separated into 

“fast” and “slow” effects. They measured the fast and slow effects of the MOC by measuring the 

changes of the SOAE level over short (3 s) and long (30 s) time windows. However, they found 

that the level of the slow effect (about -2 dB) is much lower than that of the fast effect (about -8 

dB). 

Summary 

The length of measured short time constants of the MOC fast effect in nonhuman mammals 

and humans are similar. Both of the measured fast effects have an onset time constant of less than 

300 ms and a decay time constant less than 200 ms. However, the measured MOC slow effect in 

nonhuman mammals (10–100 s) is much longer than that measured in humans (less than 30 s). The 

reason for this difference remains unclear, however, these differences make it difficult to study the 

slow effect in humans based on data measured in nonhuman animals. Moreover, the function of the 

fast and slow effects of the MOC remains unclear. Cooper and Guinan (2003) suggested that these 

separated MOC effects could be caused by the different mechanisms as they measured different 

phase responses between them. Reiter & Liberman, (1995) suggested that the main function of the 

slow effect is to provide cochlear protection from suddenly increased sound levels. Cooper & 

Guinan (2003) agreed with the protective function of the slow effect, and suggested that the fast 

effect is more likely to be involved in predicting perception changes. The exact functions or benefits 

of different time constants to speech perception are unknown. 

2.2.4 Effect of the MOC on speech perception  

The effect of the MOC reflex on speech perception is of particular interest to researchers 

as previous works have suggested that the MOC reflex has an important role in detecting a relevant 

auditory stimulus in noisy backgrounds (Dallos, 1986; Guinan, 2006; Liberman & Guinan, 1998). 

Generally, the effect of the MOC reflex on speech perception can be divided into effects in silent 

backgrounds and noisy environments.  

In silent backgrounds 

In nonhuman mammals, the MOC reflex suppresses the cochlear amplification to 

acoustical signals in a silent background. The effect of the MOC is typically measured by 

stimulating the olivocochlear efferents using electrical shocks (electrodes are often placed at the 

midline of the floor of the fourth ventricle) while measuring the cochlear response to sound. By 

using this approach, researchers found that the MOC efferent mainly inhibits the amplitude of 
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mechanical vibration of the OoC in response to sound with a frequency close to the CF of the MOC 

response (Cooper & Guinan, 2006; Russell & Murugasu, 1997). Because of this, the variation of 

OoC is inhibited. The MOC efferent also leads to: (1) a reduction in the discharge rate of individual 

AN fibers (Guinan & Gifford, 1988); (2) a reduction in the amplitude of the AN compound action 

potential (CAP) (Elgueda et al., 2011); (3) the change of OAEs. 

In humans, the effect of the MOC reflex reduces the level of OAEs (Liberman et al., 1996). 

This is supported by the finding that the suppressive effect of the contralateral acoustic simulation 

(CAS) on OAEs disappears after vestibular neurectomy (Giraud et al., 1995). However, the 

magnitude of OAE suppression varies across subjects, OAE modality, and CAS characteristics 

(Guinan, 2018). The level of the MOC suppression caused by broadband CAS is higher than that 

of the narrow band. For a constant CAS level, the suppression for high level OAE probes is lower 

than that of low level probes. The MOC efferent also suppresses the CAP of AN fibers in humans. 

It has been observed by comparing the CAP in the presence and in the absence of CAS that in 

comparison with the suppression in OAE, the magnitude of CAP suppression is typically larger (10 

dB vs 2–4 dB) (Chabert, Magnan & Lallemant, 2002; Smith, Lichtenhan & Cone, 2017). 

The effect of the MOC reflex in a silent background is generally reflected by an increase 

in the hearing threshold. This is because the MOC reflex reduces the gain of the cochlear amplifier. 

Kawase et al. (2003) found that the auditory threshold for a pure tone increased by over 2–3 dB 

with broadband CAS. They also found that the threshold increases with increasing CAS level. 

Aguilar et al. (2015) found the interconnection between the increase of auditory threshold and the 

duration of the pure tone probes. At 4 kHz, the threshold increase was larger for longer (500 ms) 

than for shorter (10 ms) probes, presumably because the detection thresholds were lower for the 

longer than for the shorter tones and MOC inhibition is greater at lower levels.  

In noisy environments 

For nonhuman mammals, the effects of the MOC efferent in noisy environments are mainly 

studied by measuring the response of the AN fibers (either CAP or discharge rate) in a noisy 

background with the stimulation delivered by the electrodes placed in the MOC efferents. One of 

the functions of the MOC efferent that is widely agreed (Guinan, 2006; Lopez-Poveda, 2018) is 

that it protects the auditory system from excessive acoustic stimulation. Cody & Johnstone (1982) 

showed that, in guinea pigs, CAS reduced the temporary loss of auditory sensitivity caused by 

intense sounds or long lasting noise. They suggested that CAS reduces the gain of the cochlea by 

stimulating the MOC efferent. However, the evidence of the protection role of the MOC efferent 

in humans is not as strong as that shown in nonhuman mammals (reviewed in (Fuente, 2015; Otsuka 

et al., 2016)).  
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 Nieder & Nieder (1970) found the “antimasking effect” of the MOC, in which the CAP 

response to high-level clicks was larger with the stimulation of the MOC than without it. Winslow 

& Sachs (1987) measured the rate/level function of individual auditory nerve fibers for 200 ms pure 

tones in noise. They found that without the MOC activation, the rate/level function of the AN fibers 

in noise has a smaller dynamic range than that in a silent background. It is presumably because the 

fiber is adapted in response to noise and becomes less responsive (Smith, 1979; Smith & Zwislocki, 

1975). Winslow & Sachs (1987) also found that the dynamic range of the AN rate/level function in 

noise recovers with the stimulation of the MOC efferents. This might be because the MOC shifts 

the rate/level function horizontally to the higher sound level, thus the response to noise components 

with low intensity is reduced (Lopez-Poveda, 2018). Moreover, Winslow & Sachs (1988) showed 

that recovering the dynamic range of the AN fibers rate/level function can facilitate the detection 

of intensity changes in the sound in a noisy background, which gives the notion that the MOC effect 

benefits the hearing in noisy environments.  

In humans, the evidence for the “anti-masking” effect of the MOC is controversial. Scharf 

et al. (1997) found that vestibular neurectomy does not affect the threshold of pure tone detection 

in noise (both ipsilateral and binaural), which suggests that the MOC has no effect on tone detection 

in noise. In contrast, Micheyl & Collet (1996) showed that the subject who had greater suppression 

of OAE levels had a lower pure tone detection threshold in noise. This indicates that the stronger 

MOC reflex introduces a greater “anti-masking” effect. However, Verschooten et al. (2017) found 

no greater CAP responses to tone in noise with the presence of the precursor sound, which is 

expected to active the MOC reflex.  

Since it is suggested that the “anti-masking” effect of the MOC benefits pure tone detection 

in noise and a speech signal is built up from pure tones, it is argued that the MOC efferent may also 

benefit speech recognition in noise. Although deeply investigated, the evidence in support of this 

notion is still controversial. For example, the speech in noise recognition is worse in some but not 

all vestibular neurectomy subjects (Giraud et al., 1997). This might be because the effect of the 

vestibular neurectomy on the MOC effect is not equal over all subjects (Chays et al., 2003). In 

addition, some studies reported better speech in noise recognition for subjects with stronger MOC 

suppression ( De Boer et al., 2011; Milvae et al., 2015). However, not all the evidence supports the 

role of the MOC efferent on benefiting speech in noise recognition. For example, Wagner et al., 

(2008) measured both the speech intelligibility in noise and the contralateral MOC induced DPOAE 

changes. They found no correlation between speech intelligibility in noise and the MOC activities 

in 49 normal hearing subjects. In summary, although the evidence of the MOC reflex on benefiting 

speech-in-noise intelligibility remains elusive, it is widely expected that the MOC reflex facilitates 

signal detection in noise (Lopez-Poveda, 2018).  



Chapter 2 

 

44 

 

 

2.3 Speech intelligibility  

2.3.1 Definition  

The main purpose of studying the MOC reflex is to investigate its effect on speech-in-noise 

intelligibility, and simulate its benefits mechanism to improve speech intelligibility. Speech 

intelligibility is a function of the speech signal and the capability of the listener, it describes the 

degree of the speech when can be heard and understand by human subjects. Intelligibility differs 

from another attribute of speech quality, as speech quality describes how comfortable it is for human 

subjects to listen to the speech, whilst the intelligibility is quantified by the speech recognition 

accuracy of human subjects. Generally, speech intelligibility is measured by presenting speech 

materials (sentences, words, etc.) to a group of listeners to identify the word spoken. Intelligibility 

is quantified by dividing the number of the words, phonemes, or sentences identified correctly with 

the total number of the tested words, phonemes or sentences. 

The details of auditory procedures that contribute to speech intelligibility remain unclear 

due to the complexity of the human speech recognition process (Loizou, 2013). However, the 

general aspects of both speech and testing subjects that might influence speech intelligibility have 

been discussed. Kalikowet al. (1977) classified the aspects that influence speech intelligibility as 

shown below. 

 Phonetic and prosodic factors. The intelligibility of the work depends on the sequence of 

the sound that constitutes the word. In noisy cases, some classes of sound are more easily 

masked by the noise, consequently if the word contains more of these sounds then it is more 

likely to have low speech intelligibility in noise.   

 Effect of the sentences context. In noisy environments, the sentence based words are more 

intelligible than that of the isolated words. This has been reported by Miller, Heise, & Lichten 

(1951). They argued that the sentence context imposes constraints on the set of alternative 

words that are available at a particular location in a sentence. They proved this idea by 

showing that the intelligibility of the words increases when the number of alternative words 

decreases.  

 Word familiarity. The intelligibility of the word is also influenced by its familiarity to 

testing subjects. Much of the research found the effect of the words familiarity by comparing 

the measured frequency occurrences of the word with specific intelligibility in a specific kind 

of language. 

 Noise interference. The basic principle of noise affecting the speech intelligibility is that noise 

degrades the information delivered by its masking acoustic signal. As a result, an increased 

noise level leads to an increasing difficulty of word identification. 
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 Listener related factors. Hearing impairment can obviously distort and reduce the acoustical 

information available to the listeners, and consequently the understanding of the words 

becomes reduced in all conditions. The effect of noise to the hearing impaired is greater than 

to normal hearing listeners (Bentler, 2005; Bertoli et al., 2009; Gygi & Hall, 2015). In addition, 

the individual difference in the degree to which a listener can make use of linguistic and 

contextual constrains understanding of the words. For example, the individual’s vocabulary 

increases with age. The vocabulary would influence the understanding of the words by 

influencing the word familiarity.  

Generally, the methods of measuring and quantifying the speech intelligibility can be classified into 

two branches: subjective measurements and objective measurements.  

2.3.2 Measuring methods  

Subjective speech intelligibility measurements  

Subjective measurements quantify the speech intelligibility according to human based 

intelligibility tests. One of the earliest attempts to measure speech intelligibility was made by 

Fletcher and Steinberg (1930). They used nonsense monosyllables in the format of 

consonant+vowel+consonant for listeners to identify. The number of the syllables identified 

correctly was used to quantify the speech intelligibility. However, one problem of using nonsense 

syllable tests is the difficulty in constructing lists of syllables in which all items are equally difficult 

to recognize. Egan, (1948) proposed a method of using phonetically balanced monosyllable words. 

He designed the testing words list to avoid the ceiling and floor effect (e.g. if the word is too easy 

to be identified, the performance lies near the ceiling of the maximum performance) which makes 

the performance always near to 0 or 100%, respectively. The words in the list are carefully selected 

based on the following criteria; (1) equal difficulty to be recognized; (2) equal phonetic content 

representative of normal speech.  

However, the word tests may not adequately reflect real-word communication. The use of 

single words eliminates contextual information, which is mainly based on sentences. To address 

this issue Kalikow et al. (1977) used sentences consisting of five to eight words each to build eight 

lists each containing 50 sentences. The testing was based on the format of asking listeners to 

respond with the signal word: the last word (keyword) of the sentences. To ensure equal difficulty 

among the testing lists, half of the testing sentences contained keywords with high predictability 

(i.e. words easier to be identified based on the sentence context), and half of the sentences contained 

keywords with low predictability.  

In most of the words or sentences based tests, the speech intelligibility is quantified in terms 

of the percentage of correctly recognized words. However, they are inherently limited by the floor 
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and ceiling effects. To overcome this limitation, Plomp, & Mimpen, (1979) measured speech 

intelligibility using the speech reception threshold (SRT). SRT is defined as the SNR level of the 

sentences at which listeners identify words with 50% accuracy. Therefore, the sentences with lower 

speech reception threshold have higher speech intelligibility. When measured in noise, the sentence 

levels have been replaced by the SNR at which listeners identify words with 50 % correctness. The 

SRT method can be further combined with various statistical tests to examine statistically 

significant intelligibility differences. The details of the SRT method can be found in (Dirks, Morgan, 

& Dubno, 1982). 

Objective speech intelligibility measurements  

The subjective speech intelligibility measurements are based on human tests that often have 

limitations of measurement errors due to individuals hearing differences and are time consuming. 

Objective measurements could overcome these limitations by developing a speech index to predict 

speech intelligibility objectively. One of the earliest standard speech intelligibility objective 

measures is the speech intelligibility index (SII). It was developed from a series of studies which 

validated the use of an articulation index to predict speech intelligibility (Pavlovic, 1987), and 

finally contributed to the creation of the ANSI S3.5-1969 standard. This index is based on the 

assumption that intelligibility depends on the audibility of the signal in each frequency band. The 

audibility in each frequency band is dominated by the hearing threshold and the SNR of the speech. 

The speech intelligibility across the frequency bands is then predicted based on a linear combination 

of audibility in each channel weighted by band importance functions. The measuring of the SII can 

be characterized by the following equations: 

𝑆𝐼𝐼 = ∑ 𝑊𝑘
𝐾
𝑘=1 min (𝑆𝑁𝑅𝑘  , 𝑇𝑘)                                            (2.1) 

where 𝐾 is the number of the frequency bands, 𝑊𝑘 denotes the band importance functions in band 

𝑘, and 𝑇𝑘 denotes the hearing threshold in band 𝑘. A detailed calculation procedure of SII can be 

found in (Pavlovic, 1987). SII has been successfully used in predicting additive noise or speech that 

has been filtered. However, it has several limitations: (1) it has only been validated in stationary 

noise as it is based on the long-term average; (2) SII cannot be used in conditions including a sharply 

filtered band; and (3) it cannot be applied in situations where non-linear operations are included 

(e.g. compression of the gain). To handle the nonlinear process, another extension of the SII named 

the coherence based speech intelligibility index (CSII) was provided by Kates and Arehart ( 2009). 

It uses the measurement of the coherence between the clean and noisy (or processed) signal to 

replace the measurement of SNR in each band. Thus, modelling noisy speech as clean speech with 

added noise. A detailed procedure for calculating the CSII can be found in chapter 7. The CSII uses 

the magnitude-squared coherence (MSC) based SNR to calculate the intelligibility index. Therefore, 

it also includes the effect of the nonlinearity of the signal processing algorithm on speech 
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intelligibility. In comparison to the original SII, the CSII provides higher accuracy at predicting the 

speech intelligibility in the condition of noisy speech that has been processed by the algorithms 

with nonlinear processes (e.g. compression) (Kates, 2010; Loizou, 2013).  

Computer model based speech intelligibility evaluation  

Another approach to objectively measuring the speech intelligibility is to develop computer 

models to simulate the process of speech recognition. The basic principle of using this approach is 

that the speech recognition accuracy of the model could, in principle, reflect that of natural listeners. 

Therefore, speech intelligibility could be quantified by calculating the rate of correct speech 

recognition. A pioneer work of developing a model to simulate human speech recognition is 

provided by (Holmberg, Gelbart& Hemmert, 2007), who developed an inner hair model and used 

the simulated AN spikes as features to train the ASR system and evaluate speech recognition 

accuracy. The study demonstrated relatively high speech recognition at a high SNR level, which is 

close to that of real listeners. However, at the relatively low SNR levels, the speech recognition of 

the whole model is far from the human performance. An auditory model based speech intelligibility 

prediction method has an apparent advantage as it can be easily used to study the function of 

different stages of the auditory system on speech intelligibility (e.g. auditory nerve response). Later 

on, Brown et al. (2010) and Clark & Brown (2014) proposed a similar auditory model+ASR system 

to evaluate the effect of the efferent system on speech in noise intelligibility. However, this model 

based approach has a main limitation of the robustness and accuracy are far away from that of real 

listeners at low SNRs. The factors that lead to the performance differences are difficult to be 

addressed and quantified because the details of the human speech recognition process are not well 

understand.  

2.4 Existing speech enhancement algorithms  

In order to improve the speech-in-noise perception in portable audio signal communication 

devices such as smart phones, hearing aids, and cochlear implants, many speech enhancement 

algorithms have been developed over the past decades. The basic principle of speech enhancement 

is to reduce the noise by reducing the gain of amplifier, whilst retaining the clean speech (Hu & 

Loizou, 2004). However, in practice, the noise signal is mixed with clean speech in both the 

temporal and spectral domains and this challenges speech enhancement.  

2.4.1 Single microphone  

Spectral-subtractive algorithms 

A conventional speech enhancement method is to reduce the noise in the noisy speech 

sampled by a single microphone. Spectral subtractive algorithm is the pioneer single microphone 

speech enhancement algorithm (Boll, 1979). It assumes that the clean speech is corrupted by 
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additive noise, and that one can obtain an estimate of the clean speech by subtracting an estimate 

of the noise spectrum from the noisy speech spectrum. This approach can be mathematically 

achieved using the following equation: 

|�̂�(𝜔)| = | 𝑦(𝜔)| − |�̂�(𝜔)|                                                              (2.2) 

where �̂�(𝜔) is the estimate of the clean speech at frequency component 𝜔, 𝑦 is the noisy speech, 

and �̂�  is the estimated noise. By assuming that the noise amplitude has zero mean and is 

independent to that of clean speech, the equation above can be rewritten as: 

|�̂�(𝜔)|2 = | 𝑦(𝜔)|2 − |�̂�(𝜔)|2                                                               (2.3) 

Usually it is written in the following format: 

|�̂�(𝜔)|2 = | 𝑦(𝜔)|2𝑓2(𝜔)                                                                      (2.4) 

where:  

𝑓(𝜔) = √1 −
|�̂�(𝜔)|2

| 𝑦(𝜔)|2
                                                                      (2.5) 

where 𝑓(𝜔) is known as the gain function of the spectral-subtractive algorithm. To calculate the 

gain function, the noise power is often estimated and updated during the period when speech is 

absent. To avoid the negative value in equation (2.5) caused by noise estimation errors, a half-wave 

rectifier is often applied after the noise subtraction. However, this nonlinear process for removing 

the negative value would create an isolated or discrete peaks in the spectrum, which is known as 

the musical noise. In some cases, this music noise can be more disturbing than the interfering noise 

(Loizou, 2013). 
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Wiener filtering  

 The spectral-subtractive algorithm is based on the fact the noise is additive. The clean 

speech can be estimated by subtracting the noise spectrum from the noisy speech. In practice, the 

noise spectrum cannot be precisely obtained and hence the noise subtracting is not optimal. To 

improve the performance requires development of optimal enhancement criteria. Another popular 

speech enhancement algorithm is the Wiener filtering algorithm. It uses an optimal filter to 

minimize the errors between the clean speech and the noisy speech. This process can be expressed 

by the following equation: 

𝑒(𝜔) = 𝑠(𝜔) − 𝑓(𝜔)𝑦(𝜔)                                                         (2.6) 

where 𝑒(𝜔) is the error between the clean speech 𝑠(𝜔) and noisy speech 𝑦(𝜔) at the frequency 

component 𝜔. The transfer function 𝑓(𝜔) of filtering can then be obtained by minimizing the mean 

square error 𝐸(𝑒(𝜔)2) to zero. By assuming that the clean speech and noise are independent, after 

derivation (details can be found in Loizou, 2013), the transfer function can be written by: 

𝑓(𝜔) =


 + 1
                                                                            (2.7) 

where: 

 =
𝑃𝑠𝑠
𝑃𝑛𝑛

                                                                                     (2.8) 

where  is defined as the a priori SNR, 𝑃𝑠𝑠is the power spectrum of the clean speech, and 𝑃𝑛𝑛 is the 

power spectrum of the noise. Wiener filtering can be implemented by assuming a model of the clean 

speech spectrum (e.g. assuming noisy speech as the clean speech) for the initial condition and trying 

to estimate the model parameters iteratively. In comparison to the spectral subtractive algorithm, 

the noise reduction strategy of Wiener filtering is more aggressive because at the same a posteriori 

SNR level the amount of suppression is larger than that of the spectral subtractive method. A typical 

gain function of Wiener filtering and spectral subtractive algorithms are shown in Figure 2-8 

(Loizou, 2013). The amount of suppression in Wiener filtering algorithms can be optimized to 

reduce speech distortion by changing the exponent of the transfer function (known as 𝛽) ( Lim & 

Oppenheim, 1979). However, Wiener filtering algorithm is derived under the assumption that the 

signals analysed are stationary. To handle speech in nonstationary noise, the Wiener filtering 

algorithms need to be extended (e.g. using Kalman filters, (Loizou, 2013)). Moreover, the Wiener 

filtering is expressed as a function of the prior SNR, thus its performance significantly degrades if 

the estimation of the prior SNR has large errors (e.g. in nonstationary noise) (Loizou, & Kim, 2011).  
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Statistical-model-based algorithms 

 Unlike Wiener filtering based algorithm, which yields a linear estimator of the complex 

spectrum of the signal, statistical model based algorithms develop nonlinear estimators of the 

magnitude (the modulus of the discrete Fourier transform (DFT) coefficients) rather than the 

complex  spectrum of the signal. These nonlinear estimators are based on the probability density 

function of the DFT coefficients of both clean speech and noise, and are often combined with a soft 

decision gain modification based on the probability of speech presence that contributes to reduced 

speech distortion. Considering that the speech enhancement algorithm can be posed in a statistical 

estimation framework, the main task of speech enhancement is to find the estimators of the DFT 

coefficients of the clean speech based on the DFT coefficient of the noisy speech.  

 One of the most popular approaches for deriving these estimators is the maximum-

likelihood (ML) estimator (McAulay & Malpass, 1980). In the ML estimator, the probability 

density function of the noisy speech spectrum 𝑝(𝑦; 𝑠)is modelled to be parameterized by the clean 

speech spectrum 𝑠. By assuming that s is deterministic, the speech enhancement task is to find the 

value of 𝑠 that maximizes 𝑝(𝑦; 𝑠), that is: 

�̂� = arg𝑚𝑎𝑥𝑠 𝑝(𝑦; 𝑠)                                                                    (2.9) 

By further assuming that both the speech and noise DFT coefficients can be modelled as 

independent, zero mean Gaussian random processes, the noisy speech probability density function 

can be obtained by.  

𝑝(𝑦(𝜔𝑘); 𝑠(𝜔𝑘)) =
1

𝜋𝑛(𝑘)
exp [−

𝑦𝑘
2 − 2𝑠𝑘𝑅𝑒{𝑒

−𝑗𝜃𝑠(𝑘)𝑦(𝜔𝑘)} + 𝑠𝑘
2

𝑛(𝑘)
]                                 (2.10) 

where 𝜔𝑘 = 2𝜋𝑘/𝑁, 𝑘 = 0, 1, 2, … , 𝑁 − 1, 𝑁 is the number of samples in frame, 𝜃𝑠(𝑘) is the phase of 

the clean speech at frequency bin 𝑘, and 𝑛(𝑘) is the variance of the noise at the k frequency bin. 
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Since speech and noise have zero mean, the estimation of the clean speech spectrum is (derivation 

details can be found in (Loizou, 2013)) : 

�̂�(𝜔𝑘) = [
1

2
+
1

2
√
𝑦𝑘
2−𝑛(𝑘)

𝑦𝑘
2 ] 𝑦(𝜔𝑘)                                                               (2.11) 

Letting 𝛾𝑘 =
𝑦𝑘
2

𝑛(𝑘)
, which donates the a posteriori SNR, we have: 

�̂�(𝜔𝑘) = 𝑓(𝛾)𝑦(𝜔)                                                                            (2.12) 

where 𝑓(𝛾) =
1

2
+

1

2
√
𝛾𝑘−1

𝛾𝑘
 is the ML estimator based gain function. It is worth noting that in 

practice this gain function is often too small, so the ML estimator is often used in conjunction with 

other processes for speech enhancement (McAulay & Malpass, 1980).  

     In comparison to the ML estimator, the Bayesian estimator assumes the DCT coefficient 

of the clean speech is a random variable instead of deterministic parameters. The motivation of the 

Bayesian based approach is the fact that if we know the 𝑝(𝑠) (usually refer to the probability density 

function of the clean speech amplitudes) then the estimation accuracy can be further improved. 

Therefore, the Bayesian based estimator often performs better than the ML estimator because it 

considers prior knowledge of 𝑝(𝑠).  

Another successful estimator is the minimum mean square error (MMSE) estimator. This 

estimator is motivated by the importance of the short spectral amplitude of speech intelligibility, so 

that the spectral amplitudes of clean speech can be obtained from noisy observations. The MMSE 

calculates 𝑝(𝑠|𝑦(𝜔)) to estimate the clean speech magnitude �̂�. Based on Bayes’ rule, 𝑝(𝑠|𝑦(𝜔)) 

can be calculated according to the 𝑝(𝑦(𝜔)|𝑠)  and 𝑝(𝑠) . Both these two probability density 

functions are solved by modelling the noise and speech DCT coefficients as zero mean complex 

Gaussian random variables. After further derivation (details can be found in (Loizou, 2013)) the 

estimation of the clean speech can be expressed by: 

�̂�(𝜔𝑘) = 𝑓(𝛾𝑘 , 𝑘)𝑦(𝜔𝑘)                                                                        (2.13) 

where 𝑓(𝛾𝑘, 𝑘) is the gain function dominated by a priori SNR 
𝑘
 and a posteriori SNR 𝛾𝑘. Note 

that at high SNR levels (≥ 20 𝑑𝐵) the gain function is similar to that of the Wiener filtering 

algorithm. However, the MMSE estimator based algorithms could be used to reduce residual music 

noise because it acquires additional information from estimated a posteriori SNR 𝛾𝑘 (Loizou, 2013). 

However, the performance of statistical model based algorithms is also dominated by the accurate 

estimation of priori SNR, which often fails in nonstationary noise (Loizou & Kim, 2011).  
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2.4.2 Multiple microphones 

Directional microphone  

One of the multi-microphone based methods is the directional microphone (Ricketts, 2001), 

which is in fact an array of microphones. An array of two microphones is referred to as a first order 

system, whilst three microphones is referred to as second order. The difference in locations between 

the microphones means that the sound coming from one direction is received by individual 

microphones at different times. By subtracting the signals received from different microphones, the 

signals from a particular direction can be attenuated. The attenuation direction can be adjusted by 

introducing internal delays in the device, thus the effect of noise sources from a certain direction 

could be reduced. This method has been successfully implemented in hearing aids that demonstrate 

speech intelligibility improvements (Kim & Barrs, 2006). In hearing aids (Hamacher et al., 2005), 

the directional microphones usually have a dual-microphone configuration with two 

omnidirectional microphones that can switch, manually or automatically, to direction mode. One 

microphone is directed anteriorly while the other is directed posteriorly. The two microphones have 

an external delay due to the microphone spacing (usually 1–15 mm), and an internal delay 

introduced by the hearing aid itself. The signal collected from one microphone is subtracted by the 

signal collected from the other. Therefore, the directional microphones create a polar pattern with 

a point relative to the hearing aids. The sounds from certain directions are amplified while the 

sounds from the other directions are suppressed. The amplified and the suppressed direction can be 

switched by adjusting the internal delay (as shown in Figure 2-9, which demonstrates polar diagram 

 

MicrophoneMicrophone

Sound resource

Figure 2-9. The mechanism of a first order (two microphones) directional microphone method. The green, 

blue, and red curves represent the response to signals at frequencies of 250 Hz, 1000 Hz, and 4000 Hz 

respectively.   
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the directional microphone in response to signals at frequencies of 250 Hz (green), 1000 Hz (blue), 

and 4000 Hz (red) .). The directional microphone method can achieve a 2.8–3.4 dB SNR 

improvement, and shows better speech in noise recognition accuracy in users than omnidirectional 

microphone hearing aids (Lewis et al., 2004). However, the directional microphone based methods 

have two major challenges: (1) Most directional microphone based devices are not able to 

automatically decide where the desired source is when the heading direction changes. (2) 

Directional microphone is less effective for enhancing low frequency signals. Because the 

attenuation to signal from particular directions is achieved by subtracting sampled signals with 

phase differences, low frequency signals sampled at the two microphone ports will be more similar 

in phase than high frequency signals. Hamacher et al. (2005) reported that the performance of 

directional microphone with higher orders is limited to frequencies above 1 kHz. However, the 

frequency range below 1 kHz is critical to speech perception. 

Binaural hearing 

Another multi-microphone based speech enhancement algorithm is to simulate the benefits 

of binaural hearing that the microphone wearing on both ears can work together. Either of the 

microphone can be adjusted based on the performance of the other one. Generally, such algorithms 

contain two microphones and a central signal processor. A wireless link between the left and right 

devices (e.g. hearing aids, cochlear implants) provide opportunities for applying different noise 

reduction algorithms. As a result, the devices work like a binaural system. For example, in the 

application of hearing aids, Kamkar-Parsi & Bouchard (2009) developed a multi-channel Wiener 

filtering based algorithm with a modified cost function to essentially reduce directional noise whilst 

minimizing the speech distortion. However, the algorithm is limited to cases of stationary noise to 

perform well. Moreover, the binaural spectral subtraction or “cocktail-party” processors, which 

mimic some aspects of the processing in the human ear, or using cross-correlation analysis of two 

microphone signals to achieve noise spectrum estimation in nonstationary noise. The noise 

estimator assumes the noise field to be diffuse and the microphones pick up mainly the direct sound 

of the target source. Consequently, it requires no specific direction to the target source, thus it is 

more appropriate in cases with multiple target sources. Lopez-Poved & Eustaquio-Martín (2018) 

recently demonstrated a binaural hearing based speech enhancement method in cochlear implants. 

They simulated the mechanism of the contralateral MOC reflex, and processed the noisy speech 

using the simulated algorithms. By using an objective intelligibility measurement, they 

demonstrated that the proposed algorithm increased the SRTs in steady-state or single-talker 

interferences up to 7 dB. The binaural method provides better SNR of the input signal. However, it 

is not free from practical applications because it sacrifices the device size and system complexity 

(Volker et al, 2002).  
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2.4.3 Summary  

 In summary, current speech enhancement algorithms are still away from providing reliable 

speech intelligibility improvements in practical cases. The single microphone based algorithms (e.g. 

spectral subtractive, Wiener filtering, MMSE estimator) are the most popular speech enhancement 

algorithms that have been widely studied over the past decades. They have successfully 

demonstrated improvement of speech quality that provides better hearing comfort. However, much 

research has found that these algorithms cannot provide speech intelligibility improvements. Lim, 

(1978) reported that the spectral subtraction algorithm provides no speech intelligibility 

improvement in white noise. Furthermore, Hu & Loizou, (2007) found that none of the eight tested 

signal microphone based speech enhancement algorithms (including spectral subtractive, Wiener 

filtering, and statistical model based algorithms) provided significant speech intelligibility 

improvement. Loizou & Kim, (2011) argued that this is because these algorithms are critically 

relying on the estimation of the noise power spectrum, which is often difficult to estimate. They 

also pointed out that these algorithms only focus on using engineering methods to reduce the 

intensity of noise instead of improving intelligibility. The noise is reduced by regulating the gain 

of the amplifier based on the estimated SNR or noise power. However, the fluctuation of the gain 

would also influence the clean speech that introduces speech distortion which even further degrades 

the speech intelligibility.  

In contrast, the directional microphone and binaural hearing based algorithms provide greater 

speech intelligibility improvement by simulating the natural human hearing process. However, they 

are not free from limitation. (1) They require the speech and noise to come from different directions, 

which is not always the case in practice. (2) They depend on a fixed-source configuration. The 

enhancement is only applicable when the target comes from a fixed direction (e.g. front). As a result, 

they are unable to deal with cases when the direction of the target signal varies. Therefore, the 

longstanding goal in speech enhancement is the development of processing algorithms capable of 

monaural segregation of speech from noise. Particularly, they must address the main issue of audio 

signal processing, which is to improve speech intelligibility. The speech enhancement algorithm 

might be better to simulate or base itself on the human hearing process instead of only focusing on 

noise reduction.  
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3. Chapter 3: The effect of the MOC time constants on speech 

perception at different SNR levels: a modelling study 

 
3.1. Introduction 

The human auditory system is remarkably robust to speech-in-noise perception. People with 

normal hearing can achieve a speech recognition accuracy of over 60% at a SNR of 0 dB (Robertson 

et al., 2010). It has been reported that MOC reflex of the auditory system has an anti-masking effect 

in noise (Guinan & Gifford, 1988; Kawase & Liberman, 1993; Winslow & Sachs, 1988). Thereby, 

it has been suggested that this benefits speech perception in noise (Giraud et al., 1997; Hienz, Stiles, 

& May, 1998; May & McQuone, 1995). The MOC reflex, which projects from the brainstem to the 

cochlear, reduces the effect of noise by reducing the amplifier gain of the cochlear (Guinan, 2006; 

Lopez-Poveda, 2018). Simulating the mechanism of the MOC reflex might lead to the development 

of new speech enhancement algorithms for improving speech-in-noise intelligibility in audio signal 

processing devices. However, an understanding of the MOC reflex, particularly the effect of the 

temporal properties of the MOC reflex on speech in noise perception, remains unclear. 

Physiological and psychological studies have measured different time constants of the MOC reflex 

and suggested they might have different functions related to speech in noise perception (Cooper & 

Guinan, 2003). This chapter presents a model based study to investigate the effect of the MOC 

reflex time constant on speech intelligibility in different noise conditions.  

Because speech is a highly temporal-modulated signals, and hence the temporal properties of 

the MOC reflex might be important to speech in noise intelligibility. The temporal properties of the 

MOC reflex are mainly characterized by the onset (the time from when the MOC strength starts to 

increase to its steady level after the stimulation) and decay (the elapsed time over which it decreases 

to zero after the stimulation is switched off) time constants (Backus & Guinan, 2006). Recent 

studies have measured separated time constants in the efferent system, which have been generally 

referred to as the fast and slow effects of the MOC reflex. In animal based studies, Wiederhold and 

Kiang (1970) measured a short time constant (100 ms) of fast effect by recording the response of 

the auditory nerve in cats while stimulating the OCB. Sridhar et al. (1995), measured an additional 

long time constant of tens of seconds in guinea pigs by recording the response of the CAP and 

cochlear microphonic after electrical stimulation of the OCB. Cooper & Guinan, (2003) also 

measured both fast (30–60 ms) and slow (10000–50000 ms) time constants of the MOC reflex in 

guinea pigs by recording the displacement of the BM after stimulation of the MOC efferents. In 

humans, Kim et al. (2001) measured the time constant of the MOC reflex by measuring the response 

of OAEs in the presence of an elicitor. They reported two time constants of 69 ms and 1510 ms by 
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fitting the MOC response curve using two exponential models. Backus & Guinan, (2006) measured 

the time constant of the MOC reflex using OAEs. They reported three different MOC time constants 

with typical lengths of 70 ms, 330 ms, and over 10 s. Zhao & Dhar, (2011) also found the fast and 

slow effects of the MOC reflex in humans by recording the OAE changes over different time 

windows of 3 s and 30 s.  

In addition, it has been found that the time constant of the MOC reflex varies with changes in 

the properties of stimulations. In animal based studies, Wiederhold and Kiang, (1970) found that 

the onset time constant increases with increasing CF, whilst the decay time constant decreases with 

increasing CF. Liberman et al. (1996), found that the time constant decreases with the increasing 

frequency of the stimulus. Saridha (1995) reported that the length of the time constant was related 

to the efficiency of the stimulus. A high efficiency stimulation produced by continuous electric 

shocks to efferent neurons yielded a shorter time constant than low efficiency stimulation (e.g., 

electric efferent neuron shocks separated by pauses). In a human based study, Backus and Guinan 

(2003) measured the time constant of each participant at different stimulus levels. They found 

individual participants showed overall onset time constants varying between 179 ms and 401 ms, 

and decay time constants between 86 ms and 332 ms. The results showed more or less variation of 

MOC reflex time constants at different stimulus levels.  

Either the fast and slow effects of the MOC or the time constant variation to different stimuli 

indicate that the different length of time constants might be important and have different influences 

on speech perception in varying noise conditions. However, few studies have tried to address the 

functions of different MOC time constants. Reiter and Liberman (1995) argued that the slow effect 

is related to protection, and Cooper and Guinan (2003) suggested that the fast effect is more likely 

to be involved in producing perception changes. Overall, the functions of different MOC reflex time 

constants to speech in noise intelligibility remain unclear. 

Studying the functions of different MOC time constants is mainly restricted by the research 

method of psychological and physiological studies as it is difficult to design the experiments to 

measure speech-in-noise intelligibility only associated with the changes of the MOC reflex time 

constants. Recently, a model based approach has been developed to study the effect of the MOC 

reflex on speech perception by controlling the model parameters. For example, Messing et al. (2009) 

simulated the effect of the MOC reflex on the intelligibility of speech-in-noise. They developed an 

efferent feedback loop incorporated auditory model to study the effect of the MOC in speech 

perception. Although the simulated MOC reflex showed improvement in speech perception in noise, 

the MOC time constant was not specified in the experiments as the feedback attenuation was 

calculated offline. Brown et al. (2010) demonstrated a model based study to predict the effect of 

the MOC reflex on speech in noise perception. They used a peripheral auditory model as a signal 
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processing front-end for an ASR system, and compared the speech recognition accuracy of the ASR 

in noise with and without activation of the MOC model. The ASR features were extracted from the 

output of LSRAN fibers to achieve a broad dynamic range of the MOC strength. The results showed 

that MOC related attenuation improves speech recognition accuracy. However, as an “open loop” 

system the MOC related attenuation was applied instantly and hence did not address the effect of 

the MOC time constant. Later on, Clark et al. (2012) used a similar ASR based approach to study 

the effect of the MOC reflex. In contrast to (Brown et al., 2010), they extracted features from the 

output of HSR AN fibers to achieve a low MOC activation threshold. The study demonstrated 

further speech recognition accuracy improvement by using a frequency specific closed loop MOC 

reflex model. However, the effect of the MOC reflex time constant were not systematically studied. 

They only suggested that a longer time constant yielded more benefit than a short time constant in 

the noise condition. Using a type of AN fiber differed to previous work (Brown et al., 2010) brings 

additional concern to how different AN type fibers influence the effect of the MOC reflex on 

speech-in-noise perception. In summary, previous model based studies have two major issues in 

studying the effect of the MOC reflex on speech intelligibility. (1) The effects of different MOC 

reflex time constants on speech perception remain unclear. (2) The effect of the MOC reflex on 

different AN types for speech perception remains unknown. 

To address the above issues, this chapter aims to use a model based approach to investigate (1) 

the effect of the MOC time constants to speech perception in different types of noise over a range 

of SNR levels, and (2) the effect of the different types of AN fibers to speech-in-noise perception 

with the aid of the MOC reflex. The present study developed a complete computer model to study 

the effect of MOC reflex on speech-in-noise perception. The computer model was developed by 

developing feature extraction interface to incorporate an existing peripheral auditory model with an 

automatic speech recognition (ASR) system developed by Cambridge University. We used the ASR 

system to evaluate the intelligibility of the peripheral auditory model processed speech with the aid 

of the MOC reflex using different time constants. In contrast to previous works (Clark et al., 2012), 

an improved version of Meddi’s MOC reflex model (Meddis, 2014) was used in the present study. 

The time constant simulation algorithm of the model has been improved based on measured human 

MOC reflex responses (Backus & Guinan, 2006). The different time constants measured in previous 

human based studies were studied to investigate their influences on speech-in-noise perception.  

The following experiments were conducted. (1) The validation of the computer model was 

evaluated by testing the ASR recognition accuracy with and without the aid of the MOC reflex 

using a fixed time constant, and the results were compared with a similar work published in (Clark 

et al., 2012). (2) The effect of the MOC reflex on ASR with features extracted from different types 

of ANs fibers were studied in different types of noise at SNRs between -10 dB and 20 dB. (3) The 

effect of the MOC time constant on speech in noise perception was evaluated by testing the 
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recognition accuracy of the ASR with the aid of the MOC reflex using time constants between 85 

ms and 2000 ms. The effect of the MOC reflex time constant was tested in both speech like (babble 

noise containing different numbers of talkers) and nonspeech-like noise at SNR levels between -10 

dB and 20 dB and in clean speech. (4) To investigate how the time constants influence the variation 

of MOC strength, the MOC strength and the AN fibers firing rate in response to speech in different 

types of noise were studied.  

This chapter is organized as follows. Section 2 starts with a review of the existing peripheral 

auditory models and the MOC reflex model. Then the ASR system is introduced. The details of 

extracting features from peripheral auditory model outputs, the ASR training and testing process, 

the rationales and assumptions of simulating the MOC reflex with time constants, and the model 

parameters settings are provided in Section 3. Section 4 presents the corpus, noise source, and time 

constants used for the experiments. The experimental results are provided in Section 5. Finally, the 

discussion and summary are provided in Sections 6 and 7. 

 

3.2. Existing models 

3.2.1. Peripheral auditory models  

To study the effect of the MOC reflex on speech in noise perception using a computer 

model, a peripheral auditory model is required. Instead of building a new peripheral auditory model, 

an existing model was used in this chapter to make sure the results are valid and comparable. The 

auditory model needs to meet the following requirements. (1) An accurate simulation of the BM. 

The BM mainly dominates the nonlinear peripheral system. The effect of the MOC reflex is mainly 

reflected by the gain reduction of the BM. Therefore, both the I/O function and the frequency 

response of the BM should be simulated properly. (2) An accurate simulation of the responses of 

different types of AN fibers. It has been suggested that the different types of AN might have separate 

contributions to acoustic signal processing (Sachs et al., 2006; Winslow, Barta & Sachs, 1987), and 

this study also intended to study the effect of the MOC on different types of AN fibers for speech 

perception. (3) A high computational efficiency. In order to obtain statistically significant testing 

results, the effect of the MOC reflex time constant needs to be evaluated using a large group of 

speech samples. The high computation efficiency of the auditory peripheral model saves the 

experiment time.  

Over the past decades, a number of models have appeared that attempt to simulate the 

nonlinear transduction characteristics of the peripheral auditory system. Most of the models share 

certain common stages including the BM; IHC, and AN to simulate the nonlinear response of the 
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cochlea. However, these models differ in their details of simulation that need to be considered 

carefully before using. Several popular models are reviewed and compared in this section to select 

the most appropriate one.  

Ghitza’s model  

In order to understand and mimic the human speech confusion caused by acoustic 

interference, Ghitza et al. (2007), Messing et al. (2009) proposed a model to simulate the signal 

processing of the human peripheral auditory system. They focused on simulating the aid of efferent 

feedback. The structure of Ghitza’s model is shown in figure 3-1. To begin with, a first order high 

pass filter was used to simulate the high pass frequency response of the middle ear. The cochlear is 

modelled as a bank of overlapping cochlear channels uniformly distributed along the equivalent 

rectangular bandwidth (ERB) scale (Glasberg & Moore, 1990). Each channel consists of a multi 

band pass nonlinear (MBPNL) model (Goldstein, 1990). The MBPNL model contains two signal 

processing pathways. One pathway contains a nonlinear filter to simulate the sensitive narrowband 

compressive nonlinearity at the tip of the basilar membrane tip tuning curve. The other pathway 

contains a linear broadband pass filter, which simulates the insensitive broadband linear tail 

response of the BM tuning curve. The linear band-pass filter is followed by a gain controller, which 

regulates the gain of the tip of the BM tuning curve. After the MBPNL filter-bank, the mechanisms 

of the IHC and auditory nerves (ANs) are modelled using a half-wave rectifier followed by a 

“Johnson” low-pass filter, which is a second order low-pass filter with poles at 600 Hz and 3000 

Hz (Messing et al., 2009). To simulate the rate/level function (dynamic range) of the ANs, the 

dynamic range of the output of the “Johnson” low pass filter (Messing et al., 2009) is restricted 

using a dynamic range window (DRW). The lower bound of the DRW simulates the spontaneous 

firing rate of the ANs, whilst the upper bound represents the saturation firing rate of the ANs. The 

output of the DRW is then smoothed using a trapezoidal window to find the short frame average 

ANs firing rate.  

Ghitza’s model has a simple structure as the response of IHC and AN were simply 

simulated using a half wave rectifier and a DWR respectively. The MBPNL filter-bank  simulates 

the compression and the tuning of the cochlear response as the nonlinear tip compression is 

modelled after the sum of linear and nonlinear pathways, which is suggested to better mimic the 

nonlinear within filter synchrony and the effect of the two tone suppression ( Lee, Glass, & Ghitza, 
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Figure 3-1. The structure of Ghitza’s model 
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2011). In addition, the model has a large number of frequency channels (90 channels) that could 

process the stimulus with a high spectral resolution.  

However, the model has the following limitations. (1) The details of the transduction of 

BM displacement to stereocilia displacement, the procedure of calcium concentration, and synaptic 

chemical transmitter release are omitted. Although the half-wave rectifier can roughly simulate the 

input/output (I/O) function of the IHC, it might underestimate the temporal effect of the IHC 

transduction, which might be important for modelling the MOC reflex as the strength of the MOC 

reflex model is driven by IHC outputs. (2) The model cannot simulate the rate/level function of the 

different types of ANs (i.e. LSR, MSR, HSR) fibers. Different types of ANs have a distinct response 

dynamic range that might influence the performance of the MOC reflex on speech perception 

(Brown et al., 2010).  

 

Carney’s model 

 Carney (1993) demonstrated a peripheral auditory model to facilitate the study of 

information encoding and processing by the auditory central nervous system. The model focuses 

on simulating the temporal discharge pattern, average discharge rate, and statistical properties in 

response to the complex signals of the AN fibers. The structure of Carney’s model is shown in 

Figure 3-2. To begin with, narrow band filters where bandwidth varies over time are used to 

simulate the tuning curve of the BM. This bandwidth varying filter is developed from the linear 

recover filter (de Boer, 1975; de Boer & Kuyper, 1968), which is modelled as a gamma-tone 

function to simulate the linear filtering of the BM.  

  Carney also simulated the nonlinear response of the BM by introducing a feedback 

loop to vary the bandwidth of the filter as the input level changes. When the input level is low, the 

filter has relatively sharp tuning. As the input level increases, the bandwidth of the filter increases. 

This feedback loop also simulates the compressive nonlinear properties of the BM including (1) a 

linear response at low input level; (2) compression starts from 30 dB or 40 dB to 90 dB; (3) a linear 

response at a higher level. The feedback loop consists of an asymmetrical nonlinear function to 
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Figure 3-2. The flow chart of Carney’s model. 
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simulate the transfer function of the OHC, an IIR (infinite impulse response) low pass filter to 

simulate the release time of the compression, and a convert function to regulate the feedback loop 

output scale (for more details of this feedback loop see (Carney, 1993). After the time-varying 

narrow band filter, a delay block is introduced to simulate the measured latencies of AN fibers at 

each CF. The delay is simulated by aligning the first peak of the model impulse response with the 

first peak of the measured function.  

The forward path of the model simulates transduction by the IHC and IHC-AN synapse. A 

memoryless, saturating nonlinearity represents mechanoelectric transduction in the IHC. The 

saturating nonlinearity of the IHC is modelled using an asymmetrical nonlinear function. Two low 

pass filters are added to simulate the electrical filtering of the IHC membrane. The adaption of the 

IHC-AN synapse is simulated using a diffusion model. A diffusion model of three stores 

(Westerman & Smith, 1988) is used to simulate the rapid and short-term components of response 

adaption to tones. The three stores are referred to as global, local, and immediate reservoirs, which 

are connected by three diffusion paths. The diffusion paths are regulated by the concentration and 

permeabilities of the reservoirs. The concentrations in the local and immediate reservoirs are 

determined by their volumes and permeabilities. They are modelled as model parameters, which 

could be estimated based on the data shown in the literature. Finally, the output of the IHC-AN 

synapse is converted into discharge time using the Poisson discharge generator. The discharge -

history effect is determined by the time interval between the two discharges and the maximum 

increase regarding the previous discharge. The details of the diffusion model can be found in 

(Westerman & Smith, 1988).  

Carney’s model introduced a filter bank with changing bandwidth in the varying of the 

input level. The frequency response of the model well matches the tuning of the BM as the feedback 

loop controls both the bandwidth and the gain of the filter that mimics the function of the OHC, 

which is, in principle, more close to the anatomy of the BM. Moreover, the IHC-AN synapse is 

modelled using a diffusion model, which simulates both the dynamic range and the temporal 

properties of the AN fibers in response to both simple and complex signals.  

However, the structure of the time-varying filter and diffusion models are too complicated, 

which makes the model time consuming when processing a large group of speech samples. Second, 

the model does not characterize the responses of different types of AN fibers, which are required in 

our study. Finally, this model does not consider the effect of the two tone suppression on BM. The 

interaction suppression of signals in neighbouring frequencies affects the processing of complex 

signal.Since speech is a complex signal, two tone suppression might influence the effect of the 

MOC on speech-in-noise perception.   
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Zhang et al. model 

After Carney’s work, Zhang et al. (2001) proposed an improved peripheral auditory model 

to simulate the nonlinear response properties of AN fibers. It improves the performance of Carney’s 

model in simulating the level dependent bandwidth, the associated phase of the phase-lock response, 

two tone suppression, and the population response of the AN fibers to both simple and complex  

stimuli by replacing the feedback loop using a feedforward loop. The overall structure of Zhang’s 

model is shown in Figure 3-3.  

 The nonlinear and linear responses of the BM are simulated using a cascade of a narrow 

band time-varying nonlinear filter and a linear filter. Both the nonlinear filter and the linear filter in 

the signal path are gammatone filters. The transfer functions of the gammatone filters are identical 

to that used by (Carney, 1993). The time-varying nonlinear filter is controlled by a feedforward 

path that acts to regulate the bandwidth changes of the time-varying nonlinear filter, and is 

responsible for the compression and suppression observed in AN response. The feedforward path 

is designed to reflect the active process corresponding to the local CF place as well as the 

neighbouring CFs (two tone suppression) of the BM. It consists of (1) a band-pass filter with a 

bandwidth wider than that in the single pathway to simulate two tone suppression over a broad 

frequency range. This wide bandwidth filter is a third order gammatone filter. The CFs of the wide 

band filters are characterized by the measured frequency map (Liberman, 1982). (2) A symmetric 

nonlinear function to shape the dynamic range of the control signal. (3) An asymmetric nonlinear 

function followed by a low pass filter to regulate the dynamic range and dynamics of the 

compression. (4) A nonlinear function to adjust the total strength of the compression.  

