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Abstract

Background

Increasingly, genetic analyses are conducted using information from subjects with estab-

lished disease, who often receive concomitant treatment. We determined when treatment

may bias genetic associations with a quantitative trait.

Methods

Graph theory and simulated data were used to explore the impact of drug prescriptions on

(longitudinal) genetic effect estimates. Analytic derivations of longitudinal genetic effects are

presented, accounting for the following scenarios: 1) treatment allocated independently of a

genetic variant, 2) treatment that mediates the genetic effect, 3) treatment that modifies the

genetic effect. We additionally evaluate treatment modelling strategies on bias, the root

mean squared error (RMSE), coverage, and rejection rate.

Results

We show that in the absence of treatment by gene effect modification or mediation, genetic

effect estimates will be unbiased. In simulated data we found that conditional models

accounting for treatment, confounding, and effect modification were generally unbiased with

appropriate levels of confidence interval coverage. Ignoring the longitudinal nature of treat-

ment prescription, however (e.g. because of incomplete records in longitudinal data), biased

these conditional models to a similar degree (or worse) as simply ignoring treatment.

Conclusion

The mere presence of (drug) treatment affecting a GWAS phenotype is insufficient to bias

genetic associations with quantitative traits. While treatment may bias associations through

effect modification and mediation, this might not occur frequently enough to warrant general

concern at the presence of treated subjects in GWAS. Should treatment by gene effect mod-

ification or mediation be present however, current GWAS approaches attempting to adjust
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for treatment insufficiently account for the multivariable and longitudinal nature of treatment

trajectories and hence genetic estimates may still be biased.

Introduction

Genome-wide association studies (GWAS) attempt to discover associations between genetic

variants and a particular phenotype (an outcome)[1]. Due to an increased interest in GWAS of

subjects who develop disease (see for example the ongoing Genetics of Subsequent Coronary

Heart Disease consortium[2–4]) genetic analyses will more frequently be conducted using

information about subjects who have received pharmacological (or other kinds of) treatments.

Because drug treatments may affect the phenotype of interest (e.g., diuretics lower blood

pressure), the presence of treated subjects is typically perceived as a cause of bias in GWAS.

For example, in a meta-analysis by Ehret et al.[5] blood pressure (BP) regulating drugs were

used by 0.5% to 99% of the subjects enrolled in the included cohorts (median across studies:

48%). To correct for potential effects of treatment, 10 mm Hg was added to the BP measure-

ments of treated subjects. Implicitly, such corrections assume that treatment effects do not

change over time and that all subjects respond the same; both assumptions are likely incorrect.

Time-invariant corrections for treatment(s) are based on the landmark paper by Tobin[6]

et al., who found that using a censored linear regression model or addition of a constant value

adequately corrected for treatment-induced bias in genetic association. At the same time they

warned against ignoring treatments, against excluding treated subjects, and against condition-

ing on received treatment. In the current manuscript we build upon Tobin’s work and general-

ize their work to settings were treatment status may change over time (longitudinal settings),

the treatment-outcome association may be confounded, treatment may depend on the genetic

variation and consider settings where treatment modifies the genetic effect.

Previous GWAS did not have access to longitudinal data on phenotypes, treatments and

potential confounding factors. However, with increased linkage of genetic data to electronic

healthcare records (EHR) this type of information will quickly become commonplace. To aid

statistical geneticists in analysing and interpreting such enriched GWAS, we first introduce

the genetic estimand (the quantity estimated) of interest. Second, we use graph theory to deter-

mine in which settings treatments may bias traditional genetic models ignoring treatment.

Thirdly, using simulated data we evaluate modelling strategies of the kind previously proposed

and extend these to longitudinal cohort settings (such as EHR database research). As an exam-

ple, we analyse single-nucleotide polymorphisms (SNPs) on their association with glycated

hemoglobin (HbA1c) measured over a 3-year period in a cohort of type 2 diabetes mellitus

(T2DM) patients.

Methods

GWAS estimand

Fig 1 depicts a simplified directed acyclic diagram (DAG) of a possible GWAS study where a

quantitative trait Y depends on a genetic exposure G, and (possibly unmeasured) environmen-

tal factors U. For the moment we will assume none of the enrolled subjects were treated with a

drug affecting Y. It is implicit in this graph that the genetic variant occurs before the pheno-

type, in fact a subjects’ genotype is determined at conception and often the phenotype is mea-

sured years later. In this setting γ represents the “life-time” effect of a genetic variant on the

phenotype. Often an estimate of γ is obtained from i = 1,. . .,n samples using for example a
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marginal linear regression model:

E½YjG� ¼ o0 þ g
�gi; ð1Þ

Fig 1. A directed acyclic cyclic graph of a genome wide association study with genetic (G) exposure, phenotype (Y), and environmental factors (U). Nb.

gamma represents the magnitude of the life-time genetic association.

https://doi.org/10.1371/journal.pone.0221209.g001
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with � to differentiate the marginal effect from a conditional effect such as presented in Fig 1.

In the following we derive expressions for treatment related bias of γ� of a “traditional” mar-

ginal GWAS model set out in Eq 1.

GWAS and treatment related bias

Obviously, between conception and the moment of phenotype measurement, many factors

may influence Y; one of these “environmental” factors may be a medical treatment D. From

Fig 1 it is clear that, should treatment simply affect Y without influencing γ, it is no different

from any other environmental factor and both may be represented by node U. In that case esti-

mates of γ� without conditioning on U will–in expectation–equal γ. In other words, treatment

affecting the phenotype is insufficient to bias the life-time variant-to-phenotype association.

