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Abstract
We introduce cartographer, a tool for editing and rewriting string diagrams of symmetric monoidal
categories. Our approach is principled: the layout exploits the isomorphism between string diagrams
and certain cospans of hypergraphs; the implementation of rewriting is based on the soundness and
completeness of convex double-pushout rewriting for string diagram rewriting.
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1 Introduction

String diagrammatic theories are increasingly important in computer science. They have
been recently been used in a number of applications, including enabling the simplification
of quantum circuits using the ZX-calculus [10], compositional descriptions of models of
concurrency such as Petri Nets [18, 6], compositional accounts of signal flow graphs in control
theory [7, 11, 1] and Bayesian reasoning [8, 14, 13]. These examples, as well as many others,
work with the language of symmetric monoidal categories (SMCs). This paper addresses the
need for tool support for symmetric monoidal theories - graphical rewriting systems of SMCs.

cartographer is a graphical editor and proof assistant for symmetric monoidal theories.
It provides a graphical string diagram editor to construct morphisms, and a prover in
which rewrite rules can be specified and executed. Further, cartographer has a firm
theoretical foundation, its rewriting backend based on recent work in the area [5, 3, 20, 4].
The goal of this paper is to motivate cartographer, explain the basic features of the
backend and the front end, and describe some of the technical challenges that were solved
in creating it. The tool and its user guide are available on the cartographer website at
http://cartographer.id/.

Our motivating example is the rewriting system in Figure 1. The intended semantic
interpretation is that of binary circuits, where each wire carries an n bit number for some
fixed n. Green nodes with two outputs copy numbers, those with no outputs discard their
input, while red nodes perform addition modulo 2n.
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Figure 1 Example rules for binary circuits with copying ( ), adding ( ), and discarding ( ).

As well as the rules in Figure 1, this rewriting system implicitly uses three generators;
atomic sub-diagrams, each with some number of inputs and outputs. These are the copy
( ), add ( ), and discard ( ) operations. The laws of symmetric monoidal categories
permit moving generators around up to an isotopy made precise in [15, 19]. For our purposes,
it suffices to say informally that generators can be slid along wires, and moved around on
the page, but not rotated. By way of example, consider the equivalent diagrams in Figure 2.

=

Figure 2 Example of string diagrams considered equal under the laws of SMCs.

cartographer allows reasoning modulo the laws of symmetric monoidal categories.
The user can deform morphisms up to the SMC laws without making proofs unsound, and
the prover does not require (e.g. when matching the l.h.s. of a rule) the user to explicitly use
the laws of symmetric monoidal categories. Put another way, the user should not have to
“untangle” the wires of the diagram before applying a rule of some theory.

To put this into context, compare cartographer to two “competing” tools: Quan-
tomatic [17] and Globular [2] (or its more recent descendant, homotopy.io). In a sense,
cartographer sits between them: providing a more general setting than Quantomatic,
while at the same time being more focussed than Globular.

software generality geometric intuition
Quantomatic compact-closed generators can implicitly be moved and wires bent back
Cartographer symmetric monoidal generators can implicitly be moved
Globular higher categories no implicit deformations permitted

Quantomatic deals with compact closed categories, in which not only may generators be
moved, but wires may be “bent backwards”. In terms of our circuit analogy, this would allow
for feedback, e.g. as used in a simple latch. cartographer allows such feedback, but as an
explicit compact closed structure in the theory at hand, not implicitly assumed to exist by
the underlying tool. On the other hand, Globular is much more general, aiming to support
diagrammatic reasoning in higher categories. While this allows more freedom, when working
with SMCs it comes at the cost of having to explicitly use SMC laws in proofs, e.g. using the
functoriality of the monoidal product to slide two generators past each other.

Contributions

The contribution of cartographer is twofold. First, in the back end we implement an
algorithm for matching and rewriting modulo the laws of SMC based on the adequacy result
of [5]. The algorithm works with a data structure for Open Hypergraphs, which we introduce
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in this paper. Second, in the front end, we use an algorithm for the layout of these directed
acyclic open hypergraphs which behaves well under rewriting and deformation of diagrams.

2 Directed Acyclic Open Hypergraphs

The main problem of implementing rewriting modulo symmetric monoidal structure is in
finding a data structure in which equivalent terms have a single representation. For example,
the two equivalent diagrams of Figure 2 should have the same underlying representation.
Our approach is principled, because it uses the isomorphism between equivalent terms and
cospans of hypergraphs found in [5]. Starting from this result, we propose an alternative but
equivalent representation which is more convenient to work with.