The output of the filter-bank is then passed through the model stages of the IHC and the 

IHC-AN synapse which represent the responses of corresponding components in the cochlear. The 

IHC stage is modelled by simulating the function of the IHC in transducing the BM displacement 

into electrical potential. The displacement to electrical potential transduction is simulated using a 

logarithmic nonlinear function: 

𝑉𝑖ℎ𝑐(𝑡) = 𝐴𝑖ℎ𝑐[𝑃𝑠𝑝(𝑡)] log(1 + 𝐵𝑖ℎ𝑐|𝑃𝑠𝑝(𝑡)|)                                            (3.1) 
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where 𝑃𝑠𝑝(𝑡) is the signal path filter output at time 𝑡, and 𝐵𝑖ℎ𝑐 is the parameter used to adjust the 

output properties of the IHC model. 𝐴𝑖ℎ𝑐[𝑃𝑠𝑝(𝑡)] is a nonlinear asymmetric function, which is 

shown as: 

𝐴𝑖ℎ𝑐[𝑃𝑠𝑝] = {

𝐴𝑖ℎ𝑐                                                                      𝑃𝑐1 > 0

−
|𝑃𝑠𝑝|

𝐶𝑖ℎ𝑐+𝐷𝑖ℎ𝑐

3|𝑃𝑠𝑝(𝑡)|
𝐶𝑖ℎ𝑐+𝐷𝑖ℎ𝑐

𝐴𝑖ℎ𝑐                                   𝑃𝑐1 < 0
                     (3.2) 

where, 𝐴𝑖ℎ𝑐 , 𝐶𝑖ℎ𝑐 , 𝐷𝑖ℎ𝑐 are parameters used to determine the I/O function of the IHC model. The 

IHC transduction function is followed by a low pass filter, which simulates the low pass properties 

of the IHC. The IHC-AN synapse is simulated using the diffusion model provided by Westerman 

and Smith (1988) as previously introduced in Carney’s model. Finally, a nonhomogeneous Poisson-

process with refractory effects, which is the same as that used in Carney (1993), is used to generate 

the discharge times of the AN fibers.  

Zhang’s model addresses the shortages of Carney’s model (1993) by further simulating the 

effect of the two tone suppression and the rate/level function of the high spontaneous rate AN fibers. 

The simulating of two tone suppression makes the model response to simple and complex stimulus 

more accurate across a wide range of frequencies. Their proposed AN rate/level function has the 

potential to simulate the responses of different types of AN fibers by adjusting the dynamic range 

and the saturation of the firing rate.  

However, the model is even more complicated than the algorithm proposed by (Carney, 

1993) and would be time consuming if used to obtain statistically significant results. The model has 

too many free parameters that make model configuration difficult. In practice, not all the model 

parameters can be addressed properly as the available physiological data are limited. Improperly 

setting the model parameters would degrade the validity of the study results.  

Meddis’ model 

The structure of the peripheral auditory model (afferent pathway) developed by (Lopez-

Poveda & Meddis, 2001; Meddis, O’Mard & Lopez-Poveda, 2001; Sumner, O’Mard, Lopez-

Poveda & Meddis, 2003) is shown in Figure 3-4 [the latest version of Meddis model is available in 

Meddis, (2014)). The model starts from the external/middle ear (OME) filtering stage, which 

simulates the resonance of the external and middle ear to the acoustic signal. The function of the 
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BM in the auditory system is then simulated using the DRNL filter-bank. The functions of IHCs 

are simulated together with the AN to generate the auditory nerve spiking.  

The OME stage of the model simulates the resonance of the external ear (the pinna and the 

ear canal) and middle ear. It consists of two parallel first-order Butterworth band-pass filters with 

bandwidths of 1000–4000 Hz and 2500–7000 Hz. The OME filtering outputs are then transferred 

to the vibration of the middle ear stapes to simulate the process of the middle ear. In order to make 

the simulated output of the stapes better fit the human based data (Huber et al., 2001), the sound 

pressure is converted into stapes displacement using a first order low-pass filter with a cut-off 

frequency of 50 Hz.  

The response of the BM is simulated using a nonlinear filter-bank. Each frequency channel 

of the filter bank contains a DRNL filter (Lopez-Poveda & Meddis, 2001). The schematic of the 

DRNL filter is shown in Figure 3-5. It uses the stapes velocity (output of the OME part) as input to 

generate the compressed BM displacement, which is used to drive the IHC stage of the model for 

each frequency band. To model the nonlinearity of the cochlear, the DRNL filter bank consists of 

two separate pathways. One is the linear pathway, which simulates the linear response of the BM. 

The linear pathway consists of a linear gain, a cascade of three identical gamma tone filters, and 

four cascades of low pass filter. The nonlinear pathway simulates the compression of the cochlear. 

The nonlinear pathway of the DRNL filter consists of the following components: 

 An attenuation stage to apply the suppression caused by the MOC reflex. 

 Three identical first-order gamma tone filters to simulate the tuning curve of the BM. 

 A broken-stick compression function to simulate the compression. 

 Three identical first-order gamma tone filters to reduce the distortion caused by 

compression. 

All the filters in each frequency band have the identical CF. In order to make the frequency response 

of the DNRL filter-bank, which is the summary of the linear and nonlinear pathways, match the 

equivalent rectangular bandwidth (ERB) (Moore& Glasberg, 1983), the bandwidth of each filter in 

the nonlinear pathway is set to be slightly broader than the ERB. In practical implementation, the 

bandwidths are characterized as a function of the CFs:  

bw(f𝑐𝑓) = p𝐷𝑅𝑁𝐿 f𝑐𝑓 + q 𝐷𝑅𝑁𝐿                                                              (3.3) 

Figure 3-4. Structure of Meddis’ peripheral auditory model. 
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 where bw(f) is the bandwidth of the filter at the CF of f𝑐𝑓, whilst p𝐷𝑅𝑁𝐿 and p𝐷𝑅𝑁𝐿 are bandwidth 

parameters empirically estimated according to the ERB provided by Guesberg and Moore (1998). 

Note that the value of the parameters p𝐷𝑅𝑁𝐿 and q 𝐷𝑅𝑁𝐿 in calculating the bandwidths of the linear 

pathway and nonlinear pathway are different. The compression of the BM gain is simulated using 

a ‘broken-stick’ gain function, which regulates the I/O function of the nonlinear pathway. The 

‘broken-stick’ function has a linear gain for input levels below the compression threshold, but a 

nonlinear gain for input levels above the compression threshold. The nonlinear gain is implemented 

by applying a reduced slope (0.25 dB/dB) to the I/O function as expressed below: 

y𝑓 (t) = {sign(𝑥𝑓(𝑡))𝜇𝑓e

0.25log10(𝐷𝑅𝑁𝐿𝑎𝑓|x𝑓(t)|)

𝜇𝑓          𝑓𝑜𝑟 |𝑥𝑓(𝑡)| ≥  𝜇𝑓

𝑥𝑓(𝑡)                                                               𝑓𝑜𝑟 |𝑥𝑓(𝑡)| <  𝜇𝑓

            (3.4) 

where 𝑥𝑓(t) and y𝑓(t) are the input and the compressed output of the frequency band with CF 𝑓 at 

time t, 𝜇𝑓 is the compression threshold, and 𝐷𝑅𝑁𝐿𝑎𝑓 is the compression slope presented in decibel 

scale. The output of the linear and nonlinear pathways are summed together as the simulated BM 

displacement velocity.  

The IHC stage of the model consists of the conductance changes in the stereocilia, and the 

receptor potential changes in the cell. The conductance change is modelled by coupling the BM 

displacement with the conductance changes of the IHC stereocilia. The coupling between BM 

displacement (dispt) and the IHC displacement u(t) is characterized by: 

τc
du(t)

dt
+ u(t) = τcCcillia dispt                                                      (3.5) 

where 𝐶𝑐𝑖𝑙𝑙𝑖𝑎 is a scalar converting BM displacement to stereocilia displacement, and 𝜏𝑐 is the time 

constant. For converting stereocilia displacement to conductance: 

𝐺(𝑢) = 𝐺max𝑐𝑖𝑙𝑖𝑎[ 1 + 𝑒
−(𝑢(𝑡)−𝑢0)

𝑠0 (1 + 𝑒
−(𝑢(𝑡)−𝑢1)

𝑠1 )]−1 + 𝐺𝑎                               (3.6) 

where 𝐺max𝑐𝑖𝑙𝑖𝑎  is the conductance when all transduction channels are open, 𝐺𝑎  is a passive 

conductance, and 𝑠0, 𝑠1, 𝑢0, 𝑢1 are the parameters which determine the nonlinearity of the IHC I/O 

function. The conductance change drives the IHC potential (𝑉(𝑡)) shift and is modelled as a passive 

Figure 3-5. Schematic of the DRNL filter (Taken from Lopez-Poveda and Meddis., 2001) 
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analogue circuit using the derived equation: 

𝐶𝑚
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝐺(𝑢)(𝑉(𝑡) − 𝐸𝑡) + 𝐺𝑘(𝑉(𝑡) − 𝐸𝑘) = 0                                (3.7) 

where 𝐶𝑚  is the cell capacitance, 𝐺𝑘  is a constant of the conductance, 𝐸𝑡  is the endocochlear 

potential, and 𝐸𝑘 is the reversal potential.The simulated process of the IHC-AN synapse consists of 

the influx of calcium and the release of the transmitter. In the calcium influx, the calcium current is 

a function of the IHC potential:  

𝐼𝐶𝑎(𝑡) = 𝐺𝐶𝑎
𝑚𝑎𝑥𝑚𝐼𝐶𝑎

3 (𝑡)(𝑉(𝑡) − 𝐸𝐶𝑎)                                             (3.8) 

where 𝐸𝐶𝑎 is the reversal potential for calcium, 𝐺𝐶𝑎
𝑚𝑎𝑥 is the maximum calcium conductance (all 

channels open), and 𝑚𝐼𝐶𝑎
3 (𝑡) is the fraction of opened calcium channels. Its steady state value 

𝑚𝐼𝐶𝑎
3 (∞) is modelled using a Boltzmann function: 

𝑚𝐼𝐶𝑎
3 (∞) =

1

1+𝛽𝐶𝑎
−1𝑒𝛾𝐶𝑎𝑉(𝑡)

                                                             (3.9) 

The instant value of 𝑚𝐼𝐶𝑎
3 (𝑡) is modelled as a low pass filtering of 𝑚𝐼𝐶𝑎

3 (∞): 

𝜏𝐼𝐶𝑎
𝑑𝑚𝐼𝐶𝑎

3 (𝑡)

𝑑𝑡
+𝑚𝐼𝐶𝑎

3 (𝑡) = 𝑚𝐼𝐶𝑎
3 (∞)                                               (3.10) 

where 𝜏𝐼𝐶𝑎  is the calcium current time constant. Then, the calcium is modelled as a function of the 

calcium current: 

𝜏𝐶𝑎
𝑑[𝐶𝑎+2](𝑡)

𝑑𝑡
+ [𝐶𝑎+2](𝑡) = 𝐼𝐶𝑎(𝑡)                                                  (3.11) 

where 𝜏𝐶𝑎 is a time constant reflecting the dwell time of pre-synaptic calcium in the vicinity of the 

synapse. Finally, the probability of the transmitter release 𝑘(𝑡) is calculated using a linear function 

of the cube of the calcium concentration: 

 𝑘(𝑡) = max(([𝐶𝑎+2]3(𝑡) − [𝐶𝑎+2]𝑇ℎ
3 ) 𝑧, 0)                                          (3.12) 

where [𝐶𝑎+2]𝑇ℎ  is the transmitter releasing threshold, and 𝑧  is an output scaling scalar. A 

probability model is used to simulate the procedure of vesicle release. The individual transmitter 

release probability from an immediate pre-synaptic store determines the number of transmitters in 

the cleft. Some of the transmitters are lost in the transmitting. Those remaining are considered to 

be taken back into the cell for reprocessing where they are repacked into new vesicles. At the same 

time, the immediate pre-synaptic store is replenished with new transmitter at a certain rate. More 

details of the IHC-AN synapse model can be found in ( Meddis, 1988; Meddis, 1986; Meddis & 

Hewitt, 1991). The firing rate of an AN fiber is modelled to be dependent on the amount of 

transmitter in the cleft, which is described by the function: 
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𝐴𝑁𝑟𝑎𝑡𝑒 =
𝑐(𝑡)

𝑑𝑡
                                                               (3.16) 

In comparison to other auditory models introduced before, the DRNL filter-bank in Meddis’ 

model has been widely accepted that it is able to accurately simulate the compressive response of 

the BM. It has a frequency response close to the tuning of the auditory filter. In contrast to the filter-

banks in Carney (1993) and Zhang et al., (2001), the DRNL filter-bank does not need an additional 

control loop to regulate the bandwidth over time. Thus, it has a simpler structure that is more 

computationally efficient. Moreover, Meddis’ model is also able to simulate the response of three 

different types of AN fiber (HSR, MSR, LSR), which helps to study the effect of different types of 

AN fiber on MOC reflex and speech perceptions. In addition, the parameters of Meddis model have 

been carefully set based on data measured in physiological of psychophysical studies. Each part of 

Meddis model has been verified by comparing the model outputs with the measured human or 

mammal data. For example, in (Lopez-Poveda & Meddis, 2001) the DRNL model parameters have 

been adjusted, and the model outputs matches measured human cochlear response well. 

However, the DRNL filter-bank cannot precisely address the phase characteristics of the 

BM impulse response (Lopez-Poveda & Meddis, 2001). But the present study won’t address the 

effects of phase, because the function of the phase repose of auditory system to speech intelligibility 

remains unclear. In addition, the final output of the DRNL filter is contributed by both the linear 

and nonlinear pathways, and each consists of a cascade of band-pass filters. It is relatively difficult 

to precisely customize the parameters of each single gammatone filter in the DRNL filter-bank in 

order to fit the model output to different physiological data. To solve this problem, the present study 

used the original parameters in DRNL filter-bank model, which were adjusted based on human data 

(Lopez-Poveda & Meddis, 2001). 

Summary of existing peripheral auditory models 

To summarize the reviewed periphery auditory models, Ghitza’s model (2007) cannot 

properly simulate the details of AN firing activities. It uses only a DRW to roughly represent the 

dynamic range of the AN response. Although Carney’s (1993) model simulates more details of the 

AN process, it ignores the two tone suppression of the BM stage that degrades validation of the 

model when simulating the AN response to complex signals. This issue was solved by Zhang et al. 

(2001), who further simulated the effect of two tone suppression by improving the filter-bank. The 

complicated structure and the process of the filter-bank makes the model computationally 

demanding. In comparison to the other models, the Meddis model simulates most of the components 

(BM, IHC, and AN) of the peripheral auditory system in sufficient detail. Moreover, the DRNL 

filter-bank has a simpler structure that is more computationally efficient. Therefore, it is more 

appropriate to use Meddis’ model in our study. 
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3.2.2. MOC reflex models 

Messing’s model 

In Messing's model (2009a), a feedback loop is introduced to simulate the effect of the 

MOC reflex. The feedback loop simulates frequency dependent suppression to the cochlear 

amplifier by regulating the gain of each MBPNL frequency band. The gain regulation algorithm 

reduces the gain to allow a prescribed amount of noise in each channel of the AN dynamic window 

(DRW). The value of the gain is determined by comparing the average noise energy per channel to 

the prescribed noise level. If the intensity of noise in each channel is not within a desired difference 

(0.1%), the gain is then iteratively adjusted and the intensity of noise is recomputed. This process 

is repeated until the average noise of each channel lies within the limited range.  

This gain regulating algorithm keeps the consistent noise energy in each channel. As a 

result, loud noise reduces the nonlinear amplification of the small amplitude of the signal while 

weak noise maintains the large amplification of the small amplitude of the signals (Messing et al., 

2009). However, the model does not regulate or quantify the elapsed time from gain start to be 

adjusted to final state. Therefore, the time constant of Messing’s MOC reflex model is not 

controllable.   

Christopher’s model 

 Christopher (2014) simulated the MOC reflex by introducing efferent pathways to adjust 

the gain of the filter-bank in the afferent pathway of the model. The efferent pathway starts from 

the middle ear stage of the auditory model. The model introduces a filter-bank, which has a 

bandwidth broader than that of the afferent pathway, to simulate the frequency dependent MOC 

reflex. The efferent pathway consists of a level dependence block and a time-course model to 

simulate the level dependent and time varying properties of the MOC strength. The level 

dependence block contains a MOC reflex activation threshold, and a nonlinear I/O function. The 

slope of the I/O function decreases as the stimulation level increases. The time-course model 

regulates the build-up and decay time constant of the MOC reflex. A second-order linear system, 

developed on the basis of the algorithm in (Backus & Guinan, 2006) is used for regulating the MOC 

reflex time course: 

𝑦(𝑡) =  𝑐1𝑒
𝑡

𝑇1 + 𝑐2𝑒
𝑡

𝑇2                                                        (3.17) 
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   where 𝑐1 and 𝑐2 are the final MOC strength regulating scalar, and 𝑇1 and 𝑇2 are the time constants. 

The output of the time-course model is further smoothed using a low pass filter to introduce a 20 

ms delay.  

Christopher’s model also incorporates the contralateral process of the MOC reflex that has 

the benefit of being able to simulate the contralateral effect of the MOC reflex to binaural hearing. 

In physiological studies (Guinan, 2006; Liberman, 1988), it is reported that the MOC activities are 

driven by the responses of the efferent ANs. However, in Christopher’s model, the frequency 

specific MOC strength is driven by a simple level dependence function in each frequency band of 

the filter-bank. In physiological study (Liberman, 1988), it is suggested the MOC strength is driven 

by the efferent AN firing rate. The simple level dependence function is developed as a simple I/O 

function that might not be able to properly simulate the complex response of the efferent ANs.  

Clark’s model 

Clark et al. (2012) demonstrated a MOC reflex model to study the effect of the frequency 

specific efferent response to speech perception. The MOC reflex applies frequency specific 

attenuation to each frequency channel of the model. The MOC attenuation is calculated according 

to the simulated AN output in each channel of the afferent model. The MOC introduced gain 

reduction is then applied to the nonlinear path of the DRNL in the same frequency channel. The 

MOC response is simulated to be level dependent and time varying. The level dependent function 

has a MOC activation threshold and a level dependent slope, which is driven by the firing rate of 

the HSR AN fibers as shown below: 

𝐴𝑇𝑇(𝑡) = {
𝐹20𝑙𝑜𝑔20 (

𝑥(𝑡−𝜏)

𝑇𝐻
)                          𝑥(𝑡 − 𝜏) > 𝑇𝐻

0                                                          𝑥(𝑡 − 𝜏) ≤ 𝑇𝐻
                               (3.18) 

where 𝐹 is the rate to attenuation factor, 𝜏 is the delay time constant, and 𝑇𝐻 is the MOC reflex 

activation threshold.  
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Figure 3-6. (a):The time response of the first-order low pass filter in comparing with (b):the measured 

human data (Backus & Guinan, 2006) 
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Clark’s model uses the firing of the AN fibers to drive the MOC strength, which is closer 

to the anatomical structure of the MOC reflex (MOC neurons are driven by type1 and type 2 ANs 

via the cochlear nucleus (Guinan, 2006)). The time varying MOC response is simulated as a first 

order low-pass filter. Thus, the MOC time constant is characterized by the time constant of the low-

pass filter. However, the temporal response of the low pass filter differs to that measured in human 

MOC reflex (Backus & Guinan, 2006). As shown in Figure 3-6, the response of the first order low 

pass filter is compared with that of measured human data (Backus & Guinan, 2006). The response 

of the low-pass filter over time has an upper boundary, whilst the measured MOC response in 

human is continuously increasing when stimulation is present. It can be found that the model output 

(left panel) saturated at the time of about 800 ms, whilst the human data (right panel) shows a 

continuous increase after 800 ms. This is because the simulated model is different to the mechanism 

of the natural MOC response. The final magnitude of Clark’s model passively depends on the 

magnitude upper boundary of the low-pass filter, which is invariant to different time-constants. 

However, the measured data indicates that the final magnitude of the natural MOC relays on the 

length of the time constant. The upper boundary of the low-pass filter might underestimate MOC 

strength with a longer time constant.  

Meddis’ model 

Meddis et al. (Ferry & Meddis, 2007; Lopez-Poveda & Meddis, 2001; Meddis, 2006) 

introduced a feedback loop to simulate the effect of the MOC reflex on the BM by applying 

attenuation to the nonlinear path of the DRNL filter bank. The strength of the MOC is time varying 

and stimulus level dependent. The algorithm for calculating the MOC strength consists of two parts, 

(1) the decay procedure of the MOC strength decreasing from its stable state to zero when the 

stimulus is switched off; (2) the increasing procedure of the MOC strength increasing from zero to 

its stable state when the stimulus is switched on. The model assumes that the starting state of the 

decay procedure is the final state of the increasing procedure, and decay procedure acts as soon as 

stimulation is switched off (stimulus level lower than the threshold).  In contrast to Clark’s (2012) 

approach, the MOC decay procedure is modelled in an iterative way, where the current MOC 

strength (𝑀𝑂𝐶𝐷(𝑛)) is equal to the MOC strength at the previous sampling time (𝑀𝑂𝐶𝐷(𝑛 − 1)) 

multiplied by a decay factor. The decay factor is a time dependent natural exponent. It decreases 

with increased time to simulate the measured human data (Backus & Guinan, 2006). The decay 

produced is determined by the following equation: 

𝑀𝑂𝐶𝐷(𝑛) = 𝑀𝑂𝐶𝐷(𝑛 − 1)𝑒−
𝑑𝑡

𝑇                                                         (3.19) 

where T is the time constant, and 𝑑𝑡 is the sampling interval. The MOC increasing process is also 

calculated in an iterative way, where the current MOC strength is equal to the damped previous 
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MOC strength (𝑀𝑂𝐶𝐼 (𝑛 − 1)𝑒−
𝑑𝑡

𝑇 )added with increasing step. The increasing step is driven by the 

AN firing rate to simulate the level dependent MOC strength. It is calculated by timing the AN 

firing rate with a rate to attenuation factor (𝐹). To simulate the measured increasing procedure in 

human (Backus & Guinan, 2006), where the increasing step decreases exponentially with the time, 

the previous MOC strength is multiplied by a time dependent natural exponent. The MOC 

increasing procedure can be calculated by: 

𝑀𝑂𝐶𝐼 (𝑛) = 𝑀𝑂𝐶𝐼 (𝑛 − 1)𝑒−
𝑑𝑡

𝑇 +  𝐴𝑁𝑠 ∙ 𝑑𝑡 ∙ 𝐹                                      (3.20) 

where 𝐴𝑁𝑠  is the AN firing rate. In Meddis’ model, the decay and increasing procedures are 

regulated by the same time constant as Backus and Guinan (2006), who suggested that the increase 

and decay procedure may be due to the same underlying system. In Meddis’ model, the time 

constant of the MOC reflex needs to be changed manually by changing the value of the parameter 

𝑇.  

Summary of existing MOC reflex models 

In summary, the time constant in Messing’s MOC reflex model is not adjustable and thus 

cannot be used to study the effect of the MOC reflex time constant. Christopher’s model does not 

properly simulate the AN response, that degrades the validation of the model. Clark’s model uses a 

low-pass filter to simulate the time constant, however, the response of the first order low pass filter 

is different in shape to the measured response in (Backus & Guinan, 2006). In consequence, the 

simulated MOC time constant would be inaccurate. In contrast, Meddis’ model has the following 

advantages. (1) MOC strength is driven by the firing rate of the AN fibers, which is closer to the 

anatomy structure of the efferent system that reduces the difference between the model and the real 

efferent system on testing results. (2) Meddis’ model simulates the time varying response of the 

MOC reflex based on human data (Backus & Guinan, 2006), which makes it more viable for 

systematically studying the effect of the MOC reflex time constant on speech perception. (3) It is 

easier to incorporate it into Meddis’s peripheral auditory model.  

3.2.3. Automatic speech recognition (ASR) system 

In order to study the effect of the MOC reflex on speech perception, an automatic speech 

recognition (ASR) system was used to process the features generated by the peripheral auditory 

model output into word sequences and hence measure speech recognition accuracy. The ASR 

attempts to evaluate the speech perception based on features extracted from the signal. In this study, 

an existing ASR system of hidden Markov model (HMM) toolkit (HTK) (Gales and Young, 2008) 

is used. The HTK consists of two major processes. Firstly, training tools are used to estimate the 

parameters of the speech model using training speech and their transcriptions. Secondly, the HTK 

recognition tools transcribe the unknown speech according to the trained speech models. The most 
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important task of the HTK is to estimate parameters for building the speech model. The HMMs 

(Baum & Eagon, 1967; Cox, 1988; Fosler-Lussier, 1998; Gales & Young, 2008; Leggetter & 

Woodland, 1995) is popular in speech modelling because HMMs provide a simple and effective 

framework of time-varying spectral vectors sequence of the speech.  

Hidden Markov models (HMMs)  

The basic principle of using HMMs to recognize unknown speech is to convert the input 

audio waveform into a sequence of fixed size acoustic vectors in the time domain 𝑌1:𝑇 = 𝑦1, … , 𝑦𝑇 

(Young et al., 2015) for feature extraction. The model then attempts to find the sequence of words 

𝑊1:𝐿 = 𝑤1, … , 𝑤𝐿 contained in the acoustic vectors: 

�̂� = argmax{𝑃(𝑤|𝑌)}                                                             (3.21) 

However, since 𝑃(𝑤|𝑌) is difficult to model directly, Bayes’ rule can be applied here to transform 

the equation above into (Gales & Young, 2008): 

�̂� = argmax{𝑃(𝑌|𝑤)𝑃(𝑤)}                                                       (3.22) 

because: 

𝐵𝑎𝑦𝑒𝑠′ 𝑟𝑢𝑙𝑒:              𝑃(𝑤|𝑌) =
𝑃(𝑌|𝑤)𝑃(𝑤)

𝑃(𝑌)
 𝑤ℎ𝑒𝑟𝑒 𝑃(𝑌) = 1                       (3.23) 

In practice, the prior 𝑃(𝑤) can be estimated using a language model, which is modelled based on 

the characteristics of a particular human speech (English is used in the present study) and the 

likelihood 𝑃(𝑌|𝑤), is determined by an acoustic model. In the acoustic model, each word can be 

modelled as a sequence of phones 𝑞1:𝑘
𝑤𝑖 = 𝑞1, … , 𝑞𝑘, e.g. the pronunciation of “stop” consists of 

phones of ‘s’, ‘t’, ‘oh’ and ‘p’. Considering the possibility of multiple pronunciations, the likelihood 

𝑃(𝑌|𝑤) can be converted into (Gales & Young, 2008): 

𝑃(𝑌|𝑤) = ∑ 𝑝(𝑌|𝑄)𝑃(𝑄|𝑤)𝑖                                                     (3.24) 

where the summation is over all valid pronunciation sequences for 𝑤, and 𝑄 is a particular sequence 

of pronunciations, which likelihood is calculated by (Gales & Young, 2008): 

𝑃(𝑄|𝑤) = ∏ 𝑃(𝑞𝑤𝑖|𝑤𝑖)                                       𝑖
𝑖=1               (3.25) 
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The term 𝑞𝑤𝑖  is a valid pronunciation for word 𝑤𝑖 . Each word is modelled as a HMM, and 

characterized by a transition probability parameter {𝑎𝑖𝑗} and an output observation distribution 

{𝑏𝑗(𝑦)} as shown in Figure 3-7. In operation, the HMM makes a transition from its current state to 

one of its connected states every time. A feature vector, which is generated on the basis of the 

distribution associated with the state is used for entering the first state {𝑏𝑗(𝑦)}. In a HMM, the 

output distribution is assumed to be multivariate Gaussians 𝑏𝑗(𝑦) = 𝑁(𝑦; 𝜇𝑗 , Σ𝑗)(Young et al., 

2015) with a mean of 𝜇𝑗  and a covariance of Σ𝑗 . Given a HMM of  𝑄, which is formed by a 

sequence of phones 𝑞1:𝑘
𝑤𝑖 = 𝑞1, … , 𝑞𝑘, the acoustic likelihood can be expressed as (Gales & Young, 

2008): 

𝑝(𝑌|𝑄) = ∑ 𝑝(𝜃, 𝑌|𝑄)𝜃                                                          (3.26) 

 where 𝜃 = 𝜃0, … , 𝜃𝑇+1  is the state sequence through the HMM, and its likelihood can be  

characterized by (Gales & Young, 2008): 

𝑝(𝜃, 𝑌|𝑄) = 𝑎𝜃0𝜃1∏ 𝑏𝜃𝑡(𝑦𝑡)𝑎𝜃𝑡𝜃𝑡+1                         
𝑇
𝑡=1           (3.27) 

Then, the desired likelihood can be calculated by summing the possible state sequence: 

𝑃(𝑌|𝑄) =  ∑ 𝑎𝜃0𝜃1∏ 𝑏𝜃𝑡(𝑦𝑡)𝑎𝜃𝑡𝜃𝑡+1                                     
𝑇
𝑡=1𝜃 (3.28) 

In practice, the likelihood can be approximated by only considering the most likely state sequence, 

which is (Gales & Young, 2008): 

�̂�(𝑌|𝑄) = max{𝑎𝜃0𝜃1∏ 𝑏𝜃𝑡(𝑦𝑡)𝑎𝜃𝑡𝜃𝑡+1
𝑇
𝑡=1 }                            (3.29) 

The direct computation is not tractable, however, simple recursive procedures allow both quantities 

to be calculated very efficiently. If the argmax{𝑃(𝑤|𝑌)}  is computable then the recognition 

problem is solved. If a set of models 𝑄 has been trained for the corresponding words sequence 𝑤 

then the Equation (3.29) is solved by (Gales & Young, 2008): 

𝑃(𝑌|𝑤) = 𝑃(𝑌|𝑄)                                                                      (3.30) 
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Figure 3-7. HMM-based phone model (Replotted from Gales and Young, (2008)). 
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The parameters {𝑎𝑖𝑗} and {𝑏𝑗(𝑦)} for each model q can be efficiently estimated from a corpus of 

training utterances by a robust re-estimation procedure. Thus, provided that there are a sufficient 

number of representative examples of each word, a HMM can be constructed which implicitly 

models all of the many resources of variability inherent in real speech (details of using training 

speech resources to estimate parameters {𝑎𝑖𝑗} and {𝑏𝑗(𝑦)} can be found in Gales and Young, 2008). 

Figure 3-8 gives an example of using HMMs for isolated word recognition. Firstly, an HMM is 

trained for each vocabulary word as Q1, Q2 and Q3 using a number of examples of that word. In 

this case, the vocabulary consists of just three words: “one”, “two” and “three”. Secondly, to 

recognize an unknown word, the likelihood of each model generating that word is calculated, and 

the most likely model identifies the word. The details of the HMM can be found from (Rabiner, 

1989; Young et al., 1995; Gale and Young, 2008). 

  

  

 
Figure 3-8. An example of using HMMS for isolated word recognition. 
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3.3. Method 

3.3.1. Feature extraction  

 In order to use the ASR system to evaluate the effect of the MOC reflex model on speech 

recognition, it must extract features from the peripheral model output for ASR model training and 

unknown speech testing. Considering that the remarkable human speech recognition ability is 

largely due to the mechanism of the high stage auditory system on processing the response of 

auditory nerve (AN) (Holmberg et al., 2007), we extracted features from the simulated AN response 

(firing rate). The main goals of feature extracting processing are (1) to efficiently extract the speech 

characteristics for training the HMMs; (2) to reduce the effect of the s sudden level variation of the 

speech on the performance of the ASR; and (3) to minimize the size of the data that needs to be 

processed. In this study, a signal processing interface was developed. It helps to extract the features 

that are appropriate for identifying the linguistic content and remove redundant components to 

improve the efficiency of the speech recognition task. The flowchart of the feature extraction 

interface is shown in Figure 3-9.  

AN firing rate generating  

 

 

Noisy speech generating

Auditory model processing

Type 2 DCT

𝑑

𝑑𝑡
𝑎𝑛𝑑

𝑑2

𝑑2𝑡

Clean speech Noise

ANs firing

Windowing

Figure 3-9. The flow chart of the feature extraction interface. 
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The first step of feature extraction is to simulate the AN firing rate by passing the testing 

noisy speech through the peripheral model. The testing noisy speech is generated by adding noise 

to the clean speech at the desired root mean square (RMS) level. 

  Before adding noise to speech, either the speech and noise resource must be resampled to 

match the sample rate. To avoid the potential information loss caused by down sampling, we up-

sampled the resource with lower sample rate. The basic process of discrete up-sampling is to fill 

the missing samples with interpolation. The steps of discrete up sampling are shown in Figure 3-

10. Before interpolation, n-1 (𝑛 =
𝑠𝑝ℎ

𝑠𝑝𝑙
) zero samples are added between every sample of the signal 

with the lower sample rate to fill the missing points. Then an interpolation filter is applied to smooth 

out the discontinuities of the filled points. The interpolation filter was built using an finite impulse 

response (FIR) low-pass filter. After the up-sampling, the noise signal is added to the clean speech 

signal and processed by the peripheral auditory model for generating the AN firing rate. The output 

format includes the sequences of AN firing rate for each frequency band of each type of AN fiber 

over the time. The outputs of HSR, MSR, LSR AN fibers are all simulated. In practice, the firing 

rates of the desired AN fiber types were used for feature extraction. 

Windowing 

To extract the features from the frequency domain, the AN firing rate sequence must be 

windowed into overlapping short frames to avoid information loss. This is done by multiplying the 

AN firing rate sequence with a finite length window function, which can be expressed as (Harris, 

1978):  

𝑆𝑤𝑖𝑛(𝑛) = 𝑤(𝑛)𝑆𝑎𝑛(𝑛)                                                         (3.32) 

where 𝑆𝑎𝑛(𝑛) is the ANs firing rate, 𝑆𝑤𝑖𝑛(𝑛) is the windowed sample, and 𝑤(𝑛) is the window 

function. In this study, the Hanning window is used for framing because it has low frequency 

leakage, although it has a slightly lower frequency resolution compared with a rectangular 

window(Roberts, 1998): 

 

 

Add zero 
samples

Interpolation 
filtering

n

Figure 3-10. The up-sampling process. The black arrows represent the original sample points, whilst the 

red arrows represent the inserted sample points. 
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𝑤(𝑛) =
1

2
(1 − cos (

2𝜋𝑛

𝑁−1
))                                                        (3.33) 

where 𝑁 is the duration of the window. The window length needs to be selected to be neither too 

long nor too short. A short window length makes the signal within the window statistically 

stationary and provides good time resolution at the expense of poorer frequency resolution. Window 

overlapping reduces the information loss caused by framing. We used a window duration of 25 ms 

with an overlap of 60% to follow the general setting used in a typical ASR systems (Gales & Young, 

2008; Holmberg et al., 2007). As shown in Figure 3-11, the AN firing sequence is framed repeatedly 

until the end of the sequence is reached. If there are not enough samples to make up the final frame, 

it will be padded with zeros.  

DCT De-correlation 

Similar to that of the Mel-frequency spectral coefficients (MFCC) based features 

(Ittichaichareon et al., 2012), spectral components of the windowed frame are extracted as the 

features. However, the AN firing rate is calculated on the basis of the DNRL filter bank. The 

bandwidth overlapping of the DRNL filter-bank means that the output AN firing rate is highly 

correlated in the frequency domain. The high correlated features cannot be used for training the 

Gaussian distribution based HMMs and there must be de-correlation because the correlation would 

mean that it was not possible to model the signal using HMMs with diagonal covariance matrices. 

In this study, a type 2 discrete cosine transform (DCT-II) was applied to de-correlate the feature 

vectors over each windowed frame ( Brown et al., 2010; Clark & Brown, 2014; Holmberg et al., 

2007). DCT-II transform was used because it has the “energy compaction” property, in that the 

DCT-II transform of a finite length sequence often has its signal characters more concentrated at 

low frequency components than other transfer methods (Ream, 1977). Therefore, we can capture 

most of signal characters by only taking the first few coefficients of the DCT-II transform. In this 

study, we kept the first 14 coefficients of DCT-II for generating the features. The DCT coefficients 

were computed according to the follow equation: 

 

 

Block n

Block n+1

Window period

Window length

AN firing rate sequence
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Figure 3-11. The windowing process on a single AN firing rate sequence. 
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𝑐𝑗 = √
2

𝑁
∑ 𝑆𝑖𝑐𝑜𝑠 (

𝜋𝑗(𝑖+0. )

𝑁
)𝑁−1

𝑖=0      𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 𝑁 − 1                                 (3.34) 

where 𝑐𝑗 is the 𝑗𝑡ℎ DCT coefficient, 𝑆𝑖 is the sequence value at 𝑖, and 𝑁 is the sequence length. 

Delta coefficients 

The temporal features were obtained by measuring the degree of correlation between 

neighbouring samples, which are often referred to as time derivatives or delta coefficients (Holmes 

& Holmes, 2003). The delta coefficients were obtained by applying a linear regression to a sequence: 

𝑑𝑡 =
∑ 𝑛(𝑐𝑡+𝑛−𝑐𝑡−𝑛)
𝑁
𝑛=1

2∑ 𝑛2𝑁
𝑛=1

                                                                (3.35) 

where 𝑐𝑡+𝑛 and 𝑐𝑡−𝑛 are the DCT coefficients at frame 𝑡 + 𝑛 and frames 𝑡 − 𝑛. In this study, N 

equals 2  (Gales & Young, 2008). Then, the extracted delta features were further used with equation 

3.63 to obtain the second order regression features (“delta- delta” or “accelerations” coefficients). 

Calculating the delta and accelerations coefficients could further improve the speech recognition of 

the ASR (Holmes & Holmes, 2003) as they capture temporal information of the speech and are less 

affected by the sudden characteristic variation of the speech. Therefore, for each frame, there are 

3 × 14 coefficients in total which are used as features for modelling each state of the HMMs.   

3.3.2. ASR training and testing 

After extracting the features from the noisy speech, the features of a large group of speech 

utterances training and testing dataset (detailed in section 3.4) were used for training and testing the 

ASR. To reduce the complexity of the HMMs in ASR system, a single word recognition task was 

used in this study. The basic strategy of a single word training and testing task is to use the extracted 

features to train the corresponding HMMs for each word, and recognize the unknown speech 

according to the trained HMMs. The tasks are finished using the HTK toolbox. The tasks consist 

of the following steps: (1) creating the transcription files, which associate the training data with the 

corresponding words, (2) creating HMMs, which use the extracted features of a large group of 

speech to train HMMs for each word; and (3) recognizing the unknown speech according to trained 

HMMs.  

Creating the transcription files 

To train or test a group of HMMs, every single utterance resource needs to have an 

associated transcription to match the HMMs with each word. The transcriptions of utterance sources 

are created by making a master label file (MLF) that lists all the single words each speech utterance 

contained. Since this study focuses on a single word recognition task, instead of using the tool box 

in HTK, the MLF was created using a user defined MATLAB function. The MATLAB function 

goes through all utterance sources and records the label of each utterance source. All the utterance 
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sources for both training and testing are hand labelled with the words they contain. In addition, we 

added a silence model before the beginning and after the end of each utterance in the MLF to 

compromise the possible silent pause introduced during recording. An example of the format of 

word level MLF for training utterances is shown as below: 

#!MLF!# 

“*/2841.mlf” 

sil 

two 

eight 

four  

one 

sil 

In contrast to conventional ASR training strategies, the word level MLF was not further converted 

to the phone level MLF to minimize the training complexity. Only the word level MLF was used 

for training and testing the HMMs. 

Creating HMMs  

The first step of creating word level HMMs is to define the prototype model (HMM states). 

As a word level HMMs system, Clark et al. (2012) used 18 states left to right with no skip. To save 

time-consuming training, we used a topology of 14 states left-right with no skips in processing 

(Young et al., 2015). We have compared using 14 and 18 states. In clean speech condition, the 

accuracy recognition accuracy difference between 14 and 18 states are less than 5%. Each state was 

characterized by two vectors containing the mean and variance of the features. The length of each 

feature vector was 42, which contains the14 DCT-II coefficients, 14 delta features, and 14 

acceleration features. An initial HMM topology was built using a MATLAB function by setting the 

size and the format of the mean and variance vectors, and their initial values. Then, the HTK built 

in tool of “HCompV” was used to build a flat start training process, which scans through the features 

over the dataset, and computes the global mean and variance to replace the initial setting values of 

the topology. This tool generates a master macro file (MMF) which contains all the initial HMMs 

of each word. To further estimate the exact parameters of each HMM, we used the “HERest” tool 

to re-estimate the HMMs three times using the Baum-Welch re-estimation method (Rabiner, 1989), 

which helps to guarantee the accuracy of the HMMs. 

 

Speech Recognition 

The previous HMMs training steps made the unknown speech utterances ready to be 

recognized. For the recognition procedure, the label of each test utterances file, which listed the 
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words each test utterance contained, were stored in the script file as the “correct” words transcript. 

All the test utterance files went through the trained HMMs using the “HVite” tool for recognition. 

The features of each unknown word were compared against all the trained HMMs to find the HMMs 

with the maximum likelihood.  

After recognition, a MLF type transcription of all the recognized words (“result.mlf”) was 

built. The “result.mlf” contained the recognized words for each of the test triplet utterance. This 

transcription is obtained by configuring the HMM network to always output a sequence of three 

digits in response to each speech triplet. Because of this, the accuracy can be simply estimated by 

comparing (word-by-word) the identity of the three recognized words with the three words in each 

triplet. Instead of using the built in tool in HTK, a simple accuracy estimation method was used in 

this study. The “result.mlf” file was compared with the recognized words transcript to estimate the 

speech recognition accuracy. The accuracy of recognition (𝑎) was calculated using the equation 

shown below: 

𝑎 =
𝑛𝑐

𝑁𝑡
× 100%                                                                         (3.36) 

where 𝑛𝑐 is the number of the correctly recognized words, note that for each of the utterance a 

correct score is only given when a correct digit is identified in a correct position of triplet. 𝑁𝑡 is the 

total number of the unknown words for recognition. This recognition accuracy estimation method 

was implemented in MATLAB. 

 In nowadays, the literature on ASR is focused on deep learning, CNNs, auto encoders, etc., 

which demonstrated more robust ASR performance. We still using HMMs based ASR for the 

following reasons: (1) It is not clear how would different ASR systems affect the performance of 

the peripheral auditory model (Meddis’ model). To make our testing results comparable to 

published similar works (Brown et al., 2010; Clark et al., 2012), we decide to follow their 

approaches of using HMMs based ASR. (2) Since the details of speech process in higher brain level 

remain unclear, we focus on studying the effect of the MOC on improving the quality of speech 

features before recognition stage. Thus, the type of the ASR is less important to the present study. 
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3.3.3. Simulating the MOC reflex with different time constants 

In this study, the MOC reflex with different time constants was simulated by only changing 

the time constant parameter of Meddis’ MOC reflex model. In the model, the strength of the MOC 

reflex is calculated iteratively. The increasing procedure is simulated by integrating the MOC 

strength increasing step over the time as shown in Equations 3-19 and 3-20. The increasing step is 

multiplied by a natural exponent to fit the measured nonlinear increasing curve of the MOC in a 

human based study (Backus and Guinan, 2003). Conventional models assume that  

 

 

 

Figure 3-12. The fast and slow effect on CAP amplitude during olivocochlear bundle stimulation in a 

guinea pig. The fast effect is seen as the immediate decrease in CAP amplitude (marked with red arrow) 

and the slow effect is seen as the slow decrease in amplitude (marked with green arrow). 

 

 
Figure 3-13. The simulated MOC attenuation in response to 32-talkers babble noise at a level of 60 dB. 

The attenuation has been averaged over the frequency range between 250 Hz and 8000 Hz. The curves 

with different colours represent the response of MOC reflex with time constants between 118 ms and 

2000 ms. 
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either long or short time constants would lead to the same amount of MOC strength by using either 

a temporal integrator (window) or a low-pass filter. However, both human and nonhuman 

mammalian studies (Saridha et al., 1995; Larsen & Liberman, 2009) reported that the strength of 

the slow effect of MOC keeps on increasing with sustained stimulation. As shown in Figure 3-13 

after a fast decrease of CAP amplitude (marked by red arrow), the CAP amplitude reduce with the 

shock, and reach to its maximum reduction at the end of shocks (marked by green arrow).  Thus the 

MOC strength would be higher when integrates over a longer time constant. In contrast to 

conventional models, Meddis’ model assumes that the different MOC time constants have the 

similar pharmacological profile that have the same MOC strength increasing step. As a result, the 

MOC strength yielded by a longer time constant would be higher than that of the shorter time 

constant as shown in Figure 3-12. Because the MOC strength is integrated over a longer time scale. 

3.3.4. Model parameter configuration 

The parameters of both the peripheral auditory model and MOC reflex model were 

configured based on the following criteria: (1) to increase the validation of the testing results, the 

parameters were set based on the original parameters used in Meddis’s model (2013). The original 

parameters were calculated by fitting (calculated least square best fit between the model and 

experimental data detailed later) the model output to the data measured in previous physiological 

or psychological studies (detailed later); and (2) to make the results comparable to previous similar 

works (Brown et al.,2010; Clark et al., 2012) , the configuration of the key parameters should be 

similar to those used in the previous related works. The key parameters, and the modified 

parameters are specified below. The other parameters are identical to that used in (Meddis et al., 

2013)  

All the main parameters used in this study are shown in Table 3-1. The parameters setting 

focused on the following stages of the model. First, the DRNL filter-bank simulates the function of 

the BM. It determines the frequency response and the compressive nonlinearity of the auditory 

system. The frequency response of the BM is regulated by the CFs and the bandwidth of the linear 

and nonlinear pathways of the DRNL filters. The 30 CFs are equally distributed in a logarithm scale 

at the frequency range between 250 and 8000 Hz. The CFs of the nonlinear pathway are identical 

to that of the linear pathway. The bandwidths of the linear and nonlinear pathways were calculated 

using the empirical equations provided in (Lopez-Poveda and Meddis, 2001) to make the final 

bandwidth of the DRNL filter equal to the ERB (Moore & Glasberg, 1983). The knee point of the 

“broken-stick” function was set to be the same as that used in (Lopez-Poveda & Meddis, 2001). 

The knee points were automatically varied across the frequency bands. This was because the 

“broken-stick” function is driven by the velocity of the stapes, and the knee points of each frequency 

band change with the varying CF. The rest of the parameters of the DRNL filter bank were the same 

as those used in Ferry and Meddis (2007).  
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Second, the AN determines the dynamic range and saturation level of the simulated 

auditory system, which are important to speech recognition (reviewed by Guinean, 2006). Since it 

is hard to measure the AN firing rate in humans, the parameters of the AN model were calculated 

by fitting the rate/level function of the model to the data measured from cat (Guinan and Stankovic, 

1996). As a mammal cat is considered to have the auditory system mechanism similar to that of 

humans. The rate/level function of the HSR AN fibers was set to saturate at about 30 dB, as the low 

saturation level is one of the key properties of HSR AN fibers. The AN rate/level function was 

fitted by adjusting the parameters of the calcium concentration time constant (tauCa) and the 

maximum vesicles in the synapse (M) of the peripheral auditory model (Ferry & Meddis, 2007).  

Third, the parameters of the MOC reflex model that regulates the strength of the MOC 

reflex at varying stimulation levels were set according to the animal data (Liberman, 1988) by 

assuming that the efferent neuron firing rate is proportional to the MOC strength (Clark et al., 2012). 

To guarantee a broad dynamic range of the MOC reflex (Liberman, 1988), the MOC reflex was 

driven by the averaged firing rate of all types (HSR, MSR, LSR) of the AN fibers. Animal data was 

used because the measured human data was mainly measured using OAEs based methods (see 

section 2.2.1), and it is reported that the OAEs method underestimates the MOC attenuation and 

thus the measured results may be disturbed by MEM reflex (Guinan, 2018). The maximum MOC 

strength was set to be 40 dB to follow that used in (Clark et al., 2012). The MOC reflex activation 

threshold was set to be at the AN firing rate of 65 sp/s to guarantee a low MOC activation threshold. 

The delay of the MOC reflex was 10 ms to comprise the measured different delay times in human 

studies (Backus and Guinan, 2006). In addition, in each test, a length of 6000 ms prior noise is 

added before the presence of clean speech for the MOC strength adaption. This is because we focus 

on studying the effect of MOC on its steady state, the effect of sudden noise presence to ASR 

recognition should be avoided. 

 

3.4. Evaluation  

3.4.1. Corpus 

The evaluation corpus database used in this study was the same as that used in Brown et 

al., (2010) and Clarks et al., (2012) to make the testing results comparable to the previous studies 

(Brown et al., 2010; Clark & Brown, 2014). The corpus database used for training and testing the 

ASR was drawn from the AURORA digits corpus (Pearce and Hirsch, 2000). Each utterance file 

of the database consists of several digits (“oh”, “zero”, and “one” to “nine”) spoken by male and 

female speakers. Two separate sets of utterances were used for training and testing. For training the 

recognizer, 8440 utterances spoken by 56 female and 56 male speakers were used. Using 8440 

utterances was as a compromise between recognition accuracy and training time. As shown in figure 
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3-14 (a) there is no apparent accuracy increase by further increasing the size of the training dataset. 

A similar amount of utterances were spoken by each speaker. Each utterance consisted of a random 

number (1 to 7) of digits spoken by an identical speaker.  

 For testing the recognizer, 800 utterances (digits-triplet) were used consisting of “oh”, 

“one”, “two”, “three”, “four”, “five”, “six”, “eight” and “nine” spoken by 56 female and 56 male 

speakers to follow the setting in (Brown et al., 2010; Clark et al., 2012). The “zero” and “seven” 

has been removed due to their recognition accuracy (< 5%) in clean speech condition. The digits 

with low accuracy in clean speech condition should be removed to make sure the results are 

comparable to that in (Clark et al., 2012) by using identical dataset. For each time of test, 450 

utterances, which were randomly selected from 800 utterances, were used for testing to follow the 

method used in (Clark et al., 2012). Using 450 utterances is a trade-off between estimation accuracy 

and processing time. The auditory model simulated tremendous details of the auditory process that 

is time consuming, and the ASR features are extracted from the auditory model outputs. As shown 

in Figure 3-14 (b), the accuracy of 800 utterances almost overlapped with that of 450 utterances. 

The testing set was completely independent of the training dataset (no overlapping). The root mean 

square (RMS) level of both the training and the testing utterances datasets were normalized, and 

were set to have the same level to minimize the characteristic matrix of the HMMs. Maladjustment 

would significantly degrade recognition accuracy (Brown et al., 2010). The ASR was trained with 

clean speech, and tested with noisy speech. This is because it is assumed that the human speech 

recognition system is trained in a clean speech condition (Brown et al., 2010). Noisy speech was 

generated at a signal to noise ratio (SNR) range between 20 dB and -10 dB, and clean speech. We 

converted clean speech and noise to desired root mean square (RMS) level separately to generate 

noisy speech at a specific SNR level. The RMS level of a speech utterance was normalized and 

converted to either 50 dB or 60 dB to simulate the normal speech level. Then, a noise sample with 

the same length was cut, and convert it to desired RMS level after the normalization. Finally, the 

noisy speech is generated by adding the noise to the clean speech. 
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Figure 3-13. The speech recognition accuracy of the ASR as a function of SNR (in steps of 5 dB) with 

different numbers of (a) training (left panel) and (b) testing (right panel) utterances. 
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3.4.2. Noise  

In the present study, different types of non-speech like and speech like noise were used for 

testing. A 15 s length pink noise with a sample frequency of 8000 Hz from the NOISEX 92 data 

base was used as the non-speech like noise. Pink noise was used because many noises in a diverse 

number of physical and biological systems have a spectral distribution similar to that of pink noise 

(e.g. fluctuations in the tide, heart beats, firing of neurons). In pink noise, each octave band has the 

same amount of energy, thus it can guarantee each frequency channel is masked by the same amount 

of energy. The speech like noises were 2-, 4-, 8-, 16-, and 32-talkers babble noise. They were 

generated by combining different IEEE speech sentences (Rothauser, 1969). Each IEEE speech 

sentence was normalized at the same level to make sure the level of each talker had the same weight. 

Each speech like noise had a length of 10 s with a sample rate of 44100 Hz. Using babble noise 

containing different numbers of talkers is because in real life conversations often happen where 

others present are talking, and the properties (spectral and temporal) of the babble noise varies with 

the number of talkers (Krishnamurthy & Hansen, 2009).    
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3.4.3. Time constants 

The time constants tested in this study were drawn from those measured in the human 

auditory system. A summary of measured MOC time constants of both human and nonhuman 

mammals in the literature are listed in Table 3-2. The measured time constant in humans lies mainly 

within the range between 100 ms and 2500 ms. Therefore, in this study, different time constants 

including 85 ms, 118 ms, 200 ms, 300 ms, 450 ms, 1000 ms, and 2000 ms were used for testing. 

118 ms was taken from the human data reported by Yasin et al., (2014), and 200 ms, 300 ms, and 

450 ms were selected to cover the measured medium length time constants in humans (Backus & 

Guinan, 2006). The 1000 ms and 2000 ms were derived to address the longer time constant reported 

in human (Backus & Guinan, 2006) and nonhuman mammals (Puria et al.,1996). Although the 

selected long time constant was shorter than the time constants (more than tens of seconds) of the 

slow effect reported in (Cooper & Guinan, 2003), it is a trade-off between time constant length and 

testing consuming time. A longer time constant (over 2000 ms) would require a longer stimulus 

that is time consuming to process.  

 

3.5. Results  

3.5.1. Experiment 1: Evaluating the validity of the whole computer model.  

The first step was to evaluate the validity of the peripheral model and ASR system by testing the 

ASR recognition accuracy without the MOC (to remove the disturbance caused by MOC model 

differences) and comparing the results with those demonstrated in previous work (Clark et al., 2012).  

The ASR system was trained with clean speech and tested with clean and noisy speech at 

SNR levels between -10 and 20 dB in steps of 5 dB. Both of the training and testing speech level 

were fixed at 60 dB to simulate human speech recognition under general talking conditions. The 

masking noise was 32-talker babble noise. The testing results were compared with the results shown 

in (Clark et al., 2012). Although Clark et al., (2012) used the simulated outputs of HSR AN fibers 

for extracting features, we noticed that the rate/level function (saturated at 80 dB, which can be 

obtained by doing inverse calculation of equation (1) in Clark et al., 2012) of the HSR used in Clark 

(2012) is very different to the HSR in the newest version of Meddis’ model used in this study 

(almost saturated at 20 dB), but very similar to the rate/level function of the MSR fibers (as shown 

in Figure 3-15). The current version of Meddis’ model has been updated to make the rate/level 

function of the AN fibers more accurately simulate the physiological data (Guinan & Stankovic, 

1996). The rate/level function decides the dynamic range of the extracted features that influences 

the ASR testing results at different SNR levels. In order to make the testing results comparable, in 

experiment 1, the training and testing features were extracted from the output of the MSR AN fibers.  
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Figure 3-16 demonstrates the ASR accuracy (without the SNR) as a function of SNR levels 

in 32-talkers babble noise. The ASR accuracy of the proposed system using features extracted from 

MSR is marked with open squares, whilst the comparison results (Clark et al., 2012) are marked 

with open triangles. The error bars (marked with thin solid black lines) represent the standard errors 

of 5 times tests. The error bars are very small. This is because the 5 testing-datasets (each containing 

450 utterances) all come from 800 utterances. The overlapping between testing-datasets led the 

small error bars. According to the figure, when SNR ≤ 0 𝑑𝐵 the ASR accuracy of the proposed 

system showed no apparent changes to an increasing SNR level. The overall speech recognition 

accuracy was less than 20 %. At positive SNRs, the speech recognition accuracy increased with 

increasing SNR levels. The ASR achieved a speech recognition over 50 % at the SNR above 15 dB.  

In comparison with the results provided in Clark et al.(2012), the speech accuracy of the 

proposed system was very close to that of the published results at the SNR below 10 dB. However, 

at the SNR above 10 dB the proposed system shows higher speech recognition than that of Clark et 

al. (2012). This might be because of differences in the AN fibers rate/level functions as shown in 

figure 3-15. In general, the proposed system shows that at each SNR level the speech recognition 

accuracy either similar to or higher than that demonstrated in Clark et al. (2012which means the 

ASR system has the original performance (without the MOC) similar to that in (Clark et al., 2012). 

This proves the validity of using the proposed auditory peripheral model-ASR system to study the 

effect of the MOC reflex on speech in noise intelligibility, and generating comparable results  
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3.5.2. Experiment 2: Studying the effect of MOC reflex on different types of AN.  

This experiment studied the recognition accuracy of the ASR with features extracted from 

different types of simulated AN fibers underlying the effect of the MOC reflex. The MOC time 

constant was fixed at 2000 ms to follow that used in (Clark et al., 2012). This experiment aimed to 

study the effect of the MOC reflex on different types of AN fibers for speech in noise perception. 

The effect of the MOC reflex was studied by comparing the speech recognition of the ASR with 

and without the MOC reflex in clean speech, and different noise conditions. Both the pink and 32-

talker babble noise were used to generate noisy speech at SNR levels between -10 dB and 20 dB. 

The ASR training and testing procedures were the same as those used in experiment 1. However, 

in this experiment, the ASR speech recognition accuracy at a speech level of 50 dB was also 

evaluated to study the performance of the MOC reflex at different speech levels. The speech 

recognition accuracy of the ASR was studied with features extracted from the HSR, MSR, and LSR 

AN output under conditions with and without the MOC.  

Figure 3-17 shows the ASR speech recognition accuracy as a function of the SNR in pink 

(upper panels) and 32-talker babble noise (lower panels) with features extracted from HSR ANs. 

Both speech levels of 60 dB (left panels) and 50 dB (right panels) were studied. The results with 

the MOC reflex are marked with filled triangles, whilst the results without the MOC are marked 

with open circles. According to the figure, the simulated MOC reflex shows an apparent speech 

recognition accuracy improvement at SNR between 10 dB and 20 dB for both of the pink and babble 

noise at both speech levels. The greatest recognition accuracy improvement of about 50% was 

shown for pink noise for 50 dB speech at the SNR of 5 dB. However, in clean speech, the MOC 

reflex slightly degrades the speech recognition accuracy (as shown in all panels of Figure 3-17). 
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which is consistent with the suggestion in (Lopez-Poveda, 2018) that the MOC suppresses the 

cochlear amplification in a silent background. 

In comparison with pink noise, the MOC reflex shows less ASR recognition accuracy 

improvement in 32-talker babble noise for both speech levels (Figure 3-17 lower panels). For 

example, for 60 dB speech, the SNR range over which the MOC reflex shows apparent speech 

recognition accuracy improvement in pink noise is broader than that in the 32-talker babble noise. 

Moreover, at SNR of 10 dB, the amount of accuracy improvement in pink noise is about 18% higher 

than that in 32-talker babble noise. This indicates that the MOC reflex shows less benefit in 32-

talker babble noise than in pink noise.  

In comparison to speech at a level of 60 dB, the MOC reflex shows greater speech 

recognition accuracy improvement in both the pink and babble noise at a speech level of 50 dB 

(Figure 3-17 right panels). This improvement is reflected in two aspects: (1) The MOC shows 

 

 

 

0

20

40

60

80

100

120

A
cc

u
ra

cy
 (

%
)

SNR (dB)

Pink noise (HSR, speech level of 60 dB)

without MOC

with MOC

0

20

40

60

80

100

120

A
cc

u
ra

cy
(%

)

SNR (dB)

Pink noise  (HSR, speech level of 50 dB)

with MOC

without MOC

0

20

40

60

80

100

120

A
cc

u
ra

cy
 (

%
)

SNR (dB)

32-talker babble
(HSR, speech level of 60 dB) 

with MOC

without MOC

0

20

40

60

80

100

120

A
cc

u
ra

cy
 (

%
)

SNR (dB)

32-talker babble noise
(HSR, speech level of 50 dB) 

with MOC

without MOC

Figure 3-16.Comparison of the ASR speech recognition accuracy with (filled triangles) and without (open 

circles) the MOC reflex model in pink (upper panels) and 32-talker babble noise (lower panels) at the 

speech levels of 60 dB (left panels) and 50 dB (right panel s). The features were extracted from HSR AN 

fibers. The ASR speech recognition accuracy is plotted as function of SNR at the level between -10 dB and 

20 dB, and clean speech condition. The MOC time constant is fixed at 2000 ms. The error bars present the 

standard errors of five repeated tests. 
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speech recognition accuracy improvement over a broader SNR range. For example, in pink noise, 

the lowest SNR at which the MOC reflex shows apparent accuracy improvement is 5 dB lower than 

that of 60 dB speech. (2) The MOC shows greater speech accuracy improvement. For example, in 

32-talker babble noise, the maximum speech recognition accuracy improvement (at the SNR of 5 

dB) is about 10% higher than that of 60 dB speech (at the SNR of 15 dB).  

Figure 3-18 shows the ASR speech recognition accuracy in pink noise (upper panels) and 

32-talkers babble noise (lower panels) with features extracted from MSR (right panels) ANs at the 

speech levels of 60 dB (left panels) and 50 dB (right panels). The MOC reflex model shows apparent 

speech recognition accuracy improvement to both speech levels in both pink and 32-talkers babble 

noise. The maximum speech recognition accuracy improvement (55%) is shown in pink noise for 

the 50 dB speech level at the SNR of 5 dB. Similar to the results using HSR ANs, the MOC reflex 

shows greater speech recognition accuracy improvement in pink noise than in babble noise. For 

example, for the speech level of 60 dB, the maximum speech recognition accuracy improvement in 

pink noise (at the SNR of 10 dB) is 12 % higher than that in 32-talker babble (at the SNR of 15 dB). 

Moreover, the MOC shows more benefit to speech at the level of 50 dB than that at 60 dB, which 
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Figure 3-17. Comparison of the ASR speech recognition accuracy with (filled triangles) and without (open 

circles) the MOC reflex model in pink (upper panels) and 32-talker babble noise (lower panels) at the speech 

levels of 60 dB (left panels) and 50 dB (right panels). The features were extracted from MSR AN fibers. The 

ASR speech recognition accuracy is plotted as function of SNR at a level between -10 dB and 20 dB, and the 

clean speech condition. The MOC time constant is fixed at 2000 ms. The error bars present the standard 

errors of five repeated tests. 
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is also consistent with that shown in the HSR ANs output. However, comparison with the results 

shown on HSR ANs the SNR range where the MOC reflex shows greater accuracy improvement 

shifts to lower SNR levels. For example, for 60 dB speech in 32 babble noise, at SNR of 5 dB, the 

MOC reflex shows greater benefits on MSR than HSR ANs.  

The ASR speech recognition accuracy in pink (upper panels) and 32-talker babble noise 

(lower panels) of LSR ANs at the speech levels of 60 dB (left panels) and 50 dB (right panels) are 

shown in Figure 3-19. The figure shows that the simulated MOC reflex shows apparent recognition 

accuracy improvement at a SNR between 5 dB and 10 dB for both the pink and babble noise at both 

speech levels. The maximum improvement of 46% is shown in pink noise for 50 dB speech at the 

SNR of 5 dB.  

In comparison with pink noise, the MOC reflex shows less speech recognition accuracy 

improvement in 32-talkers babble noise than in pink noise for speech at both levels, which is 

consistent with that shown in HSR and MSR ANs. For example, at a SNR of 10 dB, the MOC 

introduced accuracy improvements (accuracy difference between with and without MOC) for 60 
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Figure 3-18. Comparison of the ASR speech recognition accuracy with (filled triangles) and without (open 

circles) the MOC reflex model in pink (upper panels) and 32-talker babble noise (lower panels) at the 

speech levels of 60 dB (left panels) and 50 dB (right pane ls). The features were extracted from LSR AN 

fibers. The ASR speech recognition accuracy is plotted as function of SNR at the level between -10 dB and 

20 dB, and the clean speech condition. The MOC time constant is fixed at 2000 ms. The error bars present 

the standard errors of five repeated tests. 
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dB and 50 dB speech are about 8 % and 4% lower than those in pink noise. This indicates that the 

babble noise is more challenging than pink noise for the MOC reflex to improve speech 

intelligibility on all types of AN fibers. In comparison to speech at a level of 60 dB, the MOC reflex 

shows more speech recognition accuracy improvement for speech at 50 dB. For example, at the 

SNR of 0 dB, the MOC shows that the accuracy improvements in pink and 32-talker babble noise 

are about 30 % and 16 % higher than that at a speech level of 60 dB, respectively (Figure 3-19). 

This is also consistent with the results shown in HSR and MSR fibers. However, at the higher SNR 

levels (20 dB and clean speech), the MOC shows greater benefit to speech at 60 dB than speech at 

50 dB. For example, at a SNR of 20 dB, the MOC even degrades the recognition accuracy of speech 

at 50 dB. 

In order to visually compare the effect of the MOC reflex on different AN types, the MOC 

introduced speech recognition accuracy improvement (speech recognition accuracy differences 

between that with MOC and without MOC) in 32-talker babble noise as a function of the SNR level 

to speech at a level of 50 dB is shown in Figure 3-20. Only show comparison in 50 dB is because 

at 60 dB most of the AN fibers response are saturated that cannot reflect the effect of the MOC. At 

a lower level of 50 dB, less AN fibers response are saturated. The results with features extracted 

from HSR, MSR, LSR AN fibers output are marked with open circles, open triangles, and stars. On 

LSR fibers, the MOC reflex shows benefits at the SNR range between -5 dB and 15 dB. The 

maximum accuracy improvement (45%) is shown at the SNR of 5 dB. On MSR AN, the MOC 

shows benefits at a SNR range between -5 dB and 20 dB. However, the maximum improvement (at 

5 dB) is about 2% lower than that on LSR. On HSR ANs, the MOC shows benefits at the SNR 

levels between -5 dB and clean speech. However, at a SNR of 0 dB its improvement is much lower 

than that using LSR and MSR ANs. The maximum accuracy improvement is also about 45 % at a 

SNR of 10 dB. Comparison of the MOC effect on different types of AN fibers shows greater 

benefits on HSR fibers as the MOC benefited SNR range on HSR (-5 dB to clean speech) is broader 
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than that of the LSR (-5 dB to 15 dB) and MSR (-5 dB to 20 dB) AN fibers. Particularly for HSR 

ANs, the SNR range, where MOC shows an accuracy improvement greater than 20 %, is broader 

than that on MSR and LSR ANs. However, the maximum speech recognition accuracy 

improvement on HSR (46%) is similar to that on LSR (43%) and MSR (45%). 

In summary, the MOC reflex shows greater speech recognition improvement in pink noise 

than in 32-talker babble noise. The MOC reflex shows greater benefits to speech at a level of 50 dB 

than that at 60 dB. The MOC-benefitted SNR ranges shift to a lower level from HSR to LSR ANs. 

At a speech level of 50 dB, the MOC reflex shows more benefits for HSR ANs.  

3.5.3. Experiment 3: Studying the effect of the MOC time constants on speech-in-

noise perception.  

This experiment studied the effect of the MOC reflex time constant on speech-in-noise 

perception. The basic strategy was to test the speech recognition accuracy of the ASR with the aid 

of the MOC reflex using different time constants in different noise conditions, which were 

simulated using different types of noise masking clean speech at different SNR levels. Using 

different noise types is based on the consideration that time constants might influence the 

performance of the MOC reflex in reducing the effect of noise with different properties. Simulating 

different SNR levels is motivated by the results in (Sridhar et al., 1995) that the time constants vary 

with increasing the efficiency of the stimulation. Speech and noise may have different stimulation 

efficiency. 

Both the pink noise and multi-talker babble noise were tested. Pink noise is the most 

common noise in physical, and biological systems with power density inversely proportional to the 

frequency of the signal, and multi-talker babble is the most challenging background noise when 

talking (Wang & Chen, 2018). To further investigate the effect of the MOC reflex time constant on 

babble noise with varying talker numbers, six types of 2-, 4-, 8-, 16-, and 32-talker babble noise 

were tested. The training and testing procedures were the same as those used in experiment 1. To 

study the effect of the time constant to speech perception in general communication conditions, 

speech at levels of 60 dB and 50 dB was tested, and features were extracted from HSR fibers. 

Although different types of ANs fibers were evaluated in experiment 2, this experiment focused on 

studying the effect of the MOC reflex time constant on general speech perception and hence the 

majority AN type, HSR, was used.  



Chapter 3 

 

96 

 

  

 

 

 

 

0

20

40

60

80

100

120

-10 -5 0 5 10 15 20 clean
speech

A
cc

u
ra

cy
 (

%
)

SNR (dB)

32 talker babble noise (60 dB)

without MOC 2000ms

1000ms 450ms

200ms 118ms

85ms

0

20

40

60

80

100

120

-10 -5 0 5 10 15 20 clean
speech

A
cc

u
ra

cy
 (

%
)

SNR (dB)

16 talker babble noise (60 dB)

without MOC 2000ms

1000ms 450ms

200ms 118ms

85ms

0

20

40

60

80

100

120

-10 -5 0 5 10 15 20 clean
speech

A
cc

u
ra

cy
 (

%
)

SNR (dB)

8 talker babble noise (60 dB)

without MOC 2000ms

1000ms 450ms

200ms 118ms

85ms

0

20

40

60

80

100

120

-10 -5 0 5 10 15 20 clean
speech

A
cc

u
ra

cy
 (

%
)

SNR (dB)

4 talker babble noise (60 dB)

without MOC 2000ms

1000ms 450ms

200ms 118ms

85ms

0

20

40

60

80

100

120

-10 -5 0 5 10 15 20 clean
speech

A
cc

u
ra

cy
 (

%
)

SNR (dB)

2 talker babble noise (60 dB)

without MOC 2000ms

1000ms 450ms

200ms 118ms

85ms

0

20

40

60

80

100

120

-10 -5 0 5 10 15 20 clean
speech

A
cc

u
ra

cy
 (

%
)

SNR (dB)

Pink noise  (60 dB)

without MOC 2000ms

1000ms 450ms

200ms 118ms

85ms

Figure 3-20. The speech recognition accuracy of the ASR with MOC (solid lines) using time constants of 85 

ms, 118 ms, 200 ms, 450 ms, 1000 ms, and 2000 ms in 2-, 4-, 8-, 16-, and 32-talker babble, and pink noise. 

The ASR accuracies without the MOC (dashed lines) are also plotted as control groups. The features were 

extracted from HSR ANs at the speech level of 60 dB. The error bars present the standard error of five 

repeated tests. 
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The effect of the MOC time constant at the speech level of 60 dB was studied. Figure 3-21 

shows the ASR speech recognition accuracy as a function of the SNR with MOC reflex using time 

constants including 85 ms, 100 ms, 200 ms, 450 ms, 1000 ms, and 2000 ms in 32-, 16-, 8-, 4-, 2-

talker babble, and pink noise. In 32- and 16-talker babble noise, the shorter time constants (< 1000 

ms) show apparent ASR speech recognition improvements at the SNR above 10 dB. However, at 

the SNR of 10 dB, longer time constants (≥ 1000 ms) show greater speech recognition accuracy 

improvements than the shorter. At the SNR below 5 dB, there is no apparent speech recognition 

accuracy difference.  

In 8-, 4-, and 2-talker babble noise, the shorter time constants show greater benefits as they 

provide the highest speech recognition accuracy even at lower SNR levels. At the SNR rises above 

10 dB the shorter time constant shows highest speech recognition accuracy, which is consistent 

with that shown in 32-and 16-talker babble noise. Unlike in 32-and 16-talker babble noise, at the 

SNR of 10 dB, the shorter time constants show the highest speech recognition when the talker 

number in babble noise is less than 16. For example, the 450 ms time constant showed the highest 

speech recognition accuracy in all of 8-, 4-, and 2-talker babble noise. Since the accuracy difference 

among time constants are very small, we further evaluate the statistical significance. The 

McNEMAR’s test introduced in (Gillick & Cox, 1989) was used. McNEMAR’s test is a method to 

test the statistical significance of the performance difference, when two ASR methods are tested 

using the same dataset. We applied McNEMAR’s in 2-, 4-, 8-talker babble noise at the SNR of 10 

dB. In each type of noise, the time constant shows the lowest difference are used for testing. The 

results are shown in Table 3-3. With a significance level of 0.05, the null hypothesis in all types of 

tested noise can be rejected, which means the results are statistically significant. At the SNR of 5 

dB, only 2-talker babble noise showed apparent recognition accuracy difference among different 

Table 3-3 The McNEMAR’s test results for 2-, 4-, 8-talker babble noise at the SNR of 10 dB. 

 2-talker babble 4-talker babble 8-talker babble 

A1 450 ms 450 ms 450 ms 

A2 1000 ms 1000 ms 1000 ms 

𝐍𝟎𝟏 33 26 15 

𝐍𝟏𝟎 8 11 6 

P 5.6× 10−  0.01 0.039 
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time constants, and the time constant of 450 ms provided the highest speech recognition accuracy. 

At a SNR below 5 dB, no apparent speech recognition accuracy changes to different time constants 

could be found.  

In pink noise, the longer time constants showed greater speech recognition accuracy 

improvement. At the SNR between 5 dB and 15 dB, the longer time constant always showed the 

highest speech recognition accuracy. For example at the SNR of 10 dB, the speech recognition 

accuracy of 2000 ms was about 20% higher than that of 200ms. At a SNR below 5 dB, different 

time constants showed no apparent recognition accuracy differences. At a SNR above 20 dB the 

longer time constants provided accuracy close to that of the shorter ones. 

To demonstrate the effect of different time constants at different SNR levels, the best time 

constants that contributed to the highest speech recognition accuracy at each tested SNR levels are 

plotted as a function of SNR levels in Figure 3-22. According to the figure, both in babble noise 

and pink noise the length of the best time constant decreases with increasing SNR. Under clean 

speech conditions, the time constant of 85 ms shows the highest speech recognition for all noise 

types. At a SNR below 20 dB, the length of the best time constant increases with decreasing SNR 

levels in all types of babble noise. Comparison of the best time constants across different noise 

types shows that the best time constant in pink noise is either equal to or longer than that in babble 

noise for all SNR levels. Moreover, the babble noise with fewer talkers obtained greater benefits 

from shorter time constants. For example, at a SNR of 5 dB, the length of the best time constant 

decreases with decreasing talker number in babble noise. For a speech level of 60 dB most of the 

speech components are located in the saturated range of the HSR rate/level (saturated at about 20 

dB) function that the MOC show unapparent improvement.   

To further study the effect of the MOC time constants when more speech components are 

located in the dynamic range of the HSR AN fibers, the speech recognition of ASR with MOC 
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Figure 3-21. Best time constant at the SNR between 5 dB and clean speech at a speech level of 60 dB. Left 

panel: the best time constants at SNR levels between 5 dB and 20 dB with steps of 5 dB in 2-, 4-,8-,16-, and 

32-talker babble noise. The best time constant for clean speech is also plotted. Right panel: the best time 

constant at SNR levels between 5 dB and 20 dB with steps of 5 dB in pink noise. 
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reflex using separate time constants in lower speech level of 50 dB are shown in Figure 3-23. 

Similar to that at a speech level of 60 dB, the shorter time constants show greater benefits at higher 

SNR levels (≥ 20 𝑑𝐵), whilst the longer time constants show greater benefits at low SNR levels.  

For different types of babble noise, at a SNR above 20 dB, the time constant of 85 ms 

provides the highest speech recognition accuracy for all types of noise. At the SNR of 15 dB, 450 

ms yields the highest recognition accuracy. At the SNR between 15 and 5 dB, the time constants of 

2000 ms and 1000 ms show the highest speech recognition accuracy. At the SNR of 0 dB, although 

the improvement is small, longer time constants show more speech recognition improvement. For 

example, at the 0 dB of 32-talker babble noise, 2000 ms time constants introduced a speech 

recognition accuracy improvement slightly higher (about 2%) than that of 118 ms. At the SNR 

below 0 dB, there is no apparent speech recognition accuracy difference over time constants.  

In pink noise, a shorter time constant shows more improvement at a SNR above 15 dB, 

though the improvement is very small. At a SNR 20 dB, the speech recognition accuracy of 85 ms 

is only 2% higher than that of 1000 ms. At a SNR between 0 dB and 15 dB, the longer time constant 

shows speech recognition accuracy much higher than that of the shorter time constants. At the SNR 

of 10 dB the speech recognition accuracy of 2000 ms is 40 % higher than that of 85 ms. At the SNR 

below 0 dB, there is no apparent speech recognition accuracy change over different time constants.  

The best time constants as a function of SNR between 0 dB and clean speech in babble and 

pink noise with the speech level of 50 dB are shown in Figure 3-24. According to the figure, in 

babble noise, the best time constant decreases with increasing SNR level. For pink noise, the best 

time constant decreases with increasing SNR level. 

Comparing the results obtained at a speech level of 60 dB, the general effect of different 

time constants at a speech level of 50 dB is similar. The short time constant (< 1000 ms) shows 

greater benefits at a SNR above 15 dB, whilst the long time constants (≥ 1000 ms) show higher 

accuracy at the SNR below 15 dB. However, the results of speech levels between 50 dB and 60 dB 

have the following differences. (1) At the speech level of 50 dB, the speech recognition accuracy 

differences between the shorter and longer time constants at each SNR level are more apparent. For 

example, in 32-talker babble noise at a SNR of 10 dB, the speech recognition accuracy of 2000 ms 

at a speech level of 60 dB is only 2 % higher than that of 85 ms, which is much lower than that 

(over 20 %) of a speech level of 50 dB; (2) In babble noise, the best time constants at each SNR 

level change as the speech level decreases from 60 dB to 50 dB. The shorter time constants show 

greater accuracy improvements at low SNRs for 60 dB speech, whilst for 50 dB speech longer time 

constants show greater benefits at low SNRs.  
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Figure 3-22. The speech recognition accuracy of the ASR with MOC (solid lines) using time constants of 

85 ms, 118 ms, 200 ms, 450 ms, 1000 ms, and 2000 ms in 2-, 4-, 8-, 16-, 32-talker babble, and pink noise. 

The ASR accuracies without the MOC (dashed lines) are al so plotted as control groups. The features were 

extracted from HSR ANs at the speech level of 50 dB. The error bars present the standard errors of five 

repeated tests. 
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To summarise the results, the length of the best time constant depends on the SNR level 

and is influenced by the noise type. At different SNR levels, the longer time constants (≥1000 ms) 

showed greater speech recognition accuracy at low SNR level (≥15 dB), whilst the shorter time 

constants (<1000 ms) showed more benefits at high SNR levels (> 15 dB). For different types of 

noise, at the speech level of 60 dB, the longer time constants (>1000 ms) showed greater speech 

recognition accuracy improvement at the SNR range between 5 dB and 10 dB compared to more 

stationary noise (e.g. pink noise, 16-and 32-talker babble noise). The shorter time constants (<1000 

ms) showed greater speech recognition accuracy improvements at the SNR range between 5 dB and 

10 dB in more nonstationary noise (e.g., 2-, 4-, and 8-talker babble noise). However, at the speech 

level of 50 dB, no apparent difference in the best time constants can be found across different types 

of noise. 
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Figure 3-23. Best time constant at the SNR between 0 dB and clean speech with the speech level of 50 dB. 

Left panel: the best time constants at SNR levels between 5 dB and 20 dB with steps of 5 dB in 2-, 4-, 8-, 16-, 

and 32-talker babble noise. The best time constant for clean speech is also plotted. Right panel: the best 

time constant at SNR levels between 5 dB and 20 dB with steps of 5 dB in pink noise. 
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3.5.4. Experiment 4: Studying the effect of different MOC time constants  

To further analyse the effect of the MOC time constant on speech perception in different 

SNR levels and noise types, the temporal fluctuation of the MOC introduced attenuations associated 

with a short time constant of 118 ms and a long time constant of 2000 ms in response to clean 

speech under different noise conditions were studied. The peripheral auditory model simulated AN 

(HSR) response (firing rate) with different MOC time constants, which were also tested to analyse 

their influences on AN response. A clean speech sample of “nine five one” spoken by a male 

speaker was used for testing. Using this speech sample because it has length appropriate to study 

both of effects of the long (2000 ms) and short time constant (118 ms), and the short pauses between 

digits help to study the adaption of MOC reflex in speech absences. The clean speech was masked 

by 32- and 4-talker babble noise at the SNRs of 20, 15, 10, and 0 dB. The level of the clean speech 

was fixed at 60 dB. An additional 1000 ms noise interval was added before each noisy speech 

stimulus for MOC adaption. The parameters of the peripheral auditory and MOC model were the 

same as those used in previous experiments.  

Figure 3-25 shows the mean value of MOC introduced attenuation across all frequency 

channels in response to clean speech in 32-talker babble noise at a SNR of 20 dB. The original input 

stimulus is plotted in Figure a. The mean MOC (averaged across channels) introduced attenuation 

with time constants of 118 ms and 2000 ms over the time are shown in Figures b and c. According 

to the figure, the short time constant associated attenuation strictly follows the onset and the offset 

of the speech envelope, it can be found there are “two peaks” caused by MOC strength following 

the increase of the speech amplitude. The long time constant attenuation shows a continuous 

increase after the onset of the speech envelope. For example, at the time of 2000 ms (Figure c), the 

long time constant associated attenuation shows no reduction at the offset of the speech envelope. 

In addition, the overall level of the long time constant attenuation is about 12 dB higher than that 

of the short time constant as the long time constant associated attenuation keeps on increasing, and 

shows little reduction during the silent interval between speech envelopes.  

At a SNR of 10 dB (Figure 3-26), the short time constant associated attenuation still shows 

a fast adaptation to the speech envelope, but the overall magnitude of the attenuation is increased 

in comparison to that at 20 dB SNR due to the increasing noise level. For example, at 300 ms, the 

short time constant yielded attenuation was increased about 4 dB compared to that at a SNR of 20 

dB. In contrast, the long time constant associated attenuation became less adaptive to the speech 

envelope. At the time of 200 ms, the long time constant yielded less attenuation increase than in 20 

dB SNR (comparing Figure 3-26 c with Figure 3-25 c).  



Chapter 3 

 

103 

 

At the SNR of 0 dB (Figure 3-27). For the short time constant, the variation of the 

attenuation caused by the noise amplitude change is increased. For example, in Figure 3-27 b, at a 

time of 1.6 s, the attenuation shows a noise caused ramp, which is larger than that shown at SNR 

of 20 dB and 10 dB. In contrast, the long time constant associated attenuation shows no apparent 

adaption to noise and becomes more stable at a lower SNR level. 

To study the effect of the time constant in a more nonstationary noise, the MOC related 

attenuation yielded by time constants of 118 ms and 2000 ms in response to 4-talker babble noise 

are studied (as shown in Figure 3-28 and Figure 3-29). In 4-talker babble noise, for the short time 

constant, as the SNR decreases from 20 dB to 10 dB, the fluctuation of the MOC associated 

a: b: c:  

 

a:  b:  c:  

 

a:  b:  c:  

 

Figure 3-26. The stimulus (speech of “nine five one” spoken by a male talker) (a), and the MOC related attenuation 

with time constants of 118 ms (b) and 2000 ms (c) in 32-talker babble noise at the SNR of 10 dB. 

Figure 3-24. The stimulus (speech of “nine five one” spoken by a male talker) (a), and the MOC related 

attenuation with time constants of 118 ms (b) and 2000 ms (c) in 32-talker babble noise at the SNR of 0 dB. 

Figure 3-25. The stimulus (speech of “nine five one” spoken by a male talker) (a), and the MOC related 

attenuation with time constants of 118 ms (b) and 2000 ms (c) in 32-talker babble noise at the SNR of 20 dB 
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attenuation increases because the MOC is driven by the amplitude variations of both clean speech 

and noise. For the long time constant, the MOC associated attenuation is more stable than that of 

the short time constant, which is consistent with that shown in 32-talker babble noise, the long time. 

However, compared to that in 32-talker babble noise, the level of the long time constant yielded 

attenuation in 4-talker babble noise is reduced.  

By comparing results in two different type of noise, we can find that the varying of the 

MOC strength also influenced by the noise type. When a more stationary noise used (Figure 2-26 

and 2-27) the MOC strength would be more stable, whilst when a less stationary noise used “Figure 

2-27 and 2-28”, the MOC strength would should greater variation. 

Figure 3-30 shows the spectrogram of AN (HSR) firing rate in response to noisy speech 

(32-talkers babble noise) underlying the effect of MOC with time constants of 118 ms and 2000 ms 

at a SNR of 20 dB (Figure 3-30 b and c). The AN firing rate in response to clean speech without 

MOC is plotted as a control group (Figure 3-30 a). For clarity, the first 1300 ms length of the AN 

response has been omitted from the display. Since at a SNR of 20 dB the noise level is very low 

and hardly affects the speech intelligibly (this can be proved by the fact that at SNR 20 the ASR 

speech recognition accuracy is above 80 %), we focused on the effect of speech distortions and 

audibility reduction caused by MOC attenuation. According to the figure, the MOC related 

attenuation degrades the clean speech pattern. The long time constant (Figure 3-30 c) removes more 

clean speech patterns than does the short time constant (Figure 3-30 b). At the time after the offset 

of the speech envelope (red squares) the long time constant shows apparent clean speech pattern 

a:  b: c:  

 

a:  b:  c:  

 
Figure 3-27. The stimulus (a), and the MOC related attenuation with time constant of 118 ms (b) and 2000 

ms (c) in 4-talker babble noise at the SNR of 10 dB 

Figure 3-28. The stimulus (a), and the MOC related attenuation with time constant of 118 ms (b) and 2000 

ms (c) in 4-talker babble noise at the SNR of 20 dB. 
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removal. This is consistent with the results shown in Figure 3-25 that the long time constant 

attenuation increases continuously after the onset of the speech envelope.  

 At the SNR of 10 dB (Figure 3-31), since the AN firing rate spectrogram in response to 

speech in noise is seriously corrupted by the noise (without MOC the ASR has low accuracy at a 

SNR of 10 dB), we focused on analysing noise suppression contributed by MOC attenuation. In 

general, the longer time constant attenuation shows better noise suppression than that of the shorter 

time constant. The apparent noise suppression is marked in red squares in Figure 3-31 c. The 

apparent noise suppression is concentrated at the offset of the speech envelope. One of the reasons 

might be that at the speech offset, the long time constant yielded a relatively stable and high level 

attenuation, whilst the short time constant associated attenuation decreased rapidly that provide less 

noise effect reduction (shown in Figure 3-26). Another reason might be that the overall magnitude 

of short time constant associated attenuation is lower so that it provides less noise effect reduction. 

a:  

b:  

c:  

 Figure 3-29. The AN firing rate in response to clean speech without MOC (a). AN firing rate in response to 

speech in 32-talker babble noise at SNR of 20 dB with the MOC time constant of 118 ms (b), and with the 

MOC time constant of 2000 ms (c).The red boxes show the speech patterns removed due to the MOC related 

attenuation, which might decrease the speech intelligibility.  
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In general, the long time constant provides more noise effect suppression than the short time 

constant at lower SNR levels.  

In summary, the fast time constant associated attenuation has faster adaption but lower 

overall magnitude than that of long time constants. At a high SNR level (>10 dB), the short time 

constant yielded MOC attenuation that shows rapid adaption to the speech envelope, but the 

magnitude of the attenuation is small. This makes the short time constant cause less speech 

distortion at a high SNR level. At the low SNR level (<10 dB), the magnitude of the long time 

constant associated attenuation has a stable increase with increasing noise level. This helps the long 

time constant to provide more noise suppression at the low SNR level. The short time constant 

associated attenuation becomes less stable as the noise type changes to be more nonstationary 

(talker number decrease), whilst the long time constant associated attenuation is still stable in 

nonstationary noise.  

 

a:  

b:  

c:  

 
Figure 3-30. The AN firing rate in response to clean speech without MOC (a). AN firing rate in response to 

speech in 32-talker babble noise at SNR of 10 dB with the MOC time constant of 118 ms (b), and with the 

MOC time constant of 2000 ms (c). The red boxes show the noise patterns removed due to the MOC related 

attenuation, which might increase the speech intelligibility. 



Chapter 3 

 

107 

 

3.6. Discussion 

Comparison to previous works 

This study showed that the simulated MOC reflex improved ASR speech-in-noise 

recognition accuracy. However, at a speech level of 60 dB, the amount of improvement is lower 

than that shown in the previous studies (Brown et al., 2010; Clark et al., 2012). This might be caused 

by the differences between simulated AN fiber rate/level functions as the dynamic range of the ANs 

firing rate affects the signal-in-noise detection (Kawase et al., 1993). In previous studies, Brown et 

al., (2010) extracted features from simulated LSR AN fibers to simulate the broad dynamic range 

of human audibility, whilst Clark et al. (2012) extracted features from simulated HSR AN fibers to 

guarantee a low MOC reflex activation threshold. However, the simulated HSR AN fiber rate/level 

function used by Clark has a broader dynamic range (Clark et al. 2012), which is in contrast to data 

measured in physiological studies (Liberman, 1978; Guinan and Stankovic, 1996) where the 

rate/level function of the HSR AN fibers has a narrow dynamic range with a low saturation level 

about 30 dB (Winslow and Sachs, 1988). In consideration of the importance of HSR AN fibers, 

which is the majority type, we simulated the narrow dynamic range (20 dB) and low saturation level 

(30 dB) of the HSR AN rate/level function. Although our results showed a MOC introduced speech 

recognition accuracy improvement less that shown in (Brown et al., 2010; Clark et al. 2012), it is 

consistent with the finding that the MOC reflex causes less change to the firing rate of HSR ANs at 

the stimulus level about 60 dB (reviewed in Guinan, 2018). 

Effect of MOC reflex on different ANs type facilitated speech-in-noise perception 

By comparing the performance of the MOC reflex with features extracted from HSR, MSR, 

and LSR AN fibers, this study has further addressed the effect of the MOC reflex on different types 

of AN fibers which is a missing case in previous studies (Messing et al., 2009; Brown et al., 2010; 

Clark et al., 2013). The separated AN types have different rate/level functions. Specifically, the 

saturation level of the AN rate/level function increases from HSR to LSR, (Yost. 1991; Guinan and 

Stankovic, 1996). We found that a higher saturation level could provide more apparent speech 

accuracy improvement at a lower SNR level. This can be proved by the results (as shown in 

experiment 2) that the lowest SNR level where the simulated MOC reflex showed recognition 

improvement, increased from LSR to HSR. This might be because a higher saturation level provides 

a broader dynamic range that benefits signal detection (Guinan, 2006).  

HSR forms the majority (by number) type of AN in the human auditory system. However, 

the exact benefit of HSR to speech perception remains unknown (Winslow et al. 1987; Sachs et al., 

2006). By comparing the results to previous studies, it can be found that MOC reflex showed greater 

speech recognition accuracy improvement on HSR (Clark et al., 2012) than on LSR (Brown et al., 

2010). Consistent with previous works, our experiment also showed that the HSR ANs provided 
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better speech-in-noise recognition improvement on ASR. We found in particular that HSR provided 

greater benefits at a lower speech level (when comparing 60 dB speech to 50 dB speech). This can 

be proven by the results that the MOC showed greater accuracy improvement on HSR fibers than 

on MSR and LSR (as shown in experiment 2). Conventional ideas mainly owe the improvement of 

the signal-in-noise detection to the dynamic range of the AN rate/level function (Kawase et al., 

1993; Guinan, 2006). However, we consider that the benefits of HSR are mainly caused by the 

sharp slope of the rate/level function of our simulated HSRs AN. A sharp slope would convert a 

small input level variation into AN firing rate difference, thus a small decrease of gain could lead 

to more noise effect reduction. This can be proved by the result that although MSR and LSR have 

a broader dynamic range than HSR ANs, the HSR still showed the greatest recognition 

improvement.  

Effect of MOC time constant at different SNR levels  

This study found that the length of the best time constants, which provides the highest 

speech recognition accuracy, depends on the SNR levels. In general, the long time constant showed 

greater speech recognition accuracy improvements at low SNR levels (<15 dB), whilst the short 

time constant showed more improvement at high SNR levels (>=15 dB). The benefits of the long 

time constant is consistent with the suggestion provided by (Clark et al., 2013) that a long time 

constant shows greater benefit to speech in noise recognition on ASR. The reason might because a 

long time constant makes the cochlear gain changes slowly, and the slow change of the gain 

suppresses speech distortion in comparison to that of faster changes (Martin et al., 2004; Loizou 

and Kim, 2011; Kates, 2010; Lopez-Poveda & Eustaquio-Martín, 2018). Moreover, the simulated 

long time constant introduced a larger amount of the suppression, which might provide more AN 

I/O function dynamic recovering and anti-mask effect in lower SNR levels. This is consistent with 

the physiological findings that the MOC strength increases with increasing stimulation (noise) level 

(reviewed by Guinan, 2006). On the other hand, the short time constant may help to keep the 

audibility of the speech under the effect of the MOC. Kates, (2010) suggested the fast change of 

the BM gain benefits speech audibility. Although the suggested time constant is related to the 

release time of the compression, the effects of both the simulated compression and the simulated 

MOC reflex on speech perception are associated with the gain change of the cochlear amplifier that 

the effect of the time constants may have general similarities. In the case of the MOC reflex, the 

short time constant has better adaption to the envelope of the speech waveform as shown in Section 

3.5.4. Thus, it would provide less suppression to the speech component with lower intensity. Since 

at higher SNR levels, the speech intelligibility is more related to speech audibility, a shorter time 

constant showed higher speech recognition accuracy.  
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Effect of MOC time constant in different types of noise  

This study also found that the performance of different time constants on speech 

recognition is influenced by the noise type. The ASR speech recognition accuracy with MOC reflex 

using different time constants in pink, 32-, 16-, 8-, 4-, and 2-talker babble noise was studied. Babble 

noise is less stationary than pink noise, and the stability of the babble noise decreases with the 

decreasing number of talkers in babble noise (Simpson & Cooke, 2005). We found that at the speech 

level of 60 dB, the results showed that the short time constant provided greater benefits in babble 

noise with fewer talkers, whilst the long time constants showed more advantages in pink noise. This 

finding is consistent with the principle of conventional gain regulation (single microphone) based 

speech enhance algorithms (Cohean, 2003; Louiz 2006), in which a fast gain updating speed brings 

greater benefits to nonstationary noise reduction by providing a better attenuation adaption to the 

fluctuation of noise magnitude.  

However, at the speech level of 50 dB, the length of the best time constant showed no 

apparent changes over different types of noise. This contrast might be due to the limitation of the 

ASR. The ASR is trained and tested using the features extracted from the simulated AN response. 

The speech recognition accuracy depends on the firing rate difference between noise and clean 

speech. In our case, the simulated AN rate/level function of the HSR fibers saturated at the level of 

30 dB. At the speech level of 60, both speech and the noise are mainly located at the saturation 

range of the HSR. Consequently, the AN response to noise and speech signal have less firing rate 

difference, and the large amount of attenuation contributed by the long time constant is more likely 

to cause audibility reduction instead of noise reduction. In contrast, the short time constant has 

smaller attenuation that would lead to less audibility reduction. Moreover, in considering the 

benefits of the fast gain adaption speed to conventional speech enhancement in nonstationary noise 

(Pollák & Vondrášek, 2005), the short time constant would provide greater benefit to speech 

recognition in nonstationary noise. At the speech level of 50 dB, the degree of saturation of ANs 

response to both the speech signal and noise signal are reduced. ANs response to speech and noise 

are more dynamic, thus the ANs response to noise and clean speech have greater firing rate 

difference. The high level attenuation introduced by the long time constant would provide greater 

benefits as it provides more noise suppression in AN response, particularly, at low SNR. Moreover, 

the slow change of the gain would suppress speech distortion (Lopez-Poveda & Eustaquio-Martín, 

2018). Therefore, the long time constant shows greater benefits at low SNRs over all types of noise 

than that of the short time constant. 

The contrasting results between the 50 dB and 60 dB speech make it inappropriate to 

provide a strong conclusion to the effect of the MOC time constant over different noise types. It 

requires further study to clarify the above arguments. However, based on the results in experiment 
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3, the effect of the MOC time constant shows insignificant recognition accuracy variation (less than 

2%) over different noise types. Therefore, the effect of the MOC time constant on different noise 

types may not be statistically significant to speech-in-noise perception.  

Understanding the effect of MOC time constant on humans based on ASR testing results 

It is reported that the speech recognition performance of ASR is far away from that of 

humans (Brown, Venecia & Guinan, 2003; Robertson et al., 2010). The use of ASR raises the usual 

questions about the applicability of these results to speech intelligibility in human. Although it is 

hard to predict to what extent ASR improvements could be translated to actual human performances, 

reasons for optimism can be inferred by comparing the aspects that mainly influence human speech 

intelligibility and ASR recognition accuracy. According to the literature (Kates & Arehart, 2009; 

Loizou, 2013; Ma, Hu & Loizou, 2009; Pavlovic, 1987), there are three aspects that mainly affect 

human speech intelligibility. First, the effect of the noise; second, the speech distortion caused by 

changing the gain over time; and third, the audibility reduction caused by attenuation. In the case 

of ASR, the ASR is trained and tested using the features extracted from the AN firing rate. Since in 

this study the ASR was trained with clean speech, the speech recognition accuracy is affected by 

the noise corruption. Moreover, training and testing level differences also reduces the recognition 

accuracy (Brown et al., 2010), because the nonlinearity of the AN rate/level function makes the 

features change over different levels.  

According to the results in experiment 4, the short time constant attenuation has a lower 

overall attenuation level and a fast adaption speed, whilst the long time constant attenuation has a 

higher overall level and a high stability in the varying of the time. At high SNR levels, in the case 

of ASR, the short time constant showed greater benefits. This is because the effect of the noise is 

small so that the ASR accuracy is mainly influenced by the training and testing AN firing rate 

difference. The lower attenuation of the short time constants reduces the training and testing firing 

rate difference. In the case of human speech intelligibility, the lower attenuation of the fast time 

constant provides higher audibility. In addition, the fast adaption speed makes the attenuation level 

closely follows speech amplitude. As the results, it has more attenuation to speech when amplitude 

is high, whilst less attenuation when speech amplitude is low. This would help to keep the audibility 

of speech components with low intensity. In contrast, the long time constant has a higher attenuation 

level that would decrease the audibility. Although ASR only showed speech recognition accuracy 

reduction less than 5% with the long time constant, a greater amount of reduction is expected on 

human test. Because ASR is trained only based on HSR which is saturated at 60 dB that is less 

sensitive to audibility reduction. Particularly, for the hearing impaired, the long time constant 

caused speech intelligibility degradation at high SNRs could be significant as they have reduced 

audibility and narrow intensity dynamic range (Oxenham & Bacon, 2003). 
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At low SNR levels, the speech recognition process is mainly influenced by the effect of the 

noise. The long time constant provides more noise suppression by introducing more attenuation that 

would benefit both the ASR speech recognition accuracy and speech intelligibility. Moreover, the 

high stability of the attenuation of the long time constant helps to reduce the speech distortion 

(Lopez-Poveda & Eustaquio-Martín, 2018) that would benefit speech intelligibility. In contrast, the 

low level of the short time constant attenuation might be insufficient to reduce the effect of the 

noise, and the fast varying of the attenuation level would cause speech distortion. Therefore, it can 

be expected that the long time constant would show greater benefits in speech intelligibility at low 

SNR levels.  

Limitation  

One of the concern of the present study is that the effect of the MOC time constants over 

different types of noise remains unclear. Since different types of noise often have distinctive 

stationarity that influences the temporal modulation of the speech signal, the effect of the MOC 

reflex over different noise types may of particular research interest. However, in 60 dB speech 

(Figure 3-21), the short time constants show greater speech intelligibility improvement in babble 

noise containing less talkers, whilst for 50 dB speech (Figure 2-23), the long time constants always 

show greater benefits in all types of babble noise. There are two possible reasons leading these 

contrasting results between 60 dB and 50 dB. One reason might be the effect of the MOC reflex 

over different types of noise depends on the speech levels. Specifically, in comparing to speech of 

50 dB, AN fibers response to more components of 60 dB speech are saturated because speech is a 

complex signal that have components with different level The saturation of the AN response 

degrades the encoded information that affects the performance of the simulated MOC reflex. 

Another reason might be experimental errors. The basic concept in MOC study is to assess the 

differences over different MOC testing conditions. However, the validation of the differences 

depends on the signal-to-noise ratio of the experiment quantities. Taking the difference between 

two measured quantities might add the errors from both experiments that cause the errors to be 

much larger than the desired difference (Guinan, 2018). In our case, the errors might be caused by 

the ASR performance variation over different noise speech samples. It is necessary to analyse the 

ASR testing results are statistically significant to give a strong conclusion regarding the effect of 

the MOC time constants over the noise types (Gillick and Cox, 1989). Our demonstrated work only 

evaluates the standard errors of 5 times tests because the ASR testing work is time consuming, and 

it is sufficient to demonstrate the effect of MOC time constant over SNR regardless of the noise 

types. In the future, to further study the effect of the MOC time constant over noise types, more 

tests could be done. The McNEMAR’s test method introduced in (Gillick and Cox, 1989) could be 

used because the different MOC testing conditions may have a certain degree of correlations, and 

the speech dataset is made of isolated words which guarantees the independence of the errors.   
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Another concern of the present study is that we are combining a detailed model of the 

human ear) as a “front-end” with a “back end” that assumes that human recognise words by 

comparing the input signal with Markov models of whole words. We understand that the brain 

doesn’t do this: there is evidence that phonemes are the basic unit of human speech recognition, 

though how the matching is done is not fully understood. However, in the present study, we are 

trying to demonstrate that even using such a brutal ASR system the simulated MOC reflex still 

shows improvement. This means the MOC reflex somehow improve the quality of the noisy speech 

(feature quality) even without considering the higher level process of human speech recognition. In 

addition, the ASR system used here is based on HMMs which is about 15 years out of date. The 

HMMs have a main limitation is that it assumes each frame is independent, which is contrast to the 

nature of speech. This arise another concern. If a different ASR system has been used would it 

provides different results? In our case, for studying the effect of the time constant over varying SNR 

when using a different ASR system a similar results it expected (this can be proved by using the 

objective speech intelligibility index to predict the speech intelligibility, which will be shown in 

chapter 7). This is because the MOC reflex and effect of the time constant improves the quality of 

the speech-in-noise that benefits feature quality regardless the structure of ASR.  

Future work 

Future work would focus on developing a MOC reflex model, in which the time constant 

is automatically adjusted according to the detected SNR of the acoustic environments, as it is 

reported that the MOC time constant changes with variations in stimulation efficiency (Sridhar et 

al. 1995). Lilaonitkul & Guinan (2009) found that broadband noise is more effective at eliciting the 

MOC reflex than narrow band noise and pure tones. Since the spectrum of speech is narrower than 

that of noise and change of the MOC time constant would influence the overall attenuation level, 

we consider that, the MOC time constants might change at varying SNR levels. It would be of 

interest to develop a MOC model to automatically regulate the time constant for varying SNR levels. 

To develop such a model, the first step would be developing a novel SNR estimation method as the 

performance of current SNR estimation degrades in low SNR and nonstationary noise 

(Papadopoulos et al., 2016), which are commonly encountered cases in practice. Moreover, 

optimizing the time constant should be based on the SNR over a long time scale, as the response of 

the MOC to stimulus is sluggish (the time constant of the MOC is over 100 ms).   
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Table 3-4. A summary of the best time constant in ms (upper rows) and the corresponding ASR accuracy (lower rows) for speech 

at 60 dB in clean speech condition and in different types of noise at SNR levels between -10 dB and 20 dB. 