However, γ� may be biased, if treatment lies on the causal pathway between G and Y; which

is depicted in the top left panel of Fig 2. For example, treatment could be initiated due to the

genotype increasing BP level, placing D between the genetic variant and subsequent measure-

ments of BP. We say that treatment mediates the effect of G on Y, and we infer from Fig 2 that

ignoring treatment, such as in Eq 1, results in E[γ�] 6¼ y. Similarly, but in a distinct manner,

treatment may bias γ� should treatment modify the effect of G on Y. For example, in the top

right panel we depict two separate graphs for untreated D = 0 and treated D = 1 subjects, if we

find that γD = 0 6¼ γD = 1 we say that there is a variant-by-treatment interaction, or equivalently,

we say treatment modifies the effect of G on Y [7]. The traditional GWAS model (Eq 1) does

not include such a variant-by-environment interaction, and therefore E[γ�] 6¼ y. Notice that in

the preceding D 2 {0,1}, however, the same arguments hold should D follow a different distri-

bution; discrete (e.g., representing multiple drugs, or counting drug prescriptions) or continu-

ous (representing dosages).

In the previous decomposition, the phenotype and drug exposure were considered to be

measured only once. Here, we define γ, that is the life-time effect a genetic variant has on a

phenotype, when there are two phenotype measurements available, at study baseline t = 0, and

(for example) at the end of the study t = T. As depicted in the bottom left panel of Fig 2, a drug

affecting Yt = T might have been prescribed based on Yt = 0 and U.

First let us assume that a drug may have been prescribed independently of G, that is α1 = 0.

In this setting we let λt represent the effect of a genetic variant on the phenotype at time t and

ω3 the effect the phenotype Yt = 0 has on the subsequent phenotype measurement Yt = T, then

the life-time genetic effect is

g ¼ lt¼T þ lt¼0o3:

These terms may be estimated using, for example, separate linear regression models:

E½Y t¼0jG� ¼ o0;t¼0 þ lt¼0gi; ð2Þ

with intercept ω0,t = 0. For t>0:

E½Y tjG;D� t;U � t;Y � t� ¼ o0;t þ ltgi þ o1di;� t þ o2ui;� t þ o3yi;� t þ o4gidi;� t; ð3Þ

where the index −t indicates the last measurement before t, and ω4 allows for an interaction

between treatment and the genetic variant. Here treatment is included, not to reduce bias, but

merely to decrease the residual variation and hence increase power.

The above is clearly a different estimator than typically employed in GWAS (Eq 1). How-

ever, from Fig 2 and Eq 3, we infer that when there is no mediation (α1 = 0, see Fig 2) and no

interaction ω4 = 0, γ� = γ. That is the traditional GWAS model of Eq 1 utilizing a single pheno-

type measurement estimates the life-time genetic effect.
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In the presence of treatment related mediation (α1,ω1 6¼ 0) however, applying the tradi-

tional GWAS estimator results in an estimate which is the sum of γ and a “bias” term related

to treatment (see the bottom left panel of Fig 2):

g� ¼ lt¼T þ lt¼0o3 þ a1o1 ¼ gþ a1o1:

In addition to mediation, treatment may bias a genetic association via interaction, which

occurs when ω46¼0. Assuming G does not influence the treatment decisions (i.e., an absence of

mediation, α1 = 0) applying the traditional GWAS estimator results in an estimate of γ� = λt =

T + λt = 0(ω3 + ω4); that is the gene by treatment interaction biases the traditional GWAS

estimate.

These decompositions show that under the strict null hypothesis of no genetic effect λit� 0

for all subjects during the entire follow-up period, tests and effect estimates cannot be biased

by the treatment, and the type 1 error rate will not be affected irrespective of the presence or

absence of treated subjects in a GWAS.

Fig 2. Directed acyclic graphs of treatment mediation or modification of a genetic variant-to-phenotype association. Nb. genetic (G) exposure, treatment (D),

outcome phenotype (Y), environmental factors (U), and time t. Pathway labels are explained in the main text and appendix.

https://doi.org/10.1371/journal.pone.0221209.g002
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The genetic effect in the presence of time-varying treatment

The bottom left diagram in Fig 2 extends these scenarios to considering longitudinal settings,

where both phenotype and treatment can change during follow-up; be it stopping treatment,

adding treatment, or change of dosage. In such a setting the genetic association with treatment

set to a reference level (e.g.,D = 0) equals:

g ¼ lt¼T þ
PT� 1

t¼0
lto3t: ð4Þ

While there are many ways to derive estimates of these terms (e.g., mixed-effect models),

here we note that an estimate of the first term may be derived using the model specified in Eq

2, and T many estimates of second term can be derived by repeatedly applying the model of

Eq 3.

Simulation methods: treatment modelling strategies in GWAS

EHR linked to genetics will often provide sufficient data to fit the model specified in Eq 2;

henceforth called the prior to treatment estimator. However, the model of Eq 3 often requires

a fine-grained level of data which may not always be available. For example, while Y and D are

frequently recorded in EHR, it is unlikely that all common causes (i.e., confounders) U of D
and Y, are also recorded; especially across time. Hence in typical empirical settings it may be

difficult to use Eq 4 to estimate γ in the presence of treatment mediation or gene by treatment

interaction. Therefore in simulation studies we compared a number of frequently used, or pro-

posed, alternative treatment modelling strategies[6], requiring less data, on their ability to esti-

mate γ.

The reader is referred to pages 1–5 in S1 Appendix and Table 1 for a detailed description of

the modelling strategies considered. Briefly, the strategies that we will consider:

■ Marginal model: regressing the last measured phenotype on a genetic variant, ignoring

any possibly treatment prescriptions (Eq 1); the typical model used in GWAS.

■ Conditional model 1: conditioning on treatment but ignoring common causes (con-

founders) of treatment and the phenotype; a potentially naïve attempt to model treatment

in GWAS.

■ Untreated subgroup fitting a marginal model on a sample restricted to untreated subjects

(or more generally a patient group treated with the same drug); a possible method of data

preparation.

■ Addition of a constant adding a constant value, representing the likely treatment effect,

to the phenotype of treated subjects and subsequently applying the marginal model; as

suggested by Tobin et al.

■ Censored regression Treating the observed phenotype values of treated subjects as right-

censored observations (e.g., the phenotype measurement of treated subject would have

been higher if they had not been treated); as proposed by Tobin et al.

■ Performance of these less data-intensive strategies will be compared to the model pre-

sented in Eq 3 without and with a gene by drug interaction: conditional models 2 and 3,

as well as the prior to treatment estimator (Eq 2).

These different treatment modelling strategies were applied and evaluated based on simu-

lated data generated following the diagrams presented in the lower part of Fig 2. Briefly, and
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without limiting generalizability, we made the following distributional assumptions: Dt fol-

lowed a Bernoulli distribution, G a trinomial distribution following the Hardy–Weinberg equi-

librium, the phenotype Yt followed a first-order Markov process with the regression errors of

Yt derived from a multivariate normal distribution, with Ut also following a multivariate nor-

mal distribution; for a full description of the data generating model we refer the reader to

pages 1–5 in S1 Appendix.

In scenario 1 an RCT was simulated, where drug treatment was allocated at baseline t = 0

and phenotype measurement were available for t 2 {0,1}. This RCT scenario was used to deter-

mine the impact of treatment by gene interactions, setting the interaction effect to ω4 2 {0.5,

1.0,. . .,5}, the treatment effect to ω1 = −10, and the direct genetic effect on Y to λ = 0.5. In sce-

nario 2 a nonrandomized study with t 2 {0,1} was simulated by setting the Y0 to D effect to

ea1 ¼ 1:2, and the confounder U0 effect on D to ea2 ¼ 1:5. The influence of the direct genetic

effect on Y was assessed by λ 2 {0.0,0.2,. . .,1.8} (scenario 2.A). Next we set λ = 0.5, and the

Table 1. GWAS treatment modelling strategies considered in simulated and empirical data.

Modelling

strategy

Implementation Key assumptions

Marginal model • Associates the phenotype to the genetic variant(s) without conditioning

on other variables or accounting for longitudinal measurements (taking a

single measurement for each subject).

• Assumes treatment does not modify the variant-to-phenotype

association

• Assumes treatment allocation is not (indirectly) influenced by the

genetic variant (absence of mediation).

Notably this model does not assume treatment does not influence the

phenotype

Conditional

model 1

• Associates the phenotype to the genetic variant(s), conditional on

prescribed treatment(s).

• Multiple period-specific models are fitted to account for the presence of

longitudinal data (e.g., on the phenotype and treatment).

• γ is estimated by summing λt.

• Assumes treatment does not modify the variant to phenotype

association

• Assumes there are no common causes of both treatment and the

phenotype (no cofounders).

• Assumes previous phenotype measurements do not influence

subsequent phenotype levels i.e., ω3t � 0

Untreated

subgroup

• Stratifies the available data on an untreated group of patients and fits a

marginal model to the subgroup; or more generally a group of patients

with the same treatment.

• Longitudinal changes are accounted for by applying this strategy T times,

an estimate of γ is obtained by summing λt.

• Assumes there are no common causes of both treatment and the

phenotype (no cofounders).

• Assumes previous phenotype measurements do not influence

subsequent phenotype levels i.e., ω3t � 0

Addition of

constant

• An (out-of-sample) estimate of the treatment effect is added to the

phenotype measurement of treated subjects.

• The adjusted phenotypes are modelled using period-specific marginal

models. An estimate of γ is obtained as before.

• Only accounts for mediation not for interaction.

• In longitudinal setting applying repeated period-specific marginal

models assumes ω3t � 0.

Censored

regression

• Phenotype measurements are treated as censored observations of their

unobserved untreated phenotype level.

• Following Tobin et al., we fit a censored regression model without

accounting for covariables. The longitudinal nature of treatment is

accounted for by applying period-specific models and summing λt

• Assumes non-informative censoring, in the sense that (conditional

on potential covariables) the phenotype distribution across treatment

groups is the same.

• Assumes and absence of variant by treatment interaction.

• In longitudinal setting applying repeated period-specific marginal

models assumes ω3t � 0.

Conditional

model 2

• Extend the period-specific conditional 1 strategy by conditioning on

common causes of treatment and the phenotype. To close any backdoor

pathway also conditions on previous phenotype levels.

• γ is estimated based on Eq 4.

• Assumes treatment does not modify the variant to phenotype

association

• Assumes all common causes of treatments and phenotypes were

(accurately) recorded, and modelled.

Conditional

model 3

• Extends conditional model 2 to allow for treatment by variant

interactions.

• Assumes all common causes of treatments and phenotypes were

(accurately) recorded, and modelled.

Prior to treatment

estimator

• Estimates the variant to phenotype association in patient data collected

before a treatment decision was made.

• Does not make assumptions on the presence or absence of

mediation, interaction or common causes of treatment and

phenotype.

• Estimates λ0 instead of γ

Please see appendix methods for a more formal algebraic decomposition.

https://doi.org/10.1371/journal.pone.0221209.t001
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treatment effect on Y1 was evaluated by setting ω1 2 {0,−4,−8,. . .,−36} (scenario 2.B). Finally,

in scenario 3 we simulated a nonrandomized study in which treatment changed over time; t 2
{0,1,. . .,5}. In scenario 3.A we assumed all t measurements were available, in scenario 3.B we

assumed measurements were available only at t 2 {0,5}; thus (incorrectly) treating the longitu-

dinal cohort as if it were a cohort where treatment is constant over time. We refer to pages 1–5

in S1 Appendix for a full description of the parameter values. To further explore the impact of

model misspecification we repeated scenarios 1 and 2 generating Y with residuals sampled

form a t-distribution with 2 degrees of freedom and under a dominant genetic model,

respectively.

All simulations were repeated 10 000 times, using the statistical language R (version 3.4.0)

for Unix[8], and the crch[9,10] and MASS[11] packages; results were evaluated based on bias,

the root mean squared error (RMSE), coverage, and rejection rates. Recognizing that the prior

to treatment estimator can never estimate γ (unless none of the subjects received treatment)

this model was evaluated based on its ability to estimate λt = 0 (the genetic effect prior to treat-

ment initiation).

