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Abstract— The continuous stirred tank reactor (CSTR) is

representative of a typical class of chemical equipment where

the dynamics is strongly nonlinear. Two problematic issues in

control of a CSTR are the presence of model uncertainties

and external disturbances. Driven by these challenging issues

coupled with the need for demanding levels of performance,

this paper establishes the dynamic model of CSTR and then

proposes an output feedback sliding mode control in light of

the established model. The validity of the control algorithm

and of the presented model are further verified by MATLAB

simulation and experimental trials.

I. INTRODUCTION

As one of the most commonly used pieces of equipment

in the process industry, the CSTR plays a primary role in

many chemical processes. From the perspective of control,

the CSTR is highly nonlinear. Meanwhile, the difficulty of

accurate modeling and the influence of external disturbances

make the control of the CSTR challenging [1], [2]. The study

of modeling and control for a CSTR will not only improve

product quality and operational stability, but also provide a

useful reference for other nonlinear processes by reasonable

modifications of the modeling and control strategy.

There have been many contributions to the modelling of

the CSTR. A model for an immobilized biocatalyst CSTR is

established by the transfer function and Laplace method [3],

and this can be used to analyze the system’s input and output

behaviour. However the model does not fully consider the

internal mechanisms of the CSTR. A dimensionless dynamic

equation of a CSTR has been established in [4], and it is

widely cited in the literature [5], [6]. This model describes

a first-order, exothermic and irreversible reaction. It should

be noted that the model is built with A → B reaction as the

research object and uses the temperature of the jacket as

the control input. However, this reaction is not common in

chemical process control. Moreover, the temperature of the

reactor is controlled by the flow of the cooling or heating

reagent (mainly water) within the jacket which means that
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using the temperature as the control input is not appropriate.

Motivated by the above analysis, in this study, a mechanism

model is built based on the general reaction A+B →C+D,

while the jacket flow is used as the control input.

A lot of work has already considered CSTR controller

design. Based on traditional PID control, many new control

algorithms, such as fuzzy control [7], model predictive con-

trol [8] have been applied to the CSTR. Based on full state

feedback, a robust control has been presented to achieve dis-

turbance rejection [9]. However, full state feedback control

is not always feasible, since some states of the CSTR are not

measurable directly online in practice. Some observers [10],

[11] have been studied to resolve this issue. High robustness

and rapid response are required in today’s industry and such

observer based control methods may require high control

gains which in turn can lead to controller saturation. It is

challenging to design a controller which achieves demanding

performance levels for the CSTR only using system output

information and the estimated state.

Sliding mode control is a widely used control method

due to its excellent performance characteristics and strong

robustness properties [12], [13]. This control method has

been successfully applied to the CSTR. A novel output

feedback terminal sliding mode control (TSMC) is proposed

to estimate system states and stabilize the system output

tracking error to zero in finite time [14]. [15] proposes a

nonlinear adaptive tracking controller based on fuzzy sliding

mode control and Fourier integral control. It should be

noted that the two control methods mentioned above use

jacket temperature as the control input, which is difficult

to implement in practice. An output feedback sliding mode

control is proposed for a class of nonlinear systems in [16].

This controller exhibits strong robustness to mismatched

disturbances. However, the method did not consider problems

that may arise in implementation, such as the effects caused

by chattering.

The purpose of this study is to build the mechanism

model for a CSTR based on the general reaction and design

an output feedback sliding mode control. An approximate

linear system is obtained through Taylor expansion at the

equilibrium point. There after, the model uncertainties and

external disturbance are considered. In addition, a dynamic

compensator is designed to estimate the unmeasurable state.

Finally, an output feedback sliding mode controller is de-

signed based on the contributions in [16].



II. MECHANISM MODEL OF CSTR

Without loss of generality, in this paper, a class of exother-

mic irreversible reaction shown in (1) is considered for the

CSTR.