We begin with an overview of the open hypergraphs of [5], and the cartographer data
structure – illustrated in Figure 3 along with the corresponding string diagram. Beginning
with the central (open) hypergraph, hyperedges are denoted , and represent the
generators of the string diagram. There are two kinds of nodes, both denoted •. Firstly
(ordered) boundary nodes, which are connected to a single wire (input or output, but not
both). Secondly, internal nodes, having exactly one input and one output wire. These
two conditions are the “monogamicity” requirement of [5], and effectively ensure that the
hypergraph corresponds to a string diagram. For full details, see [5, Definition 3.6].

In contrast, the hypergraphs of cartographer are closed, and so nodes are rendered
simply as wires, each with exactly one input and one output connection. Boundary nodes
are replaced by adding special generators to the signature of the hypergraph, s (boundary
source) and t (boundary target). Nodes are then uniquely identified by the two “ports” they
connect – a port being a specific position on the boundary of a hyperedge.

c

a c

d

c

a c

d

s t

Figure 3 From left to right: a string diagram, its open hypergraph representation with signature
Σ = {a, c, d}, and the equivalent closed hypergraph with signature Σ′ = Σ ∪ {s, t}.

I Definition 1. A k → m cartographer hypergraph (Σ, E,W ) consists of:
the signature Σ, which can be thought of as the set of types of hyperedges. Each has
arity ar : Σ→ N× N, giving the number of inputs and outputs. We require that the Σ
contains boundary generators σ, τ , with ar(σ) = (0, k) and ar(τ) = (m, 0);
the set of hyperedges E, with a function typ : E → Σ that assigns types to hyperedges.
Moreover, there are boundary hyperedges {s, t} ⊆ E s.t. typ−1(σ) = {s}, typ−1(τ) = {t};
the set of wires W . Given a hyperedge e ∈ E, if ar(typ(e)) = (p, q) then we say e has
p input ports, denoted e1, e2, . . . , eq, and q output ports denoted e1, e2, . . . , eq. A wire
w ∈ W is an ordered pair (ei, f

j) of a source port ei and a target port f j , denoting a
directed connection from the ith output of e to the jth input of f .

3 Visualising and Editing Open Hypergraphs

In contrast to Quantomatic [17] which uses a force-directed layout, and Globular [2] which
has a fixed style for morphism layout, we use a layered graph drawing algorithm similar to
that of Dot [12]. Our reasons for choosing layered graph drawing are as follows. Firstly, it
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was an aesthetic choice to represent string diagrams similarly to how they appear in the
literature. Secondly, string diagrams drawn with the layered discipline retain a closer link
with the underlying algebraic description of morphisms, since the term can by easily be
read off the string diagram in the form of a composition-of-monoidal-products. Thirdly, in
contrast to force-directed approaches, the elements of a layered graph layout do not move
around on the page, which is problematic from a user-experience perspective, because they
are harder for the user to click. Additionally, force-directed layouts can change significantly
after a rewrite rule is applied, with little control over the resulting diagram. This can be
confusing for the user, because the string diagram may look very different. Finally, using
layered hypergraphs offers a simple and intuitive way to enforce acyclicity: users may only
connect generators if the target appears to the right of the source.

Interactive Layered Graph Drawing

We briefly summarise the interactive layered graph drawing approach of cartographer.
By “interactive”, we mean to distinguish cartographer’s layout algorithm from other
layered graph drawing approaches – such as Dot’s – in which a static graph is given as
input, and positions of nodes and edges are returned. cartographer allows for the
incremental construction of hypergraphs, meaning that users begin with a blank canvas, and
add generators and connections one-by-one. We call it a layered graph drawing approach
because it uses two key ideas from those approaches: the user of layers, and of pseudonodes.

I Definition 2. Given a cartographer hypergraph (Σ, E,W ) and e 6= e′ ∈ E, there is
a directed path from e to e′ if there exists a sequence (e1, . . . , en) where ei ∈ E, e1 = e,
en = e′ and for each ei, ei+1 there exist j1, j2 such that ((ei)j1 , (ei+1)j2) ∈W . A layering is
a function L : E → N such that:
(i) if there is a directed path from e to e′ then L(e) < L(e′);
(ii) for every non-boundary hyperedge e ∈ E, L(s) < L(e) < L(t).