SNR (dB) -10  -5  0  5  10  15 20  Clean Speech  

pink 2000  2000  2000  2000  1000  450  200 85  

16% 17% 18% 26% 78% 90% 93% 97% 

32-talker babble 2000  2000  2000  2000 s 1000  200  118  85  

15% 16% 18% 19% 31% 80% 92% 96% 

16-talker babble 2000  2000  2000  1000  1000  200  118   85  

14% 15% 19% 20% 33% 78% 90% 95% 

8-talker babble 2000  2000  2000  2000  450  450  200  85  

17% 18% 19% 21% 40% 77% 88% 95% 

4-talker babble  1000  1000  1000  200  450  1000  450  85  

16% 18% 20% 22% 37% 63% 87% 95% 

2-talker babble 2000  2000  1000  450  450  200  200  85  

16% 19% 22% 23% 42% 64% 86% 95% 

 

Table 3-5. A summary of the best time constant in ms (upper rows) and the corresponding ASR accuracy (lower rows) for speech 

at 50 dB in clean speech condition and in different types of noise at SNR levels between -10 dB and 20 dB. 

SNR (dB) -10  -5  0  5  10  15 20  Clean Speech  

pink 2000  2000  2000  2000  1000  450  200 85  

18% 19% 37% 80% 88% 93% 97% 98% 

32-talker babble 2000  2000  2000  2000 s 450  200  85  85  

18% 17% 19% 53% 80% 92% 95% 96% 

16-talker babble 2000  2000  2000  1000  1000  450  85   85  

18% 18% 19% 43% 77% 91% 94% 96% 

8-talker babble 2000  2000  2000  2000  1000  450  200  85  

17% 18% 19% 42% 76% 86% 94% 95% 

4-talker babble  2000  1000  1000  2000  1000  450  200  85  

16% 18% 20% 38% 63% 82% 93% 95% 

2-talker babble 2000  1000  1000  1000  1000  450  200  85  

16% 19% 22% 39% 63% 82% 91% 95% 
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3.7. Summary 

The present work used a model to study the effect of MOC reflex time constants on speech 

intelligibility, and the effect of the MOC reflex on speech perception associated with different types 

of ANs. To begin with, the peripheral auditory model and ASR system were integrated together to 

simulate speech in noise perception. Without the simulated MOC reflex the system showed a speech 

recognition accuracy of 98% in clean speech. In noisy conditions, the speech recognition accuracy 

at each SNR level of the proposed ASR system was very close to that shown in Clark et al. (2012). 

These results proved the validity of using the developed whole system to study the effect of the 

MOC reflex on speech-in-noise perception.  

To study the performance of the MOC reflex on speech perception associated with different 

types of AN, we tested the MOC reflex introduced speech recognition accuracy improvement with 

features extracted from HSR, MSR, and LSR ANs. The results showed that at speech level of 60 

dB the MOC reflex shows fewer benefits to HSR than to MSR and LSR, whilst at a speech level of 

50 dB the HSR showed greater benefits than that of MSR and LSR AN fibers. We concluded that 

the MOC reflex shows greater benefits to HSR AN fibers for improving intelligibility in noisy 

speech with a lower level.  

Later on, we studied the effect of different MOC reflex time constants on speech-in-noise 

perception by comparing the ASR speech recognition accuracy with MOC reflex using different 

time constants. The results are summarized in Table 3-4 and 3-5. It can be found that the length of 

the best time constants vary with increasing SNR level, specifically, the long time constants (≥

1000 𝑚𝑠) provide greater benefits to speech perception at lower SNR levels (< 15 dB), whilst the 

short time constants (< 1000 𝑚𝑠) provide greater benefits to speech perception at higher SNR 

levels (≥ 15 dB). 

To further analyse the effect of MOC reflex time constants on speech in noise perception, 

we studied temporal fluctuation of the attenuation associated with long and short time constants. 

The results showed that the short time constants lead to a small amount of attenuation with fast 

adaption speed, whilst the long time constant leads to a larger amount of stable attenuation. By 

comparing the effect of the amount of attenuation and attenuation adaptation speed under different 

noise conditions, we explained that at high SNR levels, the short time constants would benefit more 

to speech intelligibility as they cause less speech audibility reduction than the long time constants. 

At low SNR levels, the long time constant would benefit more to speech intelligibility as they lead 

to more noise suppression and less speech distortion than the short.   
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4. Chapter 4: A novel SNR estimation method for optimizing 

MOC reflex time constant 

 

4.1. Introduction 

Chapter 3 studied the effect of the MOC reflex time constant on the speech-in-noise recognition 

accuracy of the automatic speech recognizer (ASR), and found that the long time constants (≥1000 

ms) contributed to higher recognition accuracy at SNRs <15 dB, whilst the short time constants 

(<1000 ms) showed higher recognition accuracy at SNR ≥15 dB. Literature reports that the time 

constant of the MOC reflex varies with the increase in the efficiency of the stimulation (Sridhar et 

al., 1995). Since the MOC stimulation efficiency of broadband noise is higher than narrow band 

noise. The MOC is more active in response to broadband noise rather than narrow band noise 

(Lilaonitkul & Guinan, 2009), and broadband noise has higher MOC stimulation efficiency than 

clean speech. Optimizing the MOC time constant in varying SNRs may improve the speech 

intelligibility. To achieve this, it is necessary to estimate the SNR in practical acoustic environments 

with different types of noise. However, the SNR estimation is challenged by babble noise because 

it is non-stationary and its characteristics (e.g. power, spectrum) vary considerably over time 

(Simpson & Cooke, 2005). Conventional SNR estimation methods often fail to estimate the SNR 

in nonstationary noise (Krishnamurthy & Hansen, 2009). This chapter proposes and evaluates an 

efficient and accurate measure of SNR to be used when the interfering background is babble noise.  

Generally, the SNR can be classified into short-term (<100 ms) instantaneous SNR and 

long-term (≥1000 ms) global SNR. The instantaneous SNR is preferred for conventional speech 

enhancement algorithms (Ephraim & Malah, 1985; Doclo et al., 2009; Martin, 2005) as it more 

accurately tracks the noise power when it changes quickly (Narayanan & Wang, 2012). These 

algorithms apply a gain function, which is generally defined in terms of instantaneous SNR, to the 

amplifier for attenuating the signal when the noise power is higher than speech and retain the signal 

when the noise power is lower. However, the estimation accuracy of instantaneous SNR is degraded 

in nonstationary noise due to the short-term noise power varies rapidly. The inaccurate estimated 

SNR causes speech distortion (Loizou & Kim, 2011). As a result, the benefit of conventional speech 

enhancement algorithms to intelligibility remains elusive (Tim, 1987; Hu & Loizou, 2007). In 

contrast, the estimation of global SNR is often more accurate in both stationary and nonstationary 

noise (May et al., 2017), and global SNR has been used to suppress speech distortion in speech 

enhancement (Martin et al., 2004). Recently, there is increasing interest in using global SNR to 

improve the performance of speech enhancement (Martin et al., 2004; Healy et al., 2013). In the 

case of optimizing the MOC time constant, the global SNR is preferred because the broadband 

noise is more efficient in activating the MOC, and the MOC is activated by long duration noise 
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(known as precursor). Although Krull & Strickland (2008) found that a short precursor of 40 ms is 

able to activate the MOC, a longer precursor is more effective (Roverud & Strickland, 2010). For 

example, Yasin et al., (2014) used a 500 ms precursor to activate the MOC. In addition, the 

measured MOC long time constants in humans are over several seconds (Backus & Guinan, 2006). 

Since the SNR interval length determines the time constant updating speed, it should be long 

enough to make the long time constants show their effect.   

The performance of most of the existing global SNR estimation methods is generally 

determined by the estimation strategy involved, and limited by the cases of nonstationary noise, 

low SNRs, and high computational complexity. One of the most popular strategies is to calculate 

the SNR according to the estimated noise power. Pollák and Vondrášek (2005) used a voice activity 

detection (VAD) method to access the noise power in speech absence based on a method called 

hard speech absence decision. However, the detected noise power is delayed if there is a sudden 

rise in noise power during speech presence (Gerkmann & Hendriks, 2012). Later on, Narayanan & 

Wang (2012) used the noise power spectral density estimation (NPE) method to estimate global 

SNR. In comparison to the conventional VAD methods, the NPE method reduced the noise power 

tracking delay by a soft speech absence decision (Gerkmann, & Hendriks, 2012). However, the 

power of nonstationary noise could fluctuate within the reduced tracking delays.  

Another strategy is to analyse the property differences between clean speech and noise 

signals to find a feature which is related to the SNR. Since the features could be measured without 

detecting speech presence, estimation errors in SNR caused by the noise power tracking delay are 

avoided. Kim and Stern (2008) proposed a waveform amplitude distribution analysis (WADA) 

based method by assuming that the clean speech amplitude has a Gamma distribution while the 

noise amplitude has a Gaussian distribution. The parameter of the amplitude distribution estimated 

from the noisy speech is used as the feature. The relationship function between the SNR and the 

feature is estimated for SNR estimation, and saved as a lookup table to reduce the computational 

complexity. The National Institute of Standards and Technology (NIST) developed an SNR 

estimation method by analysing the energy distribution of noisy speech (NIST, 2003). However, 

the estimation errors of the WADA and the NIST method increase when the energy or amplitude 

distribution of the noise is similar to that of clean speech (e.g. babble noise) or if the SNR is low 

(Narayanan & Wang, 2012). Recently, Papadopoulos et al, (2016) proposed a strategy of using 

multiple features to train regression models for SNR estimation. Although the method showed 

impressive estimation accuracy, multi-feature calculation is computationally demanding. In 

summary, most of the existing global SNR estimation methods are still immature for providing 

reliable performance in various practical cases. A longstanding goal is to develop a computationally 

efficient SNR estimation method, which has on demand estimation accuracy in low SNRs and 

nonstationary noise. 
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In order to approach this goal, this chapter proposes a novel global SNR estimation method 

based on the variance of spectral entropy (VSE). Motivated by the feature based estimation strategy 

of the WADA method, which has reduced the estimation error and the computational complexity, 

we estimate the relationship functions between the SNR and the feature. Based on the relationship 

functions the SNR can be estimated by measuring the feature. To improve the accuracy in low SNR 

and nonstationary noise, we propose a novel feature of VSE. VSE is the variance (over time) of 

spectral entropy (SpE) that has the advantages of both SpE (Shen et al., 1998) and long-term signal 

variability (LTSV) (Ghosh et al., 2011), which are originally used in VADs. SpE characterises the 

spectral modulation difference between clean speech and noise (Wu and Wang, 2005). Since the 

SpE is independent to the amount of noise power, SpE has shown to be more robust in low SNRs 

in VAD (Shen et al., 1998; Wu and Wang, 2005). Ghosh et al. (2011) demonstrated that LTSV 

achieved higher VAD accuracy in babble noise because the LTSV is based on the degree of 

variability of the signal spectrum which is more robust in nonstationary noise. VSE also 

characterizes the degree of signal spectrum variability. In contrast to LTSV, which needs to 

calculate the entropy over short frames for each of the 448 frequency bins, VSE calculates the 

spectral entropy over only 10 frequency bands of the filter-bank, which is more computationally 

efficient. The decrease of the SNR degrades the spectral variability of the noisy speech as clean 

speech has a higher spectral variability of noise (Ghosh et al., 2011). For example, a person with 

an average speaking rate produces approximately 10–15 phonemes with different spectral 

characteristics, per second (Liberman, 1996). Using VSE to estimate SNR would have high SNR 

estimation accuracy in nonstationary noise and low SNRs while being highly computationally 

efficient.  

However, the degrees of spectral variability varies over noisy speech samples (Liberman, 

1996) that makes the VSE variy at the same SNR, and causes estimation error. To reduce the 

detrimental effect of the VSE-SNR relationship function variation, the following sub-methods have 

been developed in this chapter: (1) The relationship functions between VSE and SNR are estimated 

to be noise type specific to reduce the variation over different noise types. A noise type detection 

method is also developed to automatically select pre-estimated relationship functions in unknown 

noise type cases. (2) Weighting factors are applied to reduce the overall variation of the relationship 

function over different speech samples. The weighting factors reduce the weights of the frequency 

bands which have higher amplitude variation over different speech samples. (3) A recursive 

averaging method is used to compensate for the effects of overestimation and underestimation of 

the SNR by averaging the estimated SNR over the past time intervals. The estimation accuracy is 

evaluated in 2-, 4-, 8-, 16-, 24-, and 32–talker babble noise at the SNR between -10 dB and 20 dB 

to simulate real-life cases where the number of talkers often changes (Simpson & Cooke, 2005). 

The SNR estimation errors and computational efficiency of the proposed method are evaluated and 
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compared to other contemporary SNR estimation methods (Gerkmann & Hendriks, 2012; Kim & 

Stern, 2008; NIST, 2006). 

This chapter is organized as follows. Section 4.2 demonstrates the basic principles of using 

VSE to estimate the SNR, and analyses the variables that lead to the variation of the relationship 

function. Section 4.3 develops sub-methods to reduce the SNR estimation errors. Section 4.4 

describes the setup of the experiment used to compare the performance of the proposed method 

with three existing methods. Section 4.5 presents the results of the evaluation. Finally, the 

concluding remarks and discussion are given in Sections 4.6 and 4.7.  

4.2. Principles of VSE based SNR estimation 

4.2.1. Spectral entropy 

Information entropy was first used by Shannon (1948). It characterizes the amount of 

information produced by a stochastic source of data. It is defined by the negative logarithm of the 

probability of each possible data: 

𝐻𝐽 = −∑  𝑝𝑖𝑙𝑜𝑔2
𝐼
𝑖 𝑝𝑖                                                           (4.1) 

where 𝑝𝑖 is the probability of data 𝑖, and 𝐼 is the total number of the data in source 𝐽. Generally, the 

entropy specifies the disorder or uncertainty of the data source. A data source with lower probability 

carries more information than one with higher probability.  

In the case of the acoustic signals, speech is assumed to contain more information in its 

spectrum than noise (Allen, 1994). The entropy of the spectrum (SpE) could be used to distinguish 

the noise and speech signal by quantifying the amount of information contained in the spectrum. 

To calculate the SpE, the 𝑝𝑖 in Equation (4.1) refers to the probability associated with signal energy 

in each frequency component (Wu & Wang, 2005). It can be calculated by normalizing the spectral 

energy of short frames across all frequency components.  

4.2.2. VSE calculation  

In this section we will demonstrate that the variance of the SpE over time (VSE) could be used 

to estimate the SNR. The sampled noisy speech signal 𝑦(𝑖) is modelled as the sum of a clean speech 

signal 𝑥(𝑖) and a disturbing noise 𝑑(𝑖).  

𝑦(𝑖) = 𝑥(𝑖) + 𝑑(𝑖)                                                       (4.2) 

where 𝑖 donates the sampling time index. In contrast to conventional SpE calculation methods 

(Shen, Hung & Lee, 1998; Wu & Wang, 2005), which use the probability associated with the 
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spectral energy of each frequency bin of a fast Fourier transform (FFT), we calculate the probability 

using the instantaneous power of the signal in each frequency band of the filter-bank (Ong et al., 

2017). Thus, the computational complexity is reduced. Although our calculated SpE is based on a 

lower spectral resolution, we will demonstrate that the frequency bands filter-bank is sufficient to 

acquire a nearly linear VSE-SNR relationship. In fact, a higher spectral resolution might reduce the 

stability of the VSE-SNR relationship function, because a higher spectral resolution increases the 

degree of freedom of the calculated SpE. Therefore, our SpE is based on the probability associated 

with the instantaneous spectral power over each frequency band. Figure 4-1 (a) shows the 

instantaneous power of 32-talker babble, white, pink noise, and clean speech in sequence. The 

corresponding spectrograms are shown in Figure 4-1 (b). It can be seen that the power distribution 

of the clean speech spectrum is concentrated in a narrower frequency range than that of the noise 

(the spectrogram of the last waveform in comparing with that of the others). The amplitude of the 

clean speech concentrates at lower frequency range. In other words, the uncertainty (information) 

of the speech spectrum is higher than that of the noise. Therefore, instantaneous power could be 

used to calculate SpE for characterizing the spectrum difference between clean speech and the noise 

signal. 

A linear (linear gain) filter-bank comprising 10 frequency bands (2nd order Butterworth band-

pass filter) is used in this chapter. It is known that the human auditory system processes sound at 

the cochlear level (inner ear) approximating filters which are approximately constant on a 

logarithmic scale (Rallapalli & Alexander, 2015). To simulate such a spectral distribution, the 𝐶𝐹𝑠 

of band-pass filters were logarithmically spaced between 250 Hz and 8000 Hz (R Meddis et al., 

 
Figure 4-1. The waveform consists of 32-talker babble, white, pink noise, and clean speech in sequence. 

(b) The corresponding spectrogram of the filter-bank outputs at the frequency range between 250 and 8000 

Hz.  
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2001), and the bandwidths (𝐵𝑊𝑠) were calculated using the  ERB calculation equation provided 

in ( Glasberg & Moore, 1990): 

𝐵𝑊 (𝑓𝑐) = 24.7(0.00437 𝑓𝑐 + 1)                                           (4.3) 

where 𝑓𝑐  is the CF of each frequency band in Hz. The power present probability 𝑝(𝑘, 𝑖)  in 

frequency band 𝑘 at the sampling time 𝑖 is calculated by normalizing the instantaneous spectral 

power across all frequency bands:  

𝑝(𝑘, 𝑖) =
𝑆(𝑘,𝑖)

∑ 𝑆(𝑙,𝑖)𝐾
𝑙=1

       𝑘 ∈ {1,2,3,… , 𝐾}                      (4.4) 

where the instantaneous power 𝑆(𝑘, 𝑖) is defined by: 

𝑆(𝑘, 𝑖) = |𝑌(𝑘, 𝑖)|2                                                              (4.5) 

where                                    𝑌(𝑘, 𝑖) = 𝐹(𝑘, 𝑖) ∗ 𝑦(𝑖)                                                        (4.6) 

𝐹(𝑘, 𝑖)is the transfer function of the band-pass filter for frequency band 𝑘 , and 𝐾 is the total  

number of frequency bands in the filter-bank. Based on the equation used in Shen et al. (1998), the 

SpE (ℎ(𝑖)) at sampling time 𝑖 is defined by: 

ℎ(𝑖) = −∑ 𝑤𝑓𝑘 [𝑝(𝑘, 𝑖)𝑙𝑜𝑔2
𝐿
𝑘=1 𝑝(𝑘, 𝑖)]                                          (4.7) 

where 𝑤𝑓𝑘 is the weighting factor of the frequency band 𝑘 as detailed in Section 4.3.2. We found 

that the variance (over time) of the noisy speech spectral entropy (VSE) decreases with decreasing 

SNR level (as shown in Figure 4-2). Thus, the VSE of noisy speech could be used to track the SNR 

changes. The VSE ( 𝜎𝐻(𝑗)) over the SNR estimation time interval 𝑗 can be calculated by: 

𝜎𝐻 (𝑗) =
1

𝑀
∑ (ℎ𝑗(𝑖) − ℎ̅(j))2𝑀
𝑖=1                                               (4.8)  

 

 

Figure 4-2. The SpE of the speech utterance “two eight nine” spoken by a female talker in pink noise at 

the SNR of (a) 20 dB, (b) 5 dB, and (c) -10 dB. The SpE is calculated by using the outputs of 10 frequency 

bands, 2rd Butterworth filter-bank. The frequency range is between 250 and 8000 Hz. 
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where ℎ̅(𝑗) is defined as the mean value of ℎ𝑗(𝑖) over the estimation time interval: 

ℎ̅(𝑗) =
1

𝑀
∑ ℎ𝑗(𝑖)
𝑀
𝑖=1                                                               (4.9) 

where 𝑀 is the total number of the sampling points over the SNR estimation interval, specifically, 

𝑀 =
𝑇

𝑓𝑠
. 𝑓𝑠 is the sample frequency, and 𝑇 is the length of each SNR estimation time interval. In this 

study, 𝑇 is set to 1000 ms.  

Figure 4-3 shows the calculated VSE at the SNRs between -10 dB and 20 dB (in steps of 1 dB) 

in (a) pink, (b) white, and (c) 32-talker babble noise. For each type of noise, the averaged VSE over 

500 noisy samples generated using speech dataset A (detailed later) are represented by the solid 

lines, whilst the dashed lines represent the standard deviation. It can be found that the VSE increases 

with increasing SNR in all of the pink, white, and 32-talker babble noise. Therefore, the basic 

strategy of using the VSE to estimate SNR is to find a function that represents the VSE-SNR 

relationship for different noisy speech samples, so that an estimation of the SNR can be obtained 

according to the measured VSE of noisy speech. However, in practice, the following issues need to 

be considered.  

(1) It is necessary to develop a reliable method to estimate the VSE-SNR relationship functions 

for estimating the SNR.  

 

Figure 4-3. The calculated VSE at the SNR range between -10 dB and 20 dB in steps of 1 dB. The open 

circles present the mean plus and minum standard deviation of VSE over 500 utterances in pink 

(marked in black), white (marked in red), and 32-talker babble noise (marked in blue). The SpE is 

calculated using the outputs of 10 frequency bands, 2rd Butterworth filter-bank. The frequency range 

is between 250 and 8000 Hz. 
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(2) The relationship function varies over different noise types and speech samples (contents). 

The differences between the estimated relationship function and real relationship function 

cause SNR estimation errors.  

The main theme of this chapter is therefore to estimate the VSE-SNR relationship function and 

reduce the effect of the relationship function variation on SNR estimation accuracy. 

4.2.3. Analysing the VSE-SNR relationship function  

To solve the issues listed above, it is necessary to analyse which characteristics of noisy speech 

influence the VSE-SNR relationship, and how the VSE-SNR relationship function varies among 

different noisy speech samples. In this section, we derive the relationship between the VSE and 

SNR. By analysing the variables that influence the relationship function, the corresponding 

characteristics of noisy speech that affect the SNR estimation accuracy are addressed.  

Let 𝑀 denote the total number of the sample points of the estimation time interval j, and let 

𝑊 denote the number of the sample points containing both clean speech and noise. The number of 

sample points only containing noise (when speech is absent) is 𝑀−𝑊. By assuming that the SpE 

of noise and clean speech are independent, Equation (4.8) can be rewritten by: 

𝜎�̂� (𝑗) =  
1

𝑀
{∑ (ℎ̅𝐷

𝑀−𝑊(𝑗) + 𝑒𝐷(𝑖) − 𝜇𝑗)
2 +𝑀−𝑊

𝑖=1 ∑ (ℎ̅𝑌
𝑊(𝑗) + 𝑒𝑌(𝑖) − 𝜇𝑗)

2}𝑊
𝑖=1        (4.10) 

where ℎ̅𝐷
𝑀−𝑊(𝑗) and ℎ̅𝑌

𝑊(𝑗) are the mean value of the spectral entropy (MSpE) of the noise only 

samples and the noisy speech (containing both speech and noise) samples, and 𝑒𝐷(𝑖) and 𝑒𝑌(𝑖) are 

defined as the differences between the mean and the instantaneous SpE of noise only and noisy 

speech samples: 

𝑒𝐷(𝑖) ≜ ℎ𝐷(𝑖) − ℎ̅𝐷
𝑀−𝑊(𝑗)  

  𝑒𝑌(𝑖) ≜ ℎ𝑌(𝑖) − ℎ̅𝑌
𝑊(𝑗)                                                 (4.11) 

where 𝜇 is the mean spectral entropy across the whole SNR estimation interval: 

            𝜇𝑗 ≜ 
1

𝑀
 ( (𝑀 −𝑊)ℎ̅𝐷

𝑀−𝑊(𝑗) +𝑊ℎ̅𝑌
𝑊(𝑗))                                  (4.12) 

For the purpose of simplification, the estimation time interval index j has been omitted in the 

following derivations. Substituting Equation (4.12) into (4.10) we have: 

𝜎�̂�  =  
1

𝑀
{∑ [ℎ̅𝐷

𝑀−𝑊 + 𝑒𝐷(𝑖) − ℎ̅𝐷
𝑀−𝑊 −

𝑊

𝑀
(ℎ̅𝑌

𝑊 − ℎ̅𝐷
𝑀−𝑊)]2𝑀−𝑊

𝑖=1         

+∑ [ℎ̅𝑌
𝑊 + 𝑒𝑌(𝑖) − ℎ̅𝐷

𝑀−𝑊 −
𝑊

𝑀
(ℎ̅𝑌

𝑊 − ℎ̅𝐷
𝑀−𝑊)]2} 𝑊

𝑖=1                        (4.13) 
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After further simplification (See details in appendix), we have: 

𝜎�̂�   =
𝑀−𝑊

𝑀
𝜎ℎ𝑑
𝑀−𝑊 +

𝑊

𝑀
𝜎ℎ𝑦
𝑊 +

𝑊

𝑀
(1 −

𝑊

𝑀
) (ℎ̅𝐷

𝑀−𝑊 − ℎ̅𝑌
𝑊)2                  (4.14) 

where 𝜎ℎ𝑑
𝑀−𝑊 and 𝜎ℎ𝑦

𝑊are the VSE of samples containing only noise and noisy speech. According 

to Equations (4.2), (4.4), and (4.5). ℎ𝑦 can be expressed by: 

ℎ𝑦(𝑖) =
𝜉(𝑖)

1+𝜉(𝑖)
ℎ𝑋(𝑖) +

1

1+𝜉(𝑖)
ℎ𝐷(𝑖)                                               (4.15) 

where ℎ𝑋(𝑖) is the instantaneous SpE of clean speech samples, ℎ𝐷(𝑖) is the instantaneous SpE of 

the noise, and 𝜉(𝑖)  is the instantaneous SNR (𝜉(𝑖) =
𝑥2(𝑖)

𝑑2(𝑖)
). Substituting Equation (4.15) into 

equation (4.14) we have:  

𝜎�̂�  =
𝑀−𝑊

𝑀
𝜎ℎ𝑑
𝑀−𝑊 +

𝑊

𝑀
var𝑊 (

𝜉(𝑖)

1+𝜉
ℎ𝑋(i) +

1

1+𝜉(𝑖)
ℎ𝐷(𝑖))  

 +
𝑊

𝑀
(1 −

𝑊

𝑀
) {ℎ̅𝐷

𝑀−𝑊 −
1

𝑊
∑ [

𝜉(𝑖)

1+𝜉(𝑖)
ℎ𝑋(i) +

1

1+𝜉(𝑖)
ℎ𝐷(i)]

𝑊
i=1 }2             (4.16)  

where var𝑊 denotes the variance over noisy speech samples 𝑊 . Since ℎ𝑋(i)  and ℎ𝐷(i)  are 

independent to each other, we have: 

1

𝑊
∑ (

𝜉(𝑖)

1+𝜉(𝑖)
ℎ𝑋(i) +

1

1+𝜉(𝑖)
ℎ𝐷(i))

𝑊
1 =

1

𝑊
∑ (

𝜉(𝑖)

1+𝜉(𝑖)
) ℎ̅𝑋

𝑊 +
1

𝑊
∑ (

1

1+𝜉(𝑖)
)ℎ̅𝐷

𝑊𝑊
1

𝑊
1      (4.17) 

where ℎ̅𝑋
𝑊  and ℎ̅𝐷

𝑊  are the MSE of clean speech and noise over noisy speech samples 𝑊 . We 

assume ℎ𝑋(i) and ℎ𝐷(i) are independent to each other. When the instantaneous SNR is very 

high 
𝜉(𝑖)

1+𝜉(𝑖)
= 1, otherwise 

𝜉(𝑖)

1+𝜉(𝑖)
  ≪ 1. For low instantaneous SNR 

1

1+𝜉(𝑖)
= 1, otherwise 

1

1+𝜉(𝑖)
  ≪

1. Therefore, var𝑊 (
1

1+𝜉(𝑖)
) ≈ var𝑊 (

𝜉(𝑖)

1+𝜉(𝑖)
) ≈ 0, we have: 

𝑊

𝑀
var𝑊 (

𝜉(𝑖)

1+𝜉
ℎ𝑋(i) +

1

1+𝜉(𝑖)
ℎ𝐷(𝑖)) = 

𝑊

𝑀
(𝐸𝑊 (

𝜉(𝑖)

1+𝜉(𝑖)
)
2
𝜎ℎ𝑥
𝑊 + ℎ̅𝑋

𝑊2
var𝑊 (

𝜉(𝑖)

1+𝜉(𝑖)
) + 

𝐸𝑊 (
1

1+𝜉(𝑖)
)
2
𝜎ℎ𝑑
𝑊 + ℎ̅𝐷

𝑊2
var𝑊 (

1

1+𝜉(𝑖)
) − 2ℎ̅𝑋

𝑊ℎ̅𝐷
𝑊)    (4.18) 

where 𝜎ℎ𝑑
𝑊  is the VSE of the noise over the noisy speech samples 𝑊, and 𝜎ℎ𝑥

𝑊  is the VSE of the 

clean speech over 𝑊. Then Equation (4.16) can be written by: 

𝜎�̂�  =
𝑀−𝑊

𝑀
𝜎ℎ𝑑
𝑀−𝑊 +

𝑊

𝑀
((

1

𝑊
∑ (

𝜉(𝑖)

1+𝜉(𝑖)
))𝑊

1

2
𝜎ℎ𝑥
𝑊 + ℎ̅𝑋

𝑊2
var𝑊 (

𝜉(𝑖)

1+𝜉(𝑖)
) + (

1

𝑊
∑ (

1

1+𝜉(𝑖)
))𝑊

1

2
𝜎ℎ𝑑
𝑊   

+ℎ̅𝐷
2
var𝑊 (

1

1+𝜉(𝑖)
) − 2ℎ̅𝑋

𝑊ℎ̅𝐷
𝑊cov𝑊(

𝜉(𝑖)

1+𝜉
,

1

1+𝜉(𝑖)
) )  
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+
𝑊

𝑀
(1 −

𝑊

𝑀
)(ℎ̅𝐷

𝑁−𝑊 −
1

𝑊
∑ (

𝜉(𝑖)

1+𝜉(𝑖)
)𝑊

1 ℎ̅𝑋
𝑊 −

1

𝑊
∑ (

1

1+𝜉(𝑖)
)𝑊

1 ℎ̅𝐷
𝑊)2                         (4.19) 

where ℎ̅𝑁
𝑊 is the mean VSE of the noise across the noisy speech samples. According to equation 

(4.19), since 
1

𝑀
∑ (

𝜉(𝑖)

1+𝜉(𝑖)
)2𝑊

1  and 
1

𝑀
∑ (

1

1+𝜉(𝑖)
)2𝑊

i=1 are the functions of global SNR, it can be seen that 

VSE (𝜎�̂� ) depends on the global SNR.  

Figure 4-4 shows an example of comparison between the calculated VSE using equation (4.19) 

and the real VSE of a clean speech utterance spoken by a female speaker in 32-talker babble noise 

for SNRs ranging between -10 and 20 dB in steps of 1 dB. The calculated VSE is obtained by 

substituting the measured variables of 𝑊, MSpE, VSE, SpE of 32-talker babble noise, clean speech 

SpE, and SNR into equation (4.19). The real VSE is obtained by measuring the VSE of the noisy 

speech sample generated for each SNR level. Note that the calculated VSE is a good match to the 

real VSE. 

 

 
Figure 4-4. An example of comparison of the calculated VSE (red) using Equation (4.19) and the true 

VSE (blue) of speech utterances spoken by a female taker in 32-talker babble noise at the SNR range 

between -10 and 20 dB with a step size of 1 dB. 
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In practice, the SNR cannot be estimated using Equation (4.19) because clean speech is 

corrupted by noise that makes 𝜎ℎ𝑥
𝑊   ℎ̅𝑋

𝑊  not measurable, and Equation (4.19) is relatively 

computationally demanding and may increase the signal processing delay of audio-signal-

processing devices. Instead, the VSE-SNR relationship functions can be estimated offline, and 

saved as lookup tables for SNR estimation. Ideally, the SNR should only be decided by the VSE. 

An identical relationship function could be used to precisely estimate the SNR over different noisy 

speech. However, in Equation (4.19), 𝜎𝐻
2̂ also relates to the variables of 𝜎ℎ𝑑

𝑀−𝑊,𝜎ℎ𝑑
𝑊 , ℎ̅𝐷

𝑀−𝑊, ℎ̅𝐷
𝑊 , 𝜎ℎ𝑥

𝑊 , 

ℎ̅𝑋
𝑊  and 

𝑊

𝑀
. Specifically, 𝜎ℎ𝑑

𝑀−𝑊 ,𝜎ℎ𝑑
𝑊  , ℎ̅𝐷

𝑀−𝑊 , ℎ̅𝐷
𝑊  depend on the SpE of the noise, whilst 𝜎ℎ𝑥

𝑊  , 

ℎ̅𝑋
𝑊depend on the SpE of clean speech. 

𝑊

𝑀
 depends on the speech silent pause length. The changes 

of the above variables over different clean speech utterances and noise types would lead to variation 

of the relationship function. As a result, the SNR estimation error would increase due to the 

variation of the relationship function, because it would lead to different VSEs over noisy speech 

samples at the same SNR.  

To reduce the variation of the relationship function, the variations of these variables over 

different speech and noise samples should be reduced. However, the variations are caused by the 

inherent spectrum differences over different noise types or clean speech contents, which can only 

be reduced instead of completely removed. The method for reducing the effect of relationship 

function variations on SNR estimation accuracy degradation also needs to be developed. The 

following sub-methods have been developed in the present study to reduce the SNR estimation 

errors accordingly: 

 Noise type specific relationship functions have been developed to reduce the relationship 

function variance caused by the changes of noise variables:  𝜎ℎ𝑑
𝑀−𝑊 ,𝜎ℎ𝑑

𝑊  , ℎ̅𝐷
𝑀−𝑊 , ℎ̅𝐷

𝑊  , 

respectively. 

Table 4-1 All the variables used in Equation 4.19. 

Variable Description Variable Description 

𝜎ℎ𝑑
𝑀−𝑊 The VSE of noise during speech absence 𝜎ℎ𝑥

𝑊  The VSE of clean speech  

𝜎ℎ𝑑
𝑊  The VSE of noise during speech presence ℎ̅𝑋

𝑊 The MSpE of clean speech 

ℎ̅𝐷
𝑀−𝑊 The MSpE of noise during speech 

absence 

𝑊

𝑀
 

The ratio between the length of speech 

presence and total noisy speech length 

ℎ̅𝐷
𝑊 The MSpE of noise during speech 

presence 

𝜉(𝑖) Instantaneous SNR for sample index i 
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 Weighting factors have been developed to reduce the relationship function variance caused 

by the changes of clean speech variables 𝜎ℎ𝑥
𝑊  , ℎ̅𝑋

𝑊. 

 Recursive averaging has been developed to reduce the overall effect of the relationship 

function variation, and to reduce the relationship function variance caused by the changes 

of speech silent pause length 
𝑊

𝑀
.  

 

4.3. Methodology  

4.3.1. Noise-type specific VSE-SNR relationship function  

To reduce the relationship function variation caused by 𝜎ℎ𝑑
𝑀−𝑊 ,𝜎ℎ𝑑

𝑊  , ℎ̅𝐷
𝑀−𝑊 , ℎ̅𝐷

𝑊  , which are 

dominated by the spectral and temporal properties of the noise. We estimated noise-type specific 

relationship functions. In SNR estimation, the noise type is detected (the detection method will be 

detailed later), and the corresponding relationship function is selected for SNR estimation. This 

helps to reduce the estimation errors because the noise types are generally classified by the temporal 

and spectral properties of the noise (Maithani & Tyagi, 2008), the VSE (𝜎ℎ𝑛
𝑀−𝑊,𝜎ℎ𝑛

𝑊 ) and MSpE 

(ℎ̅𝑁
𝑁−𝑊 ,ℎ̅𝑁

𝑊) in a specific noise type would be more stable.  

Figure 4-5 shows the histogram of the VSE and MSpE of 500 random noise samples for 2-, 

8-, and 32-talker babble noise. Speech and noise samples with the same length were cut with a 

random starting point and added together to generate noisy speech samples with a length of 1000 

ms.It can be found that VSE and MSpE of noise are concentrated at about the mean value of each 

type of noise roughly following a Gaussian distribution, which is consistent with the finding by 

Jensen et al. (2005) that the discrete Fourier coefficients of noise follow a Gaussian distribution. 

Thus, for a specific noise type, the mean VSE is a relatively good representation of the overall VSE 

Figure 4-5. The normalized histogram of the VSE and MSpE of 500 randomly cut noise samples with 

length of 1000 s for 2- (solid green line), 8-(dashed blue line), and 32-talker (solid red line) babble 

noise. (a) The normalized histogram of the noise VSE. (b) The normalized histogram of the noise 

MSpE. 

(a)  (b)  
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for 32- and 8-talker babble noise. It is more appropriate to define VSE-SNR relationship functions 

using the mean VSE of each type of noise for a high SNR estimation accuracy.  

Each noise-type specific relationship function is obtained by estimating the mean value of the 

relationship function across different clean speech utterances corrupted by the same type of noise. 

The distribution of spectral coefficients and the amplitude of clean speech and noise were 

successfully characterized by statistic models (Gazor & Zhang, 2003; Jensen et al., 2005). Since 

the VSE and MSpE of speech and noise are based on the spectral coefficients and the amplitude of 

the speech and noise, we can assume that each of the variables that dominate the VSE are identically 

distributed. By further assuming that these variables are independent, a Monte Carlo based method 

(Kim & Stern, 2008) can be used to estimate the noise type specific relationship function. Each 

noise type specific relationship function is obtained by estimating the mean value of a large group 

of random relationship functions. The random relationship functions were obtained by measuring 

the VSE of randomly generated noisy speech samples at a given SNR level. Each noisy speech 

sample was generated by adding random cuts noise to random clean speech. This random cutting 

and selecting process help to make sure that the obtained relationship functions have the variables 

randomly sampled from their own distributions. 

The estimation process consists of three steps: Step 1) Generate a large group of random noisy 

speech samples corrupted by the same type of noise, and calculate the VSE at one SNR level using 

Equations 4.4-4.9. The noisy speech sample is generated by adding noise to clean speech. Each 

clean speech (1000 ms) is randomly cut from a speech resource, which is randomly selected from 

the dataset. Noise samples (1000 ms) are cut from the same type of noise resource (detailed in 

 

 
Figure 4-6. The confidence interval of noisy speech VSE as a function of the sample number of noisy 

speech at an SNR of 20 dB. 
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section 4.4) with random starting points. The VSEs of all the generated noisy speech samples are 

averaged to provide an estimate of the relationship function at a given SNR level; Step 2) Change 

the SNR level and repeat Step 1 to estimate the relationship function for the desired SNR range (-

10 to 20 dB). Note that a large SNR step size would increase estimation errors whilst a small step 

would make this approach computationally demanding. This study found that a 1 dB step size was 

a good compromise between estimation accuracy and computational efficiency; Step 3) Change the 

noise type and repeat Steps 1 and 2 to estimate the relationship function for different types of noise.  

The required sample numbers of noisy speech and the estimation errors for estimating the 

relationship function for each type of noise were studied by calculating the confidence interval of 

the VSE of noisy speech samples. Considering that the spectrum of the type specific noise is much 

more stable than that of clean speech, we focused on studying the estimation errors caused by clean 

speech. The AURORA (Hirsch & Pearce, 2000) based speech database spoken by 56 males and 56 

female talkers with a total length of 2600 s was used for generating the noisy speech, which is as 

large or larger as the dataset used in other clean speech statistical properties studies (Gazor & Zhang, 

2003; Jensen et al., 2005; Kim & Stern, 2008).  

The confidence interval (95%) of the VSE of noisy speech samples as a function of the sample 

number of noisy speech is shown in figure 4-6. The noisy speech samples are corrupted by 32-

talker babble noise at an SNR of 20 dB. It can be seen that, when the sample number of noisy 

speech is higher than 500, the confidence interval shows a stable decreasing trend, which means 

that the standard error becomes a constant and there is no need to further improve the size of the 

dataset. The VSE confidence interval of 500 noisy speech samples is 0.148 ± 0.005   with a 

confidence level of 95%, which means that it is 95% certain that the difference between the true 

mean and estimated mean is less than 3.3%. In addition, the VSE is associated with the speech 

 

 

Figure 4-7. Plot of the mean VSE as a function of SNR (between -10 and 20 dB with a step of 1 dB), 

referring to the relationship functions. The relationship functions were estimated using the speech 

dataset A in babble noise containing 2-, 4-, 8-, 16-, 24- and 32-talker babble noise 
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information rate which is considered to have little differences between different clean speech 

utterances (Pellegrino, Christophe, & Egidio, 2011). Therefore, we used 500 clean speech 

utterances to estimate the relationship function for each type of noise.  

The estimated relationship functions for 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise using 

dataset A (detailed in Sec 4.4) are shown in figure 4-7. It can be seen that in all the estimated 

relationship functions, the VSE increases as the SNR increases. Particularly, the relationship 

functions show an almost linear increase for the SNR range between -5 dB and 20 dB. At the SNR 

below -5 dB, the VSE shows relatively small changes to the varying SNR. It can also be seen that 

all the estimated relationship functions converge at the higher SNR range (e.g. 15 to 20 dB), whilst 

diverging at the lower SNR range (e.g. -5 to -10 dB). The converging of the relationship functions 

at the SNR of 20 dB indicates that the VSE of different clean speech samples are similar. The large 

divergence of the VSE at -10 dB shows that the difference in the relationship functions is mainly 

influenced by the VSE of the noise. Moreover, the relationship function differences decrease with 

increasing talker numbers in babble noise, which is consistent with the finding that the spectrum of 

babble noise tends to be more flat with increasing talker numbers (Simpson & Cooke, 2005). This 

is because the increasing of talker number adds more interfering speech to noise that further 

degrades the modulation of the babble noise. 

Automatic noise type detection 

To deal with unknown noise type cases, the noise-type specific relationship functions need to 

be automatically selected by detecting the noise type. In this section, we analyse the variables that 

influence the relationship function changes over different noise types, and develop a method to 

identify the noise type and select the corresponding relationship function.  

According to Equation (4.19), for low SNRs, 𝜉(𝑖) ≪ 1, 
𝜉(𝑖)

1+𝜉(𝑖)
≅ 0, and 

1

1+𝜉(𝑖)
≅ 1. Therefore, 

Equation (4.19) can be rewritten by: 

𝜎�̂� ≅
𝑀−𝑊

𝑀
𝜎ℎ𝑑
𝑀−𝑊 +

𝑊

𝑀
(𝜎ℎ𝑑

𝑊  )    

𝜎�̂� ≅ 𝜎ℎ𝑑
𝑀                                                                 (4.20) 

Therefore, at low SNRs, the relationship function depends only on the VSE of the noise (𝜎ℎ𝑑
𝑀 ). This 

can be further proved by the estimated relationship functions shown in Figure 4-7. In figure 4-7, 

the relationship functions of different types of noise differ the most at the SNR of -10 dB. At the 

high SNRs, 𝜉(𝑖) ≫ 1, 
𝜉(𝑖)

1+𝜉(𝑖)
≅ 1, and 

1

1+𝜉(𝑖)
≅ 0, according to Equation (4.19) we have: 

𝜎�̂� =
𝑀−𝑊

𝑀
𝜎ℎ𝑑
𝑀−𝑊 +

𝑊

𝑀
(𝜎ℎ𝑥

𝑊 +
𝑊

𝑀
(1 −

𝑊

𝑀
) (ℎ̅𝐷

𝑁−𝑊 − ℎ̅𝑋
𝑊)

2
)                     (4.21) 
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It can be found that the relationship function is dominated by the clean speech VSE (𝜎ℎ𝑠
𝑊) and 

MSpE differences (ℎ̅𝐷
𝑁−𝑊 − ℎ̅𝑋

𝑊) between clean speech and noise. Since the VSE and MSpE of 

clean speech are independent of the noise type, the relationship functions among different noise 

types are only influenced by the noise MSpE (ℎ̅𝐷
𝑁−𝑊). At medium SNRs, both the VSE and MSpE 

of the noise contribute to the differences in relationship functions across different noise types. 

Therefore, the VSE and MSpE of the noise should be used for noise type detection and relationship 

function selection. However, we found that using the VSE of the noise has higher accuracy with 

higher efficiency on characterizing the noise types. 

Figure 4-8 shows the normalized histogram of VSE and MSpE for 2-, 4-, 8-, 16-, and 32-talker 

babble noise. For clarity, each of the histogram curves has been fitted to a normal distribution. Each 

histogram was obtained using 500 random noise samples (the method of  generating the random 

noise samples was identical to that in Section 4.4). Each noise sample has a length of 1000 ms. The 

figure shows that the VSE has less overlap among different types of noise than that of the MSpE. 

In figure 4.8, although the VSEs of babble noise with 32 and 16 talkers are almost indistinguishable, 

the relationship functions of these two types of noise are  very similar (as shown in figure 4-7) and 

may not need to be distinguished. Thus, the noise VSE is more appropriate to characterize the noise 

type for selecting the relationship function.   

 To automatically select the most appropriate relationship function, the mean VSEs of each 

type of noise are pre-calculated and stored as the “identification VSE” (iVSE) of the noise-type 

specific relationship function. The VSE of a noise of unknown type is estimated by averaging the 

VSEs of the detected noise-frames over the SNR estimation interval (𝑉𝑆𝐸̅̅ ̅̅ ̅̅
𝑥) (detailed in the next 

section). The 𝑉𝑆𝐸̅̅ ̅̅ ̅̅
𝑥 is compared to all the pre-stored iVSEs from low to high to find the relationship 

function whose iVSE is closest to 𝑉𝑆𝐸̅̅ ̅̅ ̅̅
𝑥. The comparison steps are shown as below: 

(a) (b)  

 
Figure 4-8. The normalized histogram of the VSE and MSE of 500 random noise samples (each has 

1000 ms) for 2-, 8-, and 16-talker babble noise. (a) The normalized histogram of the noise VSE. (b) The 

normalized histogram of the noise MSpE. For clarity, each histogram has been fitted to a normal 

distribution. 
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1. Sort all the pre-measured iVSEs from low to high. 

2. Compare 𝑉𝑆𝐸̅̅ ̅̅ ̅̅
𝑥 with the lowest identified VSE (𝑖𝑉𝑆𝐸1). 

If     𝑉𝑆𝐸̅̅ ̅̅ ̅̅
𝑥 ≤ 𝑖𝑉𝑆𝐸1 +

𝑖𝑉𝑆𝐸2−𝑖𝑉𝑆𝐸1

2
                  (25) 

         Select the Relationship function of 𝐼𝑉1. 

            Else  

           Go to Step 3. 

3. Repeat Step 2 to compare 𝑉𝑆𝐸̅̅ ̅̅ ̅̅
𝑥  with a higher identification VSE until a relationship 

function is selected. From the selected relationship function, the SNR is estimated according 

to the measured VSE.   
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Noise frame detection  

The noise frames are detected by comparing the MSpE of the divided short frames. Taking 

into consideration that natural speech is connected with silent pauses from about 100 ms to 150 ms 

(Zellner, 1994), each SNR estimating interval is divided into short frames (100 ms) to detect speech 

absences. Given that the MSpE of a noise only frame is higher than that of a noisy speech frame 

(Wu & Wang, 2005), the frames with MSpE higher than the discrimination threshold are detected 

as noise. In order to adapt to background noise changes, the discrimination threshold is 

continuously updated. If the detected frame contains speech, the threshold is updated by averaging 

the past thresholds, otherwise, the threshold is updated according to the MSpE of the noise frame.   

The proposed noise detection algorithm was developed from Rangachari & Loizou (2006) as 

it has a lower computational cost and higher accuracy in non-stationary noise than other approaches 

(Cohen & Baruch, 2001; Martin, 2001). The algorithm is shown below: 

𝑃(𝑛) = {
0                   ℎ̅(𝑛) ≤ 휀𝜌(𝑛 − 1) 

1                   ℎ̅(𝑛) > 휀𝜌(𝑛 − 1)
                                         (4.22) 

 

 

Figure 4-9. The detected noise frames (marked as the rising of the solid line) of a noisy speech using 

the minimum statistics tracking (upper panel) and the proposed method (lower panel). The noisy speech 

is generated by adding clean speech to 16-talker babble noise at the SNR level of 15 dB. 
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where: 

𝜌(𝑛) = {
𝛼𝜌(𝑛 − 1) +

1−𝛼

1−𝛿
(ℎ̅(𝑛) − 𝛿ℎ̅(𝑛 − 1))          ℎ̅(𝑛) ≤ 휀𝜌(𝑛 − 1) 

ℎ̅(𝑛)                                                                        ℎ̅(𝑛) > 휀𝜌(𝑛 − 1)
      (4.23) 

where ℎ̅(𝑛) is the MSpE of the short frame at index of 𝑛, 𝜌(𝑛) is the discrimination threshold value 

at the frame 𝑛, the initial value of 𝜌 is the MSpE of the first frame, 𝑃(𝑛)is the noise present 

probability, 𝛿  and 𝛼  are factors used for regulating the threshold updating speed, and 휀  is the 

decision parameter.  

In contrast to the original algorithm in (Rangachari & Loizou, 2006), which used the minimum 

signal power to detect speech absence, we used the MSpE to distinguish noise only segments and 

noise plus speech segments. The MSpE has higher accuracy than the conventional power based 

approach at detecting speech absence in nonstationary noise as the MSpE is robust against varying 

noise power (Shen et al., 1998). Figure 4-9 shows the noise detection results using the original 

method (upper panel) and our proposed approach (lower panel) (Rangachari & Loizou, 2006) in 

16-talker babble noise at the SNR of 15 dB. Both of the methods used the same parameters. 

According to the figure, the proposed method has lower fail detection rate than the original 

approach. This would benefit the VSE of the detect frames on reflecting the iVSE of unknown 

noise type that increase the noise type detection accuracy. A confusion matrix of noise type 

detection accuracy is shown in Table 4-2. The noisy speech at SNR between -10 dB and 20 dB in 

step of 1 dB for 32-talker babble, 16- talker babble, 8- talker babble, 4- talker babble, and 2-talker 

babble noise are used for detecting the noise type. At each SNR level, 600 noisy speech are 

generated for each type of noise. 600 clean speech utterance from AURORA (Hirsch & Pearce, 

Table 4-2 The confusion matrix of noise type detection accuracy. 

 Test noise types 

 

 

 

 

 

Detected 

noise 

types 

 32-talker 

babble noise  

16-talker 

babble noise 

8-talker 

babble noise 

4-talker 

babble noise 

2-talker 

babble noise 

32-talker 

babble noise 

68.21% 21.50% 11.82% 2.70% 1.72% 

16-talker 

babble noise 

21.23% 54.14% 14.83% 1.03% 1.54% 

8-talker 

babble noise 

8.26% 11.33% 61.82% 18.85% 9.70% 

4-talker 

babble noise 

0.15% 3.50% 11.29% 60.51% 28.91% 

2-talker 

babble noise 

0.37% 0.33% 1.90% 26.64% 58.11% 
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2000) dataset are used. The noisy speech is generated by adding noise sample to clean speech 

sample. Both of the speech and noise samples with length of 1s are cut from the resource with a 

random starting points. The averaged accuracy across all SNRs is demonstrated. According to the 

table, although about 21% of 32-talker babble noise has been recognized as 16-talker babble, it 

won’t seriously degrades the SNR estimation accuracy as both of the noise types have the similar 

relationship functions (as shown in Figure 4-7). For the more challenging types of noise (2- and 4-

talker babble noise), the detection accuracy is relatively low. 

4.3.2. Weighting factors 

To reduce the variation in the relationship function caused by 𝜎ℎ𝑥
𝑊  and ℎ̅𝑋

𝑊, spectral weighting 

factors are developed and applied. Either static or adaptive weighting factors are used in VADs to 

improve the noise discriminability of the SpE. For example, Shen et al. (1998) increased the 

weighting of the frequency components where the speech and noise spectrum show the most 

difference by statistically analysing the spectrum of a large group of clean speech and noise samples, 

whilst Wu & Wang (2005) calculated adaptive weighting factors by tracking the variance of the 

stimulus energy over frequency bands. In contrast to that used in VAD, we used weighting factors 

to reduce the variation of SpE over different clean speech utterances. Particularly, static weighting 

factors are used to prevent the VSE-SNR relationship function variation caused by changing the 

weighting factors. The weighting factors are calculated on the basis of the analysis of the spectrum 

of a large group of clean speech samples.  

The weighting factors of the frequency bands with higher variance are reduced to increase the 

stability of the clean speech SpE. This is based on the consideration that the general shape of the 

speech spectrum is relatively stable (Löfqvist & Mandersson, 1987), but several spectral 

components have greater variation among different speaking conditions (Jokinen & Alku, 2017). 

Reducing the weights of these spectral components could reduce their effect on VSE. However, it 

is worth noting that the weighting factors might degrade the robustness of VSE by reducing the 

SpE differences between noise and clean speech. For example, by reducing the weighting of the 

frequency bands that show the most differences between the noise and speech spectra. To avoid 

this, the general speech spectrum shape, which depends on the long-term speech spectrum (over 

the utterance length) needs to be maintained. The calculation of weighting factors should be based 

on the variance of the long-term speech spectral power over different speech samples.  



Chapter 4 

 

135 

 

In this study, 1300 clean speech utterances (detailed in Section 4.4) were used to calculate the 

average power variance of each frequency band. Each speech utterance was cut into 1000 ms 

lengths with a random temporal starting point and filtered by the filter-bank. Then, the variance of 

the long-term speech spectral power of each frequency band was calculated. Each weighting factor 

𝑤𝑓𝑘 was obtained by calculating the inverse ratio between the long-term spectral power variance 

(𝑉𝑥(𝑘))of individual frequency band 𝑘 and the summed average power variances of all frequency 

bands: 

𝑤𝑓𝑘 = 𝜖(𝑘)
∑ 𝑉𝑥(𝑘) 
𝐾
𝑘=1

𝑉𝑥(𝑘)
                                                    (4.24) 

where 𝜖  is the filter-bank dependent weighting parameters which are provided in Table 4-

2, 𝑎𝑛𝑑 𝑉𝑥(𝑘) is defined as: 

𝑉𝑥(𝑘) =
1

𝑀
∑ (𝜇𝑥(𝑘, 𝑗) −

1

𝑀
∑ 𝜇𝑥(𝑘, 𝑗)
𝐽
𝑗=1 )2𝐽

𝑗=1                              (4.25) 

where 𝜇𝑥(𝑘, 𝑗) donates the long-term speech spectral power of frequency band 𝑘 over utterance 𝑗, 

which is characterized by: 

                            𝜇𝑥(𝑘, 𝑗) =
1

𝑀
∑ |𝑥(𝑘, 𝑖)|2𝑀
𝑖=1                                                 (4.26) 

where 𝑖 is the index of the sample within each speech utterance. The weighting factors are applied 

by multiplying them by the output of each filter band for SpE calculation.  

The performance of the weighting factors was verified by comparing the distribution of the 

VSE of the clean speech under the conditions with and without the application of weighting factors. 

The normalized histograms of the VSE of 200 clean speech utterances (dataset B, detailed in 

 

 Figure 4-10. The normalized histogram of VSE calculated with (solid line) and without (dashed line) 

the weighting factors over 200 clean speech utterances. 
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Section 4.4) are plotted in Figure 4-10. Each speech utterance is cut into 1000 ms lengths with a 

random temporal starting point. It was found that with the application of weighting factors, the 

distribution of the VSE was more concentrated than that without weighting factors.  

4.3.3. Recursive averaging  

A recursive averaging algorithm is applied to reduce the estimation errors caused by the 

varying of 
𝑊

𝑀
 (in Equation 4.19). In contrast to noise power estimation (Cohen, 2003; Rangachari 

& Loizou, 2006), which uses recursive averaging to track the noise power, we applied recursive 

averaging to reduce the variation of 
𝑊

𝑀
 . This takes into account the strong correlation of speech 

presences (Cohen, 2003) and speech silent pause length fluctuation (Zellner, 1994) in neighbouring 

time intervals. Averaging can offset the over- and under-estimation of the SNR caused by the 

variation of 
𝑊

𝑀
. In addition, the recursive averaging also helps to reduce the overall SNR estimation 

errors. This is based on the theory that there is a certain degree of correlation between the noise 

power in neighbouring time intervals (Gerkmann & Hendriks, 2012). The averaging could also 

reduce the SNR estimation errors by reducing the effect of the relationship function variation to 

SNR estimation.  

This study used the recursive averaging algorithm provided from Doblinger (1995). Although 

Ephraim & Malah (1984), and Cohen (2003) also developed recursive averaging algorithms, the 

algorithm by Doblinger (1995) is more computationally efficient, and the smoothing parameter 
1−𝛾

1−𝛽
 

is controlled by 𝛾 and 𝛽 (shown in Table 4-2), which could lead to more precise adjusting of 

adaption speed on tacking noise power changes (Doblinger, 1995). We implemented the algorithm 

by recursively averaging the estimated SNR over past time intervals. The averaging algorithm is 

shown as below: 

̅(j) = 𝛾 (̅ (j − 1)) +
1−𝛾

1−𝛽
 (̂(j) − β (̅ (j − 1)))                                (4.27)  

where j is the SNR estimation interval index,  ̂is the lookup table estimated SNR, and ̅ is the 

averaged SNR. 

 The effect of recursive averaging has been studied by comparing the SNR estimation of 

clean speech in 32-talker babble noise with and without applying the recursive averaging. The 

relationship function in Figure 4-7 is used for estimating the SNR. Figure 4-11 demonstrates the 

estimated SNR of 100 s random generated noisy speech samples before and after applying the 
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recursive averaging. The SNRs are fixed at 15 dB and 2 dB. In comparing to that without applying 

the recursive averaging (dashed lines), the estimated SNRs with the recursive averaging (solid lines) 

are smoother and closer to the real SNR at both of the 15 dB (blue) and 2 dB (red).  

4.3.4. Method overview 

The flowchart of the proposed SNR estimation procedure is shown in Figure 4-12a. The noisy 

speech is filtered by the filter-bank. The output of the filter-bank is multiplied by weighting factors 

to calculate the SpE for each sampling point. For noise frame detection, the MSpEover each short 

frame (100 ms) is calculated. A short frame is recognized as noise if its MSpE is higher than the 

adaptive threshold. The threshold is continuously adapted according to the MSpE of the current 

short frame. To select the relationship function, the VSE of the detected noise frames in each SNR 

estimation interval (as shown in Figure 4-12b), are calculated and averaged to automatically select 

the most appropriate noise-type specific VSE-SNR relationship function. The VSE over each SNR 

estimation interval (1000 ms) is calculated to estimate the SNR via the selected relationship 

function. Finally, the estimated SNR is averaged over time to reduce the estimation errors.  

  

 

Figure 4-11. The estimated SNR of 100 clean speech in 32-talker babble noise at the SNR of 15 dB (lines 

in blue) and 2 dB (lines in red) with (solid lines) and without (dash lines) applying the recursive averaging 

(RA). 
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Figure 4-12. (a) The flowchart of the proposed VSE based SNR estimation method. The VSE is 

calculated using the filter-bank filtered signals multiplied by weighting factors. The most appropriate 

relationship function is selected using the noise detection algorithm (denoted by greyed blocks). The 

SNR is estimated according to the VSE via the selected relationship function. Finally, the estimated 

SNR is averaged to reduce estimation errors. (b) An exemplar time sequence of calculating the VSE 

and MSpE of a speech utterance. The VSE is calculated across the whole SNR estimation interval (1000 

ms) for SNR estimation. The MSpE of each short frame (100 ms) is calculated for noise detection. The 

short frame noise detection is performed within each SNR estimation interval. The detected noise 

frames are marked in red, whilst the noisy speech frames are marked in blue. 
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4.4. Experiment setup  

Noisy speech samples generated by adding different types of babble noise to clean speech 

utterances were used for evaluation. 1300 clean speech utterances (each utterance contains 1-9 

connected digits) spoken by 56 male and 56 female speakers from the AURORA (Hirsch & Pearce, 

2000) resource database were divided into dataset A (500 utterances) which was used for deriving 

the noise-type specific relationship functions, and dataset B (800 utterances) which was used for 

evaluation. Dataset A was composed of randomly selected utterances from the 1300 utterances 

without replacement, and the remaining utterances comprised dataset B. Seven types of babble 

noise were used. Specifically, six types of talker number specific babble noise including: 2-, 4-, 8-, 

16-, 24- and 32-talkers, were derived by combining IEEE sentences (Rothauser, 1969). All 

sentences were normalized to have the same root mean square energy to form each type of babble 

noise (Simpson & Cooke, 2005). To demonstrate the temporal and spectral characteristics of our 

generated noise, the spectrograms of these six types of talker number specific babble noise are 

shown in Figure 4-13. Moreover, a babble noise with unknown number of talker was also used for 

(a)  (b)  

 

Table 4-3 All the parameters used in this study.  

𝜖 used in equation (4.24); 𝛼, 𝛿, and 휀 in equation. (4.22-4.23); 𝛾 and β in equation (4.27). 

Parameters Value 

𝛼 0.99 

𝛿 0.93 

휀 0.97 

𝛾 0.98 

β 0.955 

𝜖 0.06, 0.06, 0.06, 0.06, 0.02, 0.02, 0.02, 0.02, 0.05, 0.05 

  

Figure 4-13. Plot of the spectrogram of the generated talker number specific babble noise. For clarity, 

only the beginning 10 s of each noise resource was plotted. (a) The spectrogram of 2-, 4-, and 8-talker 

babble noise (from top to bottom). (b) The spectrogram of 16-, 24-, 32-talker babble noise (from top to 

bottom). 
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evaluation. It was obtained from the NOISEX-92 database (Varga & Steeneken, 1993). Six types 

of talker number specific babble noise were used for both deriving the relationship functions and 

for evaluation. Each noise dataset was generated by randomly cutting noise samples from the noise 

resource. For each type of noise the starting 10000 ms of the resource are used for estimating the 

relationship functions, the rest are used for evaluating the results to make sure the training and 

testing noise dataset are independent. To test the performance of our proposed method on dealing 

with babble noise without pre-estimating the relationship function, the babble noise with unknown 

number of talker was only used for evaluation. 

Each noise source length was 15000 ms, and each speech utterance ranged in duration from 

1000–3000 ms. Both the speech and noise samples were cut from the original source with a random 

starting point and added together to generate noisy speech samples with a length of 1000 ms (both 

of clean speech and noise have a length of 1000 ms). The sample rate was 16000 Hz. The noisy 

speech samples were generated at SNRs ranging between -10 dB and 20 dB with a step size of 1 

dB. All the parameters of our proposed method used in the evaluation are shown in Table 4-3. The 

relationship functions of the 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise shown in Figure 4-7 

were used for SNR estimation. It is worth to note that all the evaluations were run under the noise 

type unknown condition, where the used noise type was unknown to the SNR estimation program. 

The program selected the most appropriate relationship function automatically based on the 

detected noise VSE. 

Three existing methods of the WADA (Kim & Stern, 2008), NIST (NIST, 2016), and NPE 

(Gerkmann & Hendriks, 2012) were used to compare the performance with our proposed method. 

The WADA and NIST methods were applied by using the programs provided on the webpage of 

the Lab for Recognition and Organization of Speech and Audio at Columbia University (Ellis, 

2011), the default parameters were used. The NPE method was applied using the programs provided 

on the web page of the audio processing group of the University of Oldenburg. In the application 

of the NPE methods, the parameters were the same as those suggested in (Gerkmann & Hendriks, 

2012), and the global SNR was estimated by summarising the estimated noise power and speech 

power across the frequency and time, the same as that applied by Narayanan & Wang (2012).  

  

http://labrosa.ee.columbia.edu/
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4.5. Results  

4.5.1. Experiment 1: Evaluating SNR estimation accuracy  

Two metrics were measured to quantify the performance of the SNR estimation. The first 

metric quantified the estimation errors, which were obtained by measuring the mean absolute 

errors (MAE) between the estimated SNRs and the real SNRs. MAE is widely used in evaluating 

the performance of global SNR estimation methods (Narayanan & Wang, 2012; Papadopoulos, 

Tsiartas & Narayanan, 2016). 

 𝑀𝐴𝐸 =
1

𝐽
∑ |(j) − ̅(𝑗)|
𝐽
𝑗=1                                             (4.28) 

where  is the real SNR (the SNR used for generating the test speech), ̅ is the estimated SNR 

(the final output of the SNR estimation method), j is the index of the noisy speech sample, and 

𝐽 is the total number of the tested noisy speech samples. It is worth noting that the MAE 

represents the averaged (across different noisy samples) estimation errors caused by both under- 

and over-estimation in the decibel scale. The averaged value was used to evaluate the VSE 

method because the relationship functions were estimated based on the mean values, making 

the over- and under-estimations of the SNR relatively equal.  

However, the averaged error cannot characterize stability of the estimation accuracy over 

different noisy speech samples. The second metric evaluates the stability of the estimation 

accuracy across different noisy speech samples by calculating the standard derivation of the 

absolute SNR estimation errors (STAE). The STAE is characterized by: 

STAE = √
1

𝐽
∑ (|(j) − ̅(𝑗)| −

1

𝐽
∑ |(j) − ̅(𝑗)|)
𝐽
𝑗=1

2𝐽
𝑗=1                          (4.29) 

where  is the real SNR (the SNR used for generating the test speech), ̅ is the estimated SNR 

(the final output of the SNR estimation method), j is the index of the noisy speech sample, and 

𝐽 is the total number of the tested noisy speech samples. A low STAE value indicates a reliable 

performance (low variation of estimation errors over different noisy samples), whilst a high 

STAE shows an unstable performance (high variation) over different noisy speech samples. 

The MAE and STAE of VSE, WADA, NPE, and NIST were tested with all the seven types 

of babble noise listed in Section 4.4. For each type of noise, 800 (utterances dataset B) ×

31 (SNRs) noisy speech samples were tested. All the methods were tested using the same noisy 

speech samples. 
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Figure 4-14 shows the averaged MAE (in dB) over a SNR range between -10 dB and 20 

dB in steps of 1 dB, using the VSE, WADA, NPE and NIST methods, versus 2-, 4-, 8-, 16-, 24-, 

and 32-talker babble noise, and the talker number unknown babble noise. The error bars 

represent the standard deviation of five repeated tests. In general, the MAE of all the tested 

methods increased with the decreasing number of talkers in babble noise. Specifically, in 16-, 

24-, and 32-talker babble noise and babble noise with an unknown number of talkers, the MAE 

of all the tested methods was relatively stable. However, in 2-, 4- and 8-talker babble noise, the 

NPE and the WADA methods showed more degradation to decreasing talker numbers in babble 

noise than the NIST and the VSE method. The NPE method in particular showed the highest 

MAE increase to talker number decrease. The MAE of the NPE method increased by about 7 

dB from 8 to 2-talker babble noise. Although the MAE of the NIST method was relatively stable 

in 2-, 4-, and 8-talker babble noise, it remained at a high value of about 9 dB on average.  

The VSE method showed the fewest estimation errors compared to the WADA and NIST 

methods in all examined types of babble noise, and presents estimation errors lower or similar 

to that of the NPE method. The VSE method shows the fewest estimation errors in 2-, 4-, 8-, 

and 16-talker babble noise. This is notably the case for the 2- , 4-, and 8- talker babble noise, 

where the estimation errors of the VSE method were about 4.4 dB, 3.1 dB, and 1.3 dB less than 

that of the WADA method. However, in 24-, 32-talker and talker number unknown babble noise 

(Figure 4-14), the estimation errors of the VSE method were about 0.39, 0.38 dB, and 0.21 dB 

higher than the lowest MAE regarding the NPE method among the tested methods.  

 

 

 

Figure 4-14. Plot of the MAE (in dB) for SNR across -10 dB and 20 dB in steps of 1 dB, using the 

VSE, WADA, NPE and NIST methods, versus 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise, and 

babble noise with an unknown number of talkers. The error bars represent the standard deviation of 

five repeated tests. 
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Figure 4-15 shows the averaged STAE over an SNR range between -10 dB and 20 dB in 

steps of 1 dB, using the VSE-SNR, WADA, NPE, and NIST methods, versus all the tested seven 

types of babble noise listed in Section 4.4. According to the figure, most of the tested methods 

show higher estimation error variation in less stationary babble noise as their STAE increased 

with decreasing numbers of talkers in babble noise. However, the WADA method showed 

higher STAE in babble noise containing more talkers. It showed a STAE higher than the other 

tested methods in babble noise with talker numbers ≤8. The VSE method showed a STAE 

slightly higher than that of the NPE and NIST methods in babble noise with talker numbers ≥16. 

However, in 2-talker babble noise, the STAE of the VSE method was much lower than all the 

compared methods. The testing results of the STAE indicated that the reliability of the VSE 

method of estimating the SNR over different noisy speech samples is similar or higher than that 

of the WADA, NPE, and NIST methods. 

The MAEs of the VSE, WADA, NPE, and NIST methods at the SNR levels between -10 dB 

and 20 dB (in steps of 1 dB) in 2-, 4-, 8-, and 16-talker babble noise are plotted in Figure 4-16. 

According to the figure, the MAEs of all the tested methods increased with decreasing SNR 

levels in all of 2-, 4-, 8-, and 16-talker babble noise. The NPE method was more sensitive to the 

decreasing SNR level as it showed more accuracy degradation with decreasing SNR than other 

tested methods. However, the VSE, WADA, and NIST methods showed accuracy degradation 

with increasing SNR. The WADA method showed the highest MAE increase when the SNR 

was increased.  

 

 
Figure 4-15.Plot of the STAE (in dB) for SNR across -10 dB and 20 dB in steps of 1 dB, using the VSE, 

WADA, NPE and NIST methods, versus 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise, and babble 

noise with an unknown number of talkers. The error bars represent the standard deviation of five 

repeated tests. 



Chapter 4 

 

144 

 

The VSE method showed the least accuracy degradation to either increasing or decreasing 

SNR level. At low SNRs (<5 dB) in particular, the MAEs of the VSE method were much lower 

than those of other methods in all the types of babble noise shown in Figure 4-16. However, at 

SNRs above 15 dB, the MAE of the VSE method was slightly higher than that of the NPE method 

in babble noise with 8 and 16 talkers.  

To summarise the tested results, the VSE method presents the fewest or similar estimation 

errors compared to the other existing NIST, WADA, and NPE methods. The VSE method in 

particular showed the greatest SNR estimation accuracy improvement in babble noise with fewer 

talkers (i.e. 2-, 4-, and 8-talker babble noise). In addition, the VSE method showed the highest 

estimation accuracy at low SNRs (<5 dB), which indicates that the proposed method could benefit 

speech enhancement at low SNR levels. Moreover, the STAE of the VSE method was either lower 

than or comparable to that of other tested methods, which proves that the reliability of the VSE 

method of estimating SNR over different noisy samples is comparable to that of the WADA, NIST, 

and NPE methods.  

  

 

 
Figure 4-16. Plot of the MAE (in dB) using the VSE-SNR WADA, NPE and NIST methods, against SNR 

levels between -10 dB and 20 dB in steps of 1 dB. The results were obtained using speech dataset B with 

800 utterances. The sub-figures regard testing in babble noise containing (a) 2 talkers, (b) 4 talkers, (c) 8 

talkers and (d) 16 talkers, respectively. 
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4.5.2. Experiment 2: Evaluating computational complexity 

The computational complexity is evaluated by comparing the computation time of MATLAB 

implementations of VSE, WADA, NPE, and NIST methods. The computation time is obtained by 

measuring the wall-clock time of the code executions for estimating the SNR of a 1000 ms length 

noisy speech sample. In consideration that audio signal processing devices may apply different 

signal spectrum analysing approaches, it might be unfair to compare the computational complexity 

on the basis of the different signal spectral analysing approaches (e.g. 10 bands Butterworth filter 

bank vs fast Fourier transform (FFT)). We further estimated the NPE method with the normalized 

spectral analysing process (donated by n-NPE in Table 4-4). The computational time of the FFT 

process in the NPE method was recorded and set to be equal to the processing time of the filter 

bank in the VSE method. The test used a PC with an Intel core i7 processor and version 2015a of 

MATLAB. All the methods were tested using the same sample rate of 16000 Hz and the same 

dataset. 100 speech utterances were randomly selected from dataset B to add to each type of noise 

listed in Section 4.4 for testing.  

The average computation times and the standard deviations of all the tested methods are given 

in Table 4.2. The average computation time of the VSE method was 133 ms shorter than the NPE 

method. This might be because the NPE method needs to estimate both the clean speech and the 

noise power of hundreds of frequency bins of FFT of overlapped frames, whilst the VSE method 

only needs to measure the VSE based on 10 frequency bands, and the SNR can be estimated directly 

via the lookup table. Moreover, the VSE method shows a shorter computation time than the NIST 

method. Because the NIST method needs to compare the energy of hundreds of short-time bins to 

find the energy histogram. Since the WADA method also uses the lookup table to estimate the SNR, 

its computation time is close to that of the VSE method. However, the VSE method has the potential 

to further reduce the computation time in some hardware implementations, e.g. in field-

programmable gate arrays, the noise detection and SNR estimation of the VSE method could be 

processed in parallel to reduce the online processing time. In general, the VSE method shows higher 

computational efficiency than the compared methods. Incorporation of the VSE based SNR 

Table 4-4 Computation time 

Method VSE WADA NIST NPE n-NPE 

Average 

computation  

time (ms) 

37.9 

±6.7  

36.8  

± 8.3  

103.8 ± 

51.0 

170.5 

±95.3 

151.4 

±87.1 

Averaged computation time with standard deviations for processing 1000 ms intervals of noisy speech samples using 

VSE (proposed), WADA, NIST and NPE methods implemented in MATLAB. 
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estimation method into audio devices may help to reduce the processing delay and power 

consumption of audio-signal-processing devices. 

 

4.6. Discussion 

The evaluation results of the NIST, NPE and WADA methods in 24- and 32-talker babble noise 

(as shown in Figure 4-14) were consistent with those reported by Narayanan & Wang (2012) and 

Papadopoulos et al. (2016). However, in babble noise with talker number ≤16, the estimation errors 

of the NPE method significantly increased. As the number of talkers in the babble noise decreased, 

the noise power tended to be less stable, which increased the noise power estimation errors 

(Gerkmann & Hendriks, 2012). Moreover, the spectral power of the babble noise with fewer talkers 

would be more concentrated at specific frequency components (Krishnamurthy & Hansen, 2009). 

At the same SNR level, the noise power concentrated frequency components have higher power, 

and become closer to that of the clean speech compared to more stationary noise (e.g. 32-talker 

babble noise). In consequence, the SNR estimation accuracy is reduced due to degradation of the 

speech presence probability estimation (Gerkmann & Hendriks, 2012). On the other hand, the 

WADA method also showed significant estimation error increases in babble noise with fewer 

talkers. The reason is that in this case the noise amplitude became more similar to clean speech 

(Krishnamurthy & Hansen, 2009), making the noise amplitude distribution incapable of reflecting 

the SNR changes. However, the VSE method showed higher estimation accuracy than the NPE 

method in babble noise with talker number ≤16, which proves that the VSE method is less 

influenced by the noise power changes. The higher estimation accuracy compared to the WADA 

method indicates that the VSE-SNR method is more reliable at tracking the SNR level than 

amplitude distribution.  

It is worth noting that without the pre-estimated relationship function, the VSE still showed a 

relatively high SNR estimation accuracy in talker number unknown babble noise. This indicates 

that: 1), the VSE method can estimate the SNR of talker number unknown babble noise. It is not 

necessary to estimate the relationship function for all types of noise as some types of (talker number) 

different babble noise may share a similar relationship function. This led to better performance of 

our proposed noise type detection compared to that used by Papadopoulos et al. (2016), which 

required a training model for all types of noise for noise type detection. For example, in Figure 4-

7, the relationship functions of 16-, 24-, and 32-talker babble noise are almost the same due to their 

similar noise VSE. Therefore, different types of noise with similar VSE could use the same 

relationship for SNR estimation. 2) The VSE method automatically classifies the talker number 

unknown babble noise based on the babble noise types stored in the pre-estimated lookup tables, 

and thus is able to deal with noise types for which relationship functions have been estimated. 
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However, it requires further study to identify how many relationship functions are necessary to 

guarantee a relatively high SNR estimation accuracy in practice.  

It is acknowledged that noise types in real environments may be more complicated than the set 

of noise scenarios used in this experiment (Cohen, 2003). However, in daily life, the regularity of 

exposure to some types of noise is associated with a person’s occupation (Flamme, et al., 2012). 

An individual may repeatedly encounter a limited number of noise-type conditions. For example, 

the speech intelligibility of a teacher may be mainly influenced by a high number of multiple-talkers 

babble noise and classroom acoustics. An individual in a closed office environment may encounter 

lower numbers of multiple-talkers babble. So it is applicable to look towards the use of a number 

of VSE-SNR relationship functions to cover a variety of noisy environments that audio-signal-

processing devices users may encounter. This may be predetermined for the user or, by 

incorporating machine learning, the device can learn which relationship functions are the most 

appropriate.  

For a practical implementation, the proposed method could focus on personalization. The 

relationship functions could be specified by the VSE of noise. An automatic relationship functions 

adaption method can be incorporated. The adaption method monitors the VSE of noise from real 

environments, and records the noise that is not covered by the current relationship functions. The 

relationship function of the new recorded noise can be estimated for later use.  

In future work, the SNR estimation accuracy of the VSE method could be improved by using a 

better filter-bank. The VSE is calculated using the filter-bank processed signal power, hence the 

performance of the VSE is influenced by the properties of the filter-bank. Specifically, the noise 

discriminability of the VSE depends on the quality of the filter-bank (spectral resolution). It has 

been shown that using an improved signal spectrum analysing method improved the noise 

discriminability of the SpE (Shen et al., 1998; Wu & Wang, 2005). In this study, to achieve a high 

computational efficiency, a low quality linear filter-bank was used. The filter-bank decides the 

variation of the VSE-SNR relationship function, as the variability of the extracted spectrum decides 

the variability of the calculated VSE. Although the weighting factors increase the stability of the 

VSE by increasing the stability of the speech spectrum, the temporal variation of the noise and 

speech also influence the stability of the VSE (Ghosh et al., 2011). It might be of interest to use a 

better filter-bank with improved quality to process the speech and noise signals.  
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4.7. Summary 

This chapter has presented an improved VSE based global SNR estimation method. The 

proposed method improves the estimation accuracy by using noise-type specific relationship 

functions, weighting factors, and recursive averaging. In addition, a noise detection method has 

been added to this method to aid the selection of the most appropriate relationship function in 

fluctuating noisy environments (changing noise types). The proposed method shows higher 

estimation in nonstationary noise (e.g. babble noise containing fewer talkers). The proposed method 

also has high computational efficiency as it uses relationship functions as lookup tables to estimate 

the SNR directly.  

The estimation accuracy of the proposed method was evaluated in six types of babble noise 

and compared to other methods such as WADA, NPE, and NIST. The results showed that the SNR 

estimation accuracy of the proposed method is higher than the competing methods in 2-,4-,8-,and 

16-talker babble noise, while remaining similar to the highest estimation accuracy in babble noise 

with 24-,32- and unknown numbers of talkers. In particular, the proposed method proved to be the 

most advantageous at estimating SNR in low SNRs.  

In comparison with other methods, the computational time of the VSE method is about 64% 

lower than the computational time of the NIST method, and 78% lower than the computational time 

of the NPE method. In conclusion, the VSE based SNR estimation is more suitable for use in audio 

signal processing devices and would bring greater benefit in real-time speech enhancement by 

reducing processing delay and power consumption. 
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5. Chapter 5: Improved SNR estimation using a nonlinear 

filter-bank with simulated cochlear compression   

 

5.1. Introduction  

The signal-to-noise ratio (SNR) quantifies the amount of noise in a given acoustic 

environment that is necessary to optimize the noise reduction strategy for speech enhancement 

(Scalart & Filho, 1996). In the case of the auditory system, the time constant of the MOC reflex 

increases with the increasing efficiency of the stimulation (Sridhar et al., 1995). Since the MOC 

stimulation efficiency of broadband noise is higher than noise with a narrower band (Lilaonitkul & 

Guinan, 2009), broadband noise has a higher MOC stimulation efficiency than clean speech. The 

estimated SNR of speech in noise may be used to optimize the MOC time constant in fluctuating 

noise environments for speech enhancement. In Chapter 4, we presented a VSE based global SNR 

estimation method with high computational efficiency and robust performance in nonstationary 

babble noise. However, the estimation accuracy was degraded in highly nonstationary babble noise 

(e.g. 2-talker babble noise) due to the variation of the VSE-SNR relationships over different noisy 

speech samples. The present chapter aims to apply a nonlinear filter bank to improve the estimation 

accuracy by reducing the relationship function variation. A modification of an existing nonlinear 

filter-bank model, which was developed to simulate the human auditory filter bank (Lopez-Poveda 

& Meddis, 2001), was applied to calculate the VSE. The performance of the nonlinear filter bank 

based VSE was evaluated in babble noise containing different numbers of talkers. The SNR 

estimation errors were compared with the linear filter-bank based VSE method (presented in 

Chapter 4), waveform amplitude distribution analysis (WADA) ( Kim & Stern, 2008), national 

information technology laboratory (NIST) (NIST, 2006), and noise power estimation NPE methods 

(Gerkmann & Hendriks, 2012). 

Estimating the SNR is a fundamental step of most speech enhancement algorithms (Loizou, 

2013; Ephraim & Malah, 1984; McAulay & Malpass, 1980). The basic principle of noise reduction 

is to attenuate the signal when the noise level is high, whilst retaining the signal when the speech 

level is high, based on the knowledge of the SNR. Depending on specific applications, the SNR is 

often estimated over different time scales (Pollák & Vondrášek, 2005). For example, the Wiener 

filtering algorithm (Chen et al., 2006) reduces noise by regulating the gain of the amplifier 

according to the estimated SNR over the interval length of 25 ms. Generally, SNR estimation can 

be classified into instantaneous SNR over short intervals (<100 ms) and global SNR over long 

intervals (>1000 ms). The literature on instantaneous SNR estimation (Martin, 2001; Cohen, 2003; 

Gerkmann & Hendricks, 2012) is extensive as the gain function of conventional noise reduction 

algorithms (e.g. spectral subtractive, Wiener filtering), which regulate the gain of the amplifier over 
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time, are often defined in terms of the instantaneous SNR. However, much research has argued that 

the conventional instantaneous SNR based noise reduction algorithms produce insignificant speech 

intelligibility improvement (Hu & Loizou, 2007;  Lim, 1978), which has been suggested to be 

caused by the high SNR estimation errors in nonstationary and introduced speech distortion (Loizou, 

2007). In comparison to the instantaneous SNR, the estimation of global SNR is often more accurate 

in both stationary and nonstationary noise (May et al., 2017), and it was found that optimizing the 

speech enhancement algorithm according to the global SNR suppresses distortion in processed 

speech and results in better hearing comfort (Martin et al., 2004). Recently, there is increasing 

interest in using the global SNR to develop speech enhancement algorithms for greater speech 

intelligibility benefits (Healy et al., 2013; Marti et al., 2004) 

 However, estimating the SNR is challenged by nonstationary noise and suffers from the 

trade-off between computational complexity and estimation accuracy. The performance of most of 

the existing global SNR estimation methods is limited by the cases of nonstationary noise, low 

SNRs, and high computational complexity (reviewed in Chapter 4). To address these issues, in 

Chapter 4 we proposed a variance of spectral entropy (VSE) based SNR estimation method with 

high estimation accuracy and comparable computational efficiency. We demonstrated that the VSE 

and SNR of noisy speech are interdependent. The relationships between SNR and VSE were 

estimated and saved as lookup tables (As shown in Figure 4-7), thus, the SNR of the noisy speech 

can be estimated according to its measured VSE. Several sub-methods were developed to reduce 

the relationship function variation induced SNR estimation errors. The noise type specific 

relationship functions were developed to reduce the variation of the relationship function over 

different types of noise, and weighting factors were developed to reduce the variation over different 

speech samples. In addition, a recursive averaging method was used to compensate for the over- 

and under-estimation of SNR caused by the variation of the relationship function. However, in 

Chapter 4, the estimation accuracy was degraded in highly nonstationary noise. For example, in 2-

talker babble noise the estimation error was above 4 dB. This is because the spectrum of 

nonstationary noise varies extensively over time (Ghosh et al., 2011). When using a linear filter-

banks (in Chapter 4), the spectrum variation was propagated to the calculated VSE, leading to 

variation in the relationship function, and increased estimation errors.  

The human auditory system shows extraordinary performance in processing speech in 

noise (Robertson et al., 2010). One of the most important properties of the auditory system is the 

nonlinear response of the cochlear (known as compression). The relationship between the cochlear 

response and stimulus intensity is linear for stimulus frequencies below the CF. For stimulus 

frequencies at and above the best frequency, the cochlear response increases with stimulus level 

with a compressed gain (less than 1/1 dB) (Cooper & Rhode, 1992; Robles, Ruggero & Rich, 1986; 

Sellick, Patuzzi & Johnstone, 1982). It has been suggested that the compressed gain of the cochlear 



Chapter 5 

 

151 

 

amplifier influences signal detection in noise (Glasberg & Moore, 1992; Oxenham & Moore, 1997; 

Yates, Winter, & Robertson, 1990). Although some studies have argued that compression has no 

benefit to speech intelligibility (Braida et al., 1979; Souza, 2002), other studies found that using a 

compressed gain in hearing prostheses improves the speech intelligibility (Gatehouse et al., 2006; 

King & Martin, 1984; Shi & Doherty, 2008) as the compressed gain attenuates the high intensity 

stimulus that distorts audibility (Villchur, 1973, Souza, 2002). Some studies even found that 

compression increases the speech intelligibility in noise (Kates, 2010; Laurence et al., 1983) as the 

compressed gain improves the ability to listen in dips at low SNRs by increasing low intensity 

stimulus (Moore et al., 1998). In the case of VSE based SNR estimation, the attenuation of the high 

intensity signal and increase of low intensity stimulus might reduce the variation of relationship 

functions in a noisy speech spectrum and hence reduce the relationship function variation. 

This study aims to apply a modification of an existing nonlinear filter-bank model, which 

simulates the compressive response of the cochlear, to calculate the VSE and thus improve the 

SNR estimation accuracy. In Chapter 4, we found that the SNR estimation accuracy of the VSE 

based method is influenced by the two properties of the VSE: (1) the noise discriminability of the 

VSE. A high noise discriminability of the VSE increases the resolution of the relationship function 

when tracking the SNR changes. Since it has been suggested that the compressed gain might 

benefit speech in noise detection (Kates, 2010; Laurence et al., 1983), we hypothesize that 

compressed gain could increase the noise discriminability of VSE. (2) The variation of the 

relationship function. The spectrum variation of nonstationary noise means that the VSE varies 

over different noisy speech samples at the same SNR due to the inherent spectrum differences 

over different noise samples and speech contents. Since compressed gain increases the low level 

signal and attenuates the high level signal, the spectral contrast is reduced (Moore et al. 1998). 

We hypothesize that the reduced spectral contrast will reduce the spectrum variations and increase 

the stability of the relationship function.  

This chapter implements a dual resonance nonlinear (DRNL) filter-bank (Lopez-Poveda 

and Meddis, 2001), in the VSE based SNR estimation method, which simulates the nonlinear 

response of the BM in the human auditory system. To focus on studying the effect of the 

compression (more reasons will be provided later), the outputs of the nonlinear pathway of the 

DRNL filter-bank were used for calculating the VSE. The SNR was estimated via the measured 

VSE, according to the estimated VSE-SNR relationship functions. The details of using the VSE to 

estimate SNR level were identical to those demonstrated in Chapter 4. Only the linear filter bank 

was replaced by the DRNL filter-bank, and the weighting factors were removed when using the 

nonlinear filter-bank as the weighting factors were designed to improve the performance of the 
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linear filter-bank. As in Chapter 4, the performance of the VSE based SNR estimation was 

evaluated by testing the SNR estimation accuracy at SNRs between -10 dB and 20 dB in 2-, 4-, 8-, 

16-, 24-, 32-talker babble noise. The SNR estimation accuracy of the VSE method using the DRNL 

filter was compared with that of NIST, WADA, NPE, and the linear filter bank based VSE method 

presented in Chapter 4. The NIST, WADA, and NPE method were not incorporated with the DRNL 

filter-bank as they are based on FFT instead of filter-bank.  

The rest of this chapter is organized as follows. Section 2 introduces the nonlinear filter-

bank used in this study, and the method of using it to calculate the VSE and to estimate the SNR 

level. Section 3 provides details of using speech and noise resources to generate noisy speech for 

estimating the relationship functions and evaluating the SNR estimation performance. The 

evaluation results are presented in Section 4. A discussion is provided in Section 5. Finally, the 

main aim and findings of this study are concluded in Section 6.  

5.2. Method  

DRNL filter-bank  

A modification of an existing DRNL filter-bank model, developed by (Meddis et al., 2001) 

for simulating the nonlinear response of the auditory filter-bank system, was used in this study. 

Although several models have been developed to simulate the nonlinear response of the cochlea 

(Goldstein, 1990; Carney, 1993; Meddis et al., 2001; Zhang et al., 2001), the DRNL filter more 

accurately simulated the response of the cochlea. When compared to the model proposed by 

Goldstein (1990), DRNL filter-bank applies another band-pass filter after the compression stage, 

which reduces the compression algorithm caused signal distortion (Meddis et al., 2001). The 

models proposed by Carney (1993) and Zhang et al., (2001) require an additionalloop to simulate 

the nonlinear response, and is more computationally extensive than the DRNL filter-bank. Using a 

computationally efficient model will save experimental time for a large group of dataset tests. The 

outputs of the DRNL filter match the human data (Lopez-Poveda and Meddis, 2001). 
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Figure 5-1. The structure of the DRNL filter-bank based VSE calculation. “GT”represents gammatone 

filter. “ATT” represents attenuation. 
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The structure of a single DRNL filter-bank is shown in Figure 5-1. The DRNL filter bank 

consists of two signal pathways to simulate the linear and nonlinear responses of the BM. The 

linear pathway contains a linear gain, three cascade gammatone band pass filters, and four cascade 

2nd order low pass filters. The nonlinear pathway starts with three cascade connected gammatone 

filters to filter the incoming signal into each frequency band. The compression of the BM is 

simulated by implementing an instantaneous “broken-stick” nonlinear gain function, which has a 

fractional (less than 1) slope in the decibel scale at the input level higher than the compression 

threshold (known as “kneepoint”). At the level below the compression threshold the gain is linear. 

The compression threshold is characterized by the compression “knee point”. After the “broken-

stick” function, three identical gammatone filters are applied to reduce the signal distortion caused 

by compression. In the end, three cascaded connected 2nd low-pass filters were applied to reshape 

the spectrum of the output signal by 6 dB down to the CF of the frequency band.  

The frequency response of the linear pathway, nonlinear pathway, and the sum output in 

response to inputs at levels of 30 dB and 85 dB are shown in Figure 5-2. It can be found that at 

30 dB, the nonlinear pathway dominates the sum output. In nonlinear pathway, since the gain 

function applies a linear gain to inputs level under the “knee points“ but a compressed gain to 

inputs level above it, the peak of the signal would be smoothed. Thus, the stability of the input 

signal is increased. Figure 5-3 demonstrates the examples of how a nonlinear gain influences the 

waveform of both of the noise and clean speech. We assume that both of the speech and noise 

have components above the knee point because the general speech level is about 60 dB with SNR 

between -10 dB and 15 dB, whilst the “knee points” are about 35 dB. It can be found that the 

nonlinear gain improves the he stability of the waveforms of both the speech and noise are 

increased.   
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Figure 5-2. The frequency response of the linear (dashed lines), nonlinear pathway (solid red lines), and the 

sum output (solid black lines). The left panel demonstrates the output in response to an input at level of 30 

dB. It can be found that the nonlinear pathway dominates the sum output. The right panel demonstrates the 

output in response to input at level of 85 dB.  
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DRNL filter bank parameters configuration 

In this study, the DNRL filter-bank was modified by only using the nonlinear pathway 

outputs to calculate the VSE (Figure 5-1). Only the nonlinear outputs were used for three reasons. 

(1) This study focuses on the effect of the compressed gain to VSE based speech in noise SNR 

estimation. The response of the DRNL filter bank is dominated by the nonlinear pathway at signal 

levels below 75 dB. The influence of the linear pathway on the overall outputs of the DRNL filter-

bank is shown only at signal level above 75 dB ( Meddis et al., 2001). Since speech levels in practice 

are generally below 75 dB, only using the nonlinear pathway is sufficient to simulate the 

compressive response of the cochlea for speech signals. (2) It is known that the BM only shows a 

linear response to tones below the CFs. We aim to investigate the nonlinear response of the auditory 

filter-bank to the performance of the VSE. Therefore, VSE should be calculated based on the signals 

at the CFs (nonlinear pathway). (3) The VSE based SNR estimation method is designed to be 

implemented in portable devices. Most audio signal processing devices only have a nonlinear 

channel with compression. For example, most of the contemporary hearing aids only have 

frequency bands with a compressed gain.  

The parameters of the DRNL filter-bank, and its comparison to that in Chapter 4 are shown 

in Table 5-1. The parameters were set to make the testing results comparable to the results shown 

in Chapter 4. The DRNL filter-bank is built with Gammatone filters, whilst the linear filter-bank in 

Chapter 4 is built with Butterworth filters. These two types of filters differ in phase, impulse 

response, and frequency response shape (the slope of the filter skirt are different). Since the SpE 

are defined as the probability associated with instantaneous spectral power, we mainly considered 

the influence of frequency response shape difference on the VSE. To reduce the effect of the filter 

 

Figure 5-3. The examples of the nonlinear gain function increases the signal stability. The “knee points” are 

marked in red, the signals below the “knee points” are marked in green. The signals above the knee points 

are marked in blue. The right panel presents a clean-speech signal, and the right panel presents a pure noise 

signal. 
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type difference on VSE performance, the two filter-bank were set to have the same equivalent 

rectangular bandwidth (ERB) (Glasberg & Moore, 1990). Although, we removed the linear 

pathway of the DRNL fitler-bank on calculating the VSE, it has little effect on the final  

  

Table 5-1 The parameter settings of the DRNL filter-bank, and comparison to the linear filter-

bank in Chapter 4. 

DRNL 

Parameters 

Description value 

nonlinBWp nonlinear pathway bandwidth 

parameter 

0.14 

nonlinBWq nonlinear pathway bandwidth 

parameter 

180 

ctBMdB Knee point parameter 25 

c Compression exponent 0.25 

Comparison DRNL filter-bank Liner filter-bank in Chapter 4 

Sample Rate 16 kHz 16 kHz 

Filter-type Gammatone filter Butterworth filter 

Orders 1 2 

Number of 

cascades 

6 1 

Central 

frequency 

250         367         540         794        

1167        1714        2520        3703        

5443        8000 

250         367         540         794        

1167        1714        2520        3703        

5443        8000 

Bandwidth of 

each filter 

215    231    255    291    343   420   

532    698    942    1300 

57  71    92   122   167   232   329   

470   679   985 (3dB ERB) 
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response of the DRNL filter-bank to inputs at low or moderate levels. As shown in (Lopez-Poveda 

& Meddis, 2001), the linear pathway only effects the 10 dB (or above) cut-off frequency for input 

levels between 30 dB and 70 dB. Consequently, both filter-banks would have similar efficiency in 

extracting spectral information for calculating the VSE. Jürgens et al. (2016) also used 2rd order 

Butterworth filters with selected bandwidth to replace the gammtone filters in DRNL filter-bank 

for simulating the cochlear response in their hearing aid model. Similar to the filter-bank setting in 

Chapter 4, a ten frequency band DRNL filter-bank was used, with central frequencies 

logarithmically spaced between 250 Hz and 8000 Hz to follow the human data provided by Plack 

and Oxenham (2000). The rest of the parameters followed the setting by Lopez-Poveda & Meddis 

(2001). Specifically, the bandwidth of each DRNL filter was calculated on the basis of the central 

frequency of the channel via the equation shown below (obtained from the model description 

document provided in Meddis, 2014): 

𝐵𝑊 (𝐶𝐹) = 𝑛𝑜𝑛𝑙𝑖𝑛𝐵𝑊𝑝 × 𝐶𝐹 + 𝑛𝑜𝑛𝑙𝑖𝑛𝐵𝑊𝑞                               (5.1) 

where BW is the bandwidth at the central frequency CF, and nonlinBWp and nonlinBWq are 

bandwidth calculation parameters identical to those used by Lopez-Poveda and Meddis (2001) to 

simulate the ERB in (Glasberg and Moore, 1990). The compression of the DNRL filter-bank was 

specified by setting the compression knee point parameter and the compression exponent parameter. 

In this study, to follow the parameters used by Meddis et al. (2001), the knee point parameter was 

set to be 25, and the compression exponent parameter was fixed at 0.25 across all central 

frequencies to provide a compression of 4 dB / 1 dB (4 dB input increment contributes to a 1 dB 

output increment). These parameters were used based on the measured cochlear response to pure 

tones in chinchillas (Ruggero et al., 1997). 

DRNL filter-bank based SNR estimation  

The procedure for calculating the VSE was the same as what detailed in Chapter 4, a brief 

introduction is provided here. The flow chart for using the nonlinear filter to estimate the SNR is 

shown in Figure 5-4. The upper pathway calculates the VSE noisy speech for estimating the SNR 

via the relationship function, whilst the lower pathway calculates the MSpE to detect the noise 

frames for selecting the relationship function. To begin with, the noisy speech sample is filtered by 

the DRNL filter-bank. The spectral entropy (SpE) is calculated using the output signal of each 

nonlinear frequency band in the DRNL filter-bank according to the Equations 4.4-4.5 shown in 

chapter 4.  

To reduce the SNR estimation errors caused by the relationship function variation over 

different noise types, this study also used the noise type specific VSE-SNR relationship function. 

The relationship function between the VSE and SNR was estimated for each type of tested babble 
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noise (details of which are given in section 5.3). As discussed in Chapter 4, the noise type specific 

relationship function only partly reduced the relationship function variation. To further improve the 

estimated accuracy by reducing the effect of the relationship function variation, the recursive 

averaging method detailed in Chapter 4 was also used. Since there is a certain degree of correlation 

between the noise power in neighbouring time intervals (Gerkmann & Hendriks, 2012), averaging 

the estimated SNR reduced the over- and under-estimation of the SNR. However, in contrast to that 

in Chapter 4, the weighting factors were not applied to this nonlinear filter-bank based VSE method 

due to the following reasons. (1) The function of the weighting factors and the nonlinear filter-bank 

on improving the SNR estimation overlap to increase the stability of the signal spectrum. To prove 

the benefit of the nonlinear filter-bank, the performance evaluation should be based on a 

comparison between the nonlinear-filter-bank and the linear filter-bank with weighting factors. (2) 

The weighting factors are designed for the linear system (Shen et al., 1998; Wu & Wang, 2005). 

The statistics of the speech spectrum are changed by compression because the compressed gain 

reduces the spectrum contrast (Mooreet al. 1998). It is difficult to calculate the effective weighting 

factors for a nonlinear filter-bank. (3) As discussed in Chapter 4, the weighting factors may also 

degrade the SNR estimation accuracy by decreasing the noise discriminability of the VSE that 

needs to be properly calculated based on the statistics of the speech spectrum. Since the statistical 

properties of the speech spectrum processed by a nonlinear filter-bank are not well studied, 

improperly calculated weighting factors may degrade the original performance of the nonlinear 

filter-bank. 

In order to automatically select the appropriate VSE-SNR relationship function in unknown 

noise type conditions, the same noise detection method as detailed in Chapter 4 was used in the 

present study. The average VSE of each type of noise was estimated as the relationship function 

identification VSE (iVSE) for each type of noise. The VSE of the type unknown noise was 

estimated by detecting the noise only frames in each of the SNR estimation intervals. The noise 

 

DRNL filter-bank
(Nonlinear path)

VSE

Noise frame 
detection

Noise type 
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Figure 5-4. The flow chart of the DRNL filter-bank based SNR estimation method. The upper pathway 

presents the process of using the calculated VSE to estimate the SNR via the relationship function, whilst 

the lower pathway demonstrates the process of selecting the noise type specific relationship function. The 

MpSE of the short frames are calculated to detect the noise only frames, and the VSE of the noise only 

frames are used for selecting the relationship function. 
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frames were detected by comparing the mean of spectral entropy (MSpE) with the noise decision 

threshold. The noise decision threshold was continually updated according to the detected 

environmental noise, as detailed in Chapter 4. The VSEs of the noise frames were averaged and 

compared through all the iVSE for each type of noise. The relationship function with the iVSE 

boundary that covers the estimated noise VSE was selected for use in estimating the SNR, as 

detailed in Chapter 4.  

The relationship function estimation 

Since changing the filter-bank influences the spectral features used for calculating the VSE, 

the new VSE-SNR relationship functions based on the DNRL filter needs to be estimated. The 

procedure for estimating the SNR-VSE relationship function is the same as that used in chapter 4, 

The process and dataset used for generating the noisy speech samples were identical to that used in 

Chapter 4.  

 

5.3. Evaluation  

To make the testing results comparable to the results shown in Chapter 4, the same evaluation 

procedures were applied in this chapter. The only difference is that the weighting factors were not 

applied to a nonlinear filter-bank based SNR estimation. The speech-like noise including 2-, 4-, 8-, 

16-, 24-, and 32-talker babble noise were tested in this study. These different talker number babble 

noises were generated by combining the IEEE speech sentences (Rothauser ,1969) spoken by 

different speakers. The level of the sentences was normalized to make sure all sentences contributed 

equally to the generated noise. The testing speech resource was obtained from the AURORA 

(Pearce and Hirsch, 2000) speech database. Each speech resource contains an utterance with length 

between 1 s and 3 s. The speech utterances are spoken by 56 male and 56 female speakers. There 

are 1300 speech utterances used in this study; 500 utterances were used for estimating the VSE- 

SNR relationship functions, and 800 utterances were used for testing the SNR estimation accuracy. 

Both of them were randomly selected from the original database. There was no overlap between 

these two datasets.  

The proposed VSE based SNR estimation errors were evaluated by testing the SNR estimation 

errors with randomly generated noisy speech. The noisy speech was generated by using the method 

identical to that provided in Chapter 4, Section 4.4. 

The SNR estimation error was calculated by measuring the mean absolute errors (MAE), which 

is a common method used in global SNR estimation evaluation (Nanrayanan and Wang, 2012). The 

MAE calculating equation is shown as below: 
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 𝑀𝐴𝐸 =
1

𝐽
∑ |(j) − ̅(𝑗)|
𝐽
𝑗=1                                                       (5.8) 

where  is the real SNR (the SNR used for generating the test speech), ̅ is the estimated SNR (the 

final output of the SNR estimation method), j is the index of the noisy speech sample, and 𝐽 is the 

total number of the tested noisy speech samples. 

To further analyse the stability of the estimation accuracy across different noisy speech 

samples, the standard derivation of the absolute SNR estimation errors (STAE) was studied. The 

STAE is characterized by: 

STAE = √
1

𝐽
∑ (|(j) − ̅(𝑗)| −

1

𝐽
∑ |(j) − ̅(𝑗)|)
𝐽
𝑗=1

2𝐽
𝑗=1                                   (5.9) 

where  is the real SNR (the SNR used for generating the test speech), ̅ is the estimated SNR (the 

final output of the SNR estimation method), j is the index of the noisy speech sample, and 𝐽 is the 

total number of the tested noisy speech samples. The STAE characterizes the reliability of the SNR 

estimation method over different noisy speech samples. A low STAE value indicates a reliable 

performance (less variance), whilst a high STAE shows an unstable performance (high variance). 

