

Accepted Manuscript

Clast-cortex aggregates in experimental and natural calcite-bearing fault zones

Marieke Rempe, Steven A.F. Smith, Fabio Ferri, Thomas M. Mitchell, Giulio Di Toro

PII: S0191-8141(14)00204-1

DOI: [10.1016/j.jsg.2014.09.007](https://doi.org/10.1016/j.jsg.2014.09.007)

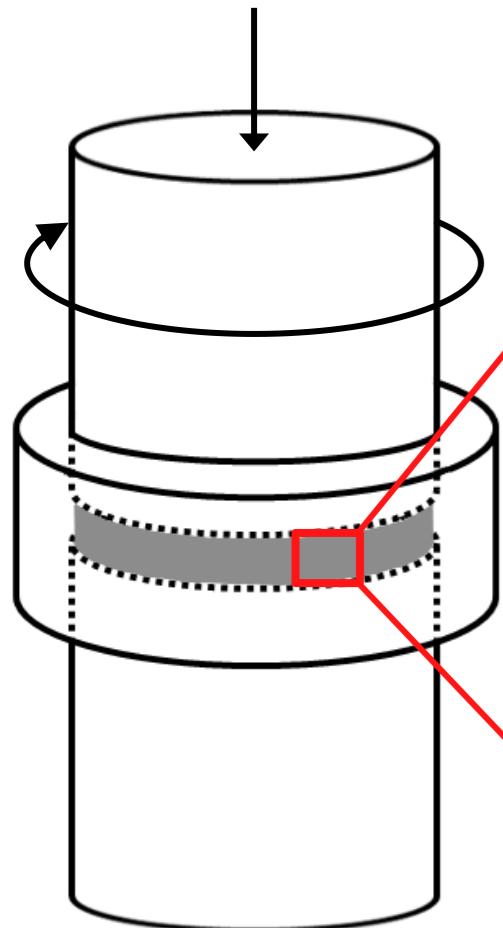
Reference: SG 3123

To appear in: *Journal of Structural Geology*

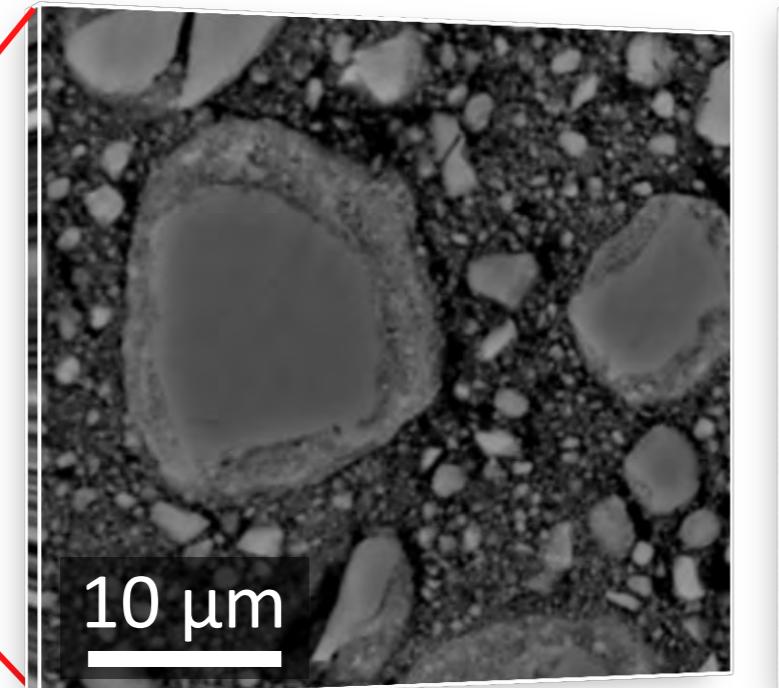
Received Date: 4 June 2014

Revised Date: 5 September 2014

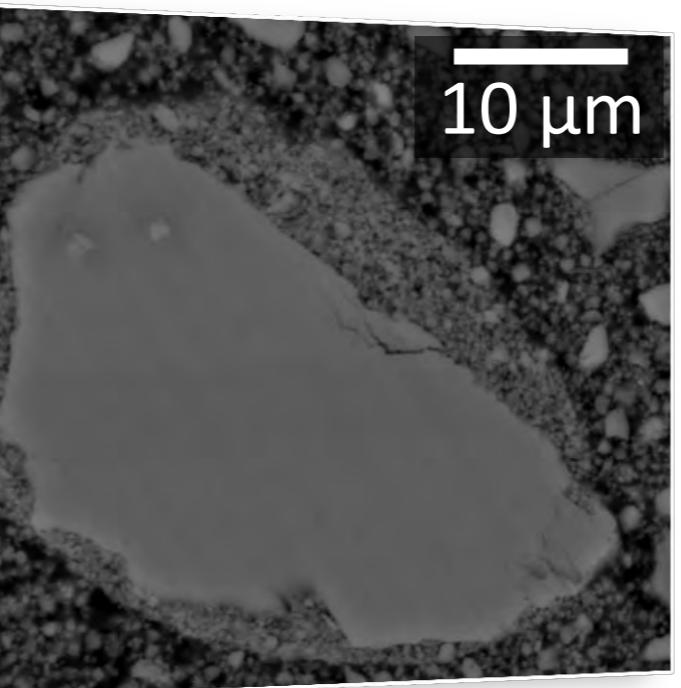
Accepted Date: 6 September 2014

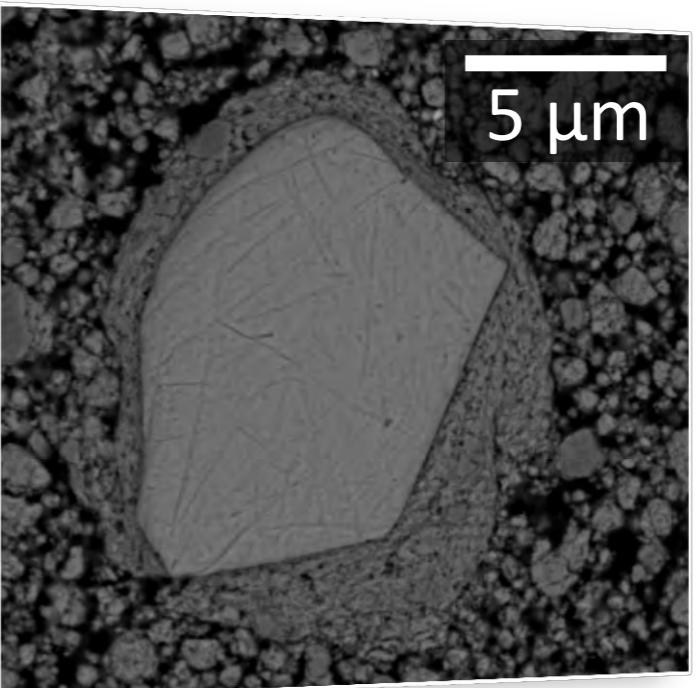

Please cite this article as: Rempe, M., Smith, S.A.F., Ferri, F., Mitchell, T.M., Di Toro, G., Clast-cortex aggregates in experimental and natural calcite-bearing fault zones, *Journal of Structural Geology* (2014), doi: 10.1016/j.jsg.2014.09.007.

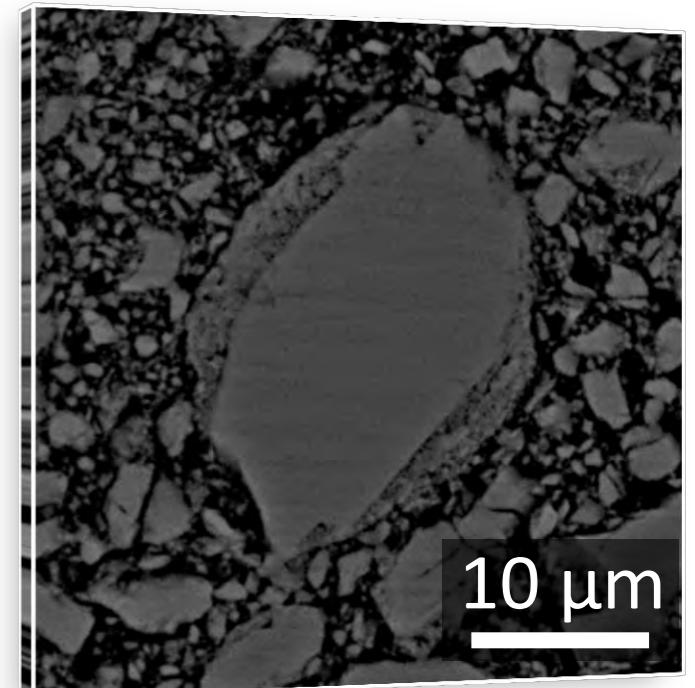
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


V_s : 100 $\mu\text{m/s}$ – 1 m/s

Slip: 0.3 – 5.6 m


σ_n : 2.8 – 17.3 MPa


100 $\mu\text{m/s}$


1 mm/s

0.1 m/s

1 m/s

1 Clast-cortex aggregates in experimental 2 and natural calcite-bearing fault zones

3 Marieke Rempe^{1*}, Steven A.F. Smith², Fabio Ferri³, Thomas M. Mitchell⁴, Giulio DI TORO^{1,5}

4 ¹Università degli Studi di Padova
5 Dipartimento di Geoscienze
6 Via G. Gradenigo, 6
7 35131 Padova, PD
8 Italy
9 marieke.rempe@web.de
10 giulio.ditoro@unipd.it

11 ²University of Otago
12 Department of Geology
13 Dunedin 9054
14 New Zealand
15 steven.smith@otago.ac.nz

16 ³Universidad de los Andes
17 Departamento de Geociencias
18 Cra 1 No 18A 10 Edificio IP
19 Bogotá, Colombia
20 f.ferri@uniandes.edu.co

21 ⁴University College London
22 Rock & Ice Physics Laboratory and UCL SeismoLab
23 Department of Earth Sciences
24 London, WC1E 6BT
25 UK
26 tom.mitchell@ucl.ac.uk

27 ⁵Istituto Nazionale di Geofisica e Vulcanologia (INGV)
28 Via di Vigna Murata 605
29 Rome, Italy

30
31 *Corresponding author: marieke.rempe@web.de
32

33 Keywords: clast-cortex aggregates, CCAs, fault gouge, rotary-shear experiments, slip zones,
34 limestone

35 **Abstract**

36 We investigated the formation mechanisms of rounded clast-cortex aggregates, a composite
37 grain found in the slipping zones of faults hosted in calcite- and clay-rich rocks. The natural
38 aggregates contain a central clast commonly made of host-rock fragments or reworked
39 cataclasite from the slipping zone. The central clasts are surrounded by an outer cortex of
40 calcite or clay grains a few μm or less in size. In laboratory experiments on calcite gouges
41 using two rotary-shear apparatus we investigated the dependence of clast-cortex aggregate
42 formation on the applied slip rate, normal stress, total displacement and ambient humidity.
43 Clast-cortex aggregates formed at all investigated slip rates (100 $\mu\text{m/s}$ to 1 m/s) but only at
44 relatively low normal stresses (≤ 5 MPa). The aggregates were better developed with
45 increasing displacement (up to 5 m) and did not form in experiments with water-dampened
46 gouges. In the experiments, aggregates formed in low-strain regions within the gouge layers,
47 adjacent to the highest-strain slip zones. We propose that clast-cortex aggregates in calcite-
48 bearing slip zones form in the shallow portions of faults during shearing in relatively dry
49 conditions, but our experiments suggest that they cannot be used as indicators of seismic
50 slip. Formation involves clast rotation due to granular flow accompanied by accretion of fine
51 matrix material possibly facilitated by electrostatic forces.

52 **1. Introduction**

53 A wide variety of micro- and meso-structural features are produced in fault zones
 54 from the interaction of deformation processes operating (often synchronously) across a
 55 range of time and length scales (e.g. Snocke et al., 1998). Recognizing (micro)structures that
 56 are characteristic of particular deformation conditions (e.g. of strain rate, total strain, fluid
 57 content) is a critical step towards interpreting fault mechanical behavior. For example,
 58 identifying seismic slip in the rock record (Cowan, 1999) relies on the identification of
 59 tectonic pseudotachylytes formed by frictional melting (Sibson, 1975; Di Toro et al., 2009),
 60 although many other fault-related structures and geochemical signatures are currently being
 61 investigated as potential seismic indicators, including, but not restricted to, injections of
 62 granular material (Lin, 1996; Smith et al., 2008; Rowe et al., 2012), pulverized fault zone
 63 rocks (Brune, 2001; Dor et al., 2006; Rempe et al., 2013), mirror-like slip surfaces (Boneh et
 64 al., 2013; Chen et al., 2013; Fondriest et al., 2013; Siman-Tov et al., 2013), localized zones of
 65 recrystallization (Kim et al., 2010; Brantut et al., 2011; Bestmann et al., 2012; Smith et al.,
 66 2013), graphitization of carbonaceous materials (Oohashi et al., 2013; Kuo et al., 2014) and
 67 thermal maturation of organic molecules (Polissar et al., 2011; Rabinowitz et al., 2013;
 68 Savage et al., 2014).

69 In this contribution, we focus on the conditions that determine the formation of
 70 rounded clast-cortex aggregates (CCAs; an abbreviation also used for *clay*-clast aggregates,
 71 (Boutareaud et al., 2008)), a distinctive type of composite grain recognized in several
 72 different lithologies and geological settings (Table 1). CCAs have been found in the localized
 73 slipping zones of tectonic faults (e.g. Warr and Cox, 2001; Boullier et al., 2009; Smith et al.,
 74 2011) (Figure 1) and in the basal detachment zones of large landslides (e.g. Beutner and
 75 Craven, 1996; Beutner and Gerbi, 2005; Anders et al., 2010). The main characteristic of CCAs

76 is a central clast enclosed by an outer cortex of fine-grained material that defines the
77 composite rounded structure (Figure 1).

78 Clast-cortex aggregates composed of calcite have been found in the principal slipping
79 zone of the Tre Monti fault, an active normal fault hosted mainly in limestones in the Central
80 Apennines of Italy (Figure 1a, b) (Smith et al., 2011). Geological constraints indicate that
81 exposures of the principal slip zone of the Tre Monti fault were exhumed from depths of <2
82 km (Smith et al., 2011). The cataclastic principal slip zone (Figure 1c) consists almost entirely
83 of calcite (from Energy Dispersive X-Ray Spectroscopy in the Scanning Electron microscope
84 (SEM) and X-ray powder diffraction (XRD) measurements) and is up to several centimeters
85 thick. The principal slip zone contains a texturally distinct ultracataclasite layer <10 mm thick
86 containing CCAs between 50 μ m – 3 mm diameter (Figures 1c, d). The central clasts are
87 composed of either host-rock (fossiliferous and micritic limestone) fragments or reworked
88 cataclasitic material (Figure 1d). The outer cortices are up to 1 mm thick and composed of
89 calcite with a grain size (<5 – 20 μ m) similar to the surrounding matrix. The cortices are
90 distinguished in the petrographic microscope by a dark brown rim visible in plane-polarized
91 light. The cortices also contain internal color variations that often define roughly concentric
92 laminations (Figure 1d).

93 Laboratory experiments can contribute to our understanding of the deformation
94 processes resulting in the formation of CCAs. In high-velocity rotary-shear experiments on
95 clay-bearing gouges, Boutareaud et al. (2008) and (2010) produced rounded “clay-clast
96 aggregates” similar to those found in the most-recently active slipping zone of the
97 Chelengpu thrust fault (1999 Mw 7.6 Chi-Chi earthquake; Boullier et al. (2009)). In the
98 experiments of Boutareaud et al. (2008) and (2010), clay-clast aggregates were formed in
99 both dry and water-dampened conditions, at high slip velocities (\geq 0.09 m/s), low normal

100 stresses (≤ 1.2 MPa) and up to several tens of meters displacement. Boutareaud et al. (2008);
101 (2010) proposed that the clay-clast aggregates were formed by dehydration of clays and
102 subsequent thermal pressurization of pore fluids due to frictional heating, causing rotation
103 of clasts in a liquid water/vapor medium. It was proposed that finer-grained clay materials
104 accreted to the clasts due to electrostatic and capillary forces.

105 Since the initial findings of Boutareaud et al. (2008), rounded aggregates have been
106 produced in several experimental studies (Table 1 in Han and Hirose (2012)) using clay-
107 bearing gouges. In particular, Han and Hirose (2012) performed an experimental study on
108 quartz and quartz-bentonite gouges. By conducting low- to high-velocity rotary-shear
109 experiments, Han and Hirose (2012) found that clay-clast aggregates developed in their
110 experiments at both sub-seismic and seismic sliding velocities (500 $\mu\text{m/s}$ – 1.3 m/s) and only
111 under room-dry conditions. The results of Han and Hirose (2012) suggest that rounded
112 aggregate grains may not be a reliable indicator of fast slip in clay-bearing gouges, and that
113 the mechanisms leading to the formation of aggregate grains warrant further study.

114 In this study, rotary-shear experiments were conducted on layers of synthetic calcite
115 gouge to investigate the processes contributing to the formation of natural and
116 experimental CCAs in calcite-bearing slip zones like the Tre Monti normal fault (Smith et al.,
117 2011). We systematically studied not only the dependence on slip velocity, on which
118 Boutareaud et al. (2008) and Han and Hirose (2012) concentrated, but also the effect of total
119 displacement, normal stress, and ambient humidity (i.e. room-dry, water-dampened and
120 vacuum). Our results contribute to a better understanding of the significance of CCAs in
121 tectonic fault zones, and provide constraints on the deformation processes active within
122 shallow, granular slipping zones in carbonates.

123 **2. Methods**124 **2.1. Experimental Set-Up**

125 A total of thirty-six rotary-shear experiments were conducted using two rotary-shear
 126 apparatus at normal stresses ranging from 1 to 17 MPa, slip rates over four orders of
 127 magnitude (0.0001 to 1 m/s) and total displacements from 0.27 to 5.58 m under both room-
 128 dry and water-dampened conditions (Table 2). Twenty-two experiments were performed at
 129 low normal stresses (1 to 3 MPa) with ROSA (**R**otary-**S**hear **A**pparatus) installed at the
 130 Department of Geosciences of Padua University (Padua, Italy). Fourteen experiments were
 131 performed at higher normal stresses (2.8 – 17.3 MPa) with SHIVA (**S**low- to **H**igh-**V**elocity
 132 **A**pparatus) installed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome,
 133 Italy. SHIVA was also used to perform three additional experiments under vacuum (10^{-4}
 134 mbar) conditions.

135 Due to the circular sample geometry used in the rotary-shear configuration, slip velocity
 136 and total displacement depend on the position along the radius of the sample. Thus, we
 137 follow Hirose and Shimamoto (2005) and calculate an “equivalent velocity” $v_e =$
 138 $\frac{4\pi R(r_i^2 + r_i r_o + r_o^2)}{3(r_i + r_o)}$, with r_i and r_o being the inner and outer radius of the sample, respectively,
 139 and R the number of revolutions per minute. The total displacement consequently
 140 corresponds to the equivalent displacement $d_e = v_e t$.

141 **2.1.1. Experiments with ROSA**

142 The basic set-up of ROSA, built by MARUI & CO., LTD (model MIS-233-1-77) as
 143 designed by T. Shimamoto, is illustrated in Figure 2a. It has a 11 kW servomotor with
 144 revolving speeds from 1.5 rpm to 1500 rpm, which can be reduced by a factor of up to 10^{-6}
 145 by a gear system. The revolution speed is measured via a rotary encoder (Figure 2a, R1; 3600

146 pulses/revolution). The torque is measured by averaging the output from two compression
147 load cells (Figure 2a, T1 and T2) with a resolution of 0.5 N. To obtain information about
148 shortening and dilation of the samples, the axial displacement is measured with a high-
149 sensitivity displacement gauge (Figure 2a, D) with a resolution of 1 μ m. A normal load of up
150 to 10 kN can be applied on the stationary column via a pneumatic system; for higher normal
151 stresses of up to 50 kN a hydraulic cylinder can be installed. The applied load is monitored by
152 a compression load cell (Figure 2a, L) with a resolution of 5 or 25 N for the pneumatic and
153 hydraulic cylinders, respectively. Mechanical data are collected at a rate of up to 1 kHz.

154 Of the twenty-two gouge experiments conducted with ROSA (Table 2), fourteen were
155 performed by sandwiching a layer of gouge up to a few millimeters thick between two solid
156 rock cylinders 25 mm in diameter (typically tonalite or gabbro). The surfaces of the solid rock
157 cylinders were roughened with 150 grit to promote deformation within the gouge layer. The
158 gouges were contained along the outside by a Teflon sleeve fastened with a jubilee clip
159 (Figure 2b). Several tests run to measure the friction of the Teflon sleeve showed that it
160 contributes approximately 10-15% (corresponding to $0.05 < \mu < 0.1$) to the measured friction
161 values (where the friction coefficient, μ , is calculated as shear stress/normal stress). This is
162 consistent with the findings of Sawai et al. (2012) who reviewed the influence of Teflon
163 friction in ten high-velocity experimental studies that employed a similar sample geometry.
164 We have chosen not to correct the mechanical data for the effects of Teflon friction. The
165 sample assembly is fixed in the apparatus with hydraulic-mechanical locks. Rotation of the
166 upper column shears the gouge layer. After the experiment, the entire sample assembly
167 (solid rock cylinders + gouge layer + Teflon ring + jubilee clip) can be impregnated with epoxy
168 resin thus minimizing gouge loss and potential disruption of microstructures. Eight
169 experiments were conducted using an annular steel sample holder (Figure 2c). In this setup,

170 the ring-shaped gouge layer (with int./ext. diameters of 25/40 mm) is contained by inner and
171 outer Teflon rings.

172 2.1.2. Experiments with SHIVA

173 A detailed report of the design and capabilities of SHIVA is provided in Di Toro et al.
174 (2010). With SHIVA, an annular steel gouge sample holder was used (description and
175 calibration tests in Smith et al. (2013)). Inner and outer rings contain the gouge layer
176 (int./ext. diameters of 35 and 55 mm) and slide over a base disc (Figure 2d). Using an all-
177 steel gouge holder prevents contamination of the gouge sample by decomposition of Teflon.
178 Mechanical data are collected at a rate of up to 25 kHz. SHIVA is equipped with a Pfeiffer Hi
179 cube vacuum pump that is able to create a minimum pressure of 10^{-4} mbar in a chamber
180 surrounding the samples (described in Violay et al. (2013)). During an experiment in near-
181 vacuum conditions, this pre-imposed pressure might increase due to the release of volatiles
182 from the gouge sample, in our case due to thermal decomposition of calcite.

183 *2.2. Sample Preparation and Analysis Techniques*

184 The gouge experiments were conducted on powder derived from Carrara marble
185 (Figure 3a). The marble was first ground to a powder in a pestle and mortar for several
186 minutes and then sieved to different particle size fractions. For the starting materials, the
187 fractions <150 μm and <180 μm were used in, respectively, Padua and Rome. The single
188 fractions were weighted to obtain the particle-size distribution of the starting material
189 (Figure 3b). Three batches of starting material (CMG1, 2 and 3) were prepared consecutively,
190 two of which were analyzed using semi-quantitative X-ray powder diffraction at the
191 Geoscience Department, University of Padua (Figure 3c). The software package High Score
192 Plus (PANalytical) was used for phase identification and quantitative phase analysis by the
193 Rietveld method (Rietveld, 1967). Batch CMG2 is composed of c. 72.3% magnesium calcite,

194 21.7% dolomite, and 6% white mica (muscovite/illite). Batch CMG3 is composed of >98%
195 calcite and <2% white mica. SEM analysis indicates that the composition of CGM1 is similar
196 to that of CMG3, containing only minor amounts (<2%) of dolomite and white mica.

197 For experiments with ROSA, 1.5 g of starting material was used to produce a pre-
198 experiment gouge layer thickness of c. 1.5 mm. For SHIVA, 5 g of starting material were used
199 to produce a gouge layer thickness of c. 3 mm. When water-dampened gouge was used, 20
200 wt% deionized H₂O was evenly added to the gouge layer using a syringe.

201 After each experiment the deformed gouge sample was saved in epoxy, and polished
202 petrographic sections were prepared for microstructural analysis. The sections were cut
203 approximately parallel to the slip direction and perpendicular to gouge layer boundaries.
204 Samples were analyzed using a JEOL JSM-6500F Field-Emission Scanning Electron Microscope
205 (SEM) in backscattered mode (acceleration voltage 20 kV; working distance 8 - 20 mm) at the
206 Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome. SEM images of selected
207 samples were used to investigate grain size and shape characteristics using the image
208 analysis software Fiji (Schindelin et al., 2012).

209 3. Results

210 3.1. Mechanical Behavior of Calcite Gouges

211 The friction coefficient (μ ; shear stress/normal stress) in both room-dry (Figure 4a) and
212 water-dampened (Figure 4b) experiments ranges from 0.5 to 0.8. In experiments at high-
213 velocity (>1 m/s) and high normal stress (>10 MPa), initial peak friction of c. 0.8 was
214 observed after 0.1-0.2 m of slip (e.g. s272 in Figure 4a). In such cases, peak friction was

215 followed by dynamic weakening that reduced the friction coefficient to a “steady-state”
 216 value between 0.3-0.6.

217 All experiments conducted with room-dry and water-dampened gouges showed initial
 218 gouge compaction of 100 – 300 μm (Figures 4a, b). In some room-dry experiments, a
 219 transient phase of dilation occurred following initial compaction (e.g. s272, Figure 4a). When
 220 observed, this transient dilation was between 10 – 30 μm and was followed by renewed
 221 compaction (e.g. 272, Figure 4a). In some experiments, a second phase of dilation was
 222 recorded after displacements >0.5 m (e.g. s776 in Figure 4a). In those cases, secondary
 223 dilation was between 5 – 180 μm , but may include a component that reflects minor gouge
 224 loss (in the experiments performed with ROSA). Figure 5 summarizes measurements of
 225 transient dilation and total dilation (i.e. transient + secondary dilation). In room-dry
 226 experiments, the amount of secondary dilation tends to increase with displacement. No
 227 significant amount of gouge layer dilation was recorded at any stage during experiments
 228 with water-dampened gouges (Figure 5).

229 *3.2. Strain localization and textural zones in room-dry experiments*

230 Up to three distinct microstructural zones are present within the deformed room-dry
 231 samples (Figure 6a):

232 1. Zone I consists of relatively coarse-grained gouge similar to the starting material. In zone
 233 I, grains are angular to sub-angular and up to c. 150 μm in size.

234 2. Zone II is up to 800 μm thick and has a compacted and highly comminuted matrix with
 235 grain sizes on the order of a few microns (Figures 6a, b). The matrix contains larger grains
 236 up to 100 μm in size composed of a central clast surrounded by a fine-grained outer
 237 cortex defining an overall rounded shape, i.e. calcite CCAs (Figure 6b-d). In all of the

238 experimental samples that were analyzed with the SEM, Zone II is the only zone in which
239 CCAs were developed. The central clasts often contain angular embayments along their
240 outer margins that are in-filled by finer cortex material (Figure 6c). Calcite grains
241 comprising the cortex are $<1\text{ }\mu\text{m}$ in size and appear to be loosely aggregated (Figure 6d).
242 Individual rounded grains on the order of 100 nm in size are recognizable.

243 3. Zone III is up to 300 μm thick and comprises highly comminuted and banded gouge
244 material (Figures 6a, e). The banding is wavy and defined by variations in grain size and
245 porosity (Figure 6e). Internally, single bands up to 100 μm wide contain grain size
246 grading, with finer-grained material towards the stationary side. The stationary side of
247 each band is typically marked by a discrete fracture surface that may have originated as a
248 shear surface in the experiments.

249 The distribution of the three zones depends on experimental conditions, and not all
250 three zones are always present. In experiments with relatively high displacements or high
251 slip velocities (e.g. r88 in Figure 6a), zones II and III are well developed at the expense of
252 zone I. Zones II and III are typically best developed at a distance of a few millimeters from
253 the outer edge of the cylindrical samples (Figure 6a), before they thin again towards the
254 outer edge where slip velocity and total displacement were highest (Figure 6a). Within zone
255 II, CCAs formed preferentially in areas with relatively high porosity (e.g. Figure 6b). In some
256 samples, a thin sliver ($<100\text{ }\mu\text{m}$) of comminuted material belonging to zone II is variably
257 developed adjacent to the stationary side of the gouge holder (Figure 6a), although this
258 sliver does not contain CCAs.

259 *3.3. Strain distribution in room-dry experiments*

260 Figure 7 shows the microstructure of an experiment (s886) containing a c. 2 mm-wide
 261 strain marker made from dolomite gouge (particle size <250 μm). The vertical marker was
 262 constructed perpendicular to gouge layer boundaries and the imposed shear direction,
 263 allowing the angular strain (γ) within the deformed gouge layer to be calculated as $\gamma = \tan\phi$,
 264 where ϕ is the angle between the original and deformed marker (Figure 7a). In this
 265 experiment, the margins of the marker were not sheared to the same degree (Figure 7b),
 266 which may be due to the thickness of the marker and the annular geometry of the sample.
 267 For the evaluation of shear strain an average of the angles as shown in Figure 7b was taken.
 268 Towards the rotary side of the gouge layer, the marker is only slightly distorted, defining a
 269 zone of low strain (mean $\gamma \leq 1.6$). Further towards the stationary side of the gouge layer, the
 270 marker is sheared progressively towards parallelism with the gouge layer boundaries,
 271 defining an intermediate-strain domain (mean $\gamma \geq 3.1$). In a layer c. 220 μm thick adjacent to
 272 the stationary-side, the marker is heavily disrupted, but some individual dolomite grains are
 273 dispersed throughout this layer. Assuming that almost all of the total displacement was
 274 accommodated in this layer (only a negligible amount of displacement is accommodated in
 275 the low- and intermediate-strain domains where the dolomite marker remains intact), the
 276 bulk strain can be approximated by dividing its thickness (220 μm) by the total experimental
 277 displacement of 2.5 m, resulting in a finite shear strain of c. 1850.

278 Several R1-Riedel shears (terminology after e.g. Logan et al., 1979), defined by bands
 279 of grain-size reduction and fractures (the latter assumed to have formed by normal stress
 280 unloading), cut through the low- and intermediate-strain domains at angles of c. 15-20° to
 281 the gouge layer boundaries (yellow dashed lines in Figure 7b). Where the R1-shears cut the
 282 dolomite marker, discrete offsets of c. 10-180 μm are observed along the margins of the

283 marker, with the sense of offset systematically the same as the bulk shear sense (i.e.
 284 synthetic R1-shears). The fine-grained high-strain layer is also cut by fractures that link
 285 downwards into the R1-shears. These fractures are characteristically observed in the
 286 highest-strain layers at the end of experiments and are thought to have formed by normal
 287 stress unloading at the end of the experiments.

288 *3.4. Formation Conditions of Experimental Clast-Cortex Aggregates*

289 As noted above, CCAs formed exclusively within Zone II in the deformed gouges. In
 290 addition, they were formed only under certain experimental conditions. In Figure 8,
 291 experiments performed over a wide range of normal stresses, slip velocities and
 292 displacements are classified as having mainly well-developed (W), poorly-developed (P) or
 293 no (N) CCAs. Red letters indicate room-dry experiments and blue letters indicate water-
 294 dampened experiments. Well-developed CCAs are those with a cortex that completely
 295 surrounds the central clast, defining an overall rounded structure (e.g. Figure 8d). Poorly-
 296 developed CCAs are those where the cortex does not completely surround the central clast
 297 (e.g. Figure 8e).

298 *3.4.1. Room-dry Conditions*

299 Figure 8a shows the dependence of CCA formation on slip velocity and displacement
 300 at 1 and 3 MPa normal stress under room-dry conditions (red letters). At 1 MPa normal
 301 stress CCAs are generally well developed (e.g. example in Figure 8d), except in experiments
 302 that have low velocity (<0.1 m/s) combined with low total displacement (0.5 m). At higher
 303 displacements (>3 m), aggregates form at all investigated slip velocities. At a higher normal
 304 stress of 3 MPa, longer displacements are needed to form aggregates: At 3 MPa, no CCAs
 305 developed in experiments with 0.5 m displacement and well-developed CCAs only formed in
 306 experiments with displacements of more than c. 4 m.

307 The effect of normal stress on the formation of CCAs was further tested by carrying
308 out a separate series of five experiments over a wider range of normal stresses than shown
309 in Figure 8a, at a constant slip velocity of 0.1 m/s and a total displacement of 3 m (Figure 8b).
310 These experiments show that for a given layer thickness, CCAs are better developed at lower
311 normal stresses. With a 3 mm thick starting gouge layer, CCAs were not developed at a
312 normal stress of 17 MPa, poorly developed at 10 MPa, and well developed at 5 MPa. With a
313 1.5 mm thick gouge layer, CCAs were poorly developed at 3 MPa and well developed at 1
314 MPa. These data indicate that in room-dry calcite gouges CCAs are preferentially formed at
315 relatively low normal stress.

316 3.4.2. Wet Conditions

317 No CCAs developed under wet conditions (Figure 8a, blue letters), regardless of the
318 slip velocity or total displacement. The microstructure of the wet samples (Figure 9) is
319 characterized by a relatively thick zone adjacent to the rotary side which contains large
320 rounded to sub-rounded grains embedded in a uniformly fine-grained matrix (grain size <20
321 μm).

322 3.4.3. Vacuum Conditions

323 Three experiments with SHIVA were conducted under vacuum conditions (i.e., at 10^{-4}
324 mbar) at 0.1 m/s, 3 m total displacement and normal stresses of 3, 5 and 10 MPa (Figure 8c).
325 In the samples from the 3 and 10 MPa experiments the three characteristic microstructural
326 zones were not observed and no CCAs were found, but this may be due to poor sample
327 preservation. Poorly-developed CCAs formed at 5 MPa normal stress.