Results

Simulation results: Treatment modelling strategies in GWAS

In scenario 1, (gene by treatment interaction, no mediation) the genetic estimates were biased

using the marginal model, conditional models 1 & 2, addition of a constant and censored

regression strategies. On the other hand, strategies that restricted the sample to untreated sub-

jects, that included an interaction term (conditional model 3), or that used the baseline pheno-

type measurement (prior to treatment) did not suffer from any bias (Fig 3). RMSE and

coverage followed a similar pattern, and power (rejection rate) of the unbiased treatment

modelling strategies was lowest for the conditional model 3 (36%), followed by the untreated

model (50%) and finally the prior to treatment estimator (62%).

In scenario 2, treatment mediated the genetic effect on the phenotype (no variant by treat-

ment interaction). Contrary to scenario 1, excluding treated subjects resulted in a biased

genetic estimate, showing an equal amount of bias as conditional model 1, with bias of the cen-

sored regression model generally highest (Fig 4). In these settings the marginal model was

biased as well, however often less than the strategies detailed above. Conditional models 2 and

3, as well as the prior to treatment model were unbiased throughout, with bias of the constant

approach close to zero unless treatment effect was much larger than the assumed effect of -10

(right panel Fig 4). As before, coverage followed a similar pattern as bias, ranging from 0.95 to

0.30. In general, increasing the genetic effect also increased bias (left panel of Fig 4), while bias

was relatively robust to variations in treatment effect. While conditional model 2 and 3 where

both unbiased, due to addition of an interaction term (in the absence of a true interaction

effect), model 3 had a slightly larger RMSE. Due to the total absence of treatment, the “prior to

treatment model” had the lowest RMSE.

Sampling residuals from a t-distribution (Figs A and B in S1 Appendix) instead of the stan-

dard normal distribution increased the RMSE, as expected, which impacted coverage and

rejection rate. However, relative performance of all modelling strategies remained the same.

Under a dominant genetic model (with residuals sampled from a standard normal distribu-

tion), bias and RMSE increased with the genetic effect (Scenario 2 A; Figs C and D in S1

Appendix). With a modest genetic effect (0.50), the relative performance of the different

modelling strategies was similar despite mis-specifying the genetic model (Scenario 1 and Sce-

nario 2 B; Figs C and D S1 Appendix).
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Fig 3. Simulation results for scenario 1 where the life-time variant-to-phenotype association was modified by

treatment (a variant by treatment interaction). Nb. Estimated bias equals the estimated minus the true effect;

coverage represents the proportion of times the true effect was included by the 95% confidence intervals; rejection rate

the number of times the null-hypothesis of no association was rejected; the root mean squared error (RMSE) equals the

square root of the squared bias + the variance of the point estimate. Simulations were repeated 10,000 times. See

Table 1 for a description of the modelling strategies used.

https://doi.org/10.1371/journal.pone.0221209.g003
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Scenario 3 extends the treatment mediation problem, allowing treatment allocation to vary

across time. Assuming all treatment decisions were recorded and in the absence of a genetic

effect on the phenotype (Table 2) coverage and type 1 error rates were close to nominal levels,

and bias was absent for all strategies (as expected). In the absence of a genetic effect, the RMSE

of conditional models 2 & 3 were similar in magnitude as the marginal model often employed

in genetics, and smaller than that of conditional model 1, censored regression, adding a con-

stant value, or focussing on untreated subjects. If there was a genetic effect however, all but the

prior to treatment, conditional 2 & 3 modelling strategies were biased, which also markedly

increased the RMSE. Given the adequate performance of the ‘constant’ strategy in scenarios 1

and 2 the observed bias under the alternative hypothesis may be surprising. This decrease in

performance (of the constant and other modelling strategies) is caused by not conditioning on

preceding phenotype measurement (i.e., assuming ω3t� 0), which results in λt quantifying the

t specific effect as well as the cumulative effect of preceding periods, resulting in an overestima-

tion of γ.

In scenario 3.B (Table 3) we ignored the longitudinal nature of the data, only utilizing base-

line and the end of study measurements. As expected under the null-hypothesis all modelling

approached performed the same, however under the alternative, coverage decreased below

95% for all modelling strategies, save the prior to treatment estimator.

Fig 4. Simulation results for scenario 2 where the life-time variant-to-phenotype association was mediated by

treatment. Nb. bias equals the estimated minus the true effect; coverage represents the proportion of times the true

effect was included by the 95% confidence intervals; rejection rate the number of times the null-hypothesis of no

association was rejected; the root mean squared error (RMSE) equals the square root of the squared bias + the variance

of the point estimate. Simulations were repeated 10,000 times. In sub-scenario A the genetic effect on the phenotype

was iterated, in sub-scenario B the treatment effect on phenotype was iterated. See Table 1 for a description of the

modelling strategies used.

https://doi.org/10.1371/journal.pone.0221209.g004
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Genetic associations with HbA1c in diabetic patients

As an illustrative example we analysed a sample of type 2 diabetes patients who were treated in

general practices (GP) in the Northern part of the Netherlands and participated in the “Gro-

ningen Initiative to Analyze Type 2 Diabetes Treatment” (GIANTT) initiative[12]. Data were

available on 280 patients who initiated treatment between 1999 and 2014, and consented to

participate in a genetic sub-study (approval was sought and obtained from the institutional

review board). We sought to associate 165 typed SNPs to longitudinal HbA1c levels (as per-

centage of glycated haemoglobin). The GIANTT database contains information about pre-

scriptions of antidiabetic treatments (ATC-codes: A10BA, A10BB, A10BF, A10BG, A10BH,

A10A), as well as longitudinal data on the following covariables (selected based on[13]): LDL-

cholesterol (LDL-C), systolic blood pressure (SBP), body mass index (BMI), serum creatinine,

as well as disease histories (CVD, respiratory disease, liver disease, and cancer). After removing

monomorphic SNPs, screening on Hardy & Weinberg’s equilibrium, with a frequency of less

Table 2. Results from scenario 3 A evaluating different treatment modelling strategies for genetic association analyses in the presence of mediation and time-vary-

ing treatment, analysed using longitudinal data.