In this experiment, the SNR estimation methods of VSE using a linear filter-bank, WADA, 

NPE and NIST, which were evaluated in Chapter 4, were tested again for comparison. This is 

because we needed to make sure all the methods were evaluated using the same noisy speech 

samples. Although the datasets were identical to that in Chapter 4, individual noisy samples may 

be different as they are randomly generated. The setup of VSE with the linear filter-bank was the 

same as that provided in Chapter 4. Note that the WADA, NIST, and NPE methods were not 

incorporated with the nonlinear filter-bank, and their applications were identical to those used in 

Chapter 4.  Each of the SNR estimation methods was tested with all the six types of speech-like 

noise listed above. For each type of noise, 800 (utterances dataset B) × 31 (SNRs) noisy speech 

samples were tested. All the methods were tested using the same noisy speech samples. The noise 

type used was unknown to the SNR estimation program, and the program automatically selected 

the most appropriate relationship function based on the detected noise VSE. 
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5.4. Results  

Effect of the nonlinear filter-bank to the relationship functions 

To demonstrate the effect of the nonlinear filter-bank on the variation of the relationship 

function, the distribution of the noise and clean speech VSE calculated using the nonlinear pathway 

outputs of the filter-bank were studied. The normalized histogram of the VSE of 500 clean speech 

samples, which were randomly cut from dataset A by using procedures provided in Section 5.3, 

using the linear filter-bank (dashed lines) with weighting factors applied and the nonlinear filter-

bank (solid lines) are shown in Figure 5-5 a. The histogram of the VSE of 2-, 4-, 8-, 16-, and 32-

talker babble noise calculated using the linear filter bank (dashed lines) and using the nonlinear 

filter bank (solid lines) are shown in Figure 5-5 b. Each type of noise had 500 randomly cut noise 

samples following the procedure described in Chapter 4. According to the figure, both the clean 

speech and the noise VSE of the nonlinear filter-bank were more concentrated than those of the 

linear filter-bank, which indicates that the nonlinear filter-bank reduced the variation of the VSE 

over different clean speech and noise samples. Since it was discussed in Chapter 4 that the variation 

of the relationship function is caused by the VSE variation of both speech and noise, it can be 

expected that the nonlinear filter-bank reduced the variation of the VSE-SNR relationship function 

over different noisy speech samples. 

The estimated relationship functions of the VSE using the nonlinear filter-bank for 2-,4-, 

8-, 16-, 24-, and 32-talker babble noise are plotted in Figure 5-6 a. The relationship functions of the 

VSE using a linear filter-bank are shown in Figure 5-6 b for comparison. According to the figure, 

it can be found that the relationship functions of both approaches increased with increasing SNR 

level. However, the relationship functions of the two approaches show apparent differences in the 

following aspects. First, at negative SNR, in the nonlinear filter-bank approach, the relationship 

functions are more concentrated at the low SNR levels (SNR <-4 B) rather than at the high SNR 

levels (SNR >12 dB), which is in contrast to those of the linear filter-bank approach. This result 

(a) (b)  

 
Figure 5-5. The normalized histogram of the VSE calculated using the linear filter-bank (dashed lines) and 

DRNL filter-bank (solid lines) of (a) 500 clean speech utterances (dataset A, detailed in chapter 4), and (b) 

500 randomly cut (cut with a random starting point between 0 and 14000 ms) noise samples of 2-, 4-, 8-, 

16-, and 32-talker babble noise.  
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indicates that the compression of the filter-bank reduced the VSE differences between different 

types of noise.  

Second, at positive SNRs, for all types of tested babble noise, the linear filter-bank showed 

an increase in the relationship function dynamic range with increasing talker numbers in babble 

noise, whilst the nonlinear filter-bank based relationship functions showed dynamic range increases 

with the decreasing number of talkers in babble noise. Particularly, the nonlinear filter-bank based 

relationship function showed a broader dynamic range than that of the linear filter-bank in babble 

noise containing fewer talkers (2- and 4-talker babble noise). However, at negative SNR levels, 

compared to the linear filter-bank approach, the dynamic range of the nonlinear filter-bank based 

relationship was reduced. The dynamic range reduction of the relationship function decreased the 

discriminability of the VSE on tracking changes of the SNR at negative SNRs. 

In summary, the nonlinear filter-bank reduced the variation of clean speech and noise VSE 

as the distribution of the noise and clean speech VSE were more concentrated (as shown in figure 

5-5). Moreover, the nonlinear filter-bank increased the dynamic range of the relationship function 

in babble noise with fewer talkers, but decreased the dynamic range of the relationship function at 

low SNRs.  

SNR estimation accuracy at specific SNR level 

The estimation errors of the nonlinear filter-bank based method were evaluated and 

compared with the WADA, the NIST, and the NPE methods. The MAEs of all the tested methods 

(WADA, NIST, NPE, linear filter-bank based VSE refer to the VSE-linear filter, and nonlinear 

filter bank based VSE refers to VSE-DRNL) in 2-, 16-, and 32-talker babble noise at SNR between 

-10 dB and 20 dB in steps of 1 dB are shown in Figure 5-7. Note that the NIST, WADA, and NPE 

a: b:  
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Figure 5-6. The relationship functions of VSE (a) using the nonlinear filter-bank and (b) the linear filter-

bank (with weighting factors) for 2-, 4-, 8-, 16-, 24- and 32-talker babble noise. The SNR range is between -

10 dB and 20 dB in steps of 1 dB. 
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methods were not applied with the nonlinear filter-bank. The MAE of the nonlinear filter-bank (red 

solid lines) based VSE method was compared with that of the NIST (long dashed lines), WADA 

(short dashed lines), NPE (marked with stars), and linear filter-bank based VSE (blue solid lines) 

method. According to the figure, all of the tested methods showed an increase with decreasing SNR 

level in all of the 2-, 16- and 32-talker babble noise. However, the nonlinear filter-bank based VSE 

showed the least accuracy degradation to decreasing SNRs. In 2-talker babble noise, as the SNR 

decreased from 20 dB to -10 dB, the nonlinear filter-based method showed only about 3 dB increase 

of the MAE, which was much lower than the other tested methods. Moreover, the nonlinear filter-

bank based VSE method showed a lower or comparable MAE than the other tested methods for all 

tested SNRs in 2-, 16-, and 32 -talker babble noise. Particularly, in 2- talker babble noise the MAE 

of the nonlinear filter-bank based approach was much lower than the WADA and NPE methods for 

all tested SNR levels.  

In comparison to the linear filter-bank based VSE method, in 2- and 16-talker babble noise, 

the nonlinear filter-bank based approach showed lower MAE than the linear filter-bank approach 

for all the tested SNR levels. The remarkable MAE reduction of more than 2 dB was shown in 2-

talker babble noise. In 32-talker babble noise, the MAE of the nonlinear filter-bank based VSE 

method was about 0.6 dB lower over the SNR range between -5 dB and 15 dB. However, at the 

 

 

 
Figure 5-7. The SNR estimation errors (MAE) of the NIST, WADA, NPE, linear filter-bank based VSE, and 

DRNL filter-bank based VSE method at the SNR between -10 dB and 20 dB in steps of 1 dB in 2-, 16- and 

32-talker babble noise. The results present the MAE over 800 speech utterances (dataset B, detailed in 

chapter 4). 
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SNR below -7 dB, the nonlinear filter-bank based VSE method showed MAE higher than that of 

the linear filter-bank based VSE method. 

In summary, in 2-, and 16-talker babble noise, the nonlinear filter-bank based VSE method 

shows the highest SNR estimation accuracy over all the tested SNR estimation methods. However, 

in 32-talker babble noise, at the SNR lower than -7 dB, the nonlinear filter-bank based VSE method 

showed estimation errors higher than that of the linear filter-bank based approach. The results 

indicate that the nonlinear filter-bank showed greater benefits to VSE based SNR estimation in 

babble noise containing fewer talkers, which is consistent with the finding in previous experiments 

that the nonlinear filter-bank improves the stability and noise discriminability of the relationship 

function of babble noise with fewer talkers. 

Overall performance in different types of babble noise 

The averaged MAE of NIST, WADA, NPE, linear filter-bank based VSE, and the nonlinear 

filter-bank (referred to a VSE-DRNL) based VSE methods across SNR levels between -10 dB and 

20 dB in 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise are shown in Figure 5-8. The error bars 

represent the standard deviation of ten repeated tests. According to the figure, the averaged MAEs 

of all the tested methods increased with decreasing number of talkers in babble noise. The NPE 

method was the most sensitive to decreasing talker numbers in babble noise, as it showed the 

highest MAE increase with decreasing talker number. In comparison to the WADA, NPE, and the 

linear filter-bank based VSE method, the NIST and nonlinear filter-bank based VSE methods 

showed less accuracy degradation to the decreasing of the talker number in babble noise. Although 

 

 
Figure 5-8. The averaged MAE across SNRs between -10 dB and 20 dB of the NIST, WADA, NPE, linear 

filter-bank based VSE, and DRNL filter-bank based VSE method in 2-, 4-, 8-, 16-, 24-, and 32-talker babble 

noise. The error bars represent the standard errors of ten tests. 
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the MAE of the NIST method was relatively stable in 2-, 4-, and 8-talker babble noise, it remained 

at a high value of about 9 dB on average. 

To evaluate the robustness of the SNR estimation methods over different noise samples, 

the averaged STAE of NIST, WADA, NPE, linear filter-bank based VSE, and the nonlinear filter-

bank based VSE methods across all tested SNR levels 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise 

are shown in Figure 5-9. Unlike the MAE, which evaluates the overall estimation errors, the STAE 

demonstrates the variation of the estimation errors over different noisy speech samples. A low 

STAE value indicates that the variation of the estimation errors over different noisy speech samples 

was small. The standard errors of ten repeated tests are presented by error bars. In Figure 5-9, all 

the tested methods showed an increase in STAE with decreasing talker numbers in babble noise. 

The nonlinear filter-bank based VSE method showed the lowest STAE over all the tested noise 

types. The remarkable STAE reductions are shown in 2-, and 4-talker babble noise, which were 

about 1 dB lower than that of the linear filter-bank based VSE method.  

In summary, the nonlinear filter-bank based method shows estimation errors (MAE) lower 

than other tested methods for all types of tested noise. The remarkable accuracy improvements were 

shown in 4-talker and 2-talker babble noise, where the estimation accuracy was improved by about 

1.31 dB and 1.77 dB in comparison with the linear filter-bank based VSE method. However, in 24- 

and 32-talker babble noise, the MAEs of the nonlinear filter-bank based VSE method were only 

about 0.18 dB and 0.21 dB lower than that of the NPE method. In terms of the stability of the 

performance over different noisy speech samples, the nonlinear filter-bank based VSE method had 

the most robust performance over different noisy speech samples as it showed the lowest STAE for 

 

 

Figure 5-9. The averaged STAE across all tested SNRs of the NIST, WADA, NPE, linear filter-bank based 

VSE, and DRNL filter-bank based VSE method in 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise. The error 

bars represent the standard derivation of ten tests. 
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all the tested noise types. The results show that using the nonlinear filter-bank improved the SNR 

estimation accuracy of the VSE based method, particularly in babble noise with fewer talkers. 

 

5.5. Discussion 

Benefits of the nonlinear filter-bank to VSE based SNR estimation 

The aim of this study was to investigate the performance of the VSE based SNR estimation 

method using a nonlinear filter-bank model, which simulates the compression of the human 

auditory filter-bank. The evaluation results showed that using a filter-bank with a compressed gain 

increased the SNR estimation accuracy of the VSE method. The weighting factors were removed 

in comparison with the linear filter-bank based VSE. One of the concerns was that the accuracy 

increase might be caused by the omission of the weighting factors. The weighting factors were 

designed to improve the estimation accuracy by reducing the variation of the speech spectrum. The 

results showed that even without the weighting factors, the speech spectrum calculated using the 

nonlinear filter-bank still showed higher stability than the linear filter-bank with weighting factors 

(figure 5-3). This indicates that the nonlinear filter-bank provides greater speech spectrum stability 

improvement than the weighting factors do, and the weighting factors are not necessary for the 

nonlinear filter-bank based VSE method. 

Another concern is how the compression improves the VSE based SNR estimation. It was 

found that in hearing aids the compressed gain benefits the speech in noise perception (Lippmann, 

Braida, & Durlach, 1981; Villchur, 1973) in low SNRs as the compression increases the low level 

signals (clean speech) but decreases the high level signals (noise) (Moore et al., 1998). In the case 

of VSE calculation, the increase of low level signals and the decrease of high level signals reduces 

both of the spectrum variations of signals (either clean speech or noise) and increases the stability 

of the VSE-SNR relationship function. As shown in Figure 5-5, the distribution of clean speech 

and noise VSE were more concentrated with the nonlinear filter-bank. Therefore, the VSE based 

SNR estimation method improved the SNR estimation with compression, which proves that our 

proposed method is more appropriate to be used with audio signal processing devices with the 

compressed gain (e.g. hearing aids). 

The evaluation results showed that the nonlinear filter-bank showed greater SNR 

estimation accuracy improvement in babble noise with fewer talkers. Particularly, in 2-talker babble 

noise, the nonlinear filter-bank based approach showed an estimation accuracy improvement of 

1.77 dB compared to the linear filter-bank based VSE in Figure 5-8, which is much higher than the 

improvement in 32-talker babble noise (0.59 dB). This is consistent with the suggestions provided 

by studies of the effect of compression in hearing aids (Boike & Souza, 2000; Stone, Moore, 
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Alcántara, & Glasberg, 1999; Verschuure, Benning, Cappellen, Dreschler& Boeremans, 1998) 

which found that multi-channel compression particularly benefits the hearing in highly modulated 

background noise (i.e. babble noise with fewer talkers). Moore (1998) explained that multi-channel 

compression increases the hearing of speech in noise by amplifying the speech dips relative to the 

surrounding noise as the compression reduces the noise fluctuation. In the case of VSE based SNR 

estimation, preserving of the dips of the speech signal from the background noise recovers the 

temporal and spectral modulation of the speech that increases the VSE difference between noise 

and clean speech. Therefore, the noise discriminability of the VSE is increased, which makes it 

more accurate for VSE to track a small amount of noise level changes in noisy speech. 

Another explanation of how compression benefits the VSE method in babble noise with 

fewer talkers is that compressed gain reduces the variation of the VSE of the noise with fewer 

numbers of talkers. In Chapter 4, it was found that the decrease of talker numbers in babble noise 

decreased the changes of spectral variability that increases the variation of the noise VSE. In 

consequence, the relationship function would be less stable and hence increases the SNR estimation 

errors. Figure 5-3b shows that the variation of the 2-talker babble noise VSE of the nonlinear filter-

bank was much lower than that of the linear filter-bank. Moore (1998) suggested the compression 

increases the low level signals but decreases the high level signals that reduce the spectral contrasts. 

Souza (2002) found that compression is more effective for modulated noise than for unmodulated 

noise. For babble noise containing different numbers of talkers, babble noise with fewer talkers is 

more modulated (Krishnamurthy & Hansen, 2009). Thus it will gain more benefit from 

compression on reducing the signal spectral (VSE) variation.  

Limitations of the nonlinear filter-bank to VSE based SNR estimation 

The testing results showed that the nonlinear filter-bank reduced the dynamic range of the 

relationship function at negative SNRs. Figure 5-4 shows that the dynamic range of the relationship 

function of the nonlinear filter-bank was shorter than that of the linear filter-bank at the SNR <0 

dB. This dynamic range reduction led to an increase of the MAE at negative SNRs as it reduced 

the SNR estimation resolution of the relationship function. For example, as shown in Figure 5-7, in 

32-talker babble noise the MAE of the nonlinear filter-bank approach was higher than that of the 

linear filter-bank based VSE method at the SNRs below – 6 dB. The dynamic range reduction is 

unlikely to be caused by the missing weighting factors as the weighting factors were calculated to 

improve the speech spectrum stability instead of increasing the dynamic range. The relationship 

function dynamic range depends on the noise discriminability of the VSE. For a specific amount of 

SNR variation, a high noise discriminability leads to greater VSE value changes. The weighting 

factors were calculated to minimize its influence on the VSE noise discriminability as detailed in 

Chapter 4. The possible reason is that the compression reduces the noise discriminability of the 
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VSE at low SNR level. Moore et al., (1998) indicated that multi-channel compression has the 

potential disadvantage of making it difficult to identify speech in noise as the compressed gain 

reduces the spectrum differences between the noise and clean speech signal. In our case, for low 

SNRs, the increase of noise level increases the effect of compression (Souza, 2002) that reduces 

the spectral differences between noise and clean speech. As a result, the noise discriminability of 

the VSE is reduced.  

It is worth noting that in contrast to that of the linear filter-bank, the nonlinear filter-bank 

based relationship functions show more divergence at the high SNR levels (SNR >12 dB) than at 

low SNR levels (<-5 dB). In principle, at the high SNR levels, the relationship function of different 

types of noise should be more concentrated as the relationship functions are dominated by the clean 

speech signals which have similar VSE (as shown in Figure 4.5.1b). The small divergence of the 

relationship functions of the linear filter-bank might be caused by the weighting factors as the 

weighting factors might reduce the spectrum differences over different noise types. However, the 

weight factors were calculated to minimize their influence on the original spectrum shape of either 

noise or clean speech. In chapter 4 we found that the weighting factors did not affect the differences 

of relationship function among different types of noise.  

One possible reason for more relationship function divergence in the nonlinear filter-bank 

might be that compression reduces the influence of the clean speech spectrum to the VSE at high 

SNRs. At high SNR, speech is higher than the noise. The compression applied more gain reduction 

to high level signals (Souza, 2002). Since the gain reduction reduces the spectral variation (Buuren 

et al., 1999), the modulation of the speech spectrum is reduced. Thus, the influence of clean speech 

to VSE is reduced. In contrast, the noise levels are low, and compression provides less gain 

reduction to the noise. As a result, at high SNRs, the compression increases the influence of the 

noise spectrum to VSE, and the relationship function shows more divergence due to the spectrum 

differences of different types of noise.  

5.6. Summary  

The present study used a nonlinear filter-bank to calculate the VSE for global SNR estimation. 

Inspired by the compression of the human auditory system, we hypothesised that using a filter-bank 

with a compressed gain would increase the estimation accuracy of the VSE method as the 

compression benefits speech detection in noise ( Glasberg & Moore, 1992; Oxenham & Moore, 

1997; Yates et al., 1990). To verify this, a nonlinear filter-bank was used to simulate the human 

auditory filter-bank. The performance of the proposed approach was evaluated by testing the SNR 

estimation errors in babble noise with different numbers of talkers. The testing results were 

compared with that of the VSE using a linear filter-bank, WADA, NIST, and NPE methods. The 

results showed that in VSE based SNR estimation, using a nonlinear filter-bank has the fewest SNR 
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estimation errors in babble noise containing different numbers of talkers. A remarkable reduction 

in estimation errors was shown in the babble noise with fewer talkers. Particularly, in 2-talker and 

4-talker babble noise, when comparing the linear filter-bank approach the estimation errors were 

reduced by about 1.77 dB and 1.31 dB. Therefore, using a nonlinear filter-bank would particularly 

reduce the SNR estimation error of the VSE method in less stationary noise. 
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6. Chapter 6: A MOC reflex model with dynamic time constant 

optimization 

 
6.1. Introduction 

The time constant is one of the most important characters of the MOC reflex. Different MOC 

reflex time constants have been measured in both human (Zhao & Dhar, 2011) and nonhuman 

mammal auditory systems (Cooper & Guinan, 2003). Physiological study reported that the varying 

of the time constant with increasing stimulation efficiency (Sridhar et al., 1995). Chapter 3 studied 

the effect of the MOC reflex to speech in noise intelligibility, and found that the length of the time 

constant which contributed the highest speech recognition accuracy decreases with increasing SNR 

level. Optimizing the time constant dynamically according to estimated SNRs might provide 

environmental adaption that further improves speech perception in fluctuating noise environments. 

This chapter develops a modified MOC model with the time constant dynamically optimized 

according to the environmental SNR levels. The model is built by incorporating the SNR estimation 

method developed in Chapter 5 with a modified MOC model with higher computational efficiency. 

The MOC model is tested with an existing auditory periphery model and an ASR system to evaluate 

its performance on speech-in-noise perception.  

The MOC reflex response overtime is characterized by the time constant of the MOC (Backus 

& Guinan, 2006). In nonhuman mammals based studies, Wiederhold & Kiang (1970) measured the 

time constant of the MOC fast effect by recording the response of the AN in cats while stimulating 

the OCB. They found that suppression builds up to its maximum level within 100 ms after the 

stimulation onset, and dissipates exponentially over 100 ms after the stimulation offset. Sridhar et 

al. (1995), measured the time constant of the MOC reflex in guinea pigs by recording the response 

of the CAP and cochlear microphonic after electrical stimulation of the OCB. An additional long 

time constant of tens of seconds has been measured. In human based studies, Backus and Guinan 

measured the time constant of the MOC reflex using otoacoustic emissions (OAEs). They found 

three different MOC time constants with typical lengths of 70 ms, 330 ms, and over 10 s. Zhao and 

Dhar (2011) also studied the fast and slow effect of the MOC reflex in humans. By recording the 

OAE changes at different time windows, they successfully demonstrated MOC modulation of the 

human cochlear output on a fast and slow time scale.  

Beside the measured different time constants, it has also been found that the MOC reflex time 

constant varies with properties changes of stimulations (reviewed in Lopez-Poveda, 2018). In 

nonhuman animal based studies, Wiederhold and Kiang (1970) found that the onset time constant 

of the MOC reflex in cats increases with increasing CF, whilst the decay time constant decreases 
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with increasing CF. Liberman et al. (1996), found that the time constant of the MOC reflex in cats 

decreases with the increasing frequency of the stimulus. In a cat based MOC slow effect study, 

Saridha (1995) found that the length of the time constant was related to the efficiency of the 

stimulus. The MOC reflex response speed to continuous electric efferent neuron shocks differs to 

electric efferent neuron shocks separated by pauses. In humans, Backus and Guinan (2003) 

measured the time constant of each participant at different stimulus levels. They concluded no 

consistent or systematic effects of the noise (elicitor) level on the time constant of the efferent effect 

across participants. However, only 9 participants were tested, so the conclusion may not be 

statistically significant, and 3 of 4 subjects showed increases (over 100 ms) of time constant as 

noise level increase from 40 dB to 50 dB. The authors also suggested the time constant might 

change when using narrow band noise, tones, or clicks to stimulate the MOC. Moreover, it was 

reported that the intensity of the MOC response increase with increasing bandwidth (Lilaonitkul & 

Guinan, 2009), which indicates the broad noise is more effective than narrow band noise on eliciting 

the MOC reflex. Since the environmental noise has bandwidth broader than clean speech, changing 

the SNR level might influence the MOC time constant. 

 The above findings indicate that the time constant might be able to adapt to environmental 

noise. In humans, speech intelligibility is related to the temporal modulation of the speech (Moore 

et al., 1998), and thus adaptation of the MOC time constant might, in principle, influence speech 

perception in fluctuating noise environments (e.g. changing of the SNR levels). It may be of interest 

to develop a MOC model in which the time constant is dynamically optimized in varying noise 

environments, and to investigate its performance to speech in noise intelligibility. The developed 

MOC model could be further implemented as a signal processing algorithm to benefit hearing 

prosthesis.  

Many of computational models of the MOC reflex provide a useful means of understanding 

the mechanisms contributing to improved speech recognition in noise. Brown et al. (2010) used a 

computer model to study the effect of the MOC reflex on speech in noise perception. The effect of 

the MOC was simulated by applying manually selected attenuation to the BM stage of the auditory 

model. A hidden Markov model based automatic speech recognizer (ASR) system which extracts 

the features from the auditory model output was used to study the effect of the MOC reflex on 

speech recognition. However, as an “open loop” model, the temporal properties of the MOC reflex 

were not fully simulated. Later on, Clark et al. (2012) demonstrated that the MOC reflex increased 

speech intelligibility in noise using an auditory model with a closed MOC reflex loop. The MOC 

introduced attenuation was automatically calculated according to the stimulus level in each 

frequency channel. However, the time constant of the MOC was simply simulated using a low-pass 

filter. Although they found that in the noise condition a longer time constant yielded more benefit 

than a short time constant, the effect of the time constant to speech perception was not adequately 
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studied. Recently, Lopez-Poveda (2018) investigated the benefits of a contralateral MOC model 

with different time constants on a cochlear implant. They simulated the MOC time constant by 

integrating the instantaneous MOC output over a preceding exponential decay time window with 

two time constants. By measuring the short-term objective intelligibility with MOC using time 

constants of 2 ms and 300 ms, they found that the longer time constant contributed greater 

improvement to speech intelligibility. However, the tested fast time constant of 2 ms is much shorter 

than the measured fast effect (about 100 ms) in human (Backus & Guinan, 2006).  

Chapter 3 studied the effect of MOC time constants including 85 ms, 118 ms, 200 ms, 450 ms, 

1000 ms, and 2000 ms on speech-in-noise perception. These time constants were derived from 

human based studies (Backus & Guinan, 2006; Yasin et al., 2014). The results showed that the 

greatest speech recognition improvement at different SNR levels was contributed by different time 

constants as the time constant affects the attenuation level and attenuation adaption speed related 

to the MOC reflex. Generally, it was found that the long time constants contributed greater speech 

recognition improvement at low SNR levels (< 15 dB), whilst the short time constants showed 

greater benefits at higher SNR levels (≥15 dB). The main limitations of the model used in Chapter 

3 are that the time constant was manually selected and fixed, and also the MOC reflex model is too 

complex to be implemented on real-time signal processing devices. 

Motivated by the discovered time constant adaption in physiological or psychological studies 

and results shown in Chapter 3, this chapter proposed a MOC reflex model with dynamic time 

constant optimization. The time constant is optimized by estimating the environmental SNR 

according to the SNR to time constant lookup table. The proposed model consists of a modified 

MOC reflex model and SNR estimation method. In contrast to the MOC reflex model (Meddis, 

2014) in Chapter 3, which has a fixed time constant that can only be changed manually, the 

modified model has a time constant automatically optimized by detecting the SNR from 

environments. Moreover, the MOC reflex model used in Chapter 3 is driven by the AN outputs, 

which requires the complex auditory model to simulate the AN outputs. In this chapter, inspired by 

the approaches used in (Lee et al., 2011; Smalt et al., 2014), we use the simulated IHC output to 

drive the MOC reflex in order to reduce the computational complexity. The simpler structure of the 

modified model gives it potential to be further modified as a speech enhancement algorithm for a 

hearing prosthesis. The SNR estimation method is the VSE based SNR estimation method using 

the nonlinear filter-bank presented in Chapter 5.  

The validation of the modified MOC reflex model is tested by comparing the model outputs 

with measured physiological data. To evaluate the performance of the MOC reflex with optimized 

time constant on speech recognition, the model is incorporated with the existing peripheral auditory 

model (Meddis, 2017) and the ASR system demonstrated in Chapter 3. The speech recognition 
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accuracy of the ASR with the aid of the model is tested using 2-, 4-, 8-, 16-, 32-talkers babble noise 

and pink noise at SNR between -10 dB and 20 dB and clean speech. The MOC reflex model using 

a fixed MOC time constant of 2000 ms (used in Chapter 3) is also evaluated for comparison.  

This chapter is organized as follows. Section 6.2 introduces the modified MOC model, the 

SNR estimation method, and the time constant optimization algorithm. Section 6.3 provides the 

evaluation setup for incorporating the MOC model with optimized time constant with an existing 

peripheral auditory model and ASR system to test the speech in noise perception. The evaluation 

results are presented in Section 6.4. To analyse the evaluation results a discussion is provided in 

Section 6.5. Finally, the main findings of this study are concluded in Section 6.6 

 

6.2. Method  

6.2.1. MOC model 

In contrast to  Chapter 3, which used the MOC reflex model provided by (Ferry & Meddis, 

2007), a modified MOC reflex model is developed in this chapter. The model by Meddis (2014) is 

modified to reduce the computational complexity, while retaining a reasonably accurate simulation 

of the temporal and level response of the MOC reflex. The modified model uses the simulated IHC 

response to drive the MOC reflex strength in order to reduce the computational complexity.  

Ideally, the MOC reflex model should be based on the anatomic structure of the MOC reflex 

and on physiological or psychological data. In the anatomy of the efferent system, the MOC reflex 

proceeds from the BM to the AN via the IHC, and is delivered to the MOC neurons via the cochlear-

nucleus (Guinan, 2006; Lopez-Poveda, 2018). However, because of the technique limitations of 

physiological and psychological studies, the response details of each stage of the MOC reflex loop 

cannot be fully measured. In practice, only the main stages of MOC reflex are included in the model 

to simulate the major properties of the MOC reflex. For example, Ghitza (2007) calculated the 

MOC attenuation based on the noise level in each frequency channel to simulate the frequency 

selectivity of the MOC reflex. Christopher et al. (2013) used a nonlinear function which simulates 
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the nonlinearity of the OHC to calculate the MOC strength. In Clark et al. (2012), the output of the 

HSR AN fibers was used to drive the MOC strength as the HSR AN output to guarantee a low 

activation threshold. In this study, the model components which simulate the functions of the BM 

and IHC, are used as these two model stages, dominate the frequency response and the strength 

nonlinearity of the MOC reflex. The details of the IHC/AN are avoided to reduce  computational 

complexity. In order to simulate the low threshold of the MOC reflex, the dynamic range of the 

outputs of the modified IHC model is rescaled by multiplying a scalar before calculating the MOC 

strength.  

The structure of the proposed modified MOC reflex model is shown in Figure 6-1. The 

proposed MOC reflex model consists of three main components of the MOC reflex: the BM stage 

(marked in grey), the IHC stage (marked in green), and MOC strength stage (marked in blue). 

Physiological studies (Liberman & Brown, 1986; Liberman, 1988) have shown that the tuning 

curves of the efferent fibers are slightly broader than those of the cochlear afferent fibers. In humans, 

the measured MOC tuning curves (Lilaonitkul & Guinan, 2009) are similar to afferent fibers. In 

order to reduce computational complexity, we assume that the MOC fibers have tuning curves equal 

to the bandwidth of the auditory filter-bank (Clark et al., 2012). The output of the BM stage of the 

peripheral auditory model (DRNL filter bank (Lopez-Poveda & Meddis, 2001)) is used as the MOC 

input. The MOC strength is calculated based on the sum outputs of linear and nonlinear pathway 

of the DRNL filter-bank in (Meddis, 2014). The modified MOC reflex model applies attenuation 

to the nonlinear pathway of each frequency channel of the DNRL filter-bank.  

The general function of the IHC in the auditory system is to convert the BM displacement 

into the IHC electrical potential. In the proposed, modified MOC reflex model, the IHC stage of 

the model contributes the nonlinear I/O function of the MOC strength, and converts negative BM 

displacement into electrical potential to avoid errors caused by negative input. In Meddis (2014) 

model, the IHC response is simulated by modelling the action potential changes of the IHC due to 

the movement of the cilia. The detailed action potential change is modelled using an electrical 
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Figure 6-1. The structure of the proposed modified MOC model. “LD function” represents level 

dependent function. “LP” represents low-pass filter. 
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circuit model (see more detail in Chapter 3 Section 3.2). However, to reduce the computational 

complexity of the model, a simpler IHC model is used here. 

Physiological studies (Dallos, 1986) have shown that the IHC has an asymmetric nonlinear 

I/O function that converts BM displacement into IHC electrical potential. In this study, the 

nonlinear I/O function of the IHC was simulated using a logarithmic compressive function derived 

from Zhang et al., (2001): 

𝑣𝑖ℎ𝑐,𝑐1 = 𝐴𝑖ℎ𝑐[𝑃𝑐1] log(1 + 𝐵𝑖ℎ𝑐|𝑃𝑐1|)                                                                (6.1) 

where 𝑃𝑐1 is the output of the DRNL filter-bank, and parameter 𝐵𝑖ℎ𝑐 adjusts the slope of the IHC 

I/O function. The function 𝐴𝑖ℎ𝑐[𝑃𝑐1]  simulates the asymmetric nonlinearity of the IHC I/O 

function, which is given by: 

𝐴𝑖ℎ𝑐[𝑃𝑐1] = {
𝐴𝑖ℎ𝑐          𝑃𝑐1 > 0

−
|𝑃𝑐1|

𝐶𝑖ℎ𝑐+𝐷𝑖ℎ𝑐

3|𝑃𝑐1(𝑡)|
𝐶𝑖ℎ𝑐+𝐷𝑖ℎ𝑐

𝐴𝑖ℎ𝑐   𝑃𝑐1 < 0
                                                     (6.2) 

where 𝐴𝑖ℎ𝑐 ,𝐶𝑖ℎ𝑐 and 𝐷𝑖ℎ𝑐 are parameters that determine the slope of the IHC model I/O function in 

response to negative displacement. Since there is no available physiological data that could be used 

as a reference to simulating varying the IHC I/O function at different central frequencies, all the 

parameters used in the IHC are invariant to the varying of the frequency channels. The IHC 

algorithm proposed by Zhang et al. (2001) is used because it increases computational efficiency by 

avoiding detailed simulation of the transduction at the stereocilia and apical conduction, and it 

obtains more a realistic synchrony/level response to pure tone signals across the broad frequency 

range (Zhang et al., 2001). After the IHC model, a low-pass filter is applied to simulate the low 

pass filtering properties of the IHC. The low-pass filter is a 7th order FIR filter with a cut-off 

frequency of 8000 Hz (6 dB below the passband value). The physiological details of the relationship 

between ANs and the efferent reflex remains uncertain. It is hypothesised that the role of the AN is 

more related to the response time of the MOC effect (Guinan, 2006). Since the temporal properties 

of the MOC reflex are modelled by the time varying function (detailed later), this study assumes 

that the AN response dominates the low activation threshold of the MOC, and the AN rate/level 

function regulates the dynamic range of the MOC strength.  
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In order to provide a relatively low MOC active threshold and simulate the broad dynamic 

range of MOC strength (Liberman, 1988), the strength of the MOC reflex is driven by the IHC 

outputs, whose dynamic range is reshaped by timing a scalar. The MOC strength driven signal 𝑠 is:  

𝑠(𝑡, 𝑓) = 𝜌𝑉𝑖ℎ𝑐,𝑐1(𝑡, 𝑓)                                                           (6.3) 

where 𝑉𝑖ℎ𝑐,𝑐1 is the filtered output of the IHC model within the channel 𝑓, and 𝜌 is the dynamic 

range of the reshaped scalar. The simulated output (solid line) of the IHC model in response to a 

pure tone signal at frequency of 4000 Hz is shown in Figure 6-2. The model outputs are compared 

with the animal data (open circles and squares) measured by Patuzzi and Sellick (1983). The 

simulated IHC output matches well with the animal data. 

It is known that the strength of the MOC reflex increases with increasing stimulus level, and 

that the MOC reflex provides more attenuation to the BM at higher stimulus levels (Christopher et 

al., 2013). An animal based study has shown that the firing rate of the efferent neurons increases 

with increasing stimulus level (Liberman, 1988). In this model, in order to minimize the number of 

free parameters, the attenuation is simulated to be proportional to the MOC strength, and the MOC 

strength is simulated to be proportional to the MOC strength driven signal 𝑠. The level dependent 

MOC strength was simulated using the function shown below: 

𝑀𝑂𝐶𝑠(𝑡, 𝑓) = {
𝛾(𝑠(𝑡, 𝑓) − 𝛼)           𝑠 ≥ 𝛼
          0                        𝑠 < 𝛼

                                            (6.4) 

where 𝑀𝑂𝐶𝑠 is the strength of the MOC of channel 𝑓 at time 𝑡, 𝛾 is the strength to attenuation 

factor used to adjust the ratio between the attenuation and the input stimulus levels, and 𝛼 is the 

MOC activation threshold. Both 𝛾  and 𝛼  are invariant to the variation of frequency channels. 

 

 
Figure 6-2. The IHC output (action potential) as a function of stimulus level. The stimulus is a pure 

tone signal at the frequency of 4000 Hz. The model output (solid line) is compared with the animal data 

record from Patuzzi and Sellick (1983) (unconnected symbols). 
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However, it is worth noting that, in a cat based study (Liberman, 1998), the efferent neurons had a 

nonlinear rate /level function in response to increasing stimulus level, where the slope of the  

rate/level function decreased with increasing stimulus level. In a human based study (Backus & 

Guinan, 2006), the MOC related BM displacement attenuation also showed a nonlinear increase to 

increasing stimulus level. In Equation 6.4, we only used a simple linear equation to calculate the 

MOC introduced attenuation because the nonlinear I/O function of the DRNL filter-bank and IHC 

stage contributes a nonlinear MOC strength I/O function. The maximum attenuation is set to be 40 

dB to follow the parameter setting in Clark et al. (2012). The model outputs simulate a MOC 

introduced attenuation in the decibel scale. In order to apply the MOC introduced attenuation to the 

BM stage, the attenuation is converted to a negative dB value using the equation: 휁 = 10
𝑀𝑂𝐶𝑡
20  where 

휁 is the converted scalar, and 𝑀𝑂𝐶𝑡 is the model output in dB scale at the time𝑡. The MOC reflex 

is applied to the BM stage of the model by timing 휁 to the DRNL filter-bank nonlinear pathway as 

shown in Figure 6-1. The simulated MOC reflex model output (attenuation in decibels) as a function 

of stimulus level is shown in Figure 6-3. The stimulus is a pure tone signal at a frequency of 4000 

Hz. The model simulated attenuations are compared with the physiological data (Liberman, 1998) 

by assuming that the MOC introduced gain attenuation is proportional to the firing rate of efferent 

neurons (Clark et al, 2012). The simulated attenuation matches well to the physiological data. 

Liberman’s data is used for comparison because it was measured based on electrodes in efferent 

neurons, which is considered to be more accurate than other measuring methods (Guinan, 2018). 

Liberman’s data covers a stimulus intensity range (from 20 to 100 dB) broader than the other studies 

which covered 40–60 dB (Backus & Guinan, 2006), and 20–80 dB (Yasin et al., 2014). Although 

the efferent systems in nonhuman mammals and in humans are not entirely the same, it is suggested 

they are quite similar (Lopez-Poveda, 2018).  

 

 Figure 6-3. Comparison between the simulated MOC attenuation and physiological data (Liberman,1988) 

as a function of the stimulus level. The stimulus is a 4000 Hz pure tone signal at the root mean square 

level between 0 dB and 100 dB. In Liberman’s data, the MOC introduced attenuation is assumed to be 

proportional to the firing rate of efferent neurons. 
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The varying speed of the MOC strength is characterized by the MOC time constant. Generally, 

the time varying process of the MOC reflex contains two stages. One is the onset procedure, which 

is the gradual increase of the MOC strength from zero to a steady level after the presence of a 

stimulus. The other is the decay procedure, which is the process of the MOC strength decreasing to 

zero after the stimulus is switched off or falls lower than the MOC active threshold. The algorithm 

used to simulate the onset and decay procedures of the MOC is developed according to the time 

constant characterization method used by Kim et al. (2001) and Backus and Guinan (2006). Both 

Kim et al. (2001) and Backus and Guinan (2006) characterized the increasing time constant by the 

elapsed time of the MOC strength exponentially increasing from zero to 64% of its final strength. 

Following the single complex exponential characterization in (Backus & Guinan 2006), the MOC 

reflex are simulated using a piecewise function. We assume that in a given auditory system the 

different time constants are attributed to a similar pharmacological profile. The MOC strength 

attribute to different time constants are simulated to have the same increasing step, which lead to 

the MOC final strength increases with increasing time constant. This is consistent with that in 

(Meddis & Ferry, 2007). Different to the Meddis & Ferry’s (2007) MOC model, which uses a single 

parameter to characterize both of the increasing and decreasing time constant, the modified model 

uses two separate parameters. The procedure of the MOC strength increase is simulated using: 

𝑀𝑂𝐶𝑡 = 𝑀𝑂𝐶𝑠
1−𝑒

−𝑡
𝑇𝑖

1−𝑒

−𝑑𝑡
𝑇𝑖

                                                            (6.5) 

where 𝑀𝑂𝐶𝑡 is the MOC strength at the time 𝑡, 𝑑𝑡 is the sampling period, 𝑀𝑂𝐶𝑠 is the MOC level 

dependent strength calculated using Equation 6.4, and 𝑇𝑖  is the MOC increasing time constant. 

According to the MOC time constant characterization function used in Backus and Guinan (2006), 

the MOC decay procedure is simulated using: 

𝑀𝑂𝐶𝑡 = 𝑀𝑂𝐶𝑓𝑒
−𝑡

𝑇𝑑                                                                (6.6) 

where 𝑀𝑂𝐶𝑓  is the MOC strength before the stimulus is switched off or lower than the MOC 

activation threshold, and 𝑇𝑑  is the MOC decay time constant. In this study the increasing time 

constant 𝑇𝑖 is set to be equal to the decay time constant 𝑇𝑑 for two reasons. First, this study only 

focuses on studying the effect of the MOC reflex overall response speed for speech recognition. 

Using the same time constant could remove disturbances caused by differences in the onset and 

decay time constants. Second, it is suggested that both increasing and decay time constants are 

based on the same underlying system (Backus & Guinan, 2006). The output of the MOC model in 
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response to a steady level of stimulus (pink noise at levels of 30, 40, and 60 dB) as a function of  

time is shown in Figure 6-4 a. The stimulus is a 4000 Hz pure tone signal at the root mean square 

(RMS) levels of 30 dB, 40dB, 50 dB, and 60 dB. The measured MOC responses in humans are 

shown in Figure 6-4 b for comparison. It can be seen that the model simulates increasing and decay 

procedures faithfully to the measurements in the human based study (Backus and Guinan, 2006).  

 10 ms delay is also introduced to simulate the delay of the MOC in response to incoming 

stimulus. 10 ms after the stimulus activation, the strength of the MOC starts to increase. Moreover, 

the current MOC introduced attenuation is calculated on the basis of the stimulus 10 ms before. 

The simulated delay process corresponds to estimates of the MOC delay time in human 

observations using otoacoustic emission and behavioural data (Backus and Guinan, 2006; Roverud 

& Strickland, 2010; Jennings et al., 2011).  

6.2.2. SNR estimation method 

In this chapter, the global SNR (1000 ms) was estimated to automatically select the best time 

constant according to a time constant lookup table (the reasons for using global SNR were already 

discussed in Chapters 4 and 5). The VSE based SNR estimation method using the nonlinear filter-

bank, as proposed in Chapter 5, was used for global SNR estimation. In contrast to only using 10 

frequency bands to reduce computational complexity in Chapter 5, the DRNL filter bank was built 

to have 21 frequency bands at the frequency range between 250 and 8000 Hz. Increasing the number 

of the frequency bands is because the peripheral auditory model requires a higher number of 

frequency bands to guarantee a high spectral resolution for simulating the auditory process. The 

procedures of the VSE based estimation method were identical to those used in Chapter 5. Only a 

brief description is given here. The noise type specific VSE-SNR relationship functions were pre-

a b  

 Figure 6-4. (a) The simulated increasing and decay procedure of the MOC model in response to the 

level steady pure tone signal. The pure tone signal increases from 30 dB to 60 dB ( 𝑇𝑖=𝑇𝑑=118 ms). (b) 

The measured MOC increasing and decay process in humans (Backus and Guinan, 2006). 
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estimated and saved as lookup tables. The SNR was estimated according to the measured VSE of 

noisy speech samples via the selected lookup table. The most appropriate lookup table was 

automatically selected by comparing the estimated noise VSE with the relationship function 

identification iVSE. The noise VSE was estimated by averaging the VSE of detected noise frames 

(containing only the noise signal). To detect the noise frames, each SNR estimation interval was 

divided into short frames of 100 ms length. The noise frames were detected based on the principle 

that the noise signal has higher MSpE than speech signals (Shen et al., 1998; Wu & Wang, 2005). 

The SNR estimation interval was set to be 1000 ms, which is a trade-off between the MOC strength 

adaption period and the time constant update speed. Details of the VSE based SNR estimation 

method are provided in Chapter 5.  

6.2.3. The best time constant lookup table  

The basic strategy of the MOC time constant optimization algorithm is to apply the best MOC 

time constant according to the estimated SNR of the noisy speech. The best MOC time constant is 

the time constant that provides the highest ASR recognition accuracy at each SNR level. Chapter 3 

studied the ASR speech recognition accuracy with different MOC time constants at different SNR 

levels. It was found that a long time constant provides higher recognition accuracy at low SNRs (< 

15 dB), whilst a short time constant provides higher recognition accuracy at high SNRs (>= 15 dB). 

The best time constants at each SNR level were decided according to the ASR testing results shown 

in Chapter 3. The most efficient way of developing a best time constant calculating algorithm is to 

simulate the curve of the best time constant as a function of SNR. However, it is difficult to build 

a single formula to simulate the best time constant curve for different subjects because the length 

of the best time constant might vary between people. Individuals might have unique and different 

 

 
Figure 6-5. Comparison of the performance of linear (solid line), spline (filled triangles), and Lagrange 

interpolation (open triangles) of replicating the original curve (dashed line) of a dummy time constant 

lookup table (open circles). The large circles (yellow) represent 7 measured data points. 
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hearing characteristics. In order to reduce the computational complexity and provide an easier way 

to apply an individual best time constant personalization, the time constant optimization algorithm 

was developed by saving the pre-estimated best time constants at each SNR level (obtained in 

Chapter 3) as a lookup table, and selecting the best time constant from the lookup table according 

to the estimated SNR.  

In order to follow the human data, the best time constant lookup table contains the time  

constants including 85 ms, 118 ms, 200 ms, 300 ms, 450 ms, 1000 ms, and 2000 ms, which were 

obtained from human based physiological studies (Backus & Guinan, 2006; Yasin et al, 2014) and 

studied in Chapter 3. Since the SNR range between -5 dB and 10 dB is critical to speech 

intelligibility in daily life, the lookup tables were obtained by finding the best time constant at the 

SNR range between -10 dB and 20 dB. with a step size of 5 dB.  

In practice, the SNR level could have changes less than 5 dB, an interpolation algorithm is 

required to apply the best time constant lookup table. In this study, the performance of linear, 

Lagrange, and spline interpolation at simulating the original curve of the best time constant as a 

function of SNR were studied. Spline interpolation contributed smoother interpolated points 

compared to linear interpolation. The Lagrange approach interpolated points had larger oscillation, 

which would make the interpolated points mismatch the best time constant curve and degrade the 

speech recognition accuracy. The performance of different interpolation algorithms at replicating 

the original curve using a dummy lookup table is shown in Figure 6-5. The dashed (also marked in 

blue) line represents the original time constant curve. The open circles represent the estimated 

lookup table. The interpolated points using the linear, Lagrange, and Spline approaches are marked 

by open triangles, filled triangles, and a solid line, respectively. The figure shows that the spline 
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interpolation shows a better fit to the original curve than the linear and Lagrange interpolation 

methods. 

The time sequence of optimizing the time constant of the MOC model is shown in Figure 6-6. 

To begin with, the input noisy speech is processed by the DNRL filter-bank. Then, the SNR 

estimation method calculates the VSE using the filter-bank output and estimated SNR according to 

the calculated VSE. The best time constant is calculated according to the estimated SNR using the 

best time constant lookup table. After that, the MOC model calculates the corresponding 

attenuation based on the computed time constant and attenuates the input of the DNRL filter 

nonlinear path for processing the stimulus. The MOC time constant updating period is set to be 

1000 ms. Thus, the SNR estimation interval is also 1000 ms. The conventional Wiener filtering 

based speech enhancement method uses a short processing period of between 25 ms and 200 ms 

(Spriet et al., 2005). It updates the gain function according to the estimated noise power or the a 

priori SNR over short frames as a short processing period, which provides better speech 

enhancement adaptation to the variation of the environmental noise. However, this study focuses 

on the benefit of the MOC effect to the utterance level speech intelligibility, and a short updating 

period is insufficient to represent the effect of the MOC with a long time constant (1000 ms). As a 

trade-off, an updating period of 1000 ms was used in this study.  

 

6.3. The overall system for evaluation  

The evaluation strategy of this study was the same as that used in Chapter 3. The proposed 

model is incorporated with the peripheral auditory model and ASR is used to evaluate its 

performance. The structure of the evaluation system used in this study is shown schematically in 

Figure 6-7. The model consists of four main components. (1) The peripheral auditory model 

(marked in grey), which is used to simulate the afferent pathway of the auditory system. It takes 

the acoustic stimulus as the input and produces the simulated output of the auditory nerve firing 

rate. (2) The modified MOC reflex model (marked in green). It starts from the output of the auditory 

model filter-bank and applies the time varying and level dependent attenuation to the nonlinear 

pathway of the filter-bank. (3) The SNR estimation algorithm (marked in blue), which uses VSE to 

estimate the SNR according to the pre-estimated VSE-SNR relationship function. The VSE is 

calculated using the nonlinear output of the auditory model filter-bank. The estimated SNR 

regulates the time constant of the MOC reflex model according to the best time constant lookup 

table. (4) The automatic speech recognition (ASR) system (marked in red) for testing the speech 
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recognition accuracy. The ASR system extracts features from the auditory model output to decode 

the AN firing pattern into a corresponding sequence of words. It tests the performance of the 

proposed MOC reflex model in speech in noise recognition.  

6.3.1. Peripheral auditory model 

An existing peripheral auditory model, which is the same as that used in Chapter 3, was used 

in this chapter for evaluating the proposed model of the MOC reflex with optimized time constant. 

Refer to Section 3.2.2 for details of the model. The parameters of the peripheral auditory model 

used in this chapter are identical to those used in chapter 3 Section 3.3.4. The model simulated 

rate/level functions of the LSR, MSR, and HSR ANs in response to a 4000 Hz pure tone signal in 

a silent background are shown in Figure 6-8.   
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Figure 6-8. The schematic of the whole evaluation system 

 

 Figure 6-7. The auditory peripheral model simulated rate/level function of the HSR (marked in blue), 

MSR (marked in green), and LSR (marked in red) ANs in response to a 4000 Hz pure tone signal at a 

sound pressure level of 60 dB. 



Chapter 6 

 

183 

 

6.3.2. ASR system 

A continuous-density hidden Markov model (HMM) system (Young et al., 2009) 

identical to that used in chapter 3, was used to evaluate the performance of the proposed model 

reflex mode. To Sections 3.3.1-3.3.2 for details of the ASR system..  

6.3.3. Corpus 

The corpus dataset used in this study was identical to that used in chapter 3. For details of 

the dataset see Section 3.4.   

6.3.4. ASR training and testing  

The ASR training and testing procedures were also identical to those used in chapter 3 (see 

section 3.3.2.  

 

6.4. Results  

6.4.1. Experiment 1: Evaluating the validation of the modified MOC reflex model.  

The validation of the modified MOC reflex model was evaluated by incorporating it with 

the peripheral auditory model (Meddis, 2006) to compare the simulated response of different 

auditory stages under the effect of the MOC with the data measured in physiological studies.  

The responses of the stages of the BM displacement and AN firing under the effect of the MOC 

reflex were studied.  

Table 6-1 Parameters of the peripheral auditory model and the MOC reflex model. 

Peripheral auditory model 

Slope before 

compression 

Slope after 

compression 

Compression 

knee point 

Maximum 

vesicles 

Calcium diffusion 

time constant 

4000 0.25 25 20 20000 

MOC reflex model 

𝐴𝑖ℎ𝑐 𝐷𝑖ℎ𝑐 𝐶𝑖ℎ𝑐 𝜌 𝛾 𝛼 Max ATT 

0.015 2e+10 1.74 14 100 20 40 
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In order to make sure that the model outputs were comparable to animal data, both the 

peripheral auditory and MOC reflex models parameters were fitted to the animal data. The process 

of fitting the auditory model parameters proceeded in two steps. First, the parameters of the 

peripheral auditory model were adjusted to find the best fit to the animal control data (measured 

without the effect of the MOC). In each stage of the model the parameters are adjusted to find the 

least square best fit between the model outputs and animal control data. The parameters of the 

peripheral auditory model before modification were based on Meddis (2006). In the second step, 

the parameters of the MOC reflex model were initialized based on Clark et al. (2012). All the 

adjusted parameters of the auditory model and the parameters used in our new proposed MOC 

reflex model are shown in Table 6-1.  