328 *3.5. Size and Shape Analysis of Clast-Cortex Aggregates*

329 Two-dimensional image analysis (Fiji software, Schindelin et al., 2012) was used to
 330 calculate two shape factors for the central clasts and outer cortices of the CCAs; the
 331 circularity and the solidity (Heilbronner and Barrett, 2013). The circularity is defined as
 332 $C = 4\pi \frac{A}{p^2}$ where A is the area and p the perimeter of the central clast or outer cortex (Figure
 333 10a). A circularity of $C = 1$ describes a perfect circle. The solidity is the ratio between the
 334 area of the object and the convex area $S = \frac{A}{A_{convex}}$ (Figure 10a), so that a structure with no
 335 embayments yields $S = 1$.

336 SEM backscatter images (for the experimental samples; Figure 10b) or optical
 337 photomicrographs (for the natural samples; Figure 10c) were used to trace the outlines of
 338 central clasts and outer cortices. For the experimental example, a representative SEM image
 339 from sample r80 was evaluated (Figure 10b). The area covered by the image was 190 $\mu\text{m} \times$
 340 240 μm and contained 45 CCAs (Figure 10b). For the natural example, the optical
 341 photomicrographs used to trace the CCAs covered an area of approximately 24 mm \times 5.4
 342 mm and contained 137 CCAs (Figure 10c). Circularity and solidity were calculated separately
 343 for 1) experimental central clasts, 2) experimental cortices (i.e. the outer margins of the
 344 CCAs), 3) natural central clasts, and 4) natural cortices. The frequency of a certain circularity
 345 or solidity value was then plotted using bin sizes of 0.1 and 0.025, respectively (Figure 11).

346 The results in Figure 11a show that the cortices are more circular than the central clasts
 347 in both natural and experimental cases. The experimental cortices have a notably higher
 348 mean circularity ($C_{mean} = 0.761$) than the experimental central clasts ($C_{mean} = 0.696$). The
 349 natural cortices have a mean circularity of 0.81 whereas the natural central clasts have a
 350 mean circularity of 0.764. Additionally, the data indicate that natural cortices and central
 351 clasts are more rounded on average than their experimental counterparts.

352 The solidity values (Figure 11b) show the same overall results. In both natural and
 353 experimental samples, the cortices have a higher mean solidity than the central clasts,
 354 suggesting that the fine-grained material comprising the cortices fills embayments within
 355 the central clasts, consistent with microstructural observations. This effect is most
 356 pronounced in the experimental samples, where the solidity values for the outer cortices
 357 are notably higher ($S_{\text{mean}} = 0.943$) than for the central clasts ($S_{\text{mean}} = 0.905$).

358 **4. Discussion**

359 *4.1. Development of the textural zones*

360 The development of distinct textural zones is a common feature in rotary-shear gouge
 361 experiments (e.g. Beeler et al., 1996; Kitajima et al., 2010). In this study, the distribution of
 362 textural zones I, II and III depends both on experimental conditions and the radial position
 363 within the gouge layer. Zones II and III generally become thicker towards the margins of the
 364 cylindrical samples where slip velocity and displacement are higher, but then become
 365 thinner again close to the outer margins (Figure 6a). This effect has previously been
 366 described by Beeler et al. (1996) who attributed it to the friction of the moving gouge
 367 material against the outer containment ring (Teflon in the their case) reducing the degree of
 368 deformation close to the border. We observed a similar effect in our gouge experiments
 369 where the deforming gouge was in contact with the outer steel ring (in SHIVA) or Teflon ring
 370 (in ROSA) (Figure 2d).

371 The strain-marker experiment indicates that the highly-commинuted material in zone III
 372 represents the principal slip layer where most of the strain was localized. The banded
 373 appearance of the gouge in this layer, and the grain size grading within individual bands, is

374 comparable to that reported by other authors, e.g. Kitajima et al. (2010) and Yao et al.
375 (2013). Yao et al. (2013) observed that the finest material (<1 μm) within these bands was
376 welded or sintered, a process likely caused by the localization of slip and subsequent
377 frictional heating in the localized zone (Lachenbruch, 1980; Rempel and Rice, 2006; Platt et
378 al., 2014). As suggested by Shimamoto and Togo (2012), the welding of grains may act to
379 strengthen the slip zone and cause deformation within it to “migrate” to an adjacent area,
380 resulting in multiple bands within a localized zone of high strain.

381 *4.2. Comparison of natural and experimental CCAs*

382 The CCAs found in the experimental and natural samples are similar in structure and
383 shape. This is confirmed by quantitative analysis of two shape factors (circularity and
384 solidity). In both experiment and nature, the central clasts are generally more angular than
385 the outer cortices (see Figure 1 and 8). Natural CCAs have higher circularities and solidities
386 than their experimental counterparts. This may be due to the natural central clasts and
387 outer cortices having experienced multiple slip episodes (and hence more comminution and
388 abrasion), as opposed to the single slip episodes represented by the experiments. The size of
389 the experimental CCAs is limited by the maximum particle size used in the experiments (180
390 μm) and, possibly, by the layer thickness (1.5 or 3 mm). The natural CCAs are up to 3 mm in
391 size, and confined to an ultracataclastic slipping zone up to c. 2 cm thick.

392 In both experiment and nature, the aggregates sometimes consist of clustered matrix
393 material rather than single host rock grains with a cortex. In the natural examples, the
394 clustered material is typically reworked cataclasite that can contain relatively large angular
395 grains within a finer matrix (Figure 1d). In the case of the experiments, the material clusters
396 are likely to be fragments of fine-grained material from the high-strain zones (Figure 12a).

397 The cortex of fine-grained calcite in the natural examples ranges in thickness from ≤ 10
398 μm to c. $500 \mu\text{m}$. In some samples from the natural slipping zones, outer cortices surround
399 almost all host rock fragments larger than c. $100 \mu\text{m}$. In many cases, the natural cortices are
400 laminated (Figure 1b) and, infrequently, grain size grading within the cortex material is
401 observed, with slightly larger grains towards the inside of individual cortex laminations
402 (Smith et al., 2011). In the experimental samples, the maximum thickness of the outer cortex
403 is on the order of $15 \mu\text{m}$, and multiple laminations are observed in some samples (Figure
404 12b).

405 It was proposed by Boutareaud et al. (2008) and (2010), in the case of clay-bearing
406 aggregates, that the central clasts accreted fine-grained material from the surrounding
407 matrix. They further suggested that the aggregation process was controlled by electrostatic
408 charges (due to the electrical double layer at the surface of the clay particles and a
409 triboelectric effect) and that thermal pressurization of the gouge layers played a significant
410 role. The triboelectric effect is responsible for electrostatic charging of particles due to
411 frictional contact (Matsusaka et al. (2010), and references therein). Thermal pressurization
412 creates dilation that is thought to provide additional space for grain rolling and accretion of
413 fine material (Boutareaud et al., 2010).

414 There is no microstructural evidence for crystal-plastic processes (e.g. sutured or
415 sintered grains, lobate grain boundaries) in any of the experimental CCAs we studied. High-
416 resolution SEM images of our experimental CCAs show that the grains in the cortices (<500
417 nm) appear loosely aggregated (Figure 6d). Most of the grains are angular or sub-angular,
418 with only the smallest grains ($<500 \text{ nm}$) having a rounded shape.

419 CCAs only formed in our room-dry and vacuum experiments, in which total dilation was
420 up to $180 \mu\text{m}$. Additionally, well-developed CCAs were favored at large displacements, in

421 experiments that had relatively large amounts of secondary dilation. In wet experiments,
 422 CCAs did not form and dilation was not measured at any stage. Following Han and Hirose
 423 (2012) and Boutareaud et al (2008, 2010), we suggest that the CCAs in our experiments
 424 formed by rolling of the central clasts facilitated by shear dilatancy, and that this provided
 425 the frictional contacts resulting in electrostatic charging of the smaller matrix particles. If
 426 thermal pressurization contributed to (secondary) layer dilation at larger displacements, it
 427 may be an important process in the formation of well-developed CCAs.

428 *4.3. Deformation conditions necessary to form experimental CCAs*

429 4.3.1. The role of displacement and strain

430 CCAs were better developed in our experiments at displacements exceeding 0.5 m.
 431 Significantly, they only formed in the intermediate-strain zone (Zone II) in the samples,
 432 suggesting that there is an upper and lower strain limit for their formation. This is consistent
 433 with previous experimental studies that typically show CCAs developing outside the zone of
 434 highest strain (e.g. Boutareaud et al., 2008; Kitajima et al., 2010; Han and Hirose, 2012). The
 435 strain-marker experiment reported here, combined with ongoing work on additional strain-
 436 marker experiments (Di Toro et al., 2013), suggests that CCAs developed in the experimental
 437 calcite gouges at relatively low strains on the order of $2 \leq \gamma \leq 14$.

438 The upper bound for strain ($\gamma = 14$) in the CCA-bearing Zone II results from strain
 439 localizing in Zone III. After localization has been achieved, a bulk of the displacement is
 440 hosted in the high-strain layer (Zone III), limiting strain accumulation in the CCA-bearing
 441 Zone II. Under the normal stress conditions investigated in these experiments, strain
 442 localization in 1.5 – 3 mm thick calcite gouge layers typically occurs in the first few tens of
 443 centimeters of displacement (Smith et al., 2012). However, CCAs were well developed in

444 these experiments for displacements >0.5 m. This suggests that CCAs form and continue to
 445 evolve after localization has occurred, indicating that there must be ongoing shearing in
 446 Zone II (and possibly Zone I) of the samples throughout the experiments. This also explains
 447 the occurrence in Zone II of reworked fragments of fine-grained Zone III material.

448 4.3.2. The role of slip velocity

449 In the experiments, CCAs formed independently of the applied slip velocity, which
 450 covered four orders of magnitude (from 100 $\mu\text{m/s}$ to 1 m/s). These results suggest that CCAs
 451 found in the slipping zones of calcite-bearing faults in nature are not unequivocal evidence
 452 for seismic slip. This is in agreement with the results of Han and Hirose (2012) for quartz and
 453 quartz-bentonite gouges, who found that clay-clast aggregates formed in low-velocity
 454 (0.0005 m/s) rotary-shear experiments.

455 When interpreting the experimental microstructures, it is important to consider the
 456 strong velocity gradient across the thickness of the gouge layer. Like strain, the strain *rate* in
 457 Zone III will be much higher, while the bulk of the gouge (Zones I and II) experiences much
 458 lower strain rates. Assuming that the different strain domains started to develop at the
 459 onset of the experiments and were sheared at a constant rate, we can roughly calculate the
 460 strain rate in each zone as maximum slip velocity / zone thickness. For the strain-marker
 461 experiment s886 we find that the strain rates in Zones I, II and III were approximately 0.64 s^{-1}
 462 1.2 s^{-1} and 740 s^{-1} , respectively, indicating that the strain rate in Zone III was more than
 463 two orders of magnitude higher than in the other zones. The values for Zones II and III likely
 464 represent lower limits because those zones probably started to develop later than Zone I.

465 The natural calcite CCAs from the Tre Monti fault are sharply truncated in some cases
 466 by discrete principal slip surfaces (Figure 12 in Smith et al., 2011). Similar truncated clasts

467 associated with discrete “mirror-like” slip surfaces in dolomite gouges were produced in
 468 experiments at seismic slip velocities (Fondriest et al., 2013). If the conclusions of Fondriest
 469 et al. (2013) are also applicable to calcite gouges, the occurrence of truncated CCAs in the
 470 Tre Monti fault suggests that it experienced seismic slip, even if the CCAs themselves may
 471 have formed at lower slip velocities.

472 4.3.3. The role of normal stress

473 Normal stress plays a crucial role in the formation of experimental CCAs. Well-
 474 developed CCAs were only found in experiments at normal stresses ≤ 5 MPa, although the
 475 normal stress at which CCAs form also depends on the gouge layer thickness (Figure 8b).
 476 Possible factors preventing formation of CCAs at higher normal stresses are 1) faster strain
 477 localization (Smith et al., 2012) and 2) increased compaction at higher normal stresses. In the
 478 first instance, faster localization of strain to a narrow high-strain zone may result in the bulk
 479 of the gouge layer experiencing strain of $\gamma < 2$, below the lower bound necessary to form
 480 CCAs under the investigated conditions. In the second instance, greater compaction and
 481 hence reduction of porosity in the gouge matrix might restrict rolling of clasts to such a
 482 degree that the outer cortices do not form.

483 Although gouge zone thickness along natural faults is highly variable, compilations of
 484 geological and geophysical data pertaining to the thickness of the coseismic slip zone in the
 485 brittle crust suggest typical layer thicknesses on the order of several millimeters to a few
 486 centimeters (Sibson, 2003), comparable to the layer thicknesses used in our experiments.
 487 Our results suggest that in nature the formation of CCAs may be restricted to relatively
 488 shallow crustal levels. This is broadly compatible with existing case studies reporting CCAs in
 489 natural slipping zones, which all come from fault zones exhumed from relatively shallow
 490 crustal depths (<4 km; Table 1). For example, in the Tre Monti fault (Smith et al., 2011), the

491 CCA-bearing cataclastic slip zone directly underlying the principal slip surface is 2 to 10 mm
 492 thick and exhumed from a depth of <2 km. In cores from borehole A drilled through the
 493 Chelungpu thrust fault, clay-clast aggregates were found in the 2-3 cm thick principal slip
 494 zone of the 1999 Chi-Chi earthquake located at depths of c. 1.11-1.14 km (Boullier et al.,
 495 2009). Interestingly, in borehole B, where the principal slip zone is much thinner (c. 0.3 cm)
 496 CCAs were only found in gouge material flanking the principal slip zone (Boullier et al., 2009).
 497 Based on our experiments, this may be because the strain in the thin principal slip zone itself
 498 was higher than that required for CCA formation.

499 4.3.4. Ambient Conditions

500 No CCAs developed in the experiments with water-dampened calcite gouges. In
 501 studies on the charging characteristics of various materials it was shown (Greasom, 2000;
 502 Nomura et al., 2003) that the net charge due to triboelectrification (in the order of 10^{-8}
 503 Coulomb) generally decreased with increasing humidity. If this is applicable to charging
 504 induced by friction of calcite grains against each other, or against the steel and Teflon walls
 505 of the gouge holders, the reduced triboelectric force due to the high (~20 wt%) water
 506 content of the gouge could be too low to attract the fine material to the larger clasts. Due to
 507 the higher permittivity in a water-saturated gouge as compared to room-humid gouge
 508 (Hector and Schultz, 1936; Chistyakov, 2007), the electrostatic Coulomb force acting
 509 between the particles will also be reduced.

510 In addition, the presence of water causes faster slip localization, reducing the strain
 511 accommodated in the bulk gouge layer outside the principal slip zone (Faulkner et al., 2010;
 512 Ferri et al., 2010). Dilatation of the gouge layers was almost never observed in wet
 513 experiments. Faster slip localization combined with rapid compaction of the gouge layer are

514 likely to restrict grain rolling, and thus the formation of CCAs, in the water-dampened
515 gouges.

516 Our results showing that CCAs did not form in water-dampened gouges are
517 consistent with the experiments on clay-bearing gouges by Han and Hirose (2012) and Ferri
518 et al. (2011), but contrast the results of Boutareaud et al. (2008), (2010). The latter authors
519 found that clay-clast aggregates developed in clay-bearing gouge samples that were initially
520 saturated with water. However, as noted by Han and Hirose (2012), the total displacements
521 in the experiments by Boutareaud et al. (2008), (2010) were up to 64 m. Due to frictional
522 heating at such large displacements, the temperatures in the experiments of Boutareaud et
523 al. (2008), (2010) increased to c. 200°C in the center and c. 400°C at the periphery of the
524 samples. This may have resulted in evaporation of the water, resulting in effectively dry
525 conditions after displacements of a few meters.

526 According to the experiments performed in this study, the formation of CCAs is
527 favored by relatively dry conditions. Smith et al. (2011) found evidence of layer fluidization
528 and syn-tectonic vein formation in the CCA-bearing principal slip zone of the Tre Monti fault,
529 suggesting fluid involvement in faulting. The same is true for the slipping zones of the Chi-Chi
530 earthquake (Boullier et al., 2009), where there is evidence of gouge layer fluidization. This
531 raises two possibilities that warrant further investigation; the first is that fluidization
532 processes (that cannot be effectively investigated in the present gouge experiments) play a
533 role in the formation of CCAs in nature. The second is that fluid availability in natural slipping
534 zones is highly variable in time (e.g. during the seismic cycle) and space (e.g. due to fault
535 geometry), with the natural CCAs forming during restricted time intervals in relatively dry
536 parts of the slipping zones.

537 **5. Conclusions**

538 We investigated the conditions necessary to form clast-cortex aggregates (CCAs) in
 539 granular calcite gouges by performing low- to high-velocity experiments in a rotary-shear
 540 configuration. The experimental results show that in calcite gouges CCAs are well developed
 541 at displacements >0.5 m, normal stresses ≤ 5 MPa, and in room-dry or vacuum conditions.
 542 Significantly, CCAs developed at all investigated slip rates (0.001 m/s to 1 m/s), spanning the
 543 subseismic to seismic range. No CCAs formed in water-dampened gouges.