Modelling strategy Genetic effect

λ� 0.00 λ� 0.50

Bias (RMSE) Coverage

(rejection rate)

Bias (RMSE) Coverage

(rejection rate)

Marginal 0.00 (0.24) 0.95 (0.05) -0.70 (0.74) 0.16 (0.92)

Untreated -0.01 (0.90) 0.95 (0.05) 2.31 (2.47) 0.27 (0.99)

Conditional 1 0.00 (0.72) 0.95 (0.05) 2.31 (2.42) 0.11 (1.00)

Conditional 2 0.00 (0.35) 0.95 (0.05) 0.00 (0.35) 0.95 (0.99)

Conditional 3 -0.01 (0.49) 0.95 (0.05) -0.01 (0.50) 0.95 (0.85)

Constant 0.00 (0.81) 0.95 (0.05) 2.74 (2.85) 0.08 (1.00)

Censored regression 0.00 (0.99) 0.95 (0.05) 3.17 (3.32) 0.11 (1.00)

Prior to treatment 0.00 (0.22) 0.95 (0.05) 0.00 (0.22) 0.95 (0.62)

Numbers indicate bias (RMSE), coverage and (rejection rate). Scenario A assumes all changes of treatment were observed, here λ represents the direct genetic effect on

the phenotype of interest.

https://doi.org/10.1371/journal.pone.0221209.t002

Table 3. Results from scenario 3 B evaluating different treatment modelling strategies for genetic association analyses in the presence of mediation and time-vary-

ing treatment, analysed ignoring the longitudinal nature of the data.

Modelling strategy Genetic effect

λ� 0.00 λ� 0.50

Bias (RMSE) Coverage

(rejection rate)

Bias (RMSE) Coverage

(rejection rate)

Marginal 0.00 (0.24) 0.95 (0.05) -0.70 (0.74) 0.17 (0.91)

Untreated 0.00 (0.34) 0.95 (0.05) -0.70 (0.78) 0.46 (0.66)

Conditional 1 0.00 (0.24) 0.95 (0.05) -0.70 (0.74) 0.17 (0.91)

Conditional 2 0.00 (0.24) 0.95 (0.05) -0.70 (0.74) 0.17 (0.91)

Conditional 3 0.00 (0.34) 0.95 (0.05) -0.70 (0.78) 0.46 (0.66)

Constant 0.00 (0.26) 0.95 (0.05) -0.64 (0.70) 0.31 (0.90)

Censored regression 0.00 (0.34) 0.95 (0.05) -0.58 (0.67) 0.59 (0.77)

Prior to treatment 0.00 (0.22) 0.95 (0.05) 0.00 (0.22) 0.95 (0.63)

Numbers indicate bias (RMSE), coverage and (rejection rate). Scenario B assumes treatment initiation and last biomarker are observed, with all variables (and changes)

between t = 0 and t = T unobserved, here λ represents the direct genetic effect on the phenotype of interest.

https://doi.org/10.1371/journal.pone.0221209.t003
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than 5%, and dropping SNPs with more than 5% missing data, 122 variants were retained for

further analyses (see Table A in S1 Appendix). Variant missingness across subjects did not

show excessive missingness (defined here as>5%) which would be indicative of quality con-

trol issues.

We first explored treatment and biomarker trajectories across time (Fig 5, and Appendix),

with longitudinal changes captured by 6-month windows. Most patients started with metfor-

min, slowly moving to other glucose lowering treatments, or combination therapies (including

insulin). HbA1c markedly decreased after baseline and on average stayed at a constant level

below 7% (the typical therapeutic target level). As indicated by the grey lines in Fig 5 within-

subject variation was modest (presumably due to GP monitoring), more pronounced within-

subject variation was observed for LDL-C, SBP, and creatinine (Figs E and F in S1 Appendix).

Depending on the biomarker, the amount of missing observations could be substantial (Fig

6 and Figs E through G in S1 Appendix). We explored whether HbA1c missingness was related

to the available genetic variation, not observing systematic dependencies (Fig H in S1 Appen-

dix). Associating missingness to longitudinal biomarker values and treatment, revealed a trend

between observed HbA1c and allocated treatment at baseline and the first year of follow-up

(Table B in S1 Appendix). While these preliminary analyses did not indicate an alarming miss-

ing data problem, we nevertheless decided to impute missing values using the mice package

[14]. Clustering within patient was accounted for using a random-intercept, and follow-up

periods were treated as random effects. Before implementing the imputation algorithm, 76

subjects without any HbA1c, LDL-C, BMI, SBP, or creatinine measurement during the entire

3-year period were excluded, resulting in a sample of 204 subjects.

In the subsequent genetic analyses of HbA1c, outcome HbA1c values we used from t+1 (pre-

venting mixing cause and effect, for example when modelling treatment). To provide a clearer

focus on the underlying modelling strategies, and limit the number of sparse cells, we chose to

simplify the analyses by grouping treatments (after imputation) into “no drug treatment”,

“metformin monotherapy” and “other drug therapies”. Furthermore, we did not consider

drug dose.

Fig 5. The distribution of treatment and HbA1c across a 3-year follow-up period of patients enrolled in the GIANTT cohort.

Nb. follow-up year 0 indicates the baseline period; the grey lines in the right panel depict individual HbA1c trajectories; O and N

represents the number of observed measurements compared to the number of available subjects.

https://doi.org/10.1371/journal.pone.0221209.g005
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The average genetic effect on HbA1c was close to zero for all variants, irrespective of the

treatment modelling strategy (right panel of Fig 6 and Table C in S1 Appendix). In untreated

subjects the average mean difference was slightly higher (0.12), however so was its standard

deviation: 1.20 for the untreated strategy compared to at most 0.65 for most other models. In

Table 4 we focus on the 12 variants that passed the genome-wide threshold; irrespective of the

estimator function. From the simulations we know that type 1 error will not be inflated under

the strict null-hypothesis, so these variants are likely true positive results (provided future rep-

lication). However, rs7957197 was only detected when focussing on untreated subjects, in the

current analysis this strategy often failed (due to low frequency of untreated subjects) and

hence one may question these results. Barring this variant, we find that point estimates of con-

ditional model 2 (which was often unbiased in the simulations) was typically similar to esti-

mates from the marginal model indicating an absence of treatment mediation. Under

conditional model 3 we find four variants (rS11920090, rs243088, rs4253762, rs6959643) that

did not reach significance otherwise, indicating the possible presence of treatment-by-variant

interaction. In general, we find some indication for treatment modification (which required

independent replication, especially considering the skewed treatment distribution), with the

overall agreement between modelling strategies suggesting an absence of treatment mediation

of the genetic effect on longitudinal HbA1c measurements.