A+B →C+D (1)

In dt time, the principle of material conservation is applied

to the reactants:

dnA = qACA f −qCAdt −V (−r)dt (2)

dnB = qBCB f −qCBdt −V (−r)dt (3)

where nA = VCA, nB = VCB and r = −kCACB, k =
k0 exp(−E/RT ). The physical meaning of all parameters in

this section is given in Table 1.

The heat balance of the reaction is expressed as [17]:

MCpdT =qATA f ρACpAdt +qBTB f ρBCpBdt

+V (−∆H)kCACB −UA(T −TE2)dt

−qT ρCpdt

(4)

The temperature and heat balance equation in the jacket

is:

VEρECpEdTE2 = QρECpE(TE1 −T )dt +UA(T −TE2)dt (5)

Since the mass ratio of the reactants is 1 : 1, the feed flow,

temperature and initial concentration of the reactants A and B

are chosen to be the same for convenience; they are denoted

as q/2, Tf 0, C0, respectively.

Integrating (2)-(5) , the model can be expressed as:

ĊA =
q

2V
(C0 −2CA)− k0CACB exp(−

E

RT
)

ĊB =
q

2V
(C0 −2CB)− k0CACB exp(−

E

RT
)

Ṫ =
qTf 0 (ρACpA +ρBCpB)

2ρVCp
−

qT

V

+
(−∆H)

ρCp
k0 exp(−

E

RT
)CACB +

UA

ρVCp
(TE2 −T )

ṪE2 =
QE

VE
(TE1 −T )+

UA

VEρECpE
(T −TE2)

(6)

Writing (6) in matrix and vector form:

ẋ = g(x,u)

where x = [ CA CB T TE2 ] is the state vector and u =
QE is the control input, which represents the water flow in

the jacket.

III. MODEL LINEARIZATION AND PROBLEM

DESCRIPTION

Assume that ue is a constant input which forces the

system (6) to settle into a constant equilibrium state xe =
[x1e x2e x3e x4e]. (xe,ue) is the system equilibrium point, that

is, g(xe,ue) = 0. The equilibrium point of the system (6) can

be obtained because x3 is well chosen.

The objective is to linearize the system (6) around the

equilibrium point such that the nonlinear control system ẋ =

TABLE I: Parameter specification

Sign Physical meaning Sign Physical meaning

V Reactor volume TB f Feed B temperature
Cp Reactor specific heat capacity CB f Feed B concentration
ρ Reactor density qB Feed B flow
T Reactor temperature CPB B specific heat capacity
q Reactor flow ρB B density
M Reactor mass CB B concentration

TA f Feed A temperature TE1 Jacket inlet temperature
CA f Feed A concentration TE2 Jacket outlet temperature
qA Feed A flow QE Jacket flow

CPA A specific heat capacity VE Jacket volume
ρA A density ρE Jacket density
CA A concentration CpE Jacket specific heat capacity
k0 Index factor E Activation energy
R Gas constant A Heat transfer area

∆H Reflect the enthalpy change U Coefficient of heat transfer

g(x,u) can be approximated by a linear control system ẋ =
Ax+Bu.

Let x = xe+∆x,u = ue+∆u. From the Taylor’s expansion,

ẋ = g(x,u) = g(xe +∆x,ue +∆u) = g(xe,ue) +
[

∂g
∂x

]

(xe,ue)
+

[

∂g
∂u

]

(xe,ue)
+O(∆x,∆u).

For (6), after neglecting the higher order term, the follow-

ing linearization can be obtained:

ẋ =

[

∂g

∂x

]

(xe,ue)

x+

[

∂g

∂u

]

(xe,ue)

u

= Ax+Bu

(7)

Remark 1. (7) is an error state equation which represents

the deviation from the equilibrium point of each state.

Remark 2. The system state x4 cannot be measured, so the

system output is selected as y =
[

x1 x2 x3

]T
.

Considering the modeling error and external disturbance,

(7) is rewritten as:

ẋ = Ax+Bu+ f (x, t)

y =Cx
(8)

where x ∈ Rn,u ∈ Rm,y ∈ Rp are the system state, input and

output respectively, and n = 4,m = 1, p = 3, the function

f (x, t) represents the modeling error and external distur-

bance.

The following assumptions are imposed on (8), based on

practical considerations.

Assumption 1. The matrix pair (A,C) is observable.

There exists a matrix L such that A−LC has four eigen-

values which lie in the open left-half plane. Then given any

matrix Q1, the Lyapunov equation

(A−LC)T P1 +P1(A−LC) =−Q1 (9)

has a solution P1 > 0.

Assumption 2. f (x, t) has a structural decomposition:

f (x, t) = E∆ξ (x, t) (10)

where ‖∆ξ (x, t)‖ 6 ζ (x, t) 6 η(x, t)‖x‖, where ζ (x, t) is

Lipschitz with respect to x and Kζ represents the Lipschitz

constant.



Note that not all disturbances will affect the actual system

through the control input channel. Let f (x, t) belong to a

class of mismatched uncertainty, that is, E 6⊂ span(B).
Assumption 3. There exist a matrice F such that ET P1 = FC

holds.

The aim of this paper is to design a controller to make all

the states in (8) converge to zero asymptotically only using

the system output information and the estimated state while

exhibiting good robustness properties.

IV. DYNAMIC COMPENSATOR DESIGN

Since the system state x4 cannot be measured, it is

necessary to design a compensator. Based on the analysis

above, a dynamical compensator, or observer is designed for

(8):
˙̂x = Ax̂+Bu+L(y− cx̂)+φ(x̂,y, t) (11)

φ(x̂,y, t) =
{

E FCe
‖FCe‖ζ (x̂, t) FCe 6= 0

0 FCe = 0
(12)

where e = x− x̂.

Combining (8) and (11), it is straightforward to see that:

ė = (A−LC)e+ f −φ(x̂,y, t) (13)

Theorem 1. Under Assumptions 1-3, for the system (8) and

(11), if λ
−
(Q1)> 2Kζ ‖FC‖, e is asymptotically stable.

Proof:

Choose a Lyapunov function candidate V1 = eT P1e:

V̇1 =−eT Q1e+2eT P1( f −φ) (14)

In the case FCe = 0 :

eT P1 ( f −φ) = 0 ≤ Kζ ‖FC‖‖e‖2
(15)

In the case FCe 6= 0 :

eT P1 ( f −φ) = (FCe)T ∆ξ (x, t)−
(FCe)T

FCe

‖FCe‖
ζ (x̂, t)

≤ ‖FCe‖ζ (x, t)−‖FCe‖ζ (x̂, t)
≤ Kζ ‖FC‖‖e‖2

(16)

The following derivation can be obtained:

V̇1 6−
(

λ
−
(Q1)−2Kζ ‖FC‖

)

‖e‖2

6−
λ
−
(Q1)−2Kζ ‖FC‖

λ̄ (P1)
eT P1e

=−2α2V1

(17)

where α2 =
λ−(Q1)−2Kζ ‖FC‖

2λ̄ (P1)
.

Based on the above analysis,

λ
−
(P1)‖e‖2

6V1 (t)6V1 (t0)exp(2α2 (t0 − t))

‖e‖6 α1 exp(−α2t)
(18)

where α1 =

√

V1(t0)
λ−(P1)

exp(α2t0).

This means that lim
t→∞

e = 0 and Theorem 1 holds.

V. OUTPUT FEEDBACK SLIDING MODE CONTROL

ANALYSIS AND DESIGN

From (8) and (13), the dynamics in the (x,e) coordinate

system can be described as:
[

ẋ

ė

]

=

[

A 0

0 A−LC

][

x

e

]

+

[

B

0

]

u+

[

f

f −φ

]

(19)

y =Cx (20)

The purpose of this section is to design a sliding mode

controller based on knowledge of the system output y and

the estimated state x̂ so that the system (19) is asymptotically

stable. The sliding function is defined as:

σ = S1y+S2Nx̂ (21)

where S1 ∈ Rm×p, S2 ∈ Rm×(n−p) and N ∈ R(n−p)×n are

matrices to be designed.

Equation (21) can be further expressed as

σ = Sx−S2Ne (22)

where S = S1C+S2N.

By making σ̇ = 0, the equivalent control can be obtained:

ueq =−(SB)−1 (SAx−S2N (A−LC)e+S1C f +S2Nφ)
(23)

Meanwhile the sliding mode dynamics can be described

by:
[

ẋ

ė

]

=

[

Aeq B(SB)−1
S2N (A−LC)

0 A−LC

][

x

e

]

+

[

(In −B(SB)−1
S1C) f −B(SB)−1

S2Nφ
f −φ

] (24)

where Aeq = (In −B(SB)−1S)A.

There exist two nonsingular matrices T1 ∈ Rn×n and T2 ∈
Rm×m such that

T2ST1 = [ Im 0 ] (25)

Introducing the coordinate transformation z = T−1
1 x, the

sliding function (22) becomes

σ = T−1
2 z1 −S2Ne (26)

where z = col(z1,z2) with z1 ∈ Rm and z2 ∈ Rn−m.

The sliding surface can be expressed as:

z1 = T2S2Ne (27)

Meanwhile the sliding mode dynamics (24) become:
[

ż

ė

]

=

[

T−1
1 AeqT1 T−1

1 B(SB)−1
S2N (A−LC)

0 A−LC

][

z

e

]

+

[

T−1
1 (In −B(SB)−1

S1C) f −T−1
1 B(SB)−1

S2Nφ
f −φ

]

(28)

where T−1
1 AeqT1 =

[

A11 A12

A21 A22

]

and

T−1
1 B(SB)−1S2N (A−LC) =

[

D1

D2

]

, where A11 ∈ Rm×m

and D1 ∈ Rm×n.



The sliding mode dynamics (28) can be expressed by:
[

ż2

ė

]

=

[

A22 A21T2S2N +D2

0 A−LC

][

z2

e

]

+

[

f2

ψ

]

(29)

where f2 is the last n − m components of
[

T−1
1 (In −B(SB)−1

S1C) f −T−1
1 B(SB)−1

S2Nφ
]

z1=T2S2Ne

and ψ = [ f −φ ]z1=T2S2Ne.

Based on Assumption 1 and the compensator design, the

following inequality can be obtained:
∥

∥

∥
T−1

1 (In −B(SB)−1
S1C) f −T−1

1 B(SB)−1
S2Nφ

∥

∥

∥

6

∥

∥

∥
T−1

1 (In −B(SB)−1
S1C)

∥

∥

∥
‖E‖η ‖T1z‖

+
∥

∥

∥
T−1

1 B(SB)−1
S2N

∥

∥

∥
‖E‖η (‖T1z‖+‖e‖)

(30)

From Theorem 1, it follows that

eT P1ψ 6 Kζ ‖FC‖‖e‖2
(31)

Then, from the inquality

‖T1z‖=

∥

∥

∥

∥

T1

[

T2S2Ne

z2

]∥

∥

∥

∥

6 ‖T1‖(‖T2S2N‖‖e‖+‖z2‖)

it follows that there exist χ1 and χ2 such that

‖ f2‖6 χ1 ‖z2‖+ χ2 ‖e‖ (32)

where χ1 and χ2 are all dependent on η ,T1,T2,S1,S2.

Meanwhile since A22 is stable [16], this means that given

any matrice Q2 > 0, the equation

A22
T P2 +P2A22 =−Q2 (33)

has a solution P2 > 0.

Theorem 2. Under Assumptions 1-3, the sliding mode

dynamics (29) are asymptotically stable if M > 0.

where M =

[

M11 M12

M21 M22

]

and M11 = λ
−
(Q2)−2λ̄ (P2)χ1,

M12 = M21 =−
(

‖P2(A21T2S2N +D2)‖+ λ̄ (P2)χ2

)

,

M22 = λ
−
(Q1)−2‖FC‖Kζ .

Proof: Choose a Lyapunov candidate function:

V (e,z2) = eT P1e+ zT
2 P2z2 (34)

The time derivative of V is given as:

V̇ =−eT Q1e− zT
2 Q2z2 +2zT

2 P2(A21T2S2N +D2)e

+2zT
2 P2 f2 +2eT

2 P1ψ
(35)

Combining (31) and (32), it follows that

V̇ 6−
(

λ
−
(Q1)−2‖FC‖Kζ

)

‖e‖2

−
(

λ
−
(Q2)−2λ̄ (P2)χ1

)

‖z2‖
2

+2
(

‖P2(A21T2S2N +D2)‖+ λ̄ (P2)χ2

)

‖z2‖‖e‖

=−
[

‖z2‖ ‖e‖
]

M

[

‖z2‖
‖e‖

]

Hence Theorem 2 holds.

Based on the analysis above, the following output feed-

back sliding mode control is designed:

u =−(SB)−1

{

SAx̂+S2NL(y−Cx)+
σ

‖σ‖
K(x̂,y, t)

}

(36)

where the control gain

K(x̂,y, t) =(‖S1CE‖+‖S2NE‖)ζ (x̂, t)
+α1

(

Kζ ‖S1CE‖+‖S1CA‖
)

e−α2t +β
(37)

where β is a positive constant.

Theorem 3. Under Assumptions 1-3 and given Theorems

1 and 2, the control (36) can guarantee that the system (8)

reaches the sliding surface and maintains a sliding motion.

Proof:

From Assumption 1 and the compensator design, the

following inequality can be obtained:

S1C f 6 ‖S1CE‖(ζ (x, t)−ζ (x̂, t))+‖S1CE‖ζ (x̂, t)
6 Kζ ‖S1CE‖‖e‖+‖S1CE‖ζ (x̂, t)

(38)

S2NΦ 6 ‖S2NE‖ζ (x̂, t) (39)

Based on (6) and (11), the time derivative of the sliding

function (22) can be expressed as:

σ̇(y, x̂) =SAx̂+S2NLCe+SBu

+S1C f +S2Nφ +S1CAe
(40)

By applying the control (36) to (40), it follows that

σ̇ =−
σ
‖σ‖

K(x̂,y, t)+S1C f +S2Nφ +S1CAe (41)

Further, based on (8), (39) and Theorem 1, the following

inequality can be obtained

σT σ̇ 6−‖σ‖{K(x̂,y, t)−S1C f −S2NΦ−S1CAe}

6−‖σ‖{K(x̂,y, t)− (‖S1CE‖+‖S2NE‖)ζ (x̂, t)
−α1

(

Kζ ‖S1CE‖+‖S1CA‖
)

e−α2t
}

6−β ‖σ‖
(42)

Thus Theorem 3 holds.

Remark 3. As chattering may seriously damage the ac-

tuators, a smoothing technique is used in which σ/‖σ‖is

replaced by σ/(‖σ‖+δ ) where δ is a small positive number

in the testing.

VI. SIMULATION AND EXPERIMENTAL VERIFICATION

In this paper, the saponification process (43) with ethyl

acetate and sodium hydroxide as raw materials is selected.

CH3COOC2H5 + NaOH → CH3COONa + C2H5OH

(43)

Relevant parameters are given in Table 2. The data are

substituted into (6) and the final model can be obtained



TABLE II: Parameter values

Sign Value Sign Value

V 0.00877m3 Tf 0 298.15K

Cp 7.55e+004J/(kgmol ·K) C0 125mol/m3

ρ 993.924kg/m3 U 1200W/
(

m2 ·K
)

k0 0.02 CPB 7.53e+004J/(kgmol ·K)
q 40L/h ρB 989kg/m3

E 50000KJ/kgmol ∆H −158000 kJ/kmol
R 8.314J/(mol ·K) TE1 319.15K

CpE 7.535e+004J/(kgmol ·K) A 0.128m2

CPA 7.57e+004J/(kgmol ·K) VE 0.02m3

ρA 982kg/m3 ρE 997kg/m3

through model identification as follows:

ẋ1 = 0.08−0.15128x1 −0.02x1x2 exp(−
601.4

x3
)

ẋ2 = 0.08−0.15128x2 −0.02x1x2 exp(−
601.4

x3
)

ẋ3 = 0.0097+0.0048× exp(−
601.4

x3
)x1x2

+2.1(x4 − x3)−0.001234x3

ẋ4 =
u

7510
(319.15− x3)+0.5421(x3 − x4)

(44)

where the states x1,x2,x3,x4 represent the concentration of

ethyl acetate, the concentration of sodium hydroxide, reactor

temperature and jacket outlet temperature respectively; the

control input u represents the jacket water flow.

Remark 4. Since the mass ratio of the reactants is 1 : 1, the

responses of x1 and x2 are very similar. For reasons of space,

this paper only presents the simulation and experimental

results corresponding to x1.

A PID controller is applied to the actual system. Then the

same control signal is applied as an open-loop input to the

model (44). The corresponding data is compared. The results

shown in Fig. 1-2 indicate that the model (44) is reasonable.

The equilibrium point of the system (44) can be obtained

since the reactor temperature x3 is 303K:

[x1e x2e x3e x4e] = [0.5238 0.5238 303 303.1733]

ue = 43.6972
(45)

When the equilibrium point is substituted into (7), the

following linear model is obtained:

A =





−0.1527 −0.0014 −4.9391e−06 0
−0.0014 −0.1527 −4.9391e−06 0

3.4547e−04 3.4547e−04 −2.1012 2.1
0 0 0.5363 −0.5421





B =
[

0 0 0 0.0425
]T

From Remark 2 it is obvious that:

C =





1 0 0 0

0 1 0 0

0 0 1 0



 (46)

It is straight forward to verify that (A,C) is observable.

For Q1 = I4, the Lyapunov equation (9) has a solution :

P1 =









0.1127 −0.0077 −0.0269 −0.0462

−0.0077 0.1127 −0.0269 −0.0462

−0.0269 −0.0269 0.7421 −0.3915

−0.0462 −0.0462 −0.3915 0.5943









(47)

Suppose the modeling error and external

disturbance f (x, t) = E∆ξ (x, t), where E =
[

0.4357 −0.4357 0.1452 0.0957
]T

and ‖∆ξ (x, t)‖6
1/9(sin2x4 + |x1|).

Meanwhile, choose F =
[

0.0441 −0.0608 0.0703
]

such that ET P1 =FC holds. Assumptions 1-3 are guaranteed.

Then let

S =
[

1 1 1 1
]

(48)
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Fig. 1: The test for concentration of ethyl acetate
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Fig. 2: The test for reactor temperature

After direct calculation, it follows that

M =

[

−4.1106 −3.3459

−3.3459 −15.1869

]

(49)

Since M > 0 and λ
−
(Q1) > 2Kζ ‖FC‖, Theorem 1-3 can

be guaranteed. From (37), K(x̂,y, t) can be chosen as:

K(x̂,y, t) = 0.0268(sin2x̂4 + |x̂1|)+α13.0271e−α2t +β (50)

where α1 and α2 are already defined in Theorem 1.

For simulation, the initial condition is chosen as

col(x, x̂) = (0.25,0.25,1,1,0.5,0.5,2,2).
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Fig. 5: The experimental rig

The results in Fig. 3-4 show the effectiveness of the

designed controller. The compensator can effectively observe

the system states and the system shows good robustness

against mismatched disturbances.

The Process Modelling and Control Group from the China

University of Petroleum (East China) has developed the

experimental rig shown in Fig. 5. The experimental results

in Fig. 6-7 show that both the system states and control input

can reach the corresponding equilibrium point.

VII. CONCLUSION

In this paper, the mechanism model for a typical CSTR is

developed. The model is linearized for controller design. A

compensator is developed to estimate the unmeasurable state

and then an output feedback sliding mode control is designed

for the system. The simulation and experimental tests have

demonstrate the effectiveness of the proposed approach and

also validate the model.
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