544 Experimental CCAs were formed in relatively low-strain domains outside the principal
 545 slipping zones, where the bulk shear strain was between 2 and 14. Analysis of the circularity
 546 and solidity of the experimental CCAs as well as of natural examples from the calcite-
 547 dominated principal slip zone of the Tre Monti normal fault in Italy, indicates that
 548 experimental and natural examples have similar microstructural characteristics and grain
 549 shapes. We suggest that CCAs in calcite gouges form by grain rolling associated with shear
 550 dilatancy, accompanied by progressive accretion of fine-grained matrix material. The
 551 interface-scale mechanisms leading to accretion of fine-grained matrix material in the
 552 cortices require further investigation by higher-resolution methods.

553 Overall, our results suggest that CCAs in calcite-bearing slipping zones likely form in
 554 shallow and (at least locally) fluid-poor fault environments, in granular layers flanking the
 555 highest-strain ultracataclasites. In experiments, CCAs form in calcite gouges over a range of
 556 subseismic to seismic slip rates, suggesting that in natural slipping zones they cannot be used
 557 as a reliable indicator of seismic slip.

558 **6. Acknowledgements**

559 The authors would like to thank Michele Fondriest, Silvia Mittempergher, Stefan Nielsen,
560 Nicola Praticelli and Marie Violay for technical assistance, Leonardo Tauro for help with the
561 sample preparation, Luca Perruzzo, Andrea Cavallo and Rolf Neuser for support with the SEM
562 and Federico Zorzi for XRD analyses. Anne-Marie Boullier and Raehee Han are thanked for
563 constructive comments. MR acknowledges funding by Ca.Ri.Pa.Ro., SAFS acknowledges
564 funding from a 2014 University of Otago Research Grant. GDT acknowledges the European
565 Research Council Starting Grant “USEMS” (no. 205175).

566 **7. References**

567 Anders, M. H., E. Aharonov, et al. (2000). "Stratified granular media beneath large slide blocks:
 568 Implications for mode of emplacement." *Geology* **28**(11): 971-974.

569 Anders, M. H., B. W. Fouke, et al. (2010). "The Role of Calcining and Basal Fluidization in the Long
 570 Runout of Carbonate Slides: An Example from the Heart Mountain Slide Block, Wyoming and
 571 Montana, U.S.A." *The Journal of Geology* **118**: p. 577-599.

572 Beeler, N., T. Tullis, et al. (1996). "Frictional behavior of large displacement experimental faults."
 573 *Journal of Geophysical Research: Solid Earth (1978–2012)* **101**(B4): 8697-8715.

574 Bestmann, M., G. Pennacchioni, et al. (2012). "Deformation and ultrafine dynamic recrystallization of
 575 quartz in pseudotachylite-bearing brittle faults: A matter of a few seconds." *Journal of
 576 Structural Geology* **38**: 21-38.

577 Beutner, E. C. and A. E. Craven (1996). "Volcanic fluidization and the Heart Mountain detachment,
 578 Wyoming." *Geology* **24**(7): 595-598.

579 Beutner, E. C. and G. P. Gerbi (2005). "Catastrophic emplacement of the heart mountain block slide,
 580 Wyoming and Montana, USA." *Geological Society of America Bulletin* **117**(5-6): 724-735.

581 Boneh, Y., A. Sagiv, et al. (2013). "Frictional strength and wear-rate of carbonate faults during high-
 582 velocity, steady-state sliding." *Earth and Planetary Science Letters* **381**(0): 127-137.

583 Boullier, A. M., E. C. Yeh, et al. (2009). "Microscale anatomy of the 1999 Chi-Chi earthquake fault
 584 zone." *Geochemistry Geophysics Geosystems* **10**.

585 Boutareaud, S., A. M. Boullier, et al. (2010). "Clay clast aggregates in gouges: New textural evidence
 586 for seismic faulting." *Journal of Geophysical Research-Solid Earth* **115**.

587 Boutareaud, S., D. G. Calugaru, et al. (2008). "Clay-clast aggregates: A new textural evidence for
 588 seismic fault sliding?" *Geophysical Research Letters* **35**(5).

589 Boyer, S. E. and J. R. Hossack (1992). "Structural features and emplacement of surficial gravity-slide
 590 sheets, northern Idaho-Wyoming thrust belt." *Regional Geology of Eastern Idaho and
 591 Western Wyoming* **179**: 197.

592 Brantut, N., R. Han, et al. (2011). "Fast slip with inhibited temperature rise due to mineral
 593 dehydration: Evidence from experiments on gypsum." *Geology* **39**(1): 59-62.

594 Brune, J. (2001). "Fault normal dynamic loading and unloading: an explanation for "non-gouge" rock
 595 powder and lack of fault-parallel shear bands along the San Andreas fault." *EOS Trans. Am.
 596 Geophys. Union* **82**: 47.

597 Chen, X., A. S. Madden, et al. (2013). "Dynamic weakening by nanoscale smoothing during high-
 598 velocity fault slip." *Geology* **41**(7): 739-742.

599 Chistyakov, A. D. (2007). "The permittivity of water and water vapor in saturation states." *Russian
 600 Journal of Physical Chemistry A* **81**(1): 5-8.

601 Cowan, D. S. (1999). "Do faults preserve a record of seismic slip? A field geologist's opinion." *Journal
 602 of Structural Geology* **21**(8): 995-1001.

603 Di Toro, G., A. Niemeijer, et al. (2010). "From field geology to earthquake simulation: a new state-of-
 604 the-art tool to investigate rock friction during the seismic cycle (SHIVA)." *RENDICONTI LINCEI*
 605 **21**(1): 95-114.

606 Di Toro, G., G. Pennacchioni, et al. (2009). "Pseudotachylites and earthquake source mechanics."
 607 *International geophysics* **94**: 87-133.

608 Di Toro, G., M. Rempe, et al. (2013). "Strain localization in experimentally sheared gouge layers."
 609 *Abstract MR13A-2258 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.*

610 Dor, O., Y. Ben-Zion, et al. (2006). "Pulverized rocks in the Mojave section of the San Andreas Fault
 611 Zone." *Earth and Planetary Science Letters* **245**(3-4): 642-654.

612 Faulkner, D. R., C. A. L. Jackson, et al. (2010). "A review of recent developments concerning the
 613 structure, mechanics and fluid flow properties of fault zones." *Journal of Structural Geology*
 614 **32**(11): 1557-1575.

615 Ferri, F., G. Di Toro, et al. (2011). "Low- to high-velocity frictional properties of the clay-rich gouges
 616 from the slipping zone of the 1963 Vajont slide, northern Italy." *Journal of Geophysical*
 617 *Research-Solid Earth* **116**.

618 Ferri, F., G. Di Toro, et al. (2010). "Evidence of thermal pressurization in high-velocity friction
 619 experiments on smectite-rich gouges." *Terra Nova* **22**(5): 347-353.

620 Fondriest, M., S. A. F. Smith, et al. (2013). "Mirror-like faults and power dissipation during
 621 earthquakes." *Geology* **41**(11): 1175-1178.

622 Greason, W. D. (2000). "Investigation of a test methodology for triboelectrification." *Journal of*
 623 *Electrostatics* **49**(3-4): 245-256.

624 Han, R. and T. Hirose (2012). "Clay-clast aggregates in fault gouge: An unequivocal indicator of
 625 seismic faulting at shallow depths?" *Journal of Structural Geology* **43**: 92-99.

626 Hector, L. G. and H. L. Schultz (1936). "The Dielectric Constant of Air at Radiofrequencies." *Journal of*
 627 *Applied Physics* **7**(4): 133-136.

628 Heilbronner, R. and S. Barrett (2013). *Image Analysis in Earth Sciences: Microstructures and Textures*
 629 *of Earth Materials*, Springer.

630 Hirose, T. and T. Shimamoto (2005). "Growth of molten zone as a mechanism of slip weakening of
 631 simulated faults in gabbro during frictional melting." *Journal of Geophysical Research-Solid*
 632 *Earth* **110**(B5).

633 Kim, J.-W., J.-H. Ree, et al. (2010). "Experimental evidence for the simultaneous formation of
 634 pseudotachylite and mylonite in the brittle regime." *Geology* **38**(12): 1143-1146.

635 Kitajima, H., J. S. Chester, et al. (2010). "High-speed friction of disaggregated ultracataclasite in rotary
 636 shear: Characterization of frictional heating, mechanical behavior, and microstructure
 637 evolution." *Journal of Geophysical Research-Solid Earth* **115**.

638 Kuo, L.-W., H. Li, et al. (2014). "Gouge graphitization and dynamic fault weakening during the 2008
 639 Mw 7.9 Wenchuan earthquake." *Geology* **42**(1): 47-50.

640 Lachenbruch, A. H. (1980). "Frictional heating, fluid pressure, and the resistance to fault motion." *Journal of Geophysical Research: Solid Earth* **85**(B11): 6097-6112.

641 Lin, A. M. (1996). "Injection veins of crushing-originated pseudotachylite and fault gouge formed
 642 during seismic faulting." *Engineering Geology* **43**(2-3): 213-224.

643 Logan, J., M. Friedman, et al. (1979). "Experimental studies of simulated gouge and their application
 644 to studies of natural fault zones." *US Geol. Surv. Open File Rep* **1978**: 305-343.

645 Matsusaka, S., H. Maruyama, et al. (2010). "Triboelectric charging of powders: A review." *Chemical*
 646 *Engineering Science* **65**(22): 5781-5807.

647 Nomura, T., T. Satoh, et al. (2003). "The environment humidity effect on the tribo-charge of powder." *Powder*
 648 *Technology* **135**: 43-49.

649 Oohashi, K., T. Hirose, et al. (2013). "Graphite as a lubricating agent in fault zones: An insight from
 650 low - to high - velocity friction experiments on a mixed graphite - quartz gouge." *Journal of*
 651 *Geophysical Research: Solid Earth* **118**(5): 2067-2084.

652 Platt, J. D., J. W. Rudnicki, et al. (2014). "Stability and localization of rapid shear in fluid - saturated
 653 fault gouge: 2. Localized zone width and strength evolution." *Journal of Geophysical*
 654 *Research: Solid Earth*.

655 Polissar, P. J., H. M. Savage, et al. (2011). "Extractable organic material in fault zones as a tool to
 656 investigate frictional stress." *Earth and Planetary Science Letters* **311**(3): 439-447.

657 Rabinowitz, H. S., H. M. Savage, et al. (2013). "Detecting the frictional temperature rise during the
 658 2011 Tohoku earthquake using the thermal maturity of biomarkers." *Abstract T41F-07*
 659 *presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.*

660 Rempe, M., T. Mitchell, et al. (2013). "Damage and seismic velocity structure of pulverized rocks near
 661 the San Andreas Fault." *Journal of Geophysical Research: Solid Earth*: n/a-n/a.

662 Rempel, A. W. and J. R. Rice (2006). "Thermal pressurization and onset of melting in fault zones." *Journal of Geophysical Research: Solid Earth* (1978-2012) **111**(B9).

663 Rietveld, H. M. (1967). "Line profiles of neutron powder-diffraction peaks for structure refinement." *Acta Crystallographica* **22**(1): 151-152.

667 Roberts, G. P. and A. M. Michetti (2004). "Spatial and temporal variations in growth rates along
 668 active normal fault systems: an example from The Lazio–Abruzzo Apennines, central Italy." *Journal of Structural Geology* **26**(2): 339-376.

669

670 Rowe, C. D., J. D. Kirkpatrick, et al. (2012). "Fault rock injections record paleo-earthquakes." *Earth*
 671 and *Planetary Science Letters* **335**: 154-166.

672 Savage, H. M., P. J. Polissar, et al. (2014). "Biomarkers heat up during earthquakes: New evidence of
 673 seismic slip in the rock record." *Geology* **42**(2): 99-102.

674 Sawai, M., T. Shimamoto, et al. (2012). "Reduction in BET surface area of Nojima fault gouge with
 675 seismic slip and its implication for the fracture energy of earthquakes." *Journal of Structural*
 676 *Geology* **38**: 117-138.

677 Schindelin, J., I. Arganda-Carreras, et al. (2012). "Fiji: an open-source platform for biological-image
 678 analysis." *Nat Meth* **9**(7): 676-682.

679 Sibson, R. H. (1975). "Generation of pseudotachylite by ancient seismic faulting." *Geophysical*
 680 *Journal International* **43**(3): 775-794.

681 Sibson, R. H. (2003). "Thickness of the seismic slip zone." *Bulletin of the Seismological Society of*
 682 *America* **93**(3): 1169-1178.

683 Siman-Tov, S., E. Aharonov, et al. (2013). "Nanograins form carbonate fault mirrors." *Geology* **41**(6):
 684 703-706.

685 Smith, S. A. F., A. Billi, et al. (2011). "Principal Slip Zones in Limestone: Microstructural
 686 Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines,
 687 Italy)." *Pure and Applied Geophysics* **168**(12): 2365-2393.

688 Smith, S. A. F., C. Collettini, et al. (2008). "Recognizing the seismic cycle along ancient faults: CO₂-
 689 induced fluidization of breccias in the footwall of a sealing low-angle normal fault." *Journal of*
 690 *Structural Geology* **30**(8): 1034-1046.

691 Smith, S. A. F., G. Di Toro, et al. (2013). "Coseismic recrystallization during shallow earthquake slip."
 692 *Geology* **41**(1): 63-66.

693 Smith, S. A. F., G. Di Toro, et al. (2012). "Field and experimental constraints on seismic localization in
 694 granular fault gouge." *Abstract S11A-06 presented at 2012 Fall Meeting, AGU, San Francisco,*
 695 *Calif., 3-7 Dec.*

696 Snock, A. W., J. Tullis, et al. (1998). *Fault-related rocks: A photographic atlas*, Princeton University
 697 Press.

698 Violay, M., S. Nielsen, et al. (2013). "Pore fluid in experimental calcite-bearing faults: Abrupt
 699 weakening and geochemical signature of co-seismic processes." *Earth and Planetary Science*
 700 *Letters* **361**: 74-84.

701 Warr, L. N. and S. Cox (2001). "Clay mineral transformations and weakening mechanisms along the
 702 Alpine Fault, New Zealand." *Geological Society, London, Special Publications* **186**(1): 85-101.

703 Yao, L., T. Shimamoto, et al. (2013). "Rapid postseismic strength recovery of Pingxi fault gouge from
 704 the Longmenshan fault system: Experiments and implications for the mechanisms of high -
 705 velocity weakening of faults." *Journal of Geophysical Research: Solid Earth* **118**(8): 4547-
 706 4563.

707 **8. Figure Captions**

708 **Figure 1.** Summary of the occurrence of clast-cortex aggregates (CCAs) in the Tre Monti normal fault,
 709 central Italy, (a) Map of southern Italy with red lines showing the locations of the Tre Monti fault and
 710 other active normal faults that cut Holocene deposits (modified from Roberts and Michetti (2004),
 711 (b) Schematic cross-section through a segment of the Tre Monti fault showing the transition from

712 intact host rock to breccias and cataclasites (modified from Smith et al. (2011)). The active
 713 Quaternary fault scarp, corresponding to the principal slip surface in this fault, is marked in red. The
 714 hanging wall at the surface is composed of well-cemented Quaternary sediments, (c) scanned thin
 715 section image showing the principal slip surface and cataclastic to ultracataclastic principal slipping
 716 zone. The ultracataclasite layer closest to the principal slip surface contains well-developed CCAs. (d)
 717 Optical photomicrographs in plane-polarized light showing examples of CCAs from the
 718 ultracataclastic slipping zone of the Tre Monti fault. From left to right the CCAs increase in size and
 719 complexity. The central clasts can be composed of limestone host rock fragments (first three images)
 720 or reworked cataclastic material from the slipping zone (fourth image). In some cases, the cortex
 721 contains multiple laminations (third and fourth images and other examples in Smith et al. (2011)).

722

723 **Figure 2.** Experimental set-up and gouge sample holders, (a) Schematic of the ROSA rotary-shear
 724 apparatus at Padua University. (R1) and (R2): rotary encoder and potentiometer measuring
 725 revolution speed (rpm) and rotation angle, respectively. (T1) and (T2): Two compression load cells
 726 measuring the torque; output values are averaged. (D): Strain-gauge type displacement gauge
 727 measuring vertical displacement of the axial column and the experimental sample. (L): Compression
 728 load cell measuring the axial load applied to the sample via the pneumatic or hydraulic cylinders. (b)
 729 Gouge sample assembly using two solid rock cylinders and an outer Teflon ring to contain the gouge
 730 layer. The jubilee clip fastened around the Teflon sleeve is not shown in this figure. (c) Annular steel
 731 sample holder with inner and outer Teflon rings. (d) Metal sample holder used with SHIVA (modified
 732 from Smith et al., 2013). White regions: stationary parts, grey regions: rotary parts. Yellow areas
 733 show position of gouge layer contained by inner and outer metal sliding rings. Red lines demonstrate
 734 where metal parts are in sliding contact during the experiments.

735

736 **Figure 3.** Characterization of starting materials used in gouge experiments, (a) SEM images of the
737 starting gouge material derived by crushing Carrara Marble (batch CMG 1, scale bar in inlet is 20 μm),
738 (b) Particle size distribution of starting material derived from sieving and weighting, (c) X-ray powder
739 diffraction spectrum for batches CMG2 (blue curve and labels) and CMG3 (black curve and labels).

740

741 **Figure 4.** Mechanical data from calcite gouge experiments, (a) Friction coefficient (upper three data
742 curves) and axial displacement (lower three curves) for experiments conducted with room-dry calcite
743 gouge. Positive changes in axial displacement indicate shortening, negative changes indicate dilation.
744 Experiments s590 (black lines) and s776 (blue lines) performed at a normal stress of 3 MPa and slip
745 rates of 1 and 0.1 m/s, respectively, show no weakening or transient dilation. Experiment s272 (red
746 lines) performed at higher normal stress (17.3 MPa) at a slip rate of 0.1 m/s exhibits some weakening
747 following peak stress after approximately 0.15 m displacement. In s272, initial gouge layer
748 compaction is followed by transient dilation of c. 20 μm , and then renewed compaction. (b)
749 Coefficient of friction (upper two data curves) and axial displacement (lower two data curves) for
750 water-dampened experiments s591 (black lines; 3 MPa, 1 m/s) and s592 (blue lines; 2.8 MPa, 0.1
751 m/s). Neither of these experiments exhibits transient dilation or weakening.

752

753 **Figure 5.** Dilation vs. total displacement for experiments conducted under room-dry, wet and
754 vacuum conditions. Transient and total (i.e. transient + secondary) dilation are plotted separately for
755 the room-dry experiments.

756

757 **Figure 6.** Microstructural zones in sheared calcite gouges, (a) SEM mosaic and line drawing of room-
758 dry experiment r88 (equivalent velocity 0.1 m/s; 1 MPa normal stress; 3 m displacement). Thin
759 section was cut approximately halfway between edge and center of the cylindrical sample to analyze

760 the distribution of microstructural zones at different radial positions in the sample. Three distinct
 761 microstructural zones (Zones I-III) are recognized on the basis of grain size variations and the
 762 presence of CCAs and banding. Black boxes show the positions of b) and e). (b-e) SEM images of
 763 microstructural zones, (b) CCAs (yellow arrows) developed in Zone II. Note that the CCAs developed
 764 in a layer with relatively high porosity, (c) Close-up of CCA marked by red arrow in part b). In this
 765 example, the outer cortex is up to 10 μm wide and fine-grained materials in the cortex in-fill
 766 embayments in the central clast. Red box denotes location of d). (d) Zoom of fine-grained cortex
 767 material <1 μm in size. The cortex material appears loosely aggregated, individual rounded grains
 768 down to c. 100 nm in size are recognized. (e) Anastomosing shear bands and extensive grain
 769 comminution within Zone III.

770

771 **Figure 7.** Strain distribution in sheared calcite gouge layers. (a) Rotary side of the steel sample holder
 772 used with SHIVA, filled with calcite gouge and prepared with two thin vertical markers of dolomite
 773 with the aid of razor blades. The starting particle size of both the calcite and the dolomite gouges in
 774 this experiment was <250 μm . Black box illustrates how post-experiment sample was cut. Sketches
 775 (modified after Scruggs and Tullis, 1998) show section through sample with unstrained and idealized
 776 strained marker assuming homogeneous strain distribution. (b) SEM mosaic and interpreted line
 777 drawing of sample s886 (3 MPa normal stress, equivalent slip velocity of 1 m/s, 2.5 m of total
 778 displacement, room-dry). The dolomite marker is distinguished by its darker grey color. The
 779 geometry of the dolomite marker broadly defines low-, intermediate- and high-strain domains. The
 780 left margin of the dolomite marker is cut by a series of R1-Riedel shears with offsets between c. 10 –
 781 180 μm .

782

783 **Figure 8.** Summary of experiments performed under different conditions of slip velocity, normal
 784 stress, and ambient humidity. In the tables, **N** denotes no CCAs, **P**: poorly-developed CCAs, **W**: well-

785 developed CCAs (see text for definitions). Red letters denote experiments in room-dry conditions,
 786 blue letters denote water-dampened experiments. (a) Results for experiments conducted at normal
 787 stresses of 1 MPa (upper graph) and 3 MPa (lower graph), for velocities ranging from 10^{-4} - 1 m/s (log
 788 scale) and displacements ranging from 0.35 to 5.58 m. (b) Results for experiments conducted with
 789 varying normal stress and gouge layer thickness but the same target slip rate (0.1 m/s) and total
 790 displacement (3.0 m), all in room-dry conditions. (c) Results for experiments conducted in vacuum
 791 conditions with slip rates of 0.1 m/s, 3 m displacement, and variable normal stress. (d) SEM image of
 792 experimental CCAs with well-developed cortices (experiment r89). Aggregates are abundant in this
 793 sample; most clasts with a diameter >10 μ m are fully surrounded by cortices. (e) SEM image of
 794 poorly-developed CCAs in experiment r68. In this experiment, only a few aggregates with
 795 rudimentary cortices formed.

796

797 **Figure 9.** Gouge layer (experiment r91) deformed in water-saturated conditions. The microstructure
 798 of water-dampened layers is characterized by a relatively thick zone adjacent to the rotary side in
 799 which rounded to sub-rounded clasts are surrounded by a homogenously fine-grained matrix. CCAs
 800 were not identified in water-dampened experiments.

801

802 **Figure 10.** Grain size and shape analysis of natural and experimental CCAs, (a) The circularity of an
 803 object, in this case the central clast of a CCA, is calculated from its area and its perimeter (red dotted
 804 line) as described in the text. Solidity is calculated by dividing the area of the object (red dotted line)
 805 by the convex area having no embayments (black dotted line). (b) SEM image (left) and
 806 corresponding tracing (right) of experimental sample r80 containing well-developed CCAs (n = 45). In
 807 the tracing, red grains are central clasts, grey areas are outer cortices. (c) Optical photomicrograph
 808 mosaic (upper image) and corresponding tracing (lower image) of natural CCAs (n = 137) from the

809 principal slip zone of the Tre Monti fault. The box shows the area of the photomicrograph mosaic. In
810 the tracing, red grains are central clasts, grey areas are outer cortexes.

811

812 **Figure 11.** Results of quantitative analysis of circularity (a) and solidity (b) of samples shown in Figure
813 10. Bin sizes were chosen to reveal differences in the data and are 0.1 for circularity and 0.025 for
814 solidity.

815

816 **Figure 12.** Examples of experimental CCAs from sample r80, (a) Rounded grain composed of
817 reworked matrix material and lacking a central clast, (b) CCA consisting of two laminations (yellow
818 arrows) surrounding a central clast. Note that in both of the images some of the smaller grains are
819 also CCAs (red arrows).

820 **9. Tables**

821 **Table 1.** Summary of naturally-occurring CCAs in tectonic fault zones and landslides. Modified after
822 Han and Hirose (2012).

823 **Table 2.** Summary of experimental conditions, dilation measurements, and classification of CCAs.

Table 1: Summary of naturally-occurring CCAs in tectonic fault zones and landslides. Modified after Han and Hirose (2012).

Location	Setting	CCA host rock composition	Formation /Exhumation Depth	Evidence of fluids	Reference
Tre Monti fault, Italy	Normal fault	Fossiliferous and micritic limestone	<2 km	Evidence of layer fluidization and syn-tectonic vein formation	Smith et al. (2011)
Alpine fault, New Zealand	Strike-slip fault	Mylonite-derived clay-gouge	2-4 km (attributed to the depth of growth of swelling clays)	Hydrous chloritization, dissolution, fluid-induced sub-critical cracking	Warr and Cox (2001)
Chelungpu fault, Taiwan	Thrust fault	Clay-rich gouge	1.11-1.14 km	Evidence for gouge layer fluidization	Boullier et al. (2009)
Palisades slide block, USA	Landslide	Basal layer where lithologies of upper plate (limestones) and lower plate (sandstone-conglomerate-like rock with clayey matrix) mix	<250 m	No evidence for or against involvement of fluids	Anders et al. (2000), Boyer and Hossack (1992)
Heart Mountain, WY, MT, USA	Landslide	Dolomite	2-4 km	Evidence for fluidization either with or without water	Beutner and Craven (1996), Beutner and Gerbi (2005), Anders et al. (2010)

Table 1

825 **Table 2:** Summary of experimental conditions, dilation measurements, and classification of CCAs.

826

Name	wt% H ₂ O	σ_n (MPa)	v_e (m/s) ^a	d_e (m) ^b	Sample holder	Starting material batch	Gouge layer thickness (mm)	Net axial displacement (μm) ^c	Transient dilation (μm)	Total dilation	Aggregates	
Room-Humidity conditions	r103	0	1	0.0001	3.05	Gabbro	CMG2	1.5	250	7	75	W
	r69	0	1	0.001	0.62	Steel	CMG1	1.5	20	0	26	N
	r78	0	1	0.001	0.64	Steel	CMG1	4.3	730	0	0	N
	r93	0	1	0.001	3	Gabbro	CMG2	1.8	30	7	108	W
	r89	0	1	0.001	5.05	Rock	CMG2	2.1	-80	120	175	W
	r68	0	1	0.1	0.53	Steel	CMG1	1.5	290	0	0	P
	r73	0	1	0.1	0.53	Steel	CMG1	0.36	70	0	0	P
	r88	0	1	0.1	3	Rock	CMG1	1.5	300	7	15	W
	r80	0	1	0.1	5	Tonalite	CMG1	1.5	250	23	28	W
	r82	0	1	1	5	Tonalite	CMG1	1.5	380	13	17	W
	r71	0	3	0.001	0.65	Steel	CMG1	1.5	270	0	0	N
	r105	0	3	0.001	5	Gabbro	CMG2	1.5	120	0	70	W
	r70	0	3	0.1	0.54	Steel	CMG1	0.9	105	0	0	N
	s787	0	3	0.1	2.72	SHiVA	CMG2		100	20	60	P
	r85	0	3	0.1	3	Tonalite	CMG1	1.5	1140	15	41	P
	s776	0	3	0.1	3.35	Shiva	CMG2	3	100	140	140	N
	r90	0	3	0.1	3.85	Gabbro	CMG2	1.7	120	9	38	W
	s775	0	3	0.1	5.58	SHiVA	CMG2	1.8	230	90	90	P
	s590	0	3	1	0.5	SHiVA	CMG1	3	280	0	0	N
	r86	0	3	1	1.9	Tonalite	CMG1	1.7	220	0	0	P
	s777	0	3	1	2.5	SHiVA	CMG2	1.8	60	14	14	P
	s886	0	3	1	2.5	SHiVA	<250 μm	3	125	27	26.614	N

s778	0	5	0.1	3	SHiVA	CMG2	3	90	60	113.4	W
s811	0	10	0.1	2.25	SHiVA	CMG2	3	100	20	40	P
s272	0	17.3	0.1	1.15	SHiVA	CMG3	3	280	19	19.42	N
<hr/>											
Water-dampened	r92	22	1	0.001	4.45	Gabbro	CMG2	1.8	400	0	0
	r74	20	1	0.1	0.65	Steel	CMG1	0.4	360	0	0
	r91	25	1	0.1	4	Rock	CMG2	1.6	200	0	20
	r83	20	1.6	0.0005	0.27	Tonalite	CMG1	1.8	170	0	0
	s592	~15	2.8	0.1	0.5	SHiVA	CMG1	3	185	0	0
	r84	20	3	0.001	0.5	Tonalite	CMG1	1.5	640	0	0
	r72	40	3	0.1	>0.5	Steel	CMG1	1.5	-	0	0
	s591	20	3	1	0.5	SHiVA	CMG1	3	320	0	0
<hr/>											0
Vacuum	s812	0	3	0.1	1.93	SHiVA	CMG3	3	160	10	50
	s813	0	5	0.1	3.35	SHiVA	CMG3	3	220	0	0
	s814	0	10	0.1	2.79	SHiVA	CMG3	3	360	0	0

^aequivalent velocity, ^bequivalent displacement, see text for definitions. ^cpositive value: net compaction, negative value: net dilation