Discussion

In this paper we showed that results from genetic quantitative trait analyses performed on

(partially) treated subjects may be biased when treatment status (directly or indirectly) medi-

ates the genetic association, or when this association is modified by treatment. In such settings,

ignoring treatment may bias estimators of genetic effects and yield sub-nominal coverage.

Simply conditioning on treatment is unlikely to remove bias (and may actually increase bias)

Fig 6. The mean difference and p-values of 122 SNPs associated to longitudinal HbA1c measurement utilizing different

modelling strategies to account for longitudinal changes in treatment, and covariables. Nb. The horizontal blue and red lines

indicated a -log10 p-value of 8−10 and 0.05, respectively. Based on[15] the Constant estimator was implemented by adding 1 to any

HbA1c measurement related to the subjects receiving glucose lowering medication. Extreme values were truncated. See Table 1 for a

description of the modelling strategies used.

https://doi.org/10.1371/journal.pone.0221209.g006
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unless information is available on common causes (confounders) of treatment and the study

phenotype. In the absence of treatment related mediation or variant-by-treatment interaction,

the possibility that a drug might affect a phenotype is insufficient to bias GWAS results of the

phenotype association. This contradicts a commonly held belief, that the mere presence of

treatment affecting the phenotype of interest invalidates GWAS. Similarly, under the null-

hypothesis of no genetic effect, GWAS are unbiased by treatment. In an empirical analysis

relating genetic variations to longitudinal measurements of HbA1c we observed limited evi-

dence for treatment induced bias of genetic associations.

Previously, Tobin[6] et al. found that censored linear regression or addition of a fixed value

to the phenotype measurement of treated subjects, adequately corrected for treatment-induced

bias in genetic analyses. At the same time, they warned against ignoring treatment all together,

excluding treated subjects, or conditioning on received treatment. The authors come to these

recommendations using a cyclic (feedback) data generating model, where treatment is initi-

ated based on a biomarker value, while at the same time decreasing the biomarker on which

treatment was initiated (Fig I in S1 Appendix). We have adapted Tobin’s scenario to explicitly

differentiate between the phenotype levels causing prescription and the phenotype level after

treatment initiation, with further extensions considering the longitudinal settings typical of

most patient histories. At the same time, we introduced issues that are likely encountered in

empirical settings, such as confounding of the treatment-outcome association, mediation of

Table 4. The mean difference and -log10(p-value) of the genetic variants with longitudinal bA1c that passed the genome wide significance threshold of 8×10−8 under

any of the proposed treatment modelling strategies.

Variant Minor Allele Frequency Marginal Untreated Conditional 1 Conditional 2 Conditional 3 Constant Censored Prior Treatment

rs11920090 A 0.14 -0.17 0.20 -0.13 -0.02 -2.57 -0.20 -0.25 0.06

(3.9x10-1) (7.7x10-1) (5x10-1) (8.9x10-1) (6.9x10-8) (3.4x10-1) (2.5x10-1) (6.5x10-1)

rs243088 T 0.50 0.03 2.33 0.02 0.12 2.30 0.00 0.03 -0.13

(8.3x10-1) (2.2x10-4) (9x10-1) (2.3x10-1) (7.5x10-13) (9.8x10-1) (8.6x10-1) (1.6x10-1)

rs2447090 G 0.32 0.06 2.92 0.01 0.11 2.44 0.17 0.05 -0.19

(7.1x10-1) (3.8x10-8) (9.6x10-1) (4.3x10-1) (4.3x10-6) (3.1x10-1) (7.7x10-1) (9.8x10-2)

rs4253762 G 0.09 -0.01 - -0.02 0.11 -2.50 0.03 0.08 -0.06

(9.5x10-1) - (8.8x10-1) (3x10-1) (2.6x10-12) (8.6x10-1) (5.9x10-1) (6.9x10-1)

rs6008976 A 0.49 -2.35 - -2.44 -1.06 -1.19 -2.63 -1.92 0.44

(1.2x10-75) - (1.3x10-74) (1.6x10-32) (4x10-2) (1.6x10-72) (8.8x10-44) (5.1x10-1)

rs6519979 C 0.50 2.94 - 2.86 1.07 0.77 2.66 3.37 0.47

(1.6x10-166) - (7.3x10-4) (2.2x10-4) (8.8x10-3) (1.1x10-141) (1x10-5) (6.2x10-1)

rs6959643 T 0.17 0.39 - 0.40 0.18 2.37 0.39 0.40 0.12

(2.2x10-1) - (2.1x10-1) (3.8x10-1) (4.3x10-30) (3x10-1) (3.2x10-1) (3.8x10-1)

rs6963810 G 0.42 1.14 0.93 1.16 0.53 -0.82 1.16 1.14 0.13

(7.1x10-14) (1.6x10-1) (8.6x10-15) (2.1x10-6) (2.4x10-1) (3.4x10-11) (2.8x10-11) (4.7x10-1)

rs73886756 A 0.50 -4.66 - -4.74 -1.73 -1.77 -4.93 -4.23 0.89

(2.8x10-208) - (3.1x10-209) (1.8x10-69) (1.6x10-4) (2x10-195) (1.2x10-141) (3.4x10-1)

rs784888 C 0.49 0.94 - 1.36 0.57 -0.72 0.66 0.39 0.33

(1.8x10-13) - (2.1x10-26) (4.4x10-9) (1x10-1) (2.4x10-6) (5x10-3) (6.2x10-1)

rs7957197 A 0.17 -0.47 2.59 -0.48 -0.11 1.02 -0.37 -0.51 -0.09

(1.5x10-2) (7.6x10-9) (1.2x10-2) (4.1x10-1) (7.3x10-2) (6.9x10-2) (2x10-2) (4.7x10-1)

rs9470794 C 0.08 1.10 - 1.13 0.40 0.13 1.08 1.03 0.09

(7.5x10-15) - (1x10-15) (2.2x10-4) (7.5x10-1) (1.9x10-12) (1.5x10-11) (6x10-1)

n.b. the “untreated” modelling strategy failed for 25 out of 122 genetic variants, with none of the other strategies failing.