To begin with, the overall outputs of the proposed MOC reflex model were verified by plotting 

the spectrogram of the MOC introduced attenuation. Figure 6-9 shows the spectrogram of the MOC 

introduced attenuation in response to clean speech in 32-talker babble noise at the SNR level of 0 

dB. The CFs are between 250 and 8000 Hz. The spectrograms of the MOC reflex model output 

with two time constants of 118 ms and 2000 ms are shown in figure 6-9a and Figure 6-9b. The time 

constant of 118 ms introduced a lower attenuation level than the time constant of 2000 ms. For 

example, for a 2 s frequency of 250 Hz, the attenuation yielded by the 2000 ms time constant was 

about 10 dB higher than that of 118 ms. Moreover, the long time constant yielded more stable 

attenuation than that of the short time constant, which is consistent with the MOC reflex model 

output used in Chapter 3.   

 Figure 6-10 shows the comparison between the simulated BM response and the measured BM 

response in guinea pigs (Russell & Murugasu, 1997) at the CF of 15000 Hz. The dashed lines 

represent the simulated BM displacements (DRNL filter-bank output) in response to a stimulus 

with the MOC reflex, whilst the solid line represents the simulated BM response without the MOC. 

a b  

 
Figure 6-9. The spectrogram of the MOC introduced attenuation with the time constant of 118 ms (a) and 

2000 ms (b) in response to clean speech in 32-talker babble noise at the SNR of 0 dB (speech level 60 dB, 

noise level 60 dB).The frequency range is between 250 H and 8000 Hz. 
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The stimulus is 32-talker babble noise with level increases from 30 dB to 90 dB in steps of 5 dB. 

The model simulated BM displacements are compared with the animal (guinea pig) data collected 

with (filled circles) and without (filled squares) electrical stimulation of the MOC neuron bundle 

(Russell & Murugasu, 1997). Figure 6-10 shows that the simulated MOC reflex makes the I/O (gain) 

function of the BM shift to a higher input level horizontally, which is consistent with the animal 

data (Russell & Murugasu, 1997). However, the simulated BM displacements with the MOC reflex 

effect (short dashed line) do not exactly fit the animal data, particularly, at the input level of 60 dB 

where the simulated BM displacement with the MOC reflex effect is lower than the animal data. It 

is worth noting that the MOC output of the model increases with increasing stimulus level (the 

maximum attenuation in the model is 40 dB), whilst the animal data were collected under a fixed 

amount of MOC output (MOC neuron bundles were stimulated with a fixed pulse rate (Russell and 

Murugasu, 1997)). To reduce the influence of the MOC strength difference, we reduced the 

maximum MOC attenuation. This stabilizes the MOC introduced attenuation at its maximum level 

in response to the higher level stimulus. After applying the MOC reflex with a maximum 

attenuation of 15 dB (long dashed line), the simulated BM displacements with the effect of the 

MOC matched the animal data well. 

 To verify the effect of the simulated MOC reflex on the response of AN fibers, the 

simulated rate/level function of the HSR AN in response to both a pure tone signal and noisy speech 

with and without the MOC reflex model are plotted in Figure 6-11. Guinan & Stankovic (1996) 

and Lichtenhan et al. (2016) found that in a silent background, the effect of the MOC reflex reduces 

the response of the AN fibers, and makes the rate/level function of the auditory nerve horizontally 

shift to a higher level. In a noisy background,  Guinan (2006) and Winslow & Sachs (1988) found 

 
Figure 6-10. The simulated BM displacement in response to stimulus (broadband 32 talkers babble noise) 

with (dashed lines) and without (solid line) the effect of the MOC reflex model at the frequency of 15000 

Hz. The stimulus level increases from 30 dB to 90 dB with a step of 5 dB. The model outputs are compared 

with animal data (Russell and Murugasu, 1997) collected with (filled circles) and without (filled squares) 

the stimulation of the MOC bundle. The long dashed line represents the model output with maximum MOC 

attenuation of 15 dB, whilst the short dashed line represents the output with maximum MOC attenuation of 

40 dB. 
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that the MOC reflex recovers the dynamic range of the ANs rate/level function. Figure 6-11a shows 

the simulated rate/level function of the HSR AN fibers in response to a pure tone signal of 3.5 kHz 

in a silent background. The amplitude of the pure tone increased from 0 dB to 100 dB in steps of 5 

dB. The simulated AN rate/level function with (dashed line) and without (solid line) the MOC 

reflex were compared with the animal (cat) data measured with (filled squares) and without (filled 

circles) the MOC stimulation ( Guinan & Stankovic, 1996). According to the figure, the simulated 

MOC reflex effect generally matches the finding in an animal based study (Guinan & Stankovic, 

1996). The MOC effect makes the rate/level function of the auditory nerve shift to the higher level. 

However, the results mismatch are shown at input levels between 20 and 40 dB (marked by the red 

arrow). This is because the model simulated MOC attenuation is different to that in animal data. 

The animal data was measured under MOC response to a fixed level electrical signal (Guinan & 

Stankovic, 1996), whilst the MOC strength in model increases with increasing stimulus level.  

The model outputs in response to clean (solid line) and noisy speech with (filled squares) and 

without (filled circles) the MOC reflex at the CF of 4000 Hz are shown in Figure 6-11b. The noisy 

speech was generated by adding clean speech to 32-talker babble noise. The speech level increased 

from 0 dB to 100 dB, whilst the SNR was fixed at 10 dB. According to the figure, the noise degraded 

the dynamic range of the AN rate/level function. Specifically, in noise, the AN response to noisy 

speech started to saturate at about 60 dB, whilst the simulated MOC reflex helped to recover the 

dynamic range of the rate/level function. The effect of the simulated MOC reflex is consistent with 

the finding in (Winslow & Sachs, 1987; Chintanpalli et al., 2012) that MOC response recovers the 

dynamic range of the AN rate/level function in noise. 

a:  b:  

Figure 6-11. (a) The rate/level function of HSR AN fibers in response to stimulus with (dashed line) and 

without (solid line) MOC reflex in a silent back ground. The stimulus is a 3.5 kHz pure tone with level 

increases from 0 dB to 100 dB in steps of 5 dB. The model outputs are compared to animal data measured 

with (square markers) and without (circle markers) MOC stimulation (Guinan and Konstantina, 1996). (b) 

The simulated rate/level function of HSR fibers in response to clean and noisy speech at the central 

frequency of 4000 Hz. The simulated response to clean speech is plotted as a control group (solid line). 

The simulated response to noisy speech without (circle markers) and with (square markers) MOC effect 

are compared. The noisy speech was generated by adding clean speech to 32-talker babble noise. The SNR 

was fixed at 10 dB, whilst the speech increased from 0 dB to 100 dB 
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In general, the outputs of the BM and AN stages of the peripheral auditory model with the 

effect of simulated MOC reflex match well with the animal data. The results prove the validity 

of the modified model for simulating and investigating the basic mechanisms and function of 

the MOC reflex.  

6.4.2. Experiment 2: Evaluating the performance of the modified MOC reflex 

model on speech-in-noise perception. 

This experiment evaluated the performance of the modified MOC reflex model with optimized 

time constant on speech recognition accuracy. The modified MOC reflex model was 

incorporated with the peripheral auditory model and the ASR system. The ASR features were 

extracted from the auditory model simulated HSR AN firing rate because HSR AN fibers are 

the majority type (by number) of the AN fibers in auditory system (Yost, 1991). The speech 

recognition accuracy of the ASR with the aid of the proposed MOC (with optimized time 

constant) model was evaluated. The speech recognition accuracy of the ASR was quantified by % 

words correct, which was obtained using the equation 
𝑛𝑐

𝑁𝑡
× 100% where 𝑛𝑐 is the number of 

correctly recognized words, and 𝑁𝑡 is the total number of the words used during testing. The 

performance was compared with two control groups. One was the speech recognition accuracy 

without MOC, the other one is with MOC reflex using a fixed time constant of 2000 ms. The 

speech recognition accuracy of noisy speech was tested at the SNR levels between -10 dB and 

20 dB in steps of 5 dB. Speech utterances were fixed at either 60 or 50 dB to simulate the daily 

life speech level, whilst the noise level increased from 30 dB to 70 dB in steps of 5 dB. The 

performance was evaluated in different types of noise including pink, 2-, 4-, 8-, 16-, and 32-

talker babble noise. The frequency range of the filter-bank in the peripheral auditory model was 

between 250 Hz and 8000 Hz to cover the general human hearing frequency range. The sample 

rate was set to be 44100 Hz to guarantee the high resolution of high frequency components of 

the sampled signal. 

The speech recognition accuracy of the ASR without the MOC reflex model as a function 

of SNR is shown as open triangles in Figure 6-12. In all the tested noise types, without the MOC, 

the ASR system showed a recognition accuracy of about 100% in clean speech condition, and 

the speech recognition accuracy decreased as the SNR level decreased. This proved the validity 

of the overall evaluation system. Moreover, the speech recognition accuracy showed a slightly 

decrease with decreasing number of talkers in babble noise, which is consistent with the results 

shown in chapter 3. For example, at the SNR of 10 dB, without the MOC, the ASR recognition 

accuracy in 2-talker babble noise was about 6% lower than that in 32-talker babble noise.  
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Figure 6-12. The ASR speech recognition accuracy in pink noise (a) and 32- (b), 16- (c), 8- (d), 4- (e), 2-

talker babble noise (f) as a function of SNR. The ASR speech recognition accuracy without the MOC reflex 

is shown by open circles, whilst the results with the MOC reflex using a fixed time constant of 2000 ms are 

shown by filled triangles. The speech recognition accuracy with a MOC reflex containing optimized time 

constants is shown by filler squares. The speech level is fixed at 60 dB. The error bars represent standard 

errors of five repeated tests. 
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The simulated MOC effect for a speech level of 60 dB using a fixed time constant of 2000 ms 

(filled triangles) in different types of noise is shown in Figure (6-12). Using the MOC reflex with 

a fixed time constant is to replicate the work in Chapter 3 for comparison. In general, the MOC 

reflex model with a fixed time constant of 2000 ms showed results similar to that in Chapter 3 (see 

figure 3-17). For all types of tested noise, it showed the highest speech recognition improvement at 

the SNR between 10 dB and 20 dB, but caused a speech recognition accuracy reduction in the clean 

speech condition. At the SNR level below 5 dB, the MOC reflex showed little or no improvement 

to speech recognition accuracy. The MOC reflex model contributed more accuracy improvement 

in pink noise than in speech-like babble noise, which is also consistent with that shown in Chapter 

3. In speech-like babble noise, the MOC reflex introduced improvements of speech recognition 

accuracy decreased as the number of the talkers in babble noise decreased. For example, at a SNR 

of 10 dB, the MOC reflex with time constant of 2000 ms showed an improvement of about 16 % 

in 32-talker babble noise, whilst in the 2-talker babble noise the improvement was only about 6%.  

The filled squares (Figure 6-12) represent the speech recognition accuracy with MOC reflex 

using optimized time constant at a speech level of 60 dB. In general, the optimized time constant 

showed a higher or similar recognition accuracy in comparison to the MOC reflex using a fixed 

time constant of 2000 ms for all types of tested noise over all SNRs. At high SNR levels (SNR ≥15 

dB), MOC reflex with the optimized time constant resulted in higher speech recognition accuracy 

than that of the 2000 ms time constant in all of tested noise. These results are consistent with the 

results in Chapter 3 that the longer time constant showed little or no benefit to speech perception at 

high SNRs. However, for SNRs lower than 15 dB, the optimized time constant showed accuracy 

similar to that of the fixed long time constant, as the long time constant yielded higher speech 

recognition accuracy at low SNR levels (as shown in Chapter 3). In pink noise, for most of the 

tested SNR, the MOC reflex with optimized time constant showed no apparent improvement 

compared to that of the fixed time constant. Only in clean speech conditions, the optimized time 

constant shows an accuracy about 6% higher than that of the 2000 ms time constant. In babble 

noise, the SNR range where the optimized time constant showed higher speech recognition 

accuracy increased with the decreasing number of talkers in babble noise. However, the benefits 

(induced further speech recognition improvement compared to that of a time constant of 2000 ms) 

of an optimized time constant decreased with decreasing numbers of talkers in babble noise. For 

example, in 4-talkers babble noise, optimized time constant showed higher recognition accuracy 

between 10 dB and clean speech, which is broader than that in 32-talkers babble noise (15 dB to 

clean speech). 



Chapter 6 

 

190 

 

In order to more clearly demonstrate the performance of the MOC reflex using the optimized 

time constant in babble noise containing different numbers of talkers, the difference in speech 

recognition accuracy between the optimized time constant and a fixed time constant of 2000 ms 

(accuracy of optimized time constant – accuracy of 2000 ms) in 4- (open squares), 8- (filled squares), 

16- (filled triangles), and 32-talkers babble noise (filled circles) are plotted as a function of SNR in 

Figure 6-13. The McNEMAR’s tests (Gillick & Cox, 1989) are also applied to test the statistical 

significance of the results. The figure shows that the amount of improvement decreased as the 

number of the talkers in babble noise decreased. For example, at the SNR of 15 dB, the 

improvements in 32-talker babble noise (7.2 %, McNEMAR’s tests P=5.6 × 10− ) were higher 

than those in 16-talker babble noise (6 %, McNEMAR’s tests P= 1.2 × 10− ). With a significance 

level of 0.05 both of the results are statistically significant. However, the lowest SNR range at 

which the optimized time constant showed higher speech recognition accuracy than the fixed time 

constant of 2000 ms was reduced as the number of the talkers in the babble noise reduced. For 

example, in 4-talker babble noise, the lowest SNR level at which the optimized time constant 

showed higher speech recognition accuracy was 10 dB (McNEMAR’s test P= 0.032), whilst in 32-

talker babble noise the lowest SNR was 15 dB (McNEMAR’s test P= 3.4 × 10− ). At the SNR 

below the 5 dB, the maximum accuracy improvement is 0.8% in 8-talker babble noise at the SNR 

of -10 dB. The corresponding McNEMAR’s test is P= 0.332. With a significance level of 0.05, the 

null hypothesis cannot be rejected, which means there is not a strong evidence that the optimized 

time constant showed higher accuracy at the SNRs below 5 dB. 

 The speech recognition accuracy of the ASR without the MOC reflex model as a function 

of SNR for a speech level of 50 dB are shown as open triangles in Figure 6-14. The pink noise is 

excluded as it is a stationary noise. We focus on investigating the speech level variation induced 

difference over nonstationary babble noise. The ASR showed a decrease in the speech recognition 
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Figure 6-13. The optimized time constant introduced further speech recognition accuracy improvements 
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circles) are plotted as a function of SNR. The error bars represent standard errors of five repeated tests. 
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accuracy with decreasing SNR levels, which was similar to that of the speech at a level of 60 dB. 

However, the overall speech recognition accuracy for 50 dB speech was lower than that of 60 dB. 

For example, for 60 dB speech the 50% recognition accuracy was located in the SNR range between 

10 dB and 15 dB in 32-talker babble noise, whilst for 50 dB speech, the 50% speech recognition 

accuracy was located at a higher SNR range between 15 dB and 20 dB.  

 The ASR recognition accuracy with the MOC effect at a speech level of 50 dB using a 

fixed time constant of 2000 ms (filled triangles) in different types of babble noise are shown in 

Figures 6-14. Similar to that shown in 60 dB speech, the MOC introduced accuracy improvement 

decreased with the decreasing number of talkers in babble noise. For example, at the SNR of 10 dB 

the accuracy improvement in 32-talker babble noise was about 10 % higher than that in 2-talker 

babble noise. However, 50 dB speech shows that the MOC reflex with a fixed time constant 

provided a greater speech recognition accuracy improvement than that of 60 dB speech at the SNR 

level between 5 dB and 15 dB. The remarkable improvements are shown at lower SNR levels (5 

dB and 10 dB). In clean speech, the MOC of time constant of 2000 ms showed greater speech 

recognition accuracy degradations than that of 60 dB speech for all types of tested noise. The filled 

squares (figure 6-14) represent the speech recognition accuracy with MOC reflex at a speech level 

of 50 dB using an optimized time constant. In general, the optimized time constant showed higher 

or similar recognition accuracy to the MOC reflex using a fixed time constant of 2000 ms, which 

is consistence with that of 60 dB speech. The optimized time constant for different types of noise 

also showed a decrease in the amount of improvement for decreasing numbers of talkers in babble 

noise. However, at high SNR levels (SNR ≥10 dB), the optimized time constant showed greater 

speech recognition accuracy improvement for 50 dB speech than that of 60 dB. For example, in 32-

talker babble noise, at the SNR of 15 dB, the speech recognition accuracy introduced by the 

optimized time constant was about 10 % higher than that of the fixed 2000 ms time constant, whilst 

for 60 dB speech the improvement was only about 7%. Moreover, in contrast to that of 60 dB, for 

50 dB speech, the SNR ranges over which the optimized time constant shows higher accuracy, 

shows no systematic and apparent increase with decreasing numbers of talkers in babble noise.  
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Figure 6-14. The ASR speech recognition accuracy in 32- (a), 16- (b), 8- (c), 4- (d), 2-talker babble noise 

(e) as a function of SNR. The ASR speech recognition accuracy without the MOC reflex is shown by open 

circles, whilst the results with the MOC reflex using a fixed time constant of 2000 ms are shown by filled 

triangles. The speech recognition accuracy with a MOC reflex containing optimized time constants is shown 

by filler squares. The speech level is fixed at 50 dB. The error bars represent standard errors of five repeated 

tests. 
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6.5. Discussion 

The importance of time constant optimization in a view of the present study 

While many works have measured the time constant of the MOC reflex (Backus & Guinan, 

2006; Cooper & Guinan, 2003; Kim et al., 2001; Zhao & Dhar, 2011), few of them have addressed 

the relationship between the changes of the time constant and changes of stimulation. This might 

because the time constant of the MOC reflex is difficult to be measured and varies over experiments 

and subjects (Cooper & Guinan, 2003). Two main findings can be concluded based on the limited 

studies. First, the time constant of the MOC reflex varies across stimulus frequency (Wiederhold 

& Kiang, 1970; Liberman, 1996). Second, the time constant varies with the stimulation efficiency 

of the stimulus (Sridhar et al., 1995). Backus & Guinan (2006) used broadband noise elicitor and 

suggest that the time constants might be different when using narrow band noise, tones, and clicks 

as the stimulation. In speech communication, the MOC is elicited by the acoustic signal containing 

both speech and noise. Both the noise type and SNR level might influence the stimulating efficiency 

thus affects the time constant. Although the benefits of the time constant adaption to speech-in-

noise perception has not been deeply studied. The varying of the time constant might relate to the 

temporal processing of clean speech in the auditory system. Either the changes of the SNR level or 

noise type affects the temporal processing (Moore, 2004) that influences the speech-in-noise 

perception. In conventional speech enhancement (Martin, 2001; Cohen, 2003; Gerkmann & 

Hendricks, 2012), the estimated SNR is widely used to adapt the amount of noise reduction for 

improving speech intelligibility. In the case of simulating the MOC, we hypothesised that the time 

constant might vary with the changing SNR level. Our results proved that using a MOC reflex 

model with dynamic time constant optimization provides higher speech recognition than a fixed 

time constant in the SNR varying condition.  

Understanding the benefit of time constant optimization based on the experiment results 

We found that the optimized time constant improved the performance of the MOC reflex 

in two aspects: First, the length of MOC time constant regulates the overall attenuation level of the 

MOC reflex. A long time constant leds to attenuation level higher than that of the short time 

constant. Brown et al. (2010) found that the ASR speech recognition in noise is sensitive to the 

attenuation level, so that the best attenuation level depends on the SNR level. Optimizing the time 

constant according to the SNR introduces a more appropriate attenuation level to the fluctuating 

environmental noise. Second, the MOC time constant regulates the MOC strength updating speed 

(Cooper & Guinan, 2003). As the SNR level increases from low to high, the aspect that mainly 

influences the speech perception switches from the effect of noise to the quality of the processed 

speech. At low SNRs (<15 dB), the noise corruption dominates the degradation of speech 

recognition, so a larger amount of attenuation is desired for speech recognition improvement 
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(Brown et al., 2010). Moreover, the long time constant makes the attention changes slowly over 

time with less speech distortion. In contrast, the fast changes of the attenuation would cause speech 

distortion as it would reduce the temporal modulation by reducing the temporal contrast (Moore et 

al., 1998). A long time constant would be more suitable for low SNRs as the long time constant 

yielded attenuation is at a higher level and more stable over time. At high SNRs, the effect of noise 

to speech perception is reduced. (Lopez-Poveda, 2018) noted that the MOC suppresses hearing in 

a silent background, speech perception would be mainly affected audibility reduction. The reduced 

gain would give a rise to audibility degradation (Pavlovic, 1987). A lower level attenuation which 

is attributed to the short time constants, is desired. Moreover, the short time constant makes a fast 

adaption of the attenuation to speech envelope that applies a larger attenuation to the high level 

speech components and a smaller attenuation is applied to the low level components, which further 

reduces the audibility degradation of low level speech components. Therefore, optimizing the time 

constant to varying SNR makes the MOC improved speech perception more efficient.  

Limitations of the current work 

It is worth to note that there are apparent differences between the performance of ASR and 

human speech recognition (Brown et al., 2010; Robertson et al., 2010) that might influence our 

testing results. The differences between the human speech recognition system and ASR are mainly 

reflected in two aspects. (1) The human speech recognition system is more robust than ASR 

particularly at negative SNRs. Robertson (2010) demonstrated that people with normal hearing are 

able to achieve a speech recognition accuracy of 80% at a SNR of 0 dB. However, in this study, 

the ASR shows very low speech recognition accuracy that does not reflect the effect of the MOC 

reflex at negative SNRs. In consequence, we cannot study the effect of the MOC reflex time 

constant in very noisy environments, which might be critical to human speech perception in noise 

(Allen, 1994; Cooke, 2006). (2) The human auditory system has a broad dynamic range of hearing 

levels (over 30 dB), whilst the model simulated HSR fibers saturated at about 30 dB. In Chapter 3, 

we found that the dynamic range of the AN rate/level function (in response to a pure tone signal in 

a silent background) influences the performance of the MOC reflex on ASR speech recognition. 

For example, the MOC shows greater benefits to ASR with features extracted from MSR as the 

MSR rate/level function has a broader dynamic range than HSR. The narrow dynamic range of the 

HSR AN rate/level function degrades the performance of the MOC with an optimized time constant 

as the mechanism of the anti-masking effect of the MOC is to recover the dynamic range of the 

rate/level function ( Guinan, 2006). Therefore, the MOC reflex with optimized time constant might 

show greater benefits to the real human auditory system as it has a broader hearing dynamic range. 
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6.6. Summary  

In this chapter, a modified MOC reflex model with optimized time constant was proposed. The 

model by Meddis (2014) was modified. Compared with the MOC model used in Chapter 3, the 

modified MOC reflex model increases the computational efficiency by using a simplified IHC 

model and avoids detailed simulation of the IHC/AN transduction. Moreover, the time constant of 

the proposed MOC reflex model was automatically optimized according to the detected SNR level. 

The VSE based SNR estimation method was used to detect the SNR level. Validity of the modified 

MOC reflex model was carried out by incorporating it with an existing peripheral auditory model, 

and comparing the simulated BM and AN response with MOC effect to real physiological data. 

The results showed that the simulated MOC effect matches well the physiological data. The 

performance of the MOC reflex model with optimized time constant on speech recognition was 

evaluated by incorporating it with the peripheral auditory (Meddis, 2014) and the ASR system 

which is identical to that used in Chapter 3. The speech recognition accuracy of the ASR with the 

optimized MOC time constant were tested in different types of noise. In addition, the conditions 

without the MOC reflex and with the MOC reflex containing a fixed time constant were also tested 

as control groups. In comparison to that with a fixed time constant of 2000 ms, the MOC reflex 

model with optimized time constant showed greater speech recognition accuracy improvement than 

that of the fixed time constant of 2000 ms. The accuracy improvement was shown in SNRs higher 

than 15 dB.  
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7. Chapter 7: A MOC reflex model based speech enhancement 

algorithm in a hearing aid model 
 

7.1. Introduction  

Chapter 6 proposed a modified existing MOC reflex model (Meddis, 2014) with the time 

constant dynamically optimized for varying SNRs. The model was tested with the automatic speech 

recognizer (ASR), and demonstrated the improvement of ASR speech recognition in different types 

of babble noise and pink noise at SNRs between -10 dB and 20 dB. It may be of interest to modify 

the model as a speech enhancement algorithm for audio signal processing devices. However, the 

modified MOC model contains a complex IHC simulation stage to convert the simulated basilar 

membrane (BM) displacement into preceptor potential, which is computationally demanding, and 

the model calculates the entire MOC response to each input speech utterance in an offline mode 

that is not applicable for real-time signal processing. Moreover, the performance was evaluated 

using ASR based on features extracted only from high spontaneous rate (HSR) auditory nerves 

(ANs). Speech intelligibility is considered to be contributed by the response of different types of 

AN fiber (Holmberg et al., 2007; Sachs & Young, 1979). Thus, the results in Chapter 6 might not 

properly represent the benefits to overall speech intelligibility. This chapter develops a speech 

enhancement algorithm based on the modified MOC reflex model from Chapter 6, what could be 

implemented in portable audio signal processing devices (e.g. hearing aids) for speech-in-noise 

intelligibility improvement. The proposed speech enhancement algorithm is implemented in an 

existing hearing aid model (Meddis et al., 2013) to evaluate its benefits to speech-in-noise 

intelligibility by measuring the objective speech intelligibility metric of enhanced noisy speech.  

The performance of speech enhancement on speech intelligibility is evaluated by either 

testing the recognition score of human subjects (Egan, 1948.; Plomp, et al. 1979) or by measuring 

objective intelligibility metrics (see the review in Chapter 2). Since human study based 

intelligibility tests have the disadvantages of being time consuming and having evaluation errors 

caused by hearing ability differences between individuals (Loizou, 2013), in the present study, the 

intelligibility was evaluated by measuring an objective metric: the coherence speech intelligibility 

index (CSII) (Kates & Arehart, 2009). CSII is an extension of the standard speech intelligibility 

index (SII) (ANSI S3.5-1997), which is widely used in evaluating the performance of audio signal 

processing devices. The SII estimates the speech intelligibility based on the assumption that a 

speech dynamic range of 30 dB for each frequency band is required for intelligibility. In SII, the 

effect of the noise and audibility of speech in each frequency band are quantified and summarized 

on the basis of the importance of each frequency band to speech intelligibility (Pavlovic, 1987). 

However, SII does not take into account the effect of speech distortion to speech intelligibility 

(Kates, 2010). In most of the conventional speech enhancement algorithms (e.g. spectral subtractive, 
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Wiener filtering) the gain of the amplifier is a nonlinear function of SNR that often leads to speech 

distortion (Martin et al., 2004). Moreover, most contemporary hearing aids apply compression to 

restore the audibility, but the compression also introduces speech distortion (Kates, 2010). In the 

case of the present study, to simulate the mechanism of the MOC reflex, our proposed enhancement 

algorithm needs to be incorporated with the compression of the amplifier. The speech distortion 

degrades speech perception (Loizou & Kim, 2011) and its influence on speech intelligibility needs 

to be addressed. Recently, a new intelligibility metric of STOI has been developed (Taal et al., 

2010a). It accounts for the influences of speech distortion by applying a lower bounding to the 

signal-to-distortion-ratio (SDR), and showing less overestimation when predicting the intelligibility 

of enhanced noisy speech (Taal et al., 2010b). However, STOI disregards the effect of audibility on 

intelligibility (Lopez-Poveda & Eustaquio-Martín, 2018), and only setting a lower bound to address 

SDR may not properly account for the effect of different types of distortion (Ma et al., 2009). In 

contrast, the CSII takes into account both the peak-clipping and centre-clipping (Ma et al., 2009) 

by calculating the coherence speech to noise distortion ratio that has been successfully applied for 

studying the effect of compression on speech intelligibility (Kates, 2010; Kates & Arehart, 2009).  

The aim of this study is to develop a speech enhancement algorithm based on the MOC 

reflex model demonstrated in Chapter 6, and implement it in an existing hearing aid model (Meddis 

2013) to evaluate its benefits to speech-in-noise intelligibility. The proposed speech enhancement 

algorithm regulates the gain of the amplifier by simulating the mechanism of the MOC reflex. In 

contrast to the MOC based algorithm by Meddis (2014) and Lopez-Poveda & Eustaquio-Martín 

(2018), whose time constants are fixed in the algorithms, our proposed speech enhancement 

algorithm has the MOC time constant dynamically optimized according to the continuously 

estimated SNR over time. The time constant is optimized using the simulation results based best 

time constant lookup table, which stores the time constant that contributes to the highest 

improvement at each SNR level. The algorithm by Meddis (2014) simulates the time constant of 

MOC using a first order low pass filter, whilst in our algorithm it is based on the model developed 

using human data (Backus and Guinan, 2008). The proposed algorithm was developed by 

simplifying the MOC reflex model in Chapter 6. Specifically, the IHC stage of the model was 

simplified using a nonlinear half-wave rectifier, which uses the output of the filter-bank instead of 

the simulated BM response for calculating the MOC, and the MOC strength calculation stage of the 

model was simplified to an iteration calculation approach that can be used for real-time signal 

processing. The proposed speech enhancement algorithm was implemented on an existing hearing 

aid model (Meddis et al., 2013). The speech intelligibility improvement was evaluated by 

comparing the CSII of the noise corrupted speech before and after the enhancements. The speech 

intelligibility improvement was evaluated in both speech-like (2-, 4-, 8-, 16-, 24-, and 32-talker 
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babble noise) and nonspeech-like (pink and white) noise at SNR levels between -10 dB and 20 dB. 

The original MOC based algorithm in Meddis et al. (2013) was also evaluated for comparison. 

This chapter is organized as follows. Section 2 demonstrates the details of the speech 

enhancement algorithm and the structure of the hearing aid. Then, the parameter setting of both the 

speech enhancement algorithm and hearing aid model are introduced. Section 3 provides the speech 

intelligibility evaluation setup. Three experimental results are presented in Section 4. The first 

experiment evaluates the validation of the speech enchantment algorithm on simulating the MOC 

reflex by comparing its output with the physiological data. The second experiment evaluates the 

performance of the simplified MOC model with different time constants. The third experiment 

evaluates the performance of the proposed algorithm at providing speech intelligibility 

improvements. The experimental results are discussed and summarised in Sections 5 and 6.  

7.2. Method 

7.2.1. Proposed speech enhancement algorithm  

The speech enhancement algorithm used in this study was developed based on the modified 

MOC reflex model presented in Chapter 6. It contains a SNR estimation stage, a time constant 

calculation stage, and a MOC related attenuation calculation stage (as shown in Figure 7-1). 

Compared to the model proposed in Chapter 6, the attenuation calculation algorithm was been 

simplified. Specifically, two parts of the model were simplified. (1) The I/O function of the IHC 

stage was simplified by using a nonlinear half-wave rectifier. (2) The algorithm for calculating the 

MOC related attenuation was simplified to use an iterative calculation process for real-time signal 

processing.  

Incorporating the speech enhancement algorithm with the filter-bank of the hearing aid 

For the implementation, our proposed algorithm needed to be incorporated with a nonlinear 

filter-bank which simulates the compressive response (known as compression) of the BM. This is 

because the basic mechanism of the MOC is to suppress the response of the BM, and linearize the 

 

Figure 7-1. The flow chart of the proposed speech enhancement algorithm 
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compressive BM response (Cooper & Guinan, 2003, 2006; Russell & Murugasu, 1997). Our 

proposed speech enhancement algorithm works as a feedback loop. It takes the output (after 

compression) of each frequency band of the filter-bank to calculate the MOC related attenuation 

for each frequency band, and applies the attenuation before the compressive amplifier of each 

frequency band. 

 Since many of the contemporary hearing aids have an amplifier with a compressed gain, 

our speech enhancement algorithm can be applied in different hearing aids. A general case of 

implementing the algorithm is shown in Figure 7-1. Specifically, the proposed speech enhancement 

algorithm requires two pathways of the filter-bank. One incorporates the MOC related attenuation 

(marked with the solid lines in Figure 7-1), which is used to generate the enhanced speech. The 

other (marked with dashed line) is not applied with the attenuation that is used for estimating the 

SNR. This is because the MOC related attenuation would influence the SNR that should be avoided. 

All the components (detailed later) of the filter-bank in these two pathways are identical. In practice, 

the two pathways can be implemented by only using only one filter-bank to process the incoming 

noisy speech twice. The pathway without MOC related attenuation is stored in memory to calculate 

the variance of spectral entropy (VSE) for SNR estimation, and the one with the attenuation is used 

to generate the final outputs of the enhanced noisy speech. 

SNR estimation  

The nonlinear filter-bank based VSE method (present in chapter 5) is used to estimate the 

SNR. The procedures of VSE based SNR estimation are the same as those presented in chapter 5. 

More details of the noise type detection and relationship function selection can be found in chapter 

5. 

Best time constant calculation  

After the SNR estimation, the time constant calculation algorithm calculated the best MOC 

time constant according to the estimated SNR level. The best time constant was calculated using a 

lookup table, which stores the best time constant of each SNR level (in steps of 5 dB) obtained 

from the time constant testing results (detailed later). A cubic spline interpolation algorithm was 

used to calculate the best time constant based on the estimated SNR via the stored lookup table. 

Cubic spline interpolation was used because it provides the results that best match the original curve 

of the best time constant as a function of the SNR level (as evaluated in chapter 6). The cubic spline 

interpolation algorithm for a given lookup table {(𝑥𝑖, 𝑡𝑖)}𝑖=0
𝑛 is given by: 
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𝑆𝑛(𝑥) =

{
 
 

 
 

𝑃1(𝑥) =  𝑎1 + 𝑏1𝑥 + 𝑐1𝑥
2 + 𝑑1𝑥

3,   𝑥 ∈ [ 𝑥0, 𝑥1],

𝑃2(𝑥) =  𝑎2 + 𝑏2𝑥 + 𝑐2𝑥
2 + 𝑑2𝑥

3,   𝑥 ∈ [ 𝑥1, 𝑥2],

𝑃3(𝑥) =  𝑎3 + 𝑏3𝑥 + 𝑐3𝑥
2 + 𝑑3𝑥

3,   𝑥 ∈ [ 𝑥2, 𝑥3],
……

𝑃𝑛(𝑥) =  𝑎𝑛 + 𝑏𝑛𝑥 + 𝑐𝑛𝑥
2 + 𝑑𝑛𝑥

3,   𝑥 ∈ [ 𝑥𝑛−1, 𝑥𝑛],

                      (7.1) 

where 𝑥  is the estimated SNR, 𝑆𝑛(𝑥) is the estimated best time constant, and 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖  are the 

parameters of the cubic polynomials, which are pre-calculated using the known values of 𝑥𝑖 (SNR) 

and 𝑡𝑖 (the best time constant) in the lookup table.  

MOC related attenuation calculation  

The calculated best time constant was applied to the MOC based algorithm for calculating 

the MOC introduced attenuation. The MOC algorithm takes the output of each frequency band of 

the filter-bank as the input to calculate the frequency specific MOC attenuation. To begin with, a 

transfer function is applied to rectify the filter bank output. This transfer function simulates the 

nonlinear I/O function of the IHC. In previous studies (Lee et al., 2011; Messing et al., 2009)a half-

wave rectifier has been widely used for simulating the asymmetric response of the IHC. However, 

the I/O functions of their algorithms are linear, and they ignored the negative response of the IHC. 

One of the most important properties of the MOC response is that its I/O function is nonlinear 

(Guinan, 2018). It has been suggested that the nonlinear response of the auditory system is mainly 

contributed by the nonlinearity of the cochlea (see review in Lopez-Poveda, 2018). Since IHCs are 

one of the key stages of the cochlea, we consider that the nonlinear I/O function of IHCs might also 

influence the MOC response. In our case, a nonlinear transfer function, which regulates the level of 

the IHC response in the varying input level based on the measured data in (Dallos, 1986), was 

developed to simulate the nonlinearity of the MOC algorithm I/O function. The algorithm of the 

transfer function is given by: 

𝑅𝑗(𝑡) = {
−𝛿1𝑒

−𝛼1𝑂𝑗(𝑡)        𝑂𝑗(𝑡) ≥ 0

−𝛿2𝑒
𝛼2𝑂𝑗(𝑡)        𝑂𝑗(𝑡) < 0

                                             (7.2) 

where 𝛼, 𝛿 are scaling parameters used to adjust the dynamic range of the IHC response, 𝑂𝑗(𝑡) is 

the 𝑗𝑡ℎ band filter output at the time 𝑡 in dB, and 𝑅𝑗(𝑡) is the transfer function output in dB, which 

is used for calculating the MOC reflex strength.  

The MOC strength calculation algorithm was developed on the basis of the MOC model in 

chapter 6. In this study, the MOC strength was calculated in an iterative way for real-time signal 

processing, which is similar to the approach used in the model by Meddis et al. (2013). In our 

algorithm, the effect of the time constant on regulating the strength of the MOC reflex over time is 

modelled based on the first order model developed by Backus and Guinan (2006) for fitting the 

measured human data, which has both increasing 𝜏𝑖 and decreasing 𝜏𝑑 time constants. The changes 
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of the MOC strength over each sampling period were calculated and integrated together. The 

equations for calculating the time varying MOC strength are shown as below: 

𝑀(𝑗, 𝑡) = {
𝑀(𝑗, 𝑡 − 𝑑𝑡)𝑒

−𝑑𝑡

𝜏𝑖 + (𝑅(𝑗, 𝑡) − 𝑇ℎ𝑚𝑜𝑐)𝜎𝑑𝑡        𝑡 ≤ 𝑡𝑑

𝑀(𝑗, 𝑡 − 𝑑𝑡)𝑒
−𝑑𝑡

𝜏𝑑                                                        𝑡 > 𝑡𝑑

                           (7.3) 

where 𝑀𝑗(𝑡) is the calculated MOC strength at time 𝑡 for frequency band 𝑗, 𝑡𝑑 is the time when 

response offset begins, 𝑑𝑡 is the sampling period, 𝑇ℎ𝑚𝑜𝑐 is the MOC activation threshold, which 

has a low level (detailed later) to follow the physiological data that the MOC reflex has a relatively 

low activation threshold (Lopez-Poveda, 2018), and 𝜎 is the MOC increasing factor. In this study, 

𝜏𝑖 = 𝜏𝑑  following the settings in Chapters 3 and 6. To convert the MOC strength into the 

corresponding amount of attenuation, the calculated MOC strength was converted to a scalar (𝐴𝑇𝑇) 

≤1. A maximum MOC value was introduced to regulate the MOC attenuation. The attenuation 

converting algorithm is shown as below: 

𝐴𝑇𝑇(𝑗, 𝑡) = {

1

1+𝑀(𝑗,𝑡)
              𝐴𝑇𝑇 (𝑗, 𝑡) < 𝑚𝑎𝑥𝑚𝑜𝑐  

𝑚𝑎𝑥𝑚𝑜𝑐            𝐴𝑇𝑇(𝑗, 𝑡) ≥ 𝑚𝑎𝑥𝑚𝑜𝑐  
                              (7.4) 

where 𝐴𝑇𝑇(𝑗, 𝑡) is the MOC related attenuation (as the algorithm output) for each frequency band 

𝑗 at time 𝑡, and 𝑚𝑎𝑥𝑚𝑜𝑐 is the maximum value of the MOC attenuation. Finally, the calculated 

MOC related attenuation was applied to each frequency band by multiplying 𝐴𝑇𝑇 by the signal in 

each frequency band of the filter-bank at the stage before the amplifier after. A 10 ms delay was 

also introduced by using a memory to store the inputs over the previous 10 ms. So the current MOC 

strength is calculated based the inputs 10 ms before. The parameter settings and evaluation of the 

MOC based algorithm are given later. 

7.2.2. The hearing aid model 

To evaluate the performance of the proposed speech enhancement algorithm, the present 

study used an existing multi-channel hearing aid model (“Bioaid”) developed by Meddis et al. 

(2013). This hearing aid model was used because it has the following advantages. (1) The hearing 

aid model has a simple structure that is easy to implement on different hardware platforms such as 

mobile phones, or even (digital signal processing) DSP devices for evaluation. (2) The compressive 

response of the BM is necessary for implementing the MOC based speech enhancement algorithm. 

Bioaid simulates the instantaneous compression of the BM by applying a simplified format of the 

nonlinear pathway of the DRNL filter-bank. The DRNL filter-bank has been demonstrated to 

effectively replicate human data (Lopez-Poveda & Meddis, 2001). (3) Bioaid also contains a 

feedback control loop, which simulates the MOC reflex that could be used to compare with our 

proposed algorithm. In this study, the original feedback control loop of the hearing aid model was 
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replaced by our new proposed speech enhancement algorithm, which contained an improved MOC 

algorithm with time constants optimized dynamically.  

 The schematic of the Bioaid is shown in Figure 7-2. The hearing aid model starts with a 

filter-bank, which has six octave frequency bands with the central frequencies between 250 Hz and 

8000 Hz. Each band pass filter uses a 2nd order Butterworth filter to reduce the computational 

complexity. Instantaneous compression in each frequency band is applied using a “broken-stick” 

nonlinear gain function after the filter-bank. The “broken-stick” function is the same as that used 

in the nonlinear pathway of the DRNL filter-bank (Lopez-Poveda & Meddis, 2001). This “broken-

stick” function has a linear gain (input/ output = 1:1) at levels below the compression threshold 

(known as the “kneepoint”) and a nonlinear gain (input /output = 4:1) at levels above the 

compression threshold. The compression threshold in each frequency band decreases with the 

increase of the central frequency of each frequency band. After the compression, another filter-

bank, identical to the filter-bank before the compression, is applied. The second filter-bank helps to 

reduce the speech signal distortion caused by compression. After the second filter-bank, the within 

band amplifiers with a linear gain (referring to the second gain block in Figure 7-1) are applied to 

compensate for the hearing loss. Finally, the signals in each frequency band are summed together 

to generate the final audio signal output.  

The original MOC reflex loop in the Bioaid acted as a within channel process. It introduced 

a delayed (10 ms) gain regulation on the basis of the stimulus intensity with a time constant of 50 

ms. The MOC reflex was mainly controlled by two parameters: (1) a MOC reflex threshold 

parameter, which determined the input level at which the MOC reflex activated; (2) A MOC 

attenuation factor, which regulated the amount of the attenuation based on the stimulus level. The 

details of the MOC reflex can be found in (Meddis et al, 2013), and only a general description of 

the MOC reflex process is provided here. The MOC reflex used the output of each frequency band 

 

Figure 7-2. The schematic of the "bioaid" (replotted from Meddis, 2013) 
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of the second filter-bank as the input to calculate the in-band attenuation. The signals were half-

wave rectified and low-pass filtered using a one pole filter with the MOC time constant to simulate 

the response of the MOC reflex over time. The output attenuation of the MOC reflex was then 

applied into each frequency band before the instantaneous compression. 

 Although the stages of the Bioaid where our proposed algorithm took input and applied output 

were identical to those of the original MOC reflex in Bioaid, it differs from the original MOC reflex 

in Bioaid in the following aspects: 

1) The IHC stage of the MOC algorithm is different. In Bioaid, the IHC was simulated using 

a linear half-wave rectifier, whilst our proposed algorithm used a transfer function with a 

nonlinear I/O function to guarantee the nonlinear response of the MOC. 

2) The algorithm for calculating the MOC strength over time is different. The MOC reflex in 

Bioaid used a low-pass filter to calculate the MOC strength over time, which outputs cannot 

properly match the measured physiological data (as discussed in Chapter 3). However, our 

proposed algorithm was developed from the MOC model present in Chapter 6, in which 

the MOC strength over time calculation algorithm is developed based on the human data 

provided by Backus & Guinan (2006). 

3) The time constants used are different. The MOC reflex in Bioaid used a fixed time constant 

of 50 ms, whilst our proposed algorithm uses dynamically optimized time constants from 

85 ms to 2000 ms at varying SNR levels.  

Parameters setting  

The parameters of the Bioaid and the MOC based speech enhancement algorithm were set 

based on the following criteria. (1) The parameters of Bioaid followed the original setting by 

Meddis et al. (2013); (2) The parameters of the proposed speech enhancement algorithm should 

follow the parameters used in Chapter 6 to make sure that the results were comparable to our 

previous studies as detailed in Chapters 3 & 6; (3) The parameters should make sure that the outputs 

(amount of attenuation) of the proposed speech enhancement algorithm matched the measured data 

in the literature. The parameters of the hearing aid model and proposed speech enhancement 

algorithm are shown in Table 7-1.  

In the hearing aid model, the within-channel gains were used to compensate for  hearing 

loss. In this study, the evaluation was based on the normal hearing case, where the hearing threshold 

was assumed to be 0 dB. We only introduced a 5 dB within-channel gain to complement the band-

pass filter and the compression caused speech signal intensity attenuation. The filter-bank had a six 

octave bands with the central frequencies (CFs) between 250 Hz and 8000 Hz. Each filter had a 12 

dB per octave rejection rate outside the passband (Jurgens et al., 2016). The compression was 

implemented instantaneously (there was no compression attack time or release time applied in the 
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compression). The compression threshold of each frequency band was set to decrease from 40 dB 

to 30 dB with increasing CFs. This setting of the compression thresholds was suggested by Lopez-

Poveda & Meddis (2001) to follow the measured BM response at the frequencies between 250 Hz 

and 8000 Hz in human subjects (Plack & Oxenham, 2000). The compression exponent was set to 

be 0.25 to follow the parameter used by Lopez-Poveda & Meddis (2001) which was used to match 

the measured data in chinchillas (Ruggero, et al., 1997). The original MOC reflex in the Bioaid was 

also tested for comparison. The parameters used for implementing the original MOC reflex in 

Bioaid in this study are identical to that used by Meddis et al. (2013). Particularly, the time constant 

of the original MOC reflex was 50 ms.  

For our proposed speech enhancement algorithm, the MOC activation threshold was set to 

be 20 dB to follow the physiological data measured (Russell & Murugasu, 1997,  Guinan & Gifford, 

1988). The maximum amount of MOC related attenuation was set to be -40 dB to follow the 

Table 7-1 The parameter setting of the hearing aid and the MOC algorithm 

 

Hearing aid Parameters 

Filter-bank CF range 250 Hz – 8000 Hz 

Filter-bank band width 6 Octave bands 

Compression threshold 40;38;36;34;32;30 (dB) 

Compression exponent 0.25 

MOC time constants 50 ms 

In channel gain 5 dB 

MOC algorithm Parameters 

MOC activating threshold 20 dB 

Maximum attenuation -40 dB 

Attenuation factor 140000 

Delay time 10 ms 

MOC time constants 50 ms 
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nonhuman animal (guinea pig) data (Russell & Murugasu, 1997). The MOC increasing factor 𝜎 

(Equation 6.12) was set to be 140000 to make sure the I/O function of our proposed algorithm 

matched that used by Clark (2014), although it was noted that the measured MOC strength in 

humans is less than that measured in nonhuman animals (Guinan, 2018; Lopez-Poveda, 2018). A 

higher level of MOC output was desired in our case as the MOC output (attenuation) is applied 

before the compression, whilst the compression reduces the attenuation considerably (up to four 

times for a compression exponent of 0.25). A 10 ms delay time was introduced to the MOC related 

attenuation calculation on the basis of the measured MOC reflex delay process in human study 

(Backus & Guinan, 2006). 

 

7.3. Evaluation  

CSII calculation 

Speech intelligibility was evaluated objectively by calculating the CSII (Kates & Arehart, 

2009) of enhanced noisy speech. CSII is developed from the conventional SII (ANSI S3.5-1997) 

(introduced in Chapter 2) to also account for the effect of speech distortion on speech intelligibility. 

The original SII was calculated based on the SNR, whilst in CSII, the SNR is replaced by the signal-

to-noise distortion ratio (𝑆𝐷𝑅). To obtain SDR, it is required to calculate the magnitude-squared 

coherence (MSC) between the enhanced speech and the clean speech. Specifically, both the clean 

speech signal and the processed speech signal are divided into short frames (16 ms) using Hamming 

windows with 50% overlap. The MSC (𝑟(𝑙, 𝑡)) is calculated using the averaged cross-spectral 

density and auto-spectral density of clean and processed speech across all the windowed frames 

using the following equation (Kates & Arehart, 2009): 

|𝑟(𝑙, 𝑡)|2 =
| ∑ 𝑆𝑥𝑥(𝑙,𝑡)

𝑀−1
𝑡=0 𝑆𝑦𝑦(𝑙,𝑡)|

2

∑ |𝑆𝑥𝑥(𝑙,𝑡)|
2𝑀−1

𝑡=0 ∑ |𝑆𝑦𝑦(𝑙,𝑡)|
2𝑀−1

𝑡=0
                                               (7.5) 

where 𝑆𝑦𝑦(𝑙, 𝑡) and 𝑆𝑥𝑥(𝑙, 𝑡) are the auto-spectral density of the processed speech and clean speech 

signal at frequency component 𝑙 of frame with index 𝑡. They are calculated using the fast Fourier 

transform (FFT). To account for the speech intelligibility over different frequency ranges, the SII 

standard allows the SNR to be calculated using speech and noise spectra measured in octaves, one-

third octaves, or critical bands. In CSII, the critical band procedure was used for calculating the 

SDR. The SDR of the processed speech of each frequency band 𝑗 can be calculated using the MSC 

according to the following equation: 

𝑆𝐷𝑅(𝑗, 𝑡) =
∑ 𝑊𝑗(𝑙)|𝑟(𝑙,𝑡)|

2𝑆𝑦𝑦(𝑙,𝑡)
𝐾
𝑙=0

∑ 𝑊𝑗(𝑙)(1−|𝑟(𝑙,𝑡)|
2)𝑆𝑦𝑦(𝑙,𝑡)

𝐾
𝑙=0

                                           (7.6) 
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where 𝑊𝑗  is the ro-ex filter, which is suggested by Moore, & Glasberg (1983) to simulate the 

auditory filter. It regulates the filter shape of the critical band 𝑗 to provide better intelligibility 

prediction. The CFs of each band are between 150 Hz and 8500 Hz to follow that used by Kates & 

Arehart (2009). Letting 𝑞𝑗  be the central frequency of the 𝑗𝑡ℎ  critical band, The ro-ex filter 

parameter is given by:  

𝑝𝑗 =
 (1000𝑞𝑗)

𝑏𝑗
                                                              (7.7) 

where the factor of 1000 converts the filter central frequency from kHz to Hz. 𝑏𝑗 is the suggested 

bandwidth provided in ANSI Table 1.  The simplified ro-ex filter is given by: 

𝑊𝑗(𝑙) = (1 + 𝑝𝑗𝑔)𝑒
−𝑝𝑗𝑔                                                     (7.8) 

Where 𝑝𝑗 is speech power spectrum, and:  

𝑔 = |1 −
𝑓(𝑘)

𝑞𝑗
|                                                              (7.9) 

and 𝑓(𝑙) is the FFT obtained frequency component with index 𝑙 in Hz. In this study, the FFT had a 

frequency resolution of 31.23 Hz. In the SII, it was assumed that to guarantee the intelligibility the 

dynamic range of the speech signal in each frequency band should be at least 30 dB. The dynamic 

range is decided by the minimum value between the SNR and the audibility of speech in each 

frequency band. The audibility 𝐴(𝑗) of the speech signal in each channel 𝑗 is calculated using the 

equation shown below: 

𝐴(𝑗) = 𝐸(𝑗) − 𝑋(𝑗)                                                          (7.10) 

where 𝐸(𝑗) is the signal power of each frequency band 𝑗 in dB, and 𝑋(𝑗) is the hearing threshold 

parameter of each frequency band which can be obtained in (ANSI S3.5-1997). Instead, the CSII 

replaces SNR with SDR to estimate the speech intelligibility of the signal in each frequency band 

using the equation shown below (ANSI S3.5-1997): 

𝑑(𝑗) =
max(min( min (10 𝑙𝑜𝑔10(𝑆𝐷𝑅(𝑗),𝐴(𝑗)), 1  ),1  ) 

30
+

1

2
                             (7.11) 

where 𝑑(𝑗) is the intelligibility index of the critical band 𝑗. It is estimated according to the previous 

human based speech intelligibility study (Pavlovic, 1987). The CSII is then calculated by 

summarising the product between the band intelligibility index and the band importance across all 

critical bands. It can be calculated using the following equation: 

𝐶𝑆𝐼𝐼 = ∑ 𝑑(𝑗)휀𝑗
𝐽
𝑗=1                                                     (7.12) 
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where 휀𝑗 is the band importance of the frequency band 𝑗, which can be obtained from (ANSI S3.5-

1997). In this study, the band importance factors for average speech were used for the CSII 

calculation. (Pavlovic, 1987). To obtain the final CSII, the short frames of the signal (16 ms, 60 % 

overlap) were divided into high (above the overall RMS level), medium (0 dB or 10 dB below the 

RMS level), and low (between 10 dB and 30 dB below the RMS level) level frames. The CSII of 

frames that belonged to each level were calculated separately, and are referred to as 𝐶𝑆𝐼𝐼𝑙𝑜𝑤 , 

𝐶𝑆𝐼𝐼𝑚𝑒𝑑𝑖𝑚, 𝐶𝑆𝐼𝐼ℎ𝑖𝑔ℎ The final CSII was obtained according to the following equation: 

𝐶𝑆𝐼𝐼 =
1

1+𝑒
−3.47+1.84𝐶𝑆𝐼𝐼𝑙𝑜𝑤+9.99𝐶𝑆𝐼𝐼𝑚𝑒𝑑𝑖𝑚+0.0𝐶𝑆𝐼𝐼ℎ𝑖𝑔ℎ

                                    (7.13) 

where 𝐶𝑆𝐼𝐼𝑙𝑜𝑤, 𝐶𝑆𝐼𝐼𝑚𝑒𝑑𝑖𝑚, and 𝐶𝑆𝐼𝐼𝑙𝑜𝑤 are the CSII of low, medium, and high level segments. All 

the parameters above are defined the ANSI standarded.  

 Kates & Arehart, (2009) estimated relationship between the CSII and intelligibility scores 

of human subjects (as is shown in Figure 7-3). This relationship was obtained by averaging the 

measured intelligibility scores (human based speech sentence test) over nine subjects (age range 

between 23 and 81), and the CSII of a sequence of clean speech in speech shaped noise. According 

to the figure, the CSII could provide a relatively good prediction to the human recognition accuracy.  

Algorithm implementation  

The speech enhancement algorithm, hearing aid model, and CSII calculation were carried 

out digitally in MATALB (R2015a). The output of the hearing aid model was synthesized speech 

in the form of a WAV file. The testing stimulus of noisy speech was generated by adding noise to 

clean speech. 

  

 

Figure 7-3 Average proportion of the HINT sentence identified correctly as a function of CSII for clean 

speech in noise. (Replotted from Kates & Arehart, (2009)) 
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Speech and noise dataset 

The testing speech resource was obtained from the AURORA (Pearce and Hirsch, 2000) 

speech database. The speech resource was sampled at a frequency of 44100 Hz. Each speech 

resource had a length between 1s and 3s. The speech utterances were spoken by 56 male and 56 

female speakers. There were 900 speech utterances used in this study. 500 utterances randomly 

selected without replacement, were used for estimating the VSE-SNR relationship functions, and 

were defined as dataset A. The remaining 400 utterances were used for testing the speech 

intelligibility, and were defined as dataset B. There was no overlap between datasets A and B. The 

testing speech utterances were randomly selected and cut from the dataset. Both were randomly cut 

from the original resource using procedures identical to those used in Chapter 4.  

Both nonspeech-like and speech-like noise were used to mask the clean speech for 

algorithm performance evaluation. Two types of nonspeech-like noise were used: pink noise and 

white noise, which were acquired from the NOISEX-92 database (Varga & Steeneken, 1993). The 

speech-like noise was babble noise containing different numbers of talkers. Six types of babble 

noise including 2-, 4-, 8-, 16-, 24- and 32-talker babble noise were used. Each was derived by 

combining IEEE sentences (Rothauser, 1969). All the sentences were normalized to have the same 

RMS energy to form the babble noise, the same as the procedures used by Simpson & Cooke (2005). 

The sampling frequency of noise resource was 20000 Hz. 

The noisy speech used to test the performance of the speech enhancement algorithm in 

speech-in-noise intelligibility was generated by adding noise to clean speech. Both the speech and 

noise were cut from the resource with a random starting point. The cut speech and noise had the 

same length of 1000 ms. The random cutting procedures were identical to those used in Chapters 4 

and 5. The speech signal was fixed at 60 dB to represent the speech in normal conversations, whilst 

the noise level increased from 40 dB to 70 dB to generate noisy speech at SNRs between -10 dB 

and 20 dB in steps of 5 dB. To match the different sample rates of the speech and noise resource, 

the resource with a lower sample rate was up-sampled to avoid potential information loss caused 

by down-sampling. The up-sampling procedures were identical to those used in Chapter 3 (ASR 

feature extraction interface). 

7.4. Results  

The present study evaluated the proposed speech enhancement algorithm in three aspects. 

(1) The validation of the proposed speech enhancement algorithm at simulating the function of the 

MOC reflex. The simulating validation was evaluated by comparing the algorithm outputs with data 

measured in physiological and psychological studies. (2) The performance of the proposed 
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algorithm with different time constants. This was achieved by measuring the CSII of the noisy 

speech samples enhanced with the fixed time constants. Since both the MOC algorithm and the 

intelligibility evaluation metric were changed in comparison to the MOC reflex model in Chapter 

6, it was necessary to investigate whether the effect of the MOC reflex time constant was similar to 

that shown in Chapters 6 & 3. (3) The performance of the proposed speech enhancement algorithm 

with dynamically optimized time constant. This was evaluated by measuring the CSII of the noisy 

speech samples enhanced by the proposed algorithm with the MOC time constant dynamically 

optimized based on the estimated SNR. The performance of the proposed algorithm was compared 

with the original MOC algorithm used in Bioaid. 

7.4.1. Experiment 1: Validating the speech enhancement algorithm. 

Since the principle of the proposed algorithm is based on the mechanism of the MOC reflex, 

it is important to validate the algorithm at simulating the MOC reflex by comparing the algorithm 

output with the physiological data. In the literature, the response of the MOC reflex in humans was 

mainly measured using broadband noise elicitors (Backus & Guinan, 2006; Lilaonitkul & Guinan, 

2009; Mertes et al., 2018). To make sure the results are comparable, the response (amount of the 

attenuation in dB) of the speech enhancement algorithm to broadband noise was evaluated in this 

experiment. Specifically, both the temporal response and level response of the algorithm were 

evaluated. The temporal response refers to the changes in the amount of the MOC related 

attenuation after the onset and offset of the stimulus over time, whilst the level response refers to 

the amount of attenuation to stimulus at different levels. 

The temporal response was assessed by plotting the algorithm output (attenuation in dB) as 

a function of time in response to the broadband noise. Figure 7-4 shows the proposed algorithm 

output in response to 2500 ms length pink noise at 60 dB. The algorithm outputs with time constant 

of 118 ms at the CF of 1000 Hz are presented. The outputs were compared with the human data, 

 

Figure 7-4. Comparison between the human data (Backus & Guinan, 2003) (marked with stars) and the 

proposed algorithm outputs (marked with solid line) in response to 60 dB pink noise. The time constant 

used here is 118 ms. 
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which was obtained by replotting the original ∆SFOAE based data in (Backus & Guinan, 2006 

Figure 2.82L). The original human data was averaged every 100 ms for clarity. The amplitude of 

both the human data and algorithm outputs were normalized for comparison. The human data is 

marked with stars, whilst the model output is marked with a solid line. According to the Figure 7-

4, the temporal response of the algorithm matched the human data well. Therefore, our proposed 

speech enhancement algorithm properly simulates the temporal response of the MOC reflex.  

The level response was obtained by averaging the algorithm output in response to a 4000 

ms broadband noise at levels between 10 dB and 90 dB in steps of 5 dB. Figure 7-5 shows the 

proposed algorithm output in response to pink noise as a function of the noise level at the CF of 

4000 Hz. The animal data measured by Liberman (1988) was used for comparison by assuming that 

the firing rate of the MOC neurons could be mapped directly to the amount of the MOC related 

attenuation (Clark et al., 2012). There are three reasons for using Liberman’s animal data. (1) There 

is no human data available charactering the MOC related attenuation in response to broadband noise 

at a wide level between 0 dB and 90 dB. (2) Liberman’s data was obtained by directly recording 

the firing rate of the MOC neurons which is more accurate than that of data measured using OAE 

and psychological approaches (Guinan, 2018) because the measured results of the OAE methods 

can be disturbed by the MEM-reflex (Guinan, 2018). (3) The rate/level function of the MOC 

neurons in Liberman’s (1988) data showed reasonable similarity to the results shown in human 

based studies (Backus & Guinan, 2006; Yasin et al., 2014). For example, at the input level below 

60 dB both Liberman’s data and that provided by (Backus & Guinan, 2006) show a relatively linear 

increasing trend. At the input level above 60 dB, the increasing slope of Liberman’s data is reduced 

which is similar to that shown in (Yasin et al., 2014). In Figure 7-5, the algorithm outputs are 

marked with open circles, whilst the animal data is marked with open squares. The algorithm 

outputs have a good qualitative fit to the physiological data. Thus, our proposed algorithm can 

simulate the level response of the MOC reflex.  

 

Figure 7-5.The proposed algorithm output (attenuation in dB) as a function of input level in comparison 

with the physiological data provided in Liberman (1988) at the CF of 3980 Hz. The output of the 

algorithm is marked by open squares and Liberman’s data is marked with open circles. 
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7.4.2. Experiment 2: Evaluating the performance of the proposed algorithm with 

fixed time constants.  

Before directly applying the automatically optimized time constants, it was necessary to 

evaluate the performance of the proposed algorithm with fixed time constants (similar to  

experiment 3 in Chapter 3). This helped to verify (1) If the simplified MOC reflex based algorithm 

was still able to reflect the effect of the MOC reflex time constant; (2) if the speech intelligibility 

metric of CSII was able to show the effect of the MOC reflex time constant; (3) If the effect of the 

MOC time constant was the same as that shown in chapter 3, thus the best time constant lookup 

table could be adjusted accordingly. In this experiment, the CSII of the noisy speech samples 

enhanced by the proposed algorithm using time constants of 85 ms, 118 ms, 200 ms, 450 ms, 1000 

ms, and 2000 ms were measured in different noise conditions. The experiment evaluated 100 clean 

speech samples spoken by 10 male and 10 female talkers randomly selected from speech dataset B. 

Pink noise and speech-like 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise were used. The speech 

level was fixed at 60 dB, whilst the SNR increased from -10 dB to 20 dB in steps of 5 dB.  

The CSII of the proposed algorithm at SNR between -10 dB and 20 dB (in steps of 5 dB) 

in 2-, 4-, 8-, 16-, and 32-talker babble noise and pink noise are shown in Figure 7-6. The CSII of 

the noisy speech without enhancement is presented by dashed lines, whilst the CSII of the enhanced 

noisy speech is marked with solid lines. From the SNR of -10 dB the amount of CSII improvement 

introduced by the speech enhancement algorithm (compared to the condition without enhancement) 

increased with increasing SNR levels, and peaked at the SNR about 10 dB. However, at the SNR 

above 10 dB the improvement was slightly reduced. This is consistent with the results shown in 

Chapter 3.  

For different types of noise, the enhancement algorithm (for all time constants) showed 

greater benefits in babble noise with more talkers and pink noise than babble noise with fewer 

talkers. Particularly, as the talker number in babble noise increased the amount of CSII 

improvement also increased. For example, at the SNR of –5 dB, the CSII improvement (compared 

to that without enhancement) with a time constant of 2000 ms in 32-talker babble noise was 0.1 

higher than that in 2-talker babble noise. In addition, as the talker number increased, the SNR range 

where enhancement algorithm showed improvement over 0.1 was extended with increasing talker 

numbers. For example, in 2-talker babble noise this range was above -5 dB, whilst in 32-talker 

babble noise the range was above -10 dB. Moreover, the enhancement algorithm showed greater 

improvement in pink noise than in babble noise. These results are consistent with those shown in 

chapter 3 (experiment 3).  

When compared to the effect of the different MOC time constants at different SNR levels, 

it was found that the longer time constants (≥ 1000 𝑚𝑠) showed greater CSII improvement at SNR  
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a  b  

c  d  

e  f  

 
Figure 7-6. The CSII of noisy speech samples enhanced (solid lines) by algorithm using time constants 

of 85 ms, 118 ms, 200 ms, 450 ms, 1000 ms, and 2000 ms and without the enhancement (dashed line) at 

SNR between -10 dB and 20 dB in steps of 5 dB. (a) in 2-talker babble noise. (b) in 4-talker babble noise. 

(c) in 8-talker babble noise. (d) in 16-talker babble noise. (e) in 32-talker babble noise. (f) pink noise. 

The error bars present the standard derivation of five repeated tests.  
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levels below 10 dB, whilst at SNR levels >10 dB, the shorter time constants showed larger CSII 

improvements. For example, in 2-talker babble noise (Figure 7-6 a), the time constant of 2000 ms 

showed the highest CSII value at the SNR between -5 dB and 5 dB, whilst at the SNR above 10 dB 

the best time constant was 450 ms. This is consistent with that shown in Chapter 3. 

Across different types of noise, a consistent time constant effect can be found that is longer 

time constants show greater benefit at SNRs below 10 dB whist the shorter time constant shows 

greater benefits at higher SNRs. In babble noise, the only difference over different noise types was 

that at SNRs below 10 dB, the longer time constants showed greater CSII improvement in babble 

noise with more talkers than that with fewer talkers. For example, in 32-talker babble noise, at the 

SNR of 5 dB, the CSII improvement yielded by a time constant of 2000 ms (in comparison to time 

constant of 85 ms) was about 0.9 higher than that in 2-talker babble noise. In pink noise, the longer 

time constants showed greater CSII improvement than that in babble noise in low SNRs. 

Particularly, at the SNR of -5 dB, for the time constant of 2000 ms, the longer time constants showed 

improvement about 0.1 higher than in 32-talker babble noise. Although at the SNR of 15 dB, the 

best time constant in pink noise (2000 ms) was different to that in 32-talker babble noise (450 ms), 

the intelligibility improvement difference between the two time constants in either type of noise 

was very small (less than 0.02).  

In summary, for different SNR levels, the results showed that the longer time constants 

showed greater benefit at low SNRs (less than or equal to 10 dB), whilst the shorter time constants 

showed greater benefit at SNR above 10 dB. This is consistent with the finding shown in Chapter 

3. For different types of noise, the best time constant at each SNR level was similar. It only slightly 

changed between pink and babble noise at the SNR of 15 dB. However, at SNR above 10 dB, the 

amount of CSII differences over different time constants are too small to be considered in designing 

the time constant calculating algorithm.  

7.4.3. Experiment 3: Evaluating the performance of the proposed speech 

enhancement algorithm with dynamically optimized time constants.  

In this experiment, the performance of the proposed speech enhancement algorithm using 

the automatically optimized time constant was evaluated. This was achieved by evaluating the 

intelligibility metric (CSII) of enhanced noisy speech samples under different noise conditions. The 

basic optimizing strategy is to use a longer time constant (≥ 1000 𝑚𝑠) at low SNRs (≤ 10 𝑑𝐵), 

whilst using a short time constant (< 1000 𝑚𝑠) at higher SNRs to follow the simulation results in 

experiment 2 and Chapter 3. Specifically, the time constants that showed the greatest CSII 

improvement at each SNR level (obtained in experiment 2) were saved in the lookup table (as shown 

in table 7-2) and used for optimization time constant. The lower bound is set to be -10 dB and the 

upper bound is 20 dB by assuming that there are no further best time constant changes at SNRs 



Chapter 7 

 

214 

 

beyond this SNR range. The CSII of the same noisy speech sample without enhancement was 

measured as a control group, and the noisy speech sample enhanced by the original MOC algorithm 

in Meddis et al. (2013) was also evaluated for comparison. 300 randomly selected clean speech 

utterances spoken by 30 male and 30 female talkers were used for evaluation. Note that the speech 

dataset used in this experiment had no overlap with the speech dataset used in experiment 2. Pink, 

and babble noise including, 2-. 4-, 8-, 16-, and 32-talkers was used for evaluation at SNRs between 

-10 dB and 20 dB. In addition, white noise, which was not tested in experiment 2, was also used to 

evaluate the performance of the proposed algorithm in noise without pre-estimating the best time 

constant.  

Figure 7-7 shows the mean CSII of the noisy speech enhanced by the proposed algorithm 

(open triangles), the original MOC algorithm in Meddis’s (2013) algorithm (open circles), and 

without any enhancement (filled circles). The CSII is plotted as a function of SNR level in, 2-

(Figure a). 4-(Figure b), 8-(Figure c), 16-(Figure d), and 32-talker babble noise (Figure e), pink 

(Figure f), and white noise (Figure g). The error bars represent the standard errors of five repeated 

tests. According to the figure, for all the tested noise types the proposed speech enhancement 

algorithm showed the highest speech intelligibility across all evaluated SNR levels.  

When comparing with the condition without enhancement, the proposed algorithm showed 

apparent intelligibility improvement at all tested SNR levels. Particularly, the greatest speech 

intelligibility improvement was shown at the SNR of 10 dB, where the proposed algorithm 

increased the CSII about 0.3 (averaged across the different types of noise). When the SNR either 

increased or decreased, the amount of CSII improvement decreased. The proposed algorithm also 

showed intelligibility improvement at negative SNR levels. The amount of improvement was 

greater than that shown in Chapter 3. For different types of noise, the proposed algorithm showed 

more intelligibility improvements in more stationary noise than in more nonstationary noise (babble 

noise containing fewer numbers of talkers). Particularly, at the SNR of -5 dB the CSII improvement 

in pink and white noise was much higher than that in babble noise. In white noise, at the SNR 

between 5 dB and 15 dB, the improvement (in comparison to no MOC) was about 0.11 and 0.13 

lower than that in pink and 32-talker babble noise respectively. However, at the negative SNRs the 

improvement in white noise was 0.05 and 0.08 higher than that of the pink and 32-talker babble 

noise respectively. 

  

Table 7-2 The best time constant lookup table used for the time constants 

SNR ≤-10 dB 5 dB 0 dB 5 dB 10 dB 15 dB ≥ 20 dB 

Best time constant  2000 ms 2000 ms 2000 ms 2000 ms 1000 ms 450 ms 450 ms 
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Figure 7-7. The CSII of noisy speech samples 

enhanced (open triangles) by the proposed 

algorithm using automatically optimized time 

constants, without the enhancement (filled circles), 

and enhanced (open circles) by the algorithm used 

in (Meddis et al, 2013) at SNRs between -10 dB and 

20 dB in steps of 5 dB. (a) in 2-talker babble noise. 

(b)in 4-talker babble noise. (c) in 8-talker babble 

noise. (d) in 16-talker babble noise. (e) in 32-talker 

babble noise. (f) pink noise. (g) white noise. The 

error bars present the standard derivation of five 

repeated tests.  
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When compared to the MOC algorithm used in Meddis et al. (2013), our proposed 

algorithm shows greater speech intelligibility improvement at all tested SNR levels. Particularly, in 

32-talker babble noise at the SNR of 10 dB the maximum improvement was about 0.23. The amount 

of CSII improvement (compared to Meddis et al, 2013 approach) increased with increasing SNR 

and peaked at the SNR of 10 dB. As for different types of noise, it was found that the proposed 

algorithm showed superior intelligibility improvement in highly nonstationary noise. For example, 

in 2-talker babble noise at the SNR of 10 dB, the proposed algorithm showed CSII improvement 

(compared to that of Meddis et al., 2013 approach) of about 0.14 higher (approximately 14% speech 

recognition accuracy improvement).  

In general, the proposed algorithm showed significant intelligibility improvement over 

tested SNRs in all types of tested noise. The greatest speech intelligibility improvement was shown 

at the SNRs between 15 dB and 5 dB, which are the typical SNR levels for general conversations. 

Moreover, the amount of the intelligibility improvement of our proposed algorithm was higher than 

that of Meddis’ approach in both stationary and nonstationary noise.  

7.5. Discussion  

Comparison to other works  

The present work implemented a MOC based speech enhancement algorithm with the time 

constant dynamically optimized for varying SNRs on a hearing aid model. The results showed that 

the proposed algorithm provided apparent intelligibility improvement to speech in noise. Thus, our 

work confirms the findings and suggestions in the literature (Guinan, 2006; Lopez-Poveda, 2018) 

that the MOC reflex plays an important role in speech perception in noise and might improve the 

speech-in-noise intelligibility. By implementing the MOC reflex model as a speech enhancement 

algorithm on the hearing aid model, this study demonstrated that the simulated MOC reflex can be 

used to improve speech intelligibility in audio signal processing devices. A widely agreed benefit 

of the MOC reflex is that it increases signal-in-noise detection by recovering the dynamic range of 

the AN (Winslow & Sachs, 1988; Kawase & Liberman, 1993). However, in this study, even though 

the hearing aid model only simulated the compression of BM without the AN response, the MOC 

still demonstrated an improvement of CSII. Therefore, the benefits of the simulated MOC process 

demonstrated here are not the results of neural masking. A possible reason might be the MOC 

related attenuation linearized the I/O function of the cochlear (Cooper & Guinan, 2003, 2006; 

Russell & Murugasu, 1997) that reduces the speech distortion caused by compression (Lopez-

Poveda & Eustaquio-Martín, 2018), and the attenuation reduce the effect of noise.  

The proposed algorithm simulated the MOC reflex with optimized time constants, and 

showed more speech intelligibility improvement than the algorithm using a fixed time constant 

(Meddis et al., 2013). This is consistent with the suggestions that different MOC time constants 
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may have particular benefits to audio signal processing of the auditory system (Cooper & Guinan, 

2003; Sridhar et al., 1995). We applied the longer time constants in low SNRs, which is also 

consistent with the suggestions that a longer time constant is preferred, as reported in other existing 

works that have studied the performance of the simulated MOC reflex on speech intelligibility 

(Clark & Brown, 2014; Lopez-Poveda & Eustaquio-Martín, 2018). Lopez-Poveda & Eustaquio-

Martín, (2018) reported the benefits of longer time constants to speech intelligibility as they found 

that the longer time constant leads to a lower amount of attenuation than the short time constants 

which increases the audibility of the processed speech, and the long time constant provides 

smoothly enhanced noisy speech. In our case, although the amount of the attenuation of simulated 

longer time constants is higher than that of the shorter time constants, they still showed greater 

benefits at lower SNRs. The reason might be that the longer time constant provides a higher amount 

of attenuation that provides more noise reduction in low SNRs, and the longer time constants make 

the gain varies “smoothly” and hence reduce speech distortion.  

In comparison to other conventional single microphone based speech enhancement 

algorithms (e.g. spectral noise subtractive, or Wiener filtering), the basic strategies of both 

approaches are similar, that is, to reduce the effect of the noise by attenuating the signal. For 

example, in a Wiener filtering based algorithm, the amount of attenuation is adjusted over time by 

estimating the SNR (Spriet et al., 2005). The MOC reflex introduces time varying attenuation 

(Backus & Guinan, 2006; Cooper & Guinan, 2003) to suppresses the amplifier in the cochlea 

(Guinan, 2006). However, the enhancement principle is different. Our proposed algorithm simulates 

the mechanism of the MOC reflex of benefitting speech-in-noise perception (reviewed in Lopez-

Poveda, 2018). The conventional algorithms assume that clean speech in noise can be recovered by 

reducing the estimated amplitude or the power of the noise (Kamkar-Parsi & Bouchard, 2011). It 

requires an accurate estimation of noise power and instantaneous SNR, which is often not 

achievable in low SNRs and nonstationary noise (Hu & Loizou, 2007). In contrast, the performance 

of our proposed algorithm is expected to be more robust in nonstationary noise as it is based on a 

global SNR estimation method which has been demonstrated to be more robust in such critical noise 

cases (May et al., 2017). It is worth noting that the widely agreed benefit of the MOC reflex in 

physiological studies (Guinan, 2006; Kawase & Liberman, 1993; Nieder & Nieder, 1970) is to 

recover the dynamic range of the AN response in noise. Although the present study didn’t simulate 

the AN response, the simulated MOC reflex still increased the objective intelligibility index, which 

indicates that the MOC could improve the SNR at the output of the BM response. Therefore, we 

could expect further intelligibility improvement of the proposed algorithm in human subjects as the 

MOC related attenuation would recover the AN response in noise (Lopez-Poveda & Eustaquio-

Martín, 2018). However, the present study only focuses on proving the basic principle of using the 

MOC reflex with optimized time constants as a speech enhancement for real time audio signal 
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processing. It requires further studies to compare its performance with conventional speech 

enhancement algorithms.  

Comparison to our previous works  

In comparison to the ASR testing results shown in Chapter 6 (at 60 dB), the testing results 

in this chapter showed more intelligibility improvement when using the MOC reflex with the 

optimized time constant. This might be caused by the intensity dynamic range differences between 

the ASR system and the CSII as the dynamic range influences speech-in-noise perception (reviewed 

by Guinan, 2006; Lopez-Poveda, 2018). The intensity dynamic range of the ASR is narrow as the 

features were extracted from the simulated HSR AN fiber outputs. In cats, Guinan & Stankovic 

(1996) reported that the response of HSR fibers became saturated at about 40 dB for CFs about 

4 kHz. In chapter 3, at the speech level of 60 dB the simulated HSR ANs response to both the noise 

and speech became saturated. Therefore, less effect of noise in AN would be reduced by the MOC 

introduced attenuation (Guinan, 2018). Thus, speech recognition accuracy improvement on ASR 

provided by the MOC reflex is degraded. However, the CSII has a broader intensity dynamic range 

as it is based on the amplitude of the processed signals. Therefore, the MOC is able to show greater 

benefit to noise reduction on CSII at the speech level of 60 dB. This explanation can be proved by 

the results that the MOC showed more ASR speech recognition improvement with features 

extracted from LSR as (shown in Chapter 3) as the dynamic range of LSR ANs is broader than that 

of HSR ANs. In fact, the overall intensity dynamic range of the auditory system is broad (about 40–

50 dB) (Zeng et al., 2002), so the testing results of CSII might more accurately reflect the simulated 

effect of the MOC reflex to real speech intelligibility.  

Limitations of the present work  

One of the limitations of our proposed work is that the performance of the proposed speech 

enhancement on the hearing impaired was not evaluated. Jürgens et al. (2016) evaluated the 

performance of the Bioaid on the hearing impaired by incorporating it with a hearing impaired 

model. An evaluation of our proposed algorithm on the hearing impaired is necessary, as it is 

reported that age related hearing loss is accompanied with a decline of the efferent systems (Frisina, 

2009; Zhu et al., 2007). Therefore, it is expected to provide a larger speech intelligibility 

improvement to the hearing impaired. However, we evaluated the CSII based on a normal hearing 

case with an assumed hearing threshold of 0 dB. Because we considered that it is appropriate to 

also use the model to evaluate our method for the hearing impaired. Our proposed method focuses 

on improving speech intelligibility, while the model used in (Jürgens et al., 2016) only evaluated 

the response of BM (i.e. tuning curve and I/O function). In future work, our proposed algorithm 

should be evaluated with hearing impaired human subjects, to study its performance for the hearing 

impaired.  
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7.6. Summary  

This study proposed a speech enhancement algorithm by simplifying the MOC reflex model 

with the optimized time constant presented in Chapter 6. The proposed algorithm has been 

implemented on an existing hearing aid model (Meddis et al., 2013) to evaluate its performance at 

improving the intelligibility of speech-in-noise. An objective metric of CSII, which also addresses 

the effect of distortion on speech intelligibility, was measured to predict the speech intelligibility 

of the enhanced speech. The proposed algorithm has been evaluated in both speech-like noise 

(babble noise containing different numbers of talkers) and nonspeech-like (pink and white) noise 

at varying noise levels. The CSII of the proposed algorithm enhanced speech was compared with 

that of unenhanced speech, and speech enhanced by the original MOC based algorithm provided 

by Meddis et al. (2013).  

The results showed that the proposed algorithm provided apparent speech intelligibility 

improvement at the SNR levels between -5 dB and 20 dB. The proposed algorithm provided speech 

intelligibility improvement of about 0.3, which is 0.1 higher than Meddis’s original algorithm 

(Meddis et al, 2013). The McNEMAR’s test has been applied where P= 2.7 × 10− . With the 

significant level of 0.05, the results can be considered as statistically significant. The remarkable 

benefits are shown at SNRs between 5 dB and 15 dB, which is the most common case for general 

speech communication. This study proves that the proposed algorithm has potential to be applied 

in portable devices (e.g. hearing aids) for providing greater speech intelligibility improvement.    
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8. Chapter 8: Conclusion and future work  
 

8.1. General discussion and conclusion 

Thesis summary 

The work presented in this thesis has provided insight into the effect of the MOC reflex 

time constant on speech-in-noise intelligibility and the approach of simulating the effect of the 

MOC reflex time constants for speech-in-noise enhancement. A computer model based approach 

has been used to study the effect of the MOC reflex time constant. The computer model was 

developed by incorporating an existing peripheral auditory model with a ASR system. The 

peripheral auditory model works as a front end of the ASR for feature extraction. The effect of the 

MOC reflex time constant was studied by regulating the time constant of the simulated MOC reflex 

loop to find its influence on the speech recognition accuracy in different types of noise at different 

SNR levels. Since the features used for training and testing the ASR were extracted from the output 

of the simulated AN firing rate, the outputs of different types of AN fibers were used for extracting 

features to study the effect of the AN types on the performance of the MOC reflex.  

By finding that the length of the best time constant, which shows the greatest speech 

recognition accuracy improvement varies with increasing SNR levels, we intended to regulate the 

time constant of the MOC reflex in varying SNRs to further improve speech-in-noise perception. 

To achieve this, a new variance of spectral entropy (VSE) based SNR estimation algorithm was 

developed. Since the VSE is more robust against the varying noise power of nonstationary noise, 

the VSE based method showed fewer estimation errors in the cases of low SNRs and babble noise 

than the contemporary methods. To further improve the SNR estimation accuracy of the VSE based 

method, a nonlinear filter-bank was used for calculating the VSE. The nonlinear filter-bank is based 

on the nonlinear pathway of the DRNL filter-bank as the simulated compression reduces the 

variation of the VSE-SNR relationship over different noisy speech samples and hence reduces the 

SNR estimation errors. To verify the principle of dynamically optimizing the MOC time constant 

at different SNRs for speech-in-noise intelligibility improvement, the VSE based SNR estimation 

method was incorporated with a newly developed MOC reflex model. The SNR estimation 

incorporated MOC reflex model was tested with the auditory model–ASR system and showed 

further speech recognition accuracy improvement. In the end, the MOC reflex with dynamic time 

constant optimization model was simplified as a speech enhancement algorithm and implemented 

in an existing hearing aid model. The proposed speech enhancement algorithm demonstrated more 

intelligibility improvement when measuring the objective speech intelligibility metric of enhanced 

noisy speech. 
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Effect of the AN type for in MOC and effect of the MOC reflex time constant 

One of the main contributions of this thesis is that we used a computer model to study the 

effect of the MOC reflex time constant to speech-in-noise perception. One of the key findings in 

studying the auditory efferent system is that different time constants of the MOC reflex have been 

measured in both humans and nonhuman animals (Backus & Guinan, 2006; Cooper & Guinan, 

2003; Sridhar et al., 1995; Zhao & Dhar, 2011). It has been suggested that the time constants might 

have different functions in the auditory system (Cooper & Guinan, 2003; Sridhar et al., 1995). 

However, their effects on speech perception remain unknown due to the difficulties of using 

conventional physiological or psychophysical methods to access the relationship between time 

constants and speech intelligibility. This is because the time constant of the natural MOC reflex is 

not adjustable.  

Instead, we used a computer model, which simulates the process of the auditory system and 

speech recognition, to study the effect of the time constant. The effect of the time constants can be 

addressed by regulating the time constant parameter in the model and studying the corresponding 

speech recognition accuracy. Although previous studies have already used similar computer models 

to study the effect of the MOC reflex on speech-in-noise perceptions (Brown et al., 2010; Clark & 

Brown, 2014; Messing et al., 2009), the contribution of this thesis is to systematically study the 

effect of different time constants on speech-in-noise perception. The influence of different time 

constants of 85 ms, 118 ms, 200 ms, 450 ms, 1000 ms, and 2000 ms on speech-in-noise recognition 

accuracy was investigated. Previous studies reported that the longer time constant provides higher 

speech recognition accuracy (Clark & Brown, 2014) or speech intelligibility (Lopez-Poveda & 

Eustaquio-Martín, 2018). In contrast to previous studies, which only found the benefits of the long 

time constant, we found that the short time constant provided higher accuracy at SNRs above 15 

dB. Our findings indicated that both the long and short time constants are necessary to speech 

perception, which is consistent with the finding that both long and short time constants exist in the 

human auditory system (Backus & Guinan, 2006).  

In addition, the effect of the AN types on the performance of the MOC reflex was studied 

by extracting ASR features from simulated firing rates of different types of AN fibers. AN fibers 

with different spontaneous rate have long since been discovered and classified into different types 

of ANs. The functions or benefits of different types of ANs on speech perception is of particular 

interest but remains unclear ( Sachs et al., 2006; Winslow et al., 1987). This thesis contributes to 

the insights of the effect of the different types of AN in the case of MOC reflex processing. We 

found that with features extracted from the outputs of the HSR, MSR, and LSR AN fibers, the 

speech level of the MOC reflex shows improvement in speech-in-noise recognition. Particularly, at 

a lower speech level (50 dB), with features extracted from HSR AN fibers, the MOC reflex shows 
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the greatest speech recognition accuracy improvement over the broadest SNR range. This result 

indicates that the HSR response is important to speech perception, especially for AN, since the 

speech-in-noise processing benefits from the MOC reflex are consistent with the fact that the HSR 

represents the majority type of ANs in the human auditory system.  

VSE based SNR estimation method  

Another contribution of this thesis is that a new SNR estimation method based on the novel 

feature of VSE has been developed. Estimating the SNR in a given acoustical environment is a 

fundamental task in most speech signal processing applications (Narayanan & Wang, 2012) as the 

signal processing strategy needs to be regulated according to the estimated SNR to reduce the effect 

of the noise (Papadopoulos et al., 2014). However, SNR estimation is difficult because the clean 

speech is corrupted by the noise that makes determining the power of either clean speech or noise 

alone inaccessible. The SNR is particularly challenged by nonstationary noise as the statistics of 

nonstationary noise change considerably over time.  

This thesis has contributed an SNR estimation method with higher SNR estimation 

accuracy in nonstationary noise using the VSE. VSE is the variance of the spectral entropy, which 

characterizes the variability of the signal. Although spectral entropy has been already used in the 

VADs (Shen et al., 1998; Wu & Wang, 2005), this thesis has contributed to the first application of 

spectral entropy based features for SNR estimation. It is worth noting that a similar feature of long 

term signal variability (LTSV) has been demonstrated (Ghosh et al., 2011). However, the LTSV is 

only used for VAD and the VAD based SNR estimation would have high estimation errors in 

nonstationary noise due to the noise power tracking delays (Gerkmann & Hendriks, 2012). 

Moreover, the LTSV needs to calculate the entropy over the long term (longer than a second) of 

each of 450 FFT frequency bins, which is computationally demanding. In contrast, the VSE only 

needs to calculate the entropy over 10 frequency bands of the filter-bank, which is much more 

computationally efficient than the LTSV. Moreover, the VSE based method estimated SNR uses 

lookup tables which store the VSE-SNR relationship function. The SNR is estimated directly 

according to the measured VSE and is therefore more computationally efficient.  

The performance of the VSE based SNR estimation method was evaluated by measuring 

the mean absolute errors (MAE) of 800 clean speech utterances masked by 2-, 4-, 8-, 16-, 24-, and 

32-talker babble noise, and babble noise with an unknown talker number, at SNR levels between -

10 dB and 20 dB. The MAE of the VSE based method was compared with the contemporary WADA, 

NIST, NPE methods. The VSE method showed the lowest MAE in highly nonstationary noise 

(babble noise containing fewer talkers). The computational complexity was evaluated by measuring 

the processing time in MATLAB. The VSE based method showed the lowest computational 
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complexity. Therefore, the VSE based SNR estimation method developed in this thesis has a 

promising future for use in various speech signal processing devices.  

Nonlinear filter-bank based VSE SNR estimation method. 

Another contribution is that the benefits of cochlear compression has been simulated to 

improve the VSE based SNR estimation method. A nonlinear filter-bank, which simulates the 

compression of the cochlea, was used for VSE based SNR estimation. As mentioned before, the 

VSE is calculated using the output of the filter-bank. The properties of the filter-bank influence the 

performance of the VSE. Specifically, the SNR is estimated by estimating the VSE-SNR 

relationship function. Thus, the fitness of the relationship function to individual noise speech 

samples decided the SNR estimation accuracy. Cochlear compression is widely applied in 

contemporary hearing prostheses (Fortune & Scheller, 2000; Rosengard et al., 2005; Souza & 

Turner, 1998) to restore audibility as the compression amplifies the low level signal and reduces 

the high level signal that reduces the signal contrast (Stone et al., 2008). In the case of calculating 

VSE, reducing the signal contrast reduces the variation of the spectrum of the noisy speech over 

different samples. For example, it has been suggested that the inherent level fluctuations in of the 

signal are exaggerated in a linear system, whereas compression reduces the fluctuations ( Oxenham 

& Bacon, 2003). Reduction of the fluctuations reduces the variation of the VSE-SNR relationship 

function over different noisy speech samples, and increases the SNR estimation accuracy. Our 

testing results showed thatcompression reduces the variation of VSE-SNR relationship functions 

for all the tested types of noise. 

In addition, Laurence et al. (1983) reported that compression benefits the speech-in-noise 

intelligibility. They evaluated an analog system consisting of single-channel compression limiting 

having an attack time of 2 ms, a release time of 500 ms, and a compression threshold of 65 dB SPL. 

Intelligibility for speech in noise was significantly better for compression than for linear 

amplification. The improvement of the speech-in-noise intelligibility indicates that it is easier to 

detect the character of clean speech from the environmental noise. In the case of calculating the 

VSE, this would increase the noise discriminability of the VSE. Comparing the dynamic range of 

the VSE-SNR relationship function confirmed the testing results that compression increased the 

noise discriminability of the VSE by increasing the dynamic range of the VSE-SNR relationship 

function. Particularly, we found that the increase of dynamic range was most apparent in babble 

noise containing fewer talkers, which is consistent with the suggestion that the compression is more 

effective in more modulated noise (Souza, 2002).  

The MAE of the nonlinear filter-bank based VSE SNR estimation method was evaluated 

with 800 speech utterances in 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise at SNR levels between 

-10 dB and 20 dB. The results were compared with those of the linear filter-bank based VSE method, 
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and WADA, NIST, and NPE methods. The nonlinear filter-bank based method showed the lowest 

MAE in all types of noise. Particularly, in 2-talker babble noise, the MAE reduction was over 2 dB. 

There is increasing interest in using compression in speech signal processing devices to increase 

the audibility. Our proposed nonlinear filter-bank based VSE SNR estimation method will have a 

broader application of providing robust performance in speech signal processing applications as it 

obtains benefit from the compression for higher SNR estimation accuracy.  

Modified MOC model with dynamic time constant optimization  

This thesis developed a new MOC reflex model with dynamic time constant optimization. 

Numerous works on simulating the response of the MOC reflex over time have previously been 

done (Clark & Brown, 2014; Lopez-Poveda & Eustaquio-Martín, 2018; Messing et al., 2009). 

However, their work only used fixed time constants. Lopez-Poveda (2018) reviewed that the time 

constant of the MOC reflex varies with the changes of the stimulation properties. Sridhar et al. 

(1995) reported that the MOC time constant changes with variations of the stimulation efficiency. 

Since broadband noise has higher efficiency than narrowband noise on stimulating the MOC 

(Lilaonitkul & Guinan, 2009), broadband noise may have a higher efficiency at stimulating the 

MOC than clean speech, meaning that the time constant of the MOC might vary with the SNR.  

This thesis contributed to a modified MOC model, which regulates the time constant of the 

MOC reflex according to the varying SNR level. This model consists of a SNR estimation method, 

the best time constant calculation algorithm, and a modified MOC reflex strength calculation 

algorithm. The SNR estimation method is the one developed in Chapter 5. The best time constant 

is calculated according to the lookup table which stores the best time constant at each SNR based 

on the simulation results in Chapter 3. In contrast to the MOC reflex algorithm in Meddis’s model 

(2014), in our algorithm, the calculation of the MOC strength is based on the simulated output of 

IHCs instead of the AN firing rate. Although in the natural auditory system the MOC strength 

depends on the firing rate of the efferent nerve, in practice, the MOC strength simulation is often 

driven by the output of the IHCs to reduce the computational complexity (Messing et al., 2009; 

Smalt et al., 2014). This may contribute to the future study of separately studying the effect of the 

increase and decay time constants of the MOC reflex.  

To validate the model, the model outputs were compared with measured data from previous 

physiological studies (Guinan & Stankovic, 1996; Russell & Murugasu, 1997). The results showed 

that the model outputs matched the data well. To evaluate the performance of the model at providing 

speech-in-noise perception improvement, the model incorporated with the auditory model-ASR 

system. Our model was evaluated in 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise and pink noise 

for speech levels of 50 dB and 60 dB at SNR levels between -10 dB and 20 dB, and in the clean 

speech condition. The results showed that the MOC reflex with dynamic time constant optimization 
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has provided higher ASR recognition accuracy than the model using either fixed long (2000 ms) or 

short (118 ms) time constants.  

A speech enhancement algorithm based on MOC reflex with the dynamic time constant 

optimization 

The final contribution of this thesis is that we developed and evaluated a new speech 

enhancement algorithm based on the MOC reflex with dynamic time constant optimization to deal 

with the degradation of the speech intelligibility of audio signal processing devices in noisy 

environments. Many speech enhancement algorithms (reviewed in Chapter 2) have been developed 

over the past decades. However, it is reported that the conventional speech enhancement algorithms 

provide insignificant speech intelligibility improvements (Bentler et al., 2009; Sarampalis et al., 

2009; Levitt, 2001). One of the suggested reasons is that most of the speech enhancement 

algorithms focus on reducing the noise instead of improving the speech intelligibility. 

We proposed a speech enhancement algorithm based on the mechanism of the MOC reflex 

to improve the speech intelligibility as it is suggested that the MOC reflex plays an important role 

in speech in noise perception ( Brown et al., 2010; Guinan, 2006; Kawase & Liberman, 1993; 

Lopez-Poveda & Eustaquio-Martín, 2018; Winslow & Sachs, 1988). Although similar MOC based 

signal processing strategies have been developed and evaluated (Lopez-Poveda & Eustaquio-Martín, 

2018; Meddis et al., 2013; Messing et al., 2009), these studies only used a fixed time constant and 

hence the potential benefits of varying the time constant with different stimulation were not 

addressed. By simplifying the MOC model with the dynamic time constant optimization, a speech 

enhancement algorithm was proposed which tracks the SNR in fluctuating noisy environments and 

dynamically regulates the time constant.  

The algorithm was incorporated with an existing hearing aid model to evaluate its benefits 

to speech-in-noise intelligibility in hearing prostheses. The speech intelligibility was evaluated by 

measuring the objective intelligibility metric (CSII) of the enhanced noisy speech. To begin with, 

the speech-in-noise intelligibility was evaluated using the algorithm with different fixed time 

constants. The results showed that the effect of the different time constants at varying SNR levels 

was consistent with that found in Chapter 3. Then, the performance of the algorithm with the 

dynamic time constant optimization was evaluated in 2-, 4-, 8-, 16-, 24-, and 32-talker babble noise, 

pink, and white noise at SNR levels between -10 dB and 20 dB. The results showed that the 

proposed algorithm provided speech intelligibility 20 % (on average) higher in all noise conditions 

than the original MOC algorithm of the hearing aid with the fixed time constant. The apparent 

speech intelligibility improvement demonstrates that this algorithm has the potential to be applied 

in different hearing applications for benefiting speech-in-noise intelligibility. 
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8.2. Future works and further considerations 

Studying the effect of the MOC time constant based on ASR feature extracted from the firing 

interval of the auditory nerves.  

Physiological studies have found that speech information can be encoded by both the average firing 

rate (spectral feature) and the time structure of the auditory nerve (AN) activities (temporal feature) 

(Sachs et al., 2006; Winslow et al., 1987; Winslow & Sachs, 1988). It has been suggested that the 

timing representation of the speech (e.g. temporal fluctuation or modulation) could be more robust 

to environmental noise than the AN firing rate (Delgutte & Kiang, 2005). In this thesis, we have 

built an ASR based system to study the effect of the MOC reflex time constant by extracting features 

from the output of the simulated AN response. However, the features were only extracted from the 

simulated average firing rate of the AN fibers. The temporal characteristics of the AN response 

have not been addressed. Sachs & Young (1979) studied the AN response to steady-state vowels, 

at the intensity level of normal conversation. They found that the average firing rate of the AN 

fibers did not always show a clear peak at the format frequencies of the vowels, which indicates the 

limitations of only using the average firing rate for studying speech perception. 

The time constant of the MOC reflex relates to the process of the temporal modulation 

related speech information. The effect of the MOC reflex time constant on the temporal features of 

the AN response should also be investigated. In future work, the ASR system could be trained and 

tested with temporal features or a combination of average firing rate and temporal features. For 

example, the temporal features developed in (Jürgens et al., 2013) could be used for studying the 

effect of the MOC reflex time constant on speech intelligibility. Using both spectral features and 

temporal features of the AN activities could help to further understand the effect of the MOC time 

constant on speech in noise intelligibility.  

Improving the VSE based SNR estimation algorithm  

The major limitation of the VSE based SNR estimation algorithm is that it requires pre-

estimation of the relationship functions of different types of noise and stores them as lookup tables 

for SNR estimation. In practice, it might be difficult to classify the noise type, and the relationship 

functions of different types of noise in real environments might be not accessible. In addition, the 

storing of a huge amount of lookup tables might be memory consuming. It may be of interest to 

further improve the VSE method by eliminating the need for the relationship functions. According 

to Equation 4.19 in Chapter 4, the SNR can be calculated directly once both the MSpE and VSE of 

the noise and clean speech are available. The MSpE and VSE can be accessed using the noise 

detection method proposed in Chapter 4. In comparison with the noise power, the MSpE and VSE 

would be more stable over time as both of the metrics are independent to the noise power. Therefore, 

the influence of the noise detection delay on SNR estimation errors would be reduced. The MSpE 
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and VSE of clean speech can be obtained based on the statistical models. Numerous models (Gazor 

& Zhang, 2003; Jensen et al., 2005; Krishnamurthy & Hansen, 2009) have been developed to 

characterize the statistics of clean speech. For example, the distribution of the DFT coefficients of 

the clean speech has been proved that can be modelled using Laplacian and Gamma distribution in 

(Jensen et al, 2005). The VSE is calculated based on the spectral power of the signal. Therefore 

these statistic models of the clean speech could be used to estimate the MSpE and the VSE of clean 

speech in practice. This would improve the robustness of the VSE based SNR estimation method 

in practical cases.   

Studying the personalization of the proposed speech enhancement algorithm. 

Hearing ability and speech perception attributes varies among subjects. For example, in both 

physiological and psychological studies, it has been found that the properties (e.g. time constant, 

MOC strength, activation threshold) of the MOC reflex vary among individual subjects ( Guinan et 

al., 2003a; Yasin, Drga & Plack, 2013). Hearing ability variations might influence the performance 

of the MOC reflex based speech enhancement. For example, people with higher auditory sensitivity 

preferred a smaller amount of attenuation in hearing aids to reduce the attenuation caused speech 

distortion, whilst other people preferred larger attenuation to minimize the effect of noise (Neher et 

al., 2015). It is necessary to initialize or calibrate the speech enhancement algorithm based on the 

measured hearing ability of the individual user.  

The parameters of the algorithm should be able to be adjusted for personalization. For 

example, the length of the best time constants, attenuation increasing factor, MOC activation 

threshold, and maximum attenuation might vary with the changes of individual hearing attributes. 

However, this requires a method to effectively measure the hearing attributes of an individual user, 

and a method for adjusting these parameters according to the measured hearing attributes of the 

individual. In future work, the influence of the parameter setting on speech intelligibility for 

individual users should be studied. A complete hearing ability measurement and evaluation method 

could be developed.  

To study the performance on the intelligibility of continuous sentence.  

This thesis only studied the effect of the MOC reflex time constant on recognition of speech 

on utterance levels. In the literature, it has been shown that speech in noise intelligibility differs at 

different levels of speech (constant level, utterance level, and sentence level). The utterance level 

of the speech may be insufficient to fully study the effect of the MOC reflex with a time constant 

over seconds to speech in noise intelligibility. This is because the length of the silent pauses between 

utterances are differ from those between sentences (Zellner, 1994). Detection of the silent pauses 

(temporal gaps) of speech has reported to be important to speech-in-noise perception (Oxenham & 

Moore, 1997). However, testing a longer interval of speech is time consuming. This thesis has 
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focused on providing an initial work of studying the effect of the MOC reflex time constant to 

speech in noise intelligibility. In future work, the effect of the MOC reflex time constants on 

sentence level speech intelligibility could be studied. Using such long speech could also help to 

address the effect of the longer time constant (over 10 s), which has been measured in several 

physiological studies, and provide a clearer overview for understanding the time constant of the 

MOC reflex to speech in noise intelligibility.  
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9. Appendix  
Chapter 4: Derivation of equation (12)  

According to equation (12) we have: 

𝜎�̂�  =  
1

𝑀
{∑ [ℎ̅

𝐷

𝑀−𝑊
+ 𝑒𝐷(𝑖) − ℎ̅𝐷

𝑀−𝑊
−

𝑊

𝑀
(ℎ̅𝑌

𝑊
− ℎ̅𝐷

𝑀−𝑊
)]
2

𝑀−𝑊
𝑖=1   

+∑ [ℎ̅𝑌
𝑊 + 𝑒𝑌(𝑖) − ℎ̅𝐷

𝑀−𝑊 −
𝑊

𝑀
(ℎ̅𝑌

𝑊 − ℎ̅𝐷
𝑀−𝑊)]2} 𝑊

𝑖=1   

By further moving the term ℎ̅𝐷 and ℎ̅𝑌 into the bracket we have: 

𝜎�̂�   =  
1

𝑀
{∑ [𝑒𝐷(𝑖) −

𝑊

𝑀
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𝑊
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2
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Expanding the square we have: 

𝜎�̂�  =  
1
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Applying the sum to each term:  
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After further simplification we have: 
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Then: 
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