Table 2

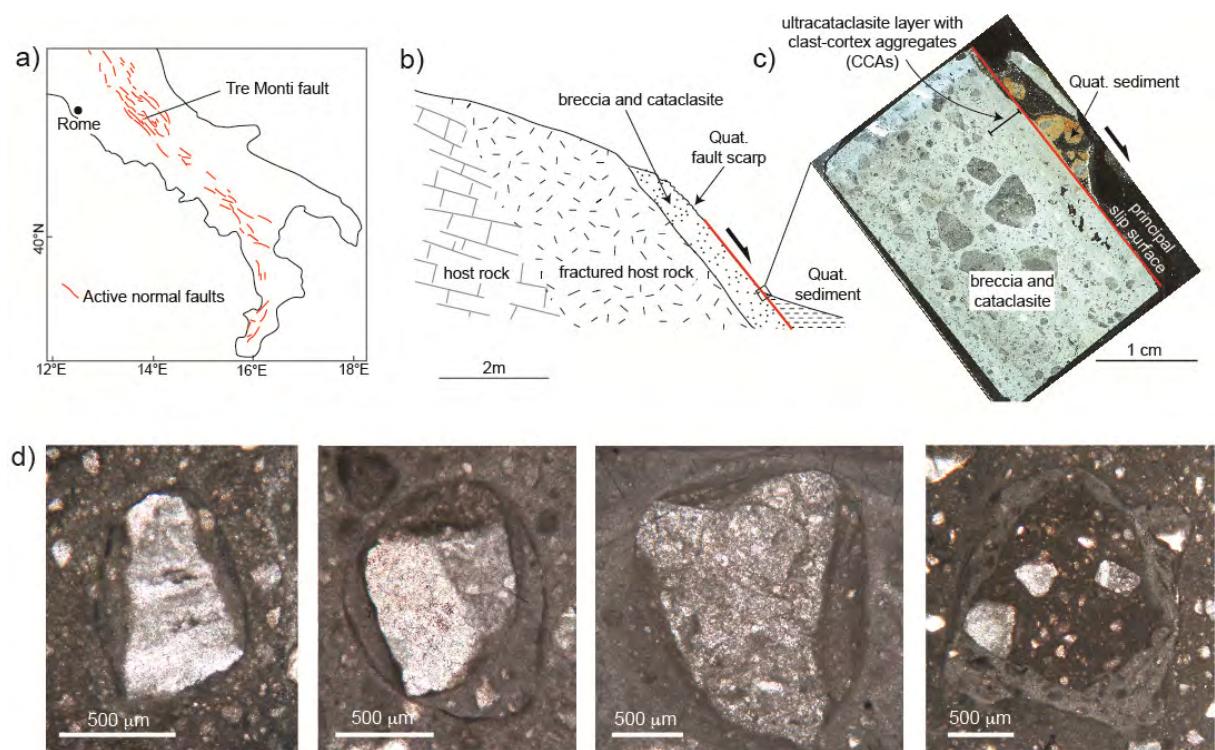


Figure 1

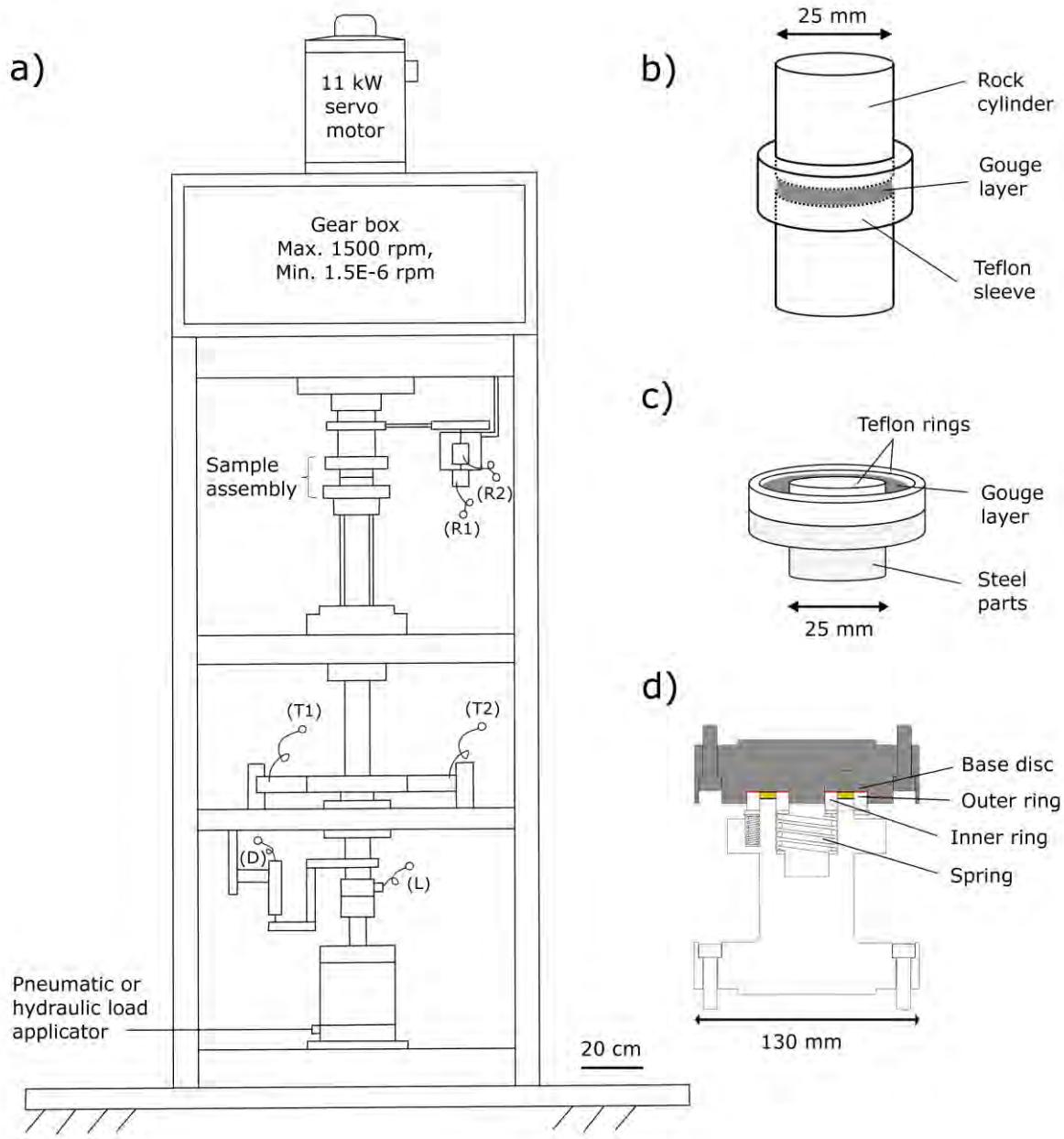


Figure 2

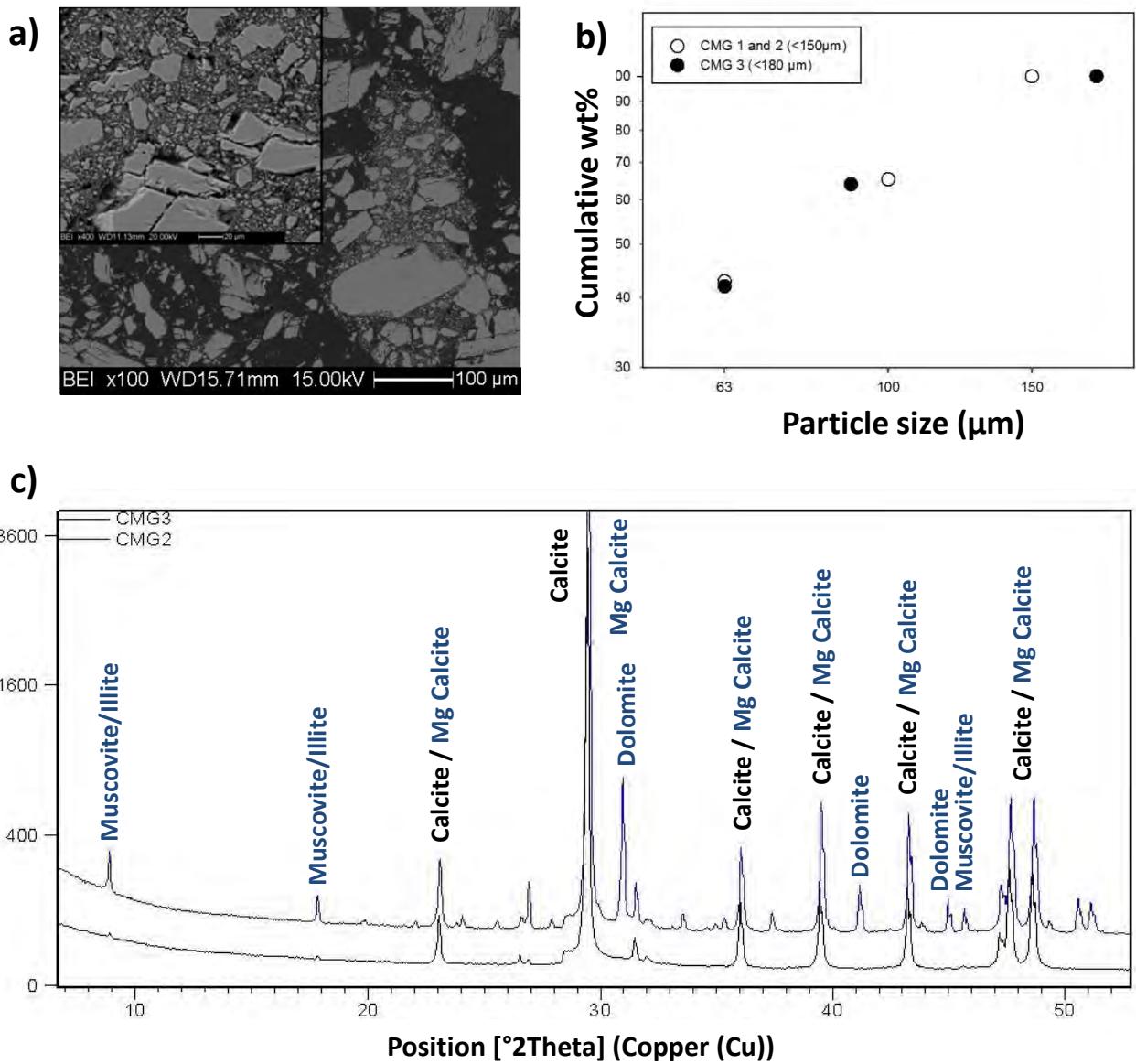


Figure 3

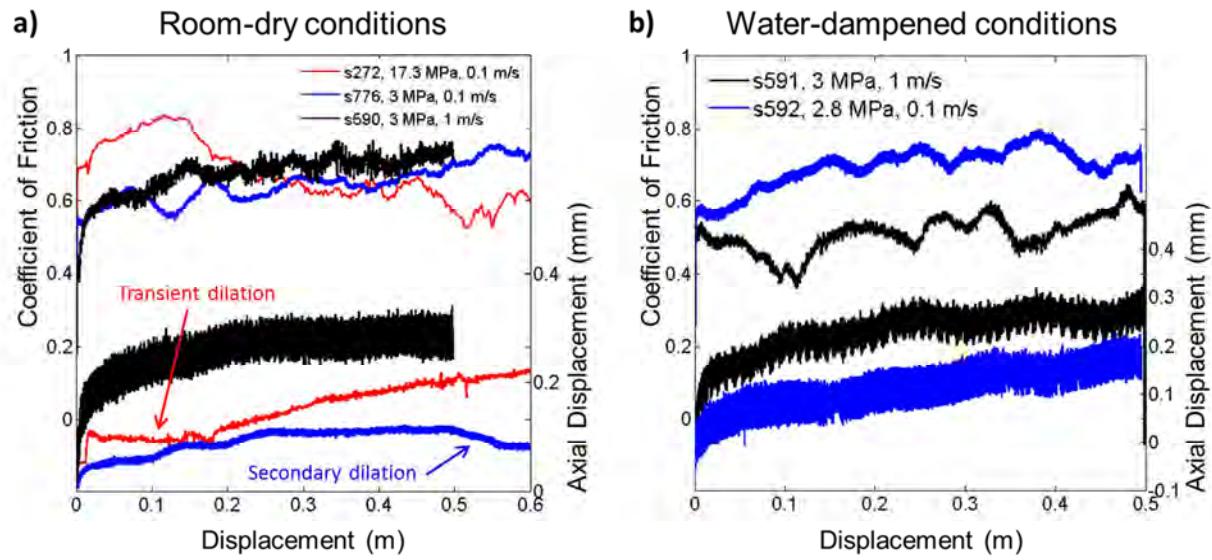


Figure 4

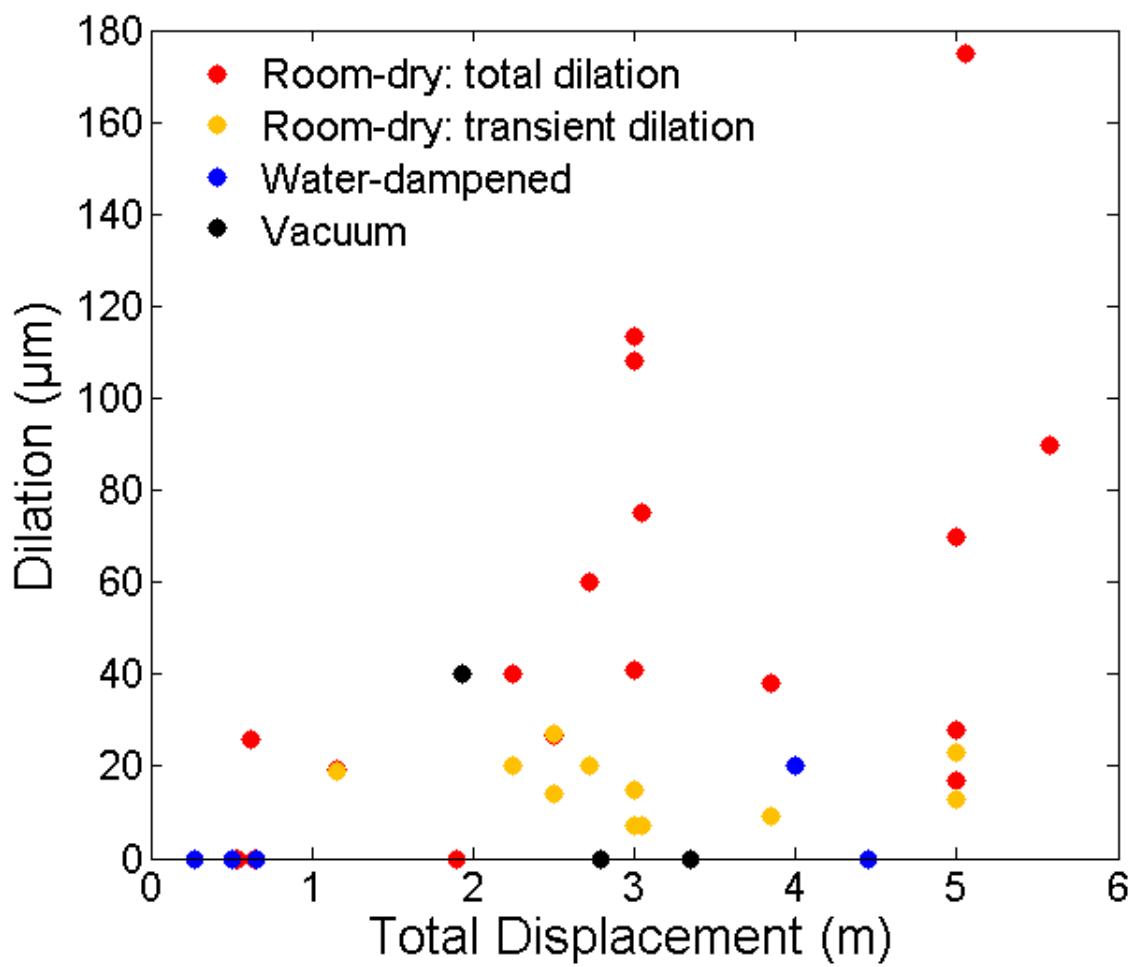


Figure 5

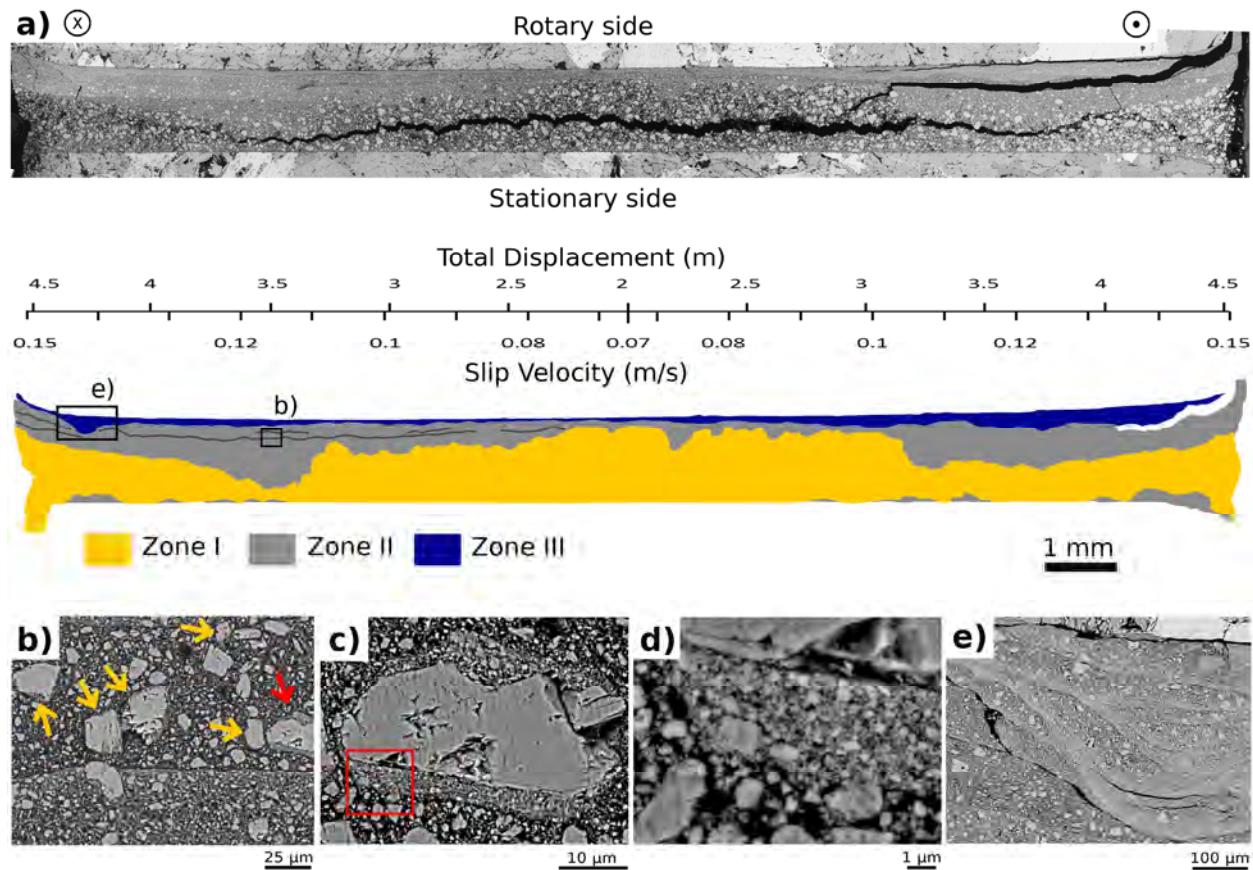
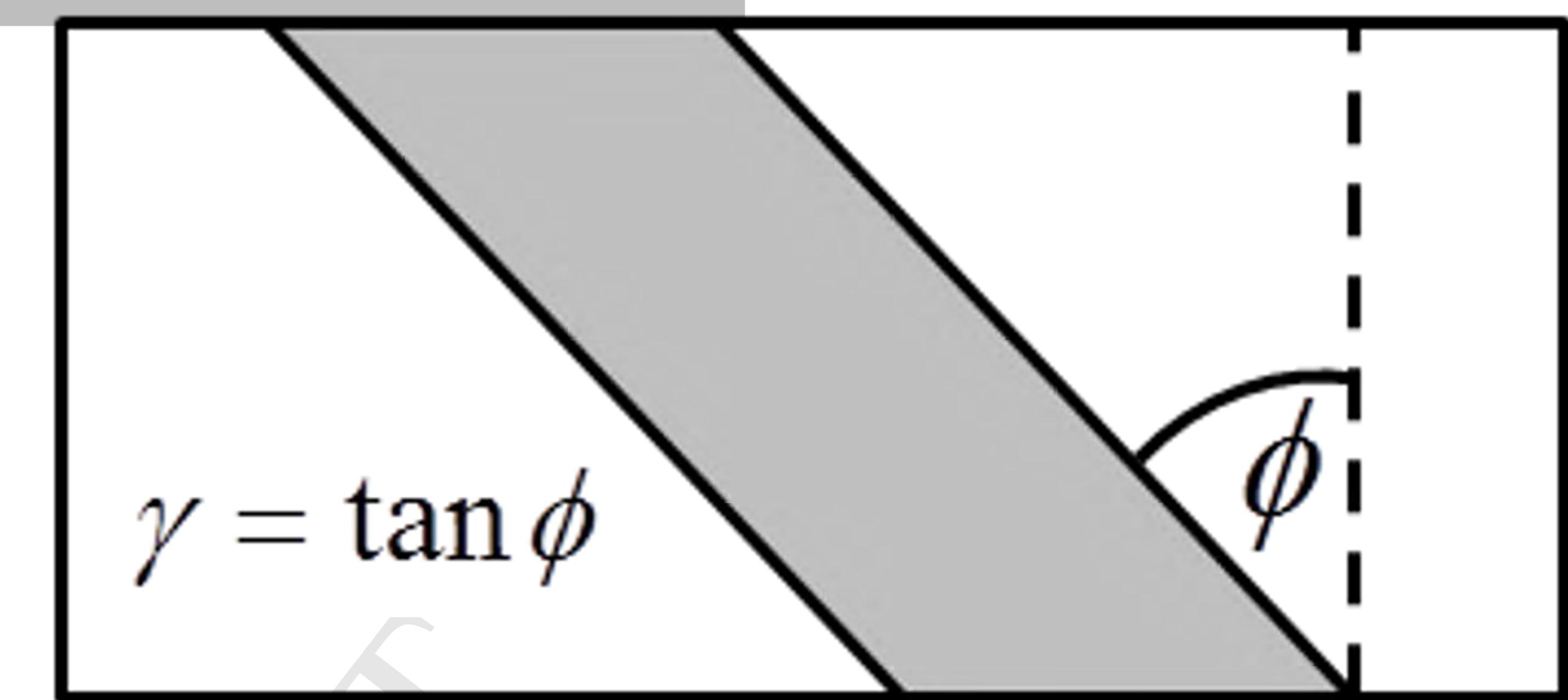
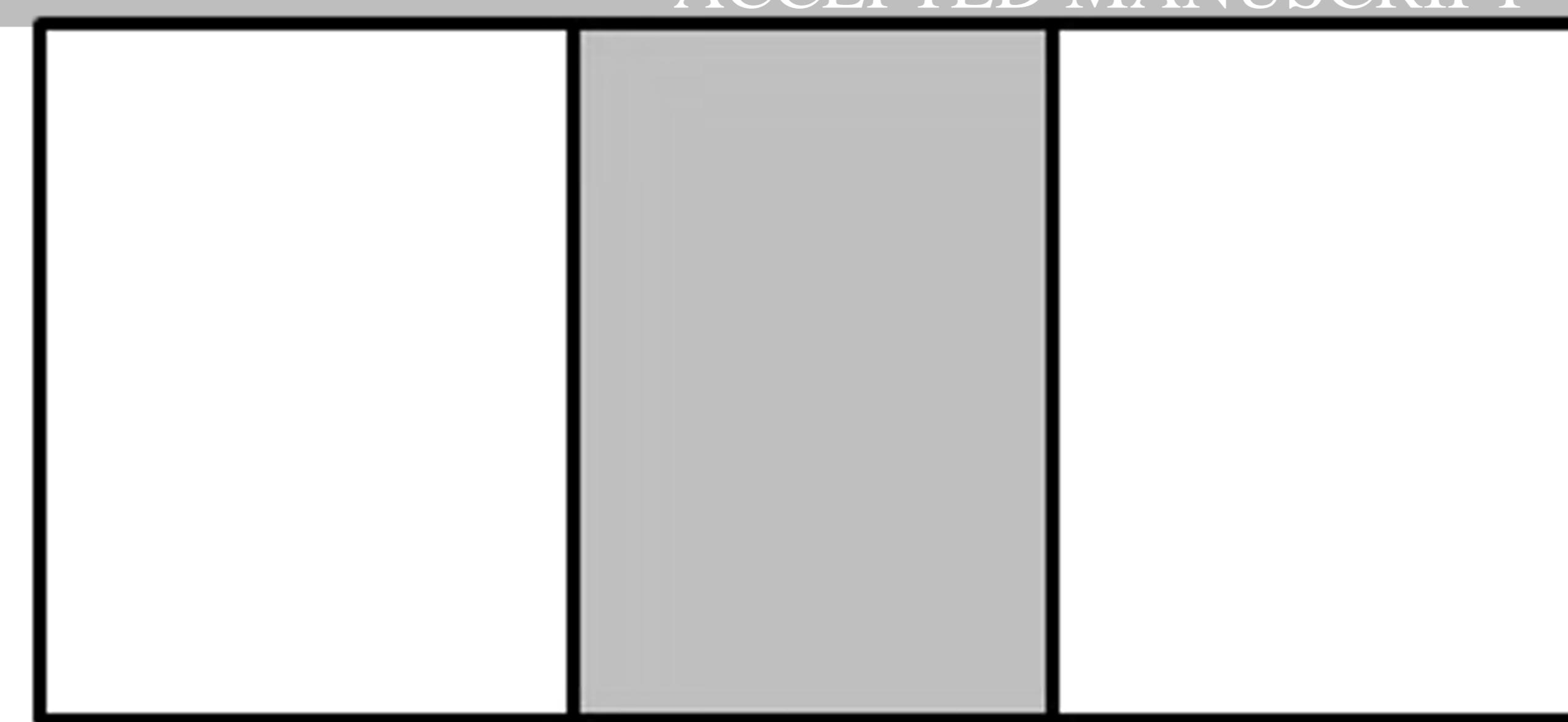
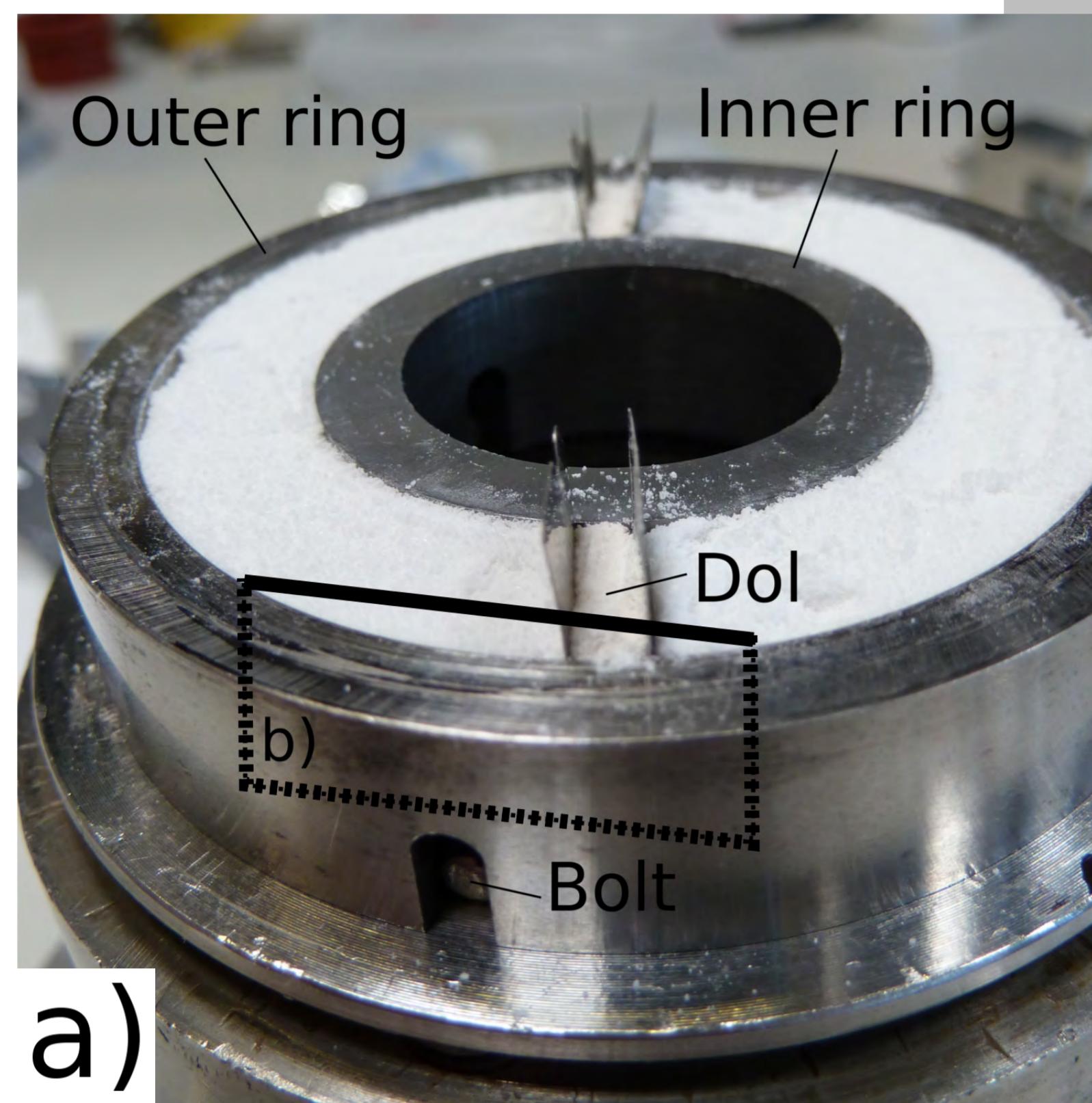





Figure 6

b)

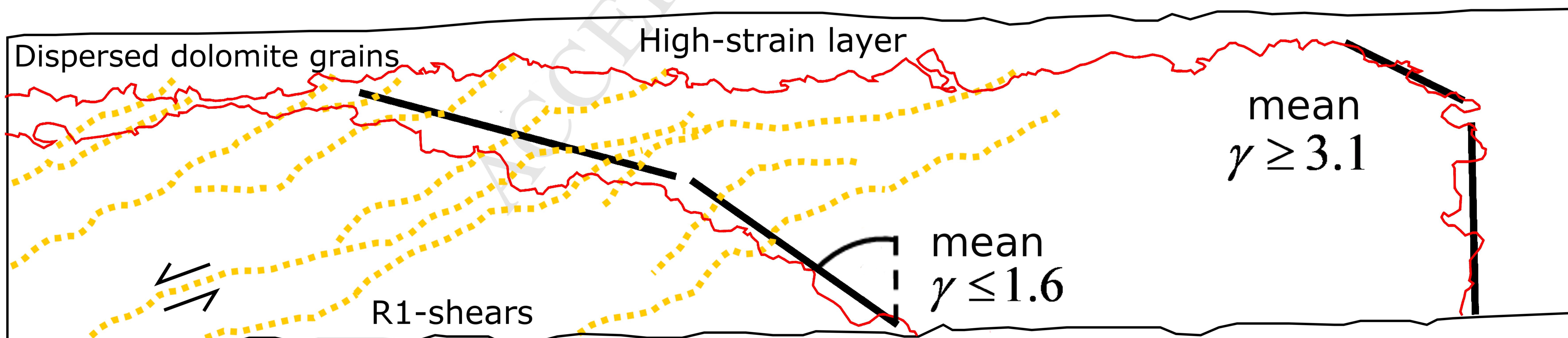
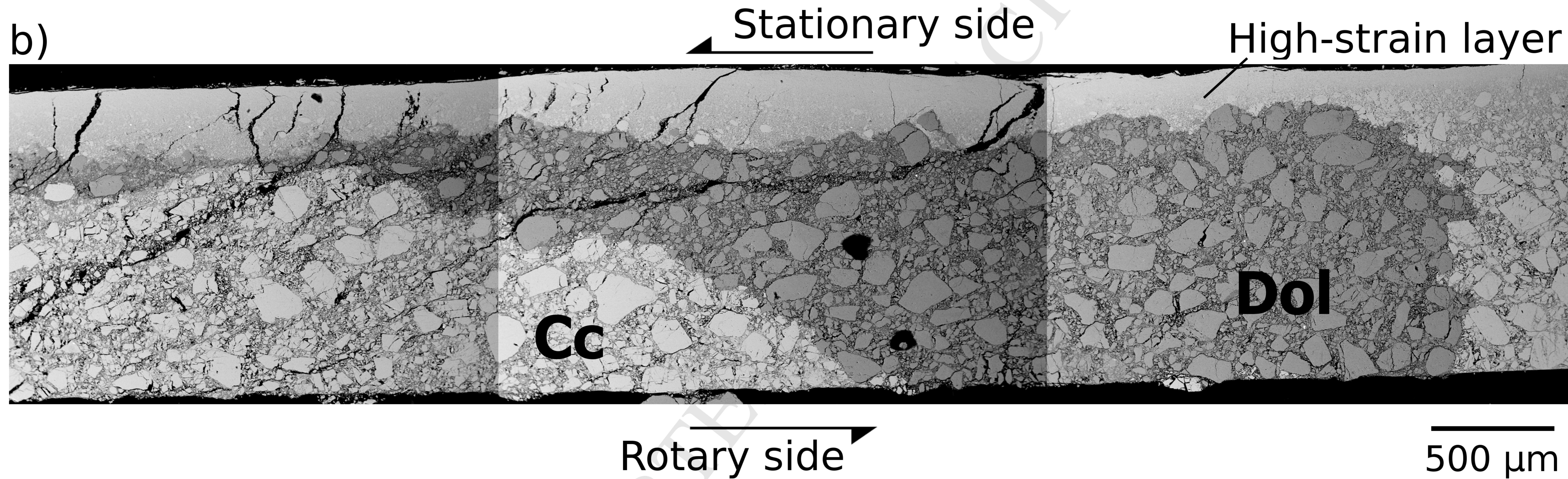
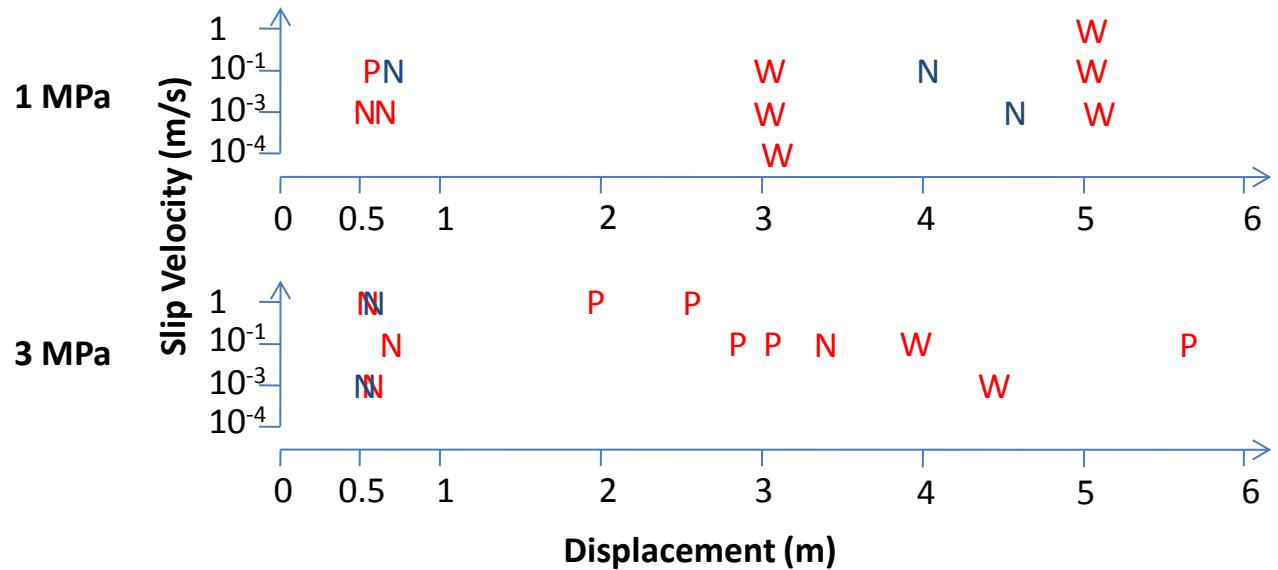
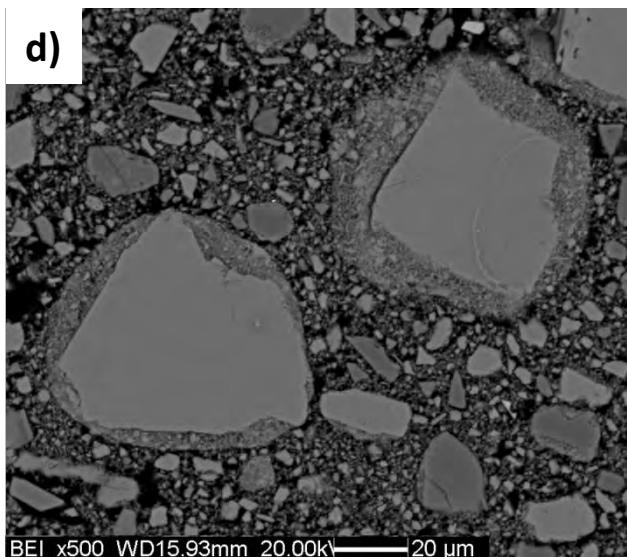




Figure 7

a)


b)

σ_n (MPa)	Gouge layer (mm)	Aggregates
1	1.5	W
3	1.5	P
5	3	W
10	3	P
17	3	N

c)

σ_n (MPa)	Gouge layer (mm)	Aggregates
3	3	N
5	3	P
10	3	N

d)

e)

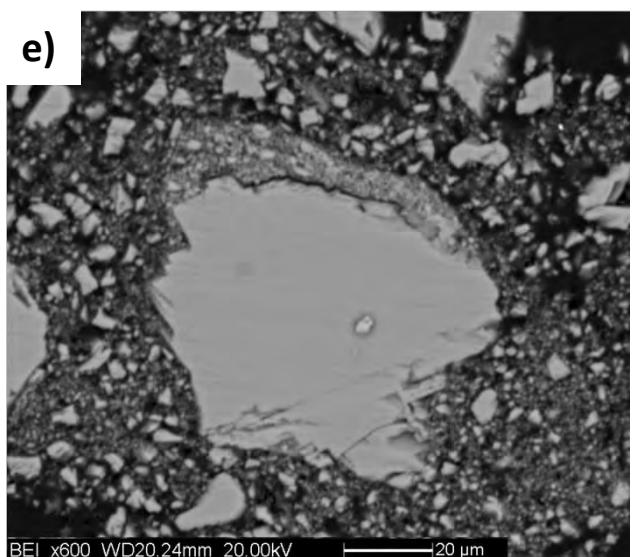


Figure 8

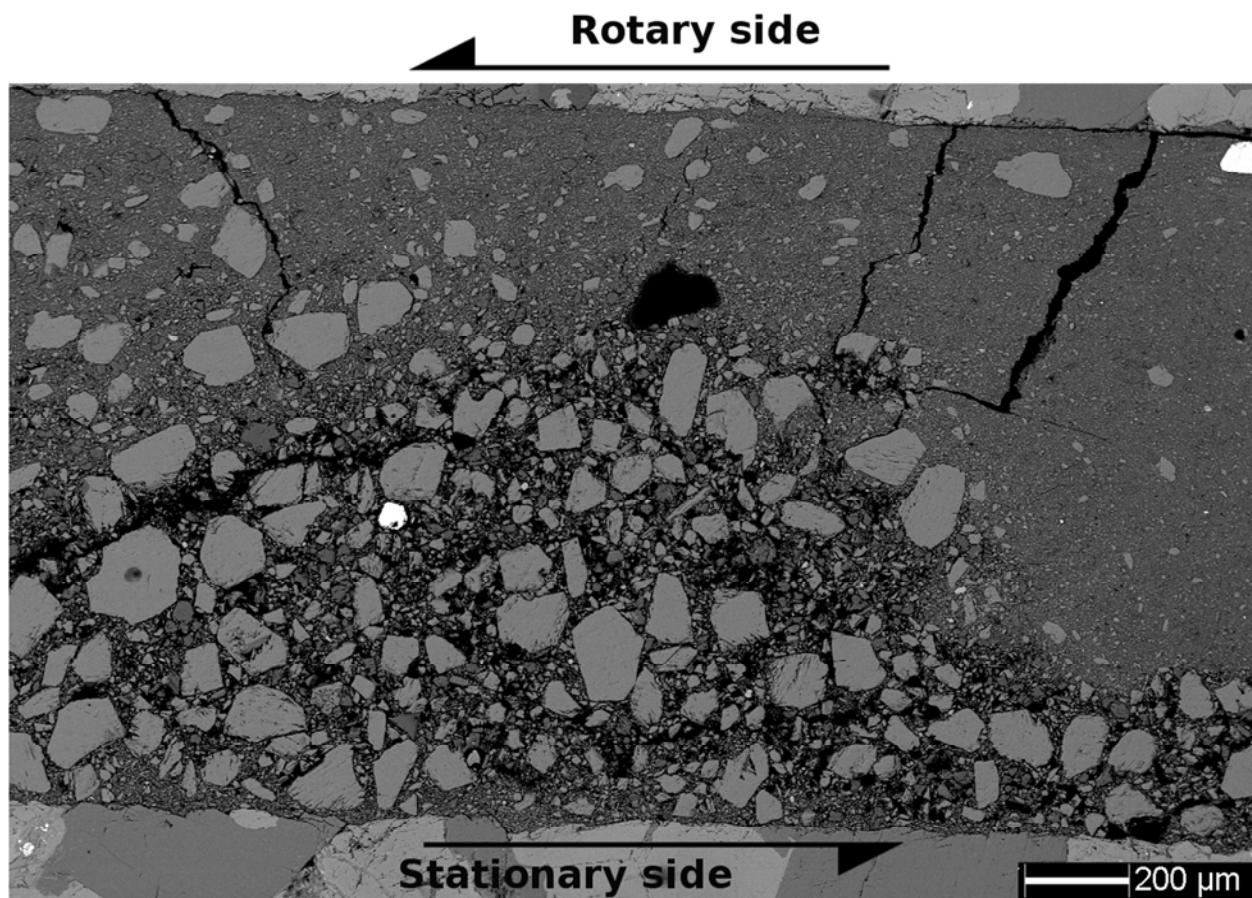


Figure 9

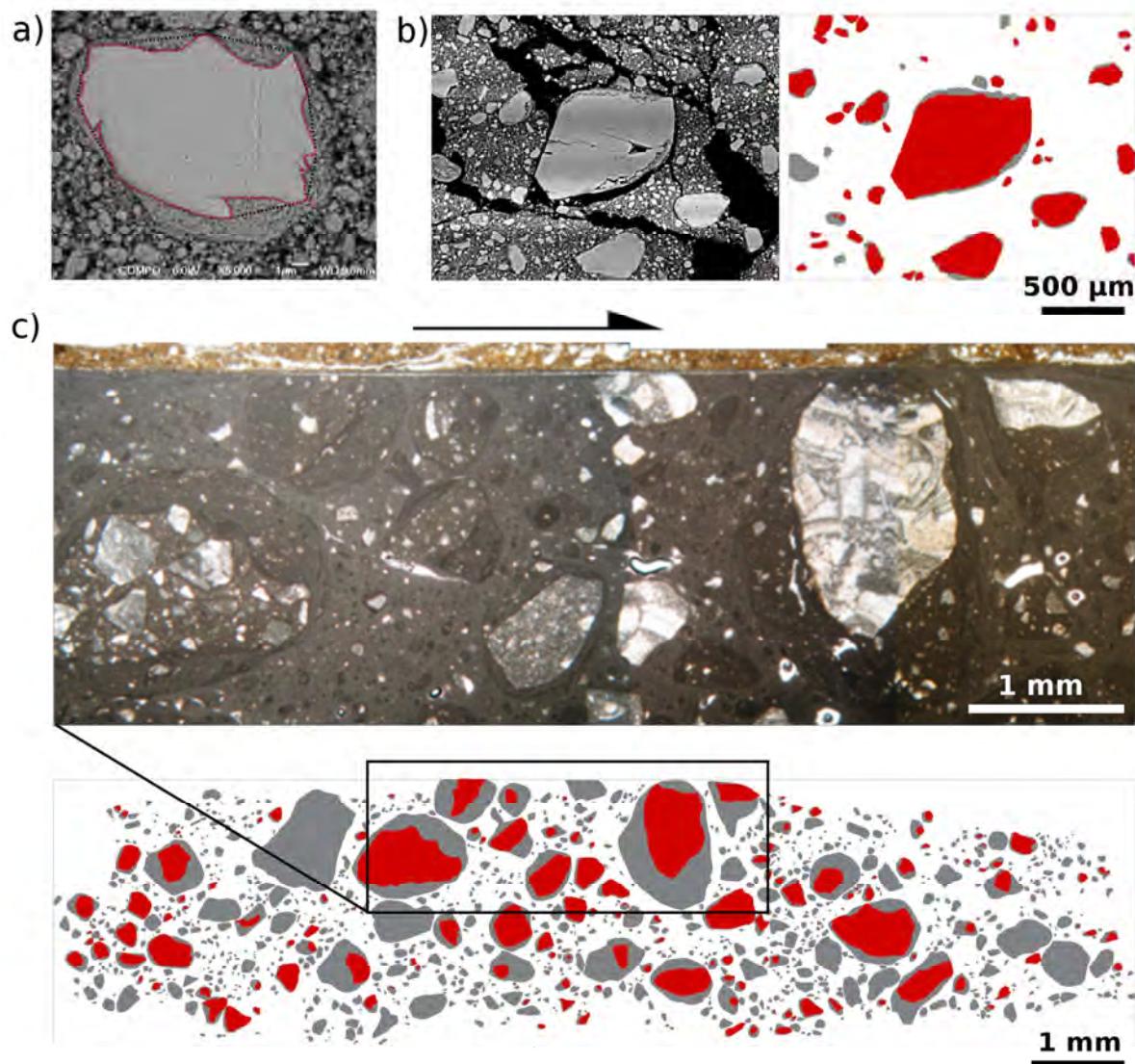


Figure 10

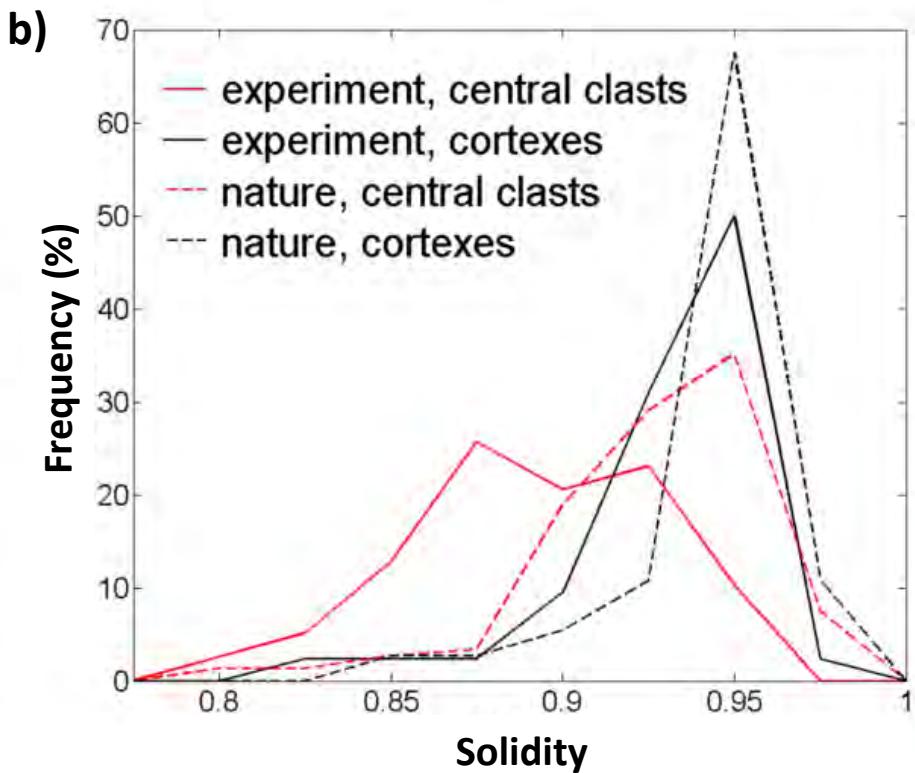
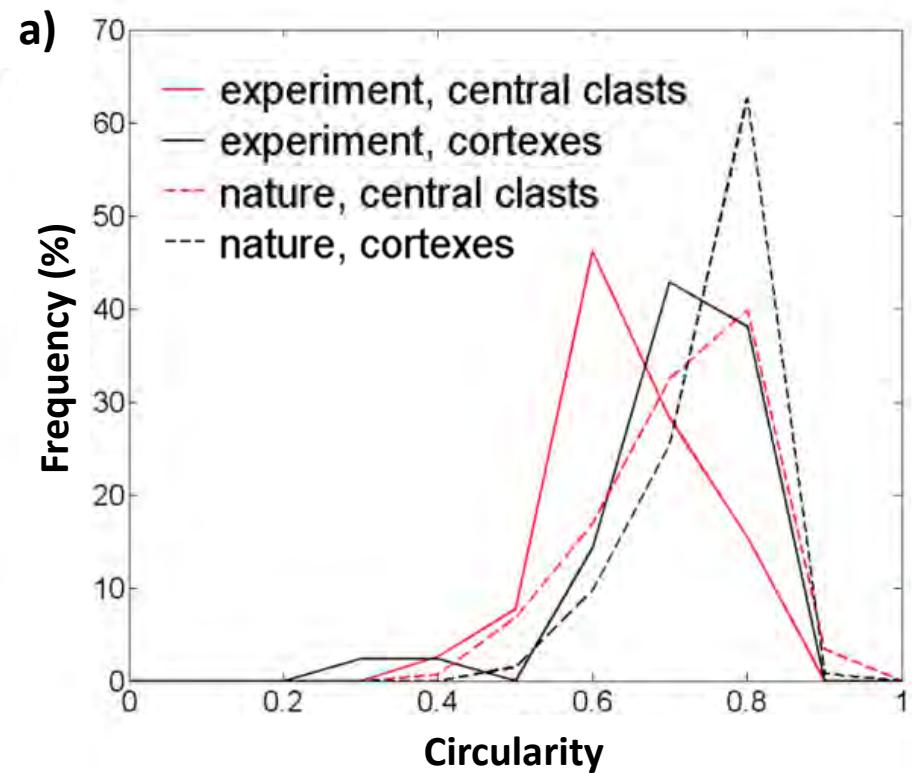



Figure 11

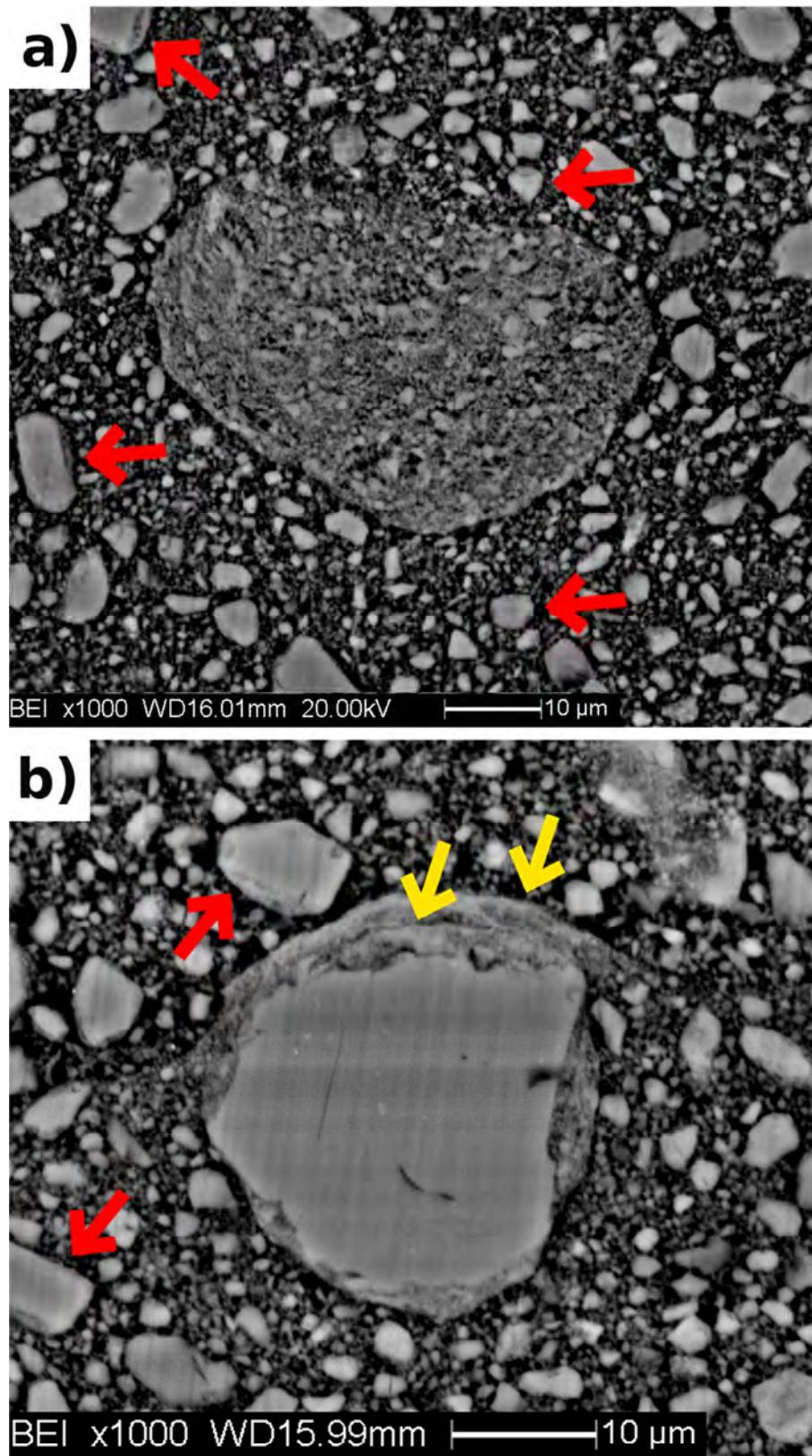


Figure 12

Highlights

“Clast-cortex aggregates in experimental and natural calcite-bearing fault zones”, Rempe et al.

- Clast-cortex aggregates (CCAs) produced experimentally in calcite gouges
- Favored by low normal stresses and room-dry conditions
- Developed at all investigated slip rates (0.001 m/s to 1 m/s)
- Formation by grain rolling and accretion at intermediate strains
- CCAs not a reliable indicator of seismic slip in fault zones