The layering L essentially serves as the “x coordinate” of each hyperedge. The second
idea from layered graph layout is the use of pseudonodes, which are conceptually related to
the edge-points of Dixon and Kissinger’s Open Graphs [9], but used here only for layout
purposes: they prevent wires from crossing generators. For a concrete example of why this is
desirable, consider Figure 4. In the left-hand diagram, the wire from x to z passes through y
and it is not clear whether x is connected to y and y to z, or if x is directly connected to z.
Inserting pseudonodes into the graph clears up the ambiguity.

x

y

x

y

x

yz z z

Figure 4 Left, a diagram with only generators (rendered • and •), center, the same diagram after
inserting pseudonodes (rendered •), and right, the diagram as it appears with pseudonodes hidden.

The Layout Algorithm

We briefly outline the layout algorithm used in cartographer . Because the algorithm is
interactive, it takes the form of a layout state, and a number of actions that the user can
take. We model these actions as functions of the layout state.
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The layout state is a tuple (H,G) of a hypergraph H as in definition 1, and an integer
grid G, which keeps track of the positions of generators and pseudonodes as two dimensional
vectors. Users can perform two actions on the layout state:

1. Placing a generator at a specific position on an integer grid
2. Moving a generator from one position to another
3. Connecting a source port to a target port

Moving and placing a generator is straightforward: if a generator e is moved or placed
such that it would overlap with another generator f , then f is moved down within the same
layer to make space. However, when connecting ports we must ensure that the hypergraph
H remains acyclic. This is enforced using the following constraints:

If generators e, f have layers such that L(e) ≤ L(f), then outputs of f may not be
connected to inputs of e.
If a generator f is reachable from e, then f may not be moved such that L(f) ≤ L(e).

These constraints ensure that layering respects the properties of Definition 2, preserving
acyclicity. Finally, for every operation, the set of required pseudonodes is maintained, along
with their positions in G. In particular, this means updates for any operation which changes
connectivity, or modifies the number of layers between two generators.

4 Matching, Convexity, Rewriting

As well as an interactive string diagram editor, cartographer enables diagrammatic
reasoning. A derivation consists of a series of rewrites, using a set of rules specified by the
user. A rule consists of two cartographer hypergraphs, the lhs and the rhs, with identical
boundaries. Rewriting is implemented by double-pushout rewriting of hypergraphs, with
soundness and completeness guaranteed by [5, Theorem 5.6].

Applying a rule to a string diagram consists of three steps: finding a match for the lhs a rule,
checking for convexity, and applying the rewrite rule. A match is an hypergraph embedding
(an injective, homomorphic mapping of hyperedges and nodes) of open hypergraphs, with
one subtlety: the boundary ports of the pattern match can map to non-boundary ports in
the target. cartographer builds matches incrementally by using the backtracking logic
library logict [16]. Roughly speaking, wires and generators are added to the working match
until either there are no more unmatched wires or generators, or a contradiction is reached,
in which case the search backtracks. Candidate matches are then checked for convexity [5],
which is needed for a rewrite to be valid modulo the laws of SMCs. Roughly speaking, all
directed paths that start and end in a matched region must remain within the match. Once a
convex match has been identified, the internal hyperedges of the matched region are removed
and replaced with the right hand side of the rewrite rule.

The cartographer UI shows a list of matches of rules found in the current proof term.
Users can apply rewrites by hovering over each match to see which part of the graph will be
rewritten, and then clicking to apply the rewrite.

5 Conclusions and Future Work

cartographer is still in early stages of development. We are working on:
improving the layout algorithms by adapting heuristics from other tools that work with
layered graphs;

CALCO 2019



20:6 CARTOGRAPHER: A Tool for String Diagrammatic Reasoning

more advanced features for diagrammatic reasoning, including support for structured
proofs (using e.g. user-generated Lemmas) and adapting other user-friendly features
originally developed for theorem provers and proof assistants;
higher level specification features, such as support for bang-boxes, recursive definitions,
and proof strategies;
better decoupling between the rewriting back end and the layout front end, enabling
extensions such as rewriting modulo compact closed structure.
support for rewriting without the convexity condition, which would allow rewriting
modulo a chosen Frobenius structure [5, 20]. This would be useful as symmetric monoidal
categories with a chosen Frobenius structure (also called hypergraph categories) are a
special kind of compact-closed categories, and find applications in the study of quantum
processes, dynamical systems and natural language processing, among other areas.
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