https://doi.org/10.1371/journal.pone.0221209.t004
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the genetic effect by treatment, and gene-by-treatment interaction. Based on our analyses we

concur with Tobin that ignoring treatment allocation may bias genetic analyses when treat-

ment is (indirectly) affected by a genetic variant (or modifies its association). Similarly, we

agree that in such setting simply conditioning on treatment is insufficient (and may worsen

bias) to account for treatment related bias. However, as Tobin et al. eludes to as well, similar

remarks may be made about applying an unconditional censored regression model in the pres-

ence of informative censoring. Generally, strong parametric decisions are necessary when

modelling treatment in GWAS, for example, which potential confounders to consider, how to

model time, what is the influence of previous phenotypes measurements, and so on. Further-

more, depending on the applied setting, certain combinations of the proposed strategies may

perform better. For example, the censored regression model may be extended by including

covariables associated with the phenotype (similar to conditional model 2) increasing the like-

lihood of the non-informative censoring assumption.

While we focussed on the biasing potential of drug treatments in GWAS, this is only a spe-

cific example of the more general possibility of an environmental (non-genetic) variable biasing

GWAS via mediation or interaction. We belief the data generating model as presented here

closely approximates empirical settings where treatment(s), as well as determinants of treat-

ments and outcome, may change over time. We did not however, attempt to mimic any specific

disease-treatment combination. As such, we do not claim the simulation parameters resemble a

specific empirical setting, nor do we claim the absolute performance of the different strategies

necessarily reflect (the numerous possible) empirical settings. We do however expect the relative
performance of the evaluated strategies to be similar in empirical data. For example, (uncondi-

tional) models making strong parametric assumptions on the absence of mediation, interaction,

or confounding, will often perform worse than models allowing for such effects (at the potential

cost of an increased variance, e.g., comparing conditional model 2 versus 3).

We have purposely provided a detailed description of the data preparation steps of our

empirical example, highlighting problems often encountered in longitudinal data. Despite hav-

ing access to electronic healthcare records (EHR) from a closely monitored group of patients

(such as T2DM subjects) several biomarkers measurements were missing over time. As far as

these missing observations reflect measurements truly unavailable to prescribing healthcare

professionals, missingness might not bias genetic-estimates (e.g., when the missing data are

“missing completely at random”; MCAR). Despite the possible MCAR mechanism, we decided

to impute missing observations to retain the modest sample size available. As an illustration,

we focussed on a single imputed dataset, but fully recommend multiple imputation, or other

methods that correctly account for imputation related variance deflation. Furthermore, due to

sample size constraints, we simplified treatment measurements, grouping distinct therapies

and ignoring difference in dose. In larger cohorts, such as the UK biobank, the proposed

parametric models can be readily extended to account for additional treatments and dosage.

For example, changes in dosage can be accommodated for by replacing treatment with a con-

tinuous variable indicating the prescribed daily drug dose. We emphasize that researchers

should not only consider the type of potential confounders, but also the timing of its measure-

ment. For example, we decided to only include biomarkers from the previous 6 months (fol-

lowing a first order Markov process) as confounders, however, and depending on the disease

and treatment, information from additional periods may be relevant as well. Similarly, for cer-

tain pathologies previous phenotype levels (or more generally states) may not be expected to

independently influence the subsequent level or state.

As mentioned throughout this manuscript, depending on the phenotype and treatment of

interest, it may be impossible to collect sufficient data to use conditional models 2, and 3;

which performed best in our simulated scenarios. Even in linked electronic healthcare
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databases with national coverage, such as found in Estonia or Denmark, information on causes

of treatment initiation (or changes) are likely imperfectly collected or measured. Nevertheless,

we feel these proposed modelling strategies are relevant because they delineated that more sim-

plistic, less data intense, approaches currently applied will often perform worse. Despite the

likely absence of sufficient data, applying conditional models 2, or 3, may still provide useful

information on the likelihood of bias due to mediation or interaction, for example as imple-

mented in our empirical example on genetic association with HbA1c. Should results suggest

that treatment interaction or mediation are relevant for the genetic association of interest,

researchers may consider repeating gene/variant-specific analyses using data from RCTs,

where common causes of treatment and the phenotype are absent by design. Depending on

the study aim, a reasonable alternative could be to focus on phenotypes measured prior to

treatment initiation. This advice should however not be confused with recommending stratifi-

cation on untreated subjects, which would induce confounding bias. Instead, a prior to treat-

ment analyses entails finding a time (period) were most/all subjects did not receive treatment

(for example, before diagnosis).

In conclusion, we showed that treatment may bias genetic associations with quantitative

traits if the genetic effect is mediated by treatment or in the presence of a gene-by-treatment

interaction. To appropriately account for such bias, genetic studies should more frequently be

conducted within electronic healthcare databases, providing greater detail on the longitudinal

nature of treatment and phenotype. In the absence of treatment related mediation or interac-

tion, the genetic association obtained from a marginal linear regression model (traditionally

used in genetic analyses) is expected to perform adequately.

Supporting information

S1 Appendix. Supplemental methods and results.

(PDF)

Acknowledgments

We wish to thank J. van Boven for invaluable assistance with data extraction and curation.

Author Contributions

Conceptualization: Amand F. Schmidt, Hiddo J. L. Heerspink, Chris Finan, Rolf H. H.

Groenwold.

Data curation: Amand F. Schmidt, Petra Denig, Chris Finan.

Formal analysis: Amand F. Schmidt.

Investigation: Hiddo J. L. Heerspink, Petra Denig.

Methodology: Amand F. Schmidt, Rolf H. H. Groenwold.

Supervision: Hiddo J. L. Heerspink, Petra Denig, Chris Finan, Rolf H. H. Groenwold.

Validation: Rolf H. H. Groenwold.

Visualization: Amand F. Schmidt.

Writing – original draft: Amand F. Schmidt, Chris Finan, Rolf H. H. Groenwold.

Writing – review & editing: Amand F. Schmidt, Hiddo J. L. Heerspink, Petra Denig, Rolf H.

H. Groenwold.

Treatment induced biases

PLOS ONE | https://doi.org/10.1371/journal.pone.0221209 August 28, 2019 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221209.s001
https://doi.org/10.1371/journal.pone.0221209


References
1. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits.

Nature Reviews Genetics. 2005; 6: 95–108. https://doi.org/10.1038/nrg1521 PMID: 15716906

2. Patel RS, Asselbergs FW. The GENIUS-CHD consortium. European Heart Journal. 2015; 36: 2674–

2676. PMID: 26788565

3. Patel R, Tragante V, Schmidt AF, McCubrey RO, Holmes MV, Howe LJ, et al. Subsequent Event Risk

in Individuals with Established Coronary Heart Disease: Design and Rationale of the GENIUS-CHD

Consortium. Circulation: Genomic and Precision Medicine. 0. https://doi.org/10.1161/CIRCGEN.119.

002470 PMID: 30896328

4. Patel RS, Schmidt AF, Tragante V, McCubrey RO, Holmes MV, Howe LJ, et al. Association of Chromo-

some 9p21 with Subsequent Coronary Heart Disease Events: A GENIUS-CHD Study of Individual Par-

ticipant Data. Circ Genom Precis Med. 2019; https://doi.org/10.1161/CIRCGEN.119.002471 PMID:

30897348

5. Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood

pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet.

2016; 48: 1171–1184. https://doi.org/10.1038/ng.3667 PMID: 27618452

6. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment effects in studies of quantita-

tive traits: Antihypertensive therapy and systolic blood pressure. Statistics in Medicine. 2005; 24: 2911–

2935. https://doi.org/10.1002/sim.2165 PMID: 16152135

7. Schmidt AF, Klungel OH, Nielen M, de Boer A, Groenwold RHH, Hoes AW. Tailoring treatments using

treatment effect modification. Pharmacoepidemiology and Drug Safety. 2016; 25: 355–362. https://doi.

org/10.1002/pds.3965 PMID: 26877168

8. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation

for Statistical Computing; 2017.

9. Messner J, Mayr G, Zeileis A. Heteroscedastic Censored and Truncated Regression with crch. R-Jour-

nal. 2016; 8: 173–181.

10. Messner JW, Zeileis A, Broecker J, Mayr GJ. Probabilistic wind power forecasts with an inverse power

curve transformation and censored regression. Wind Energy. 2014; 17: 1753–1766. https://doi.org/10.

1002/we.1666

11. Venables WN, Ripley BD. Modern Applied Statistics With S. 4th ed. Technometrics. Springer; 2002.

https://doi.org/10.1198/tech.2003.s33

12. Voorham J, Denig P. Computerized Extraction of Information on the Quality of Diabetes Care from Free

Text in Electronic Patient Records of General Practitioners. Journal of the American Medical Informatics

Association. 2007; 14: 349–354. https://doi.org/10.1197/jamia.M2128 PMID: 17329733

13. Martono DP, Hak E, Lambers Heerspink H, Wilffert B, Denig P. Predictors of HbA1c levels in patients

initiating metformin. Current Medical Research and Opinion. 2016; https://doi.org/10.1080/03007995.

2016.1227774 PMID: 27552675

14. Buuren S van, Groothuis-Oudshoorn K, van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate

Imputation by Chained Equations in R. Journal of Statistical Software. 2011; 45: 1–67. https://doi.org/

10.18637/jss.v045.i03

15. Hirst JA, Farmer AJ, Ali R, Roberts NW, Stevens RJ. Quantifying the effect of metformin treatment and

dose on glycemic control. Diabetes Care. 2012; 35: 446–454. https://doi.org/10.2337/dc11-1465 PMID:

22275444

Treatment induced biases

PLOS ONE | https://doi.org/10.1371/journal.pone.0221209 August 28, 2019 17 / 17

https://doi.org/10.1038/nrg1521
http://www.ncbi.nlm.nih.gov/pubmed/15716906
http://www.ncbi.nlm.nih.gov/pubmed/26788565
https://doi.org/10.1161/CIRCGEN.119.002470
https://doi.org/10.1161/CIRCGEN.119.002470
http://www.ncbi.nlm.nih.gov/pubmed/30896328
https://doi.org/10.1161/CIRCGEN.119.002471
http://www.ncbi.nlm.nih.gov/pubmed/30897348
https://doi.org/10.1038/ng.3667
http://www.ncbi.nlm.nih.gov/pubmed/27618452
https://doi.org/10.1002/sim.2165
http://www.ncbi.nlm.nih.gov/pubmed/16152135
https://doi.org/10.1002/pds.3965
https://doi.org/10.1002/pds.3965
http://www.ncbi.nlm.nih.gov/pubmed/26877168
https://doi.org/10.1002/we.1666
https://doi.org/10.1002/we.1666
https://doi.org/10.1198/tech.2003.s33
https://doi.org/10.1197/jamia.M2128
http://www.ncbi.nlm.nih.gov/pubmed/17329733
https://doi.org/10.1080/03007995.2016.1227774
https://doi.org/10.1080/03007995.2016.1227774
http://www.ncbi.nlm.nih.gov/pubmed/27552675
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.2337/dc11-1465
http://www.ncbi.nlm.nih.gov/pubmed/22275444
https://doi.org/10.1371/journal.pone.0221209

