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ABSTRACT 

Current in vitro models for hepatotoxicity commonly suffer from low detection rates due to 

incomplete coverage of bioactivity space. Additionally, in vivo exposure measures such as Cmax 

are used for hepatotoxicity screening which are unavailable early on. Here we propose a novel 

rule-based framework to extract interpretable and biologically meaningful multi-conditional 

associations to prioritize in vitro endpoints for hepatotoxicity and understand the associated 

physicochemical conditions. The data used in this study was derived for 673 compounds from 

361 ToxCast bioactivity measurements and 29 calculated physicochemical properties against 

two lowest effective levels (LEL) of rodent hepatotoxicity from ToxRefDB, namely 

15mg/kg/day and 500mg/kg/day. In order to achieve 80% coverage of toxic compounds, 35 

rules with accuracies ranging from 96% to 73% using 39 unique ToxCast assays are needed at 

a threshold level of 500mg/kg/day, whereas to describe the same coverage at a threshold of 

15mg/kg/day 20 rules with accuracies of between 98% and 81% were needed, comprising 24 

unique assays. Despite the 33-fold difference in dose levels, we found relative consistency in 

the key mechanistic groups in rule clusters, namely i) activities against Cytochrome P, ii) 

immunological responses, and iii) nuclear receptor activities. Less specific effects, such as 

oxidative stress and cell cycle arrest, were used more by rules to describe toxicity at the level 

of 500mg/kg/day. Although the endocrine disruption through nuclear receptor activity 

formulated an essential cluster of rules, this bioactivity is not covered in four commercial assay 

setups for hepatotoxicity. Using an external set of 29 drugs with drug-induced liver injury 

(DILI) labels, we found that the likelihood of liver toxicity increases as compounds’ 

promiscuity over important assays increases. In vitro-in vivo associations were also improved 

by incorporating physicochemical properties especially for the potent, 15mg/kg/day toxicity 

level, as well for assays describing nuclear receptor activity and phenotypic changes. The most 

frequently used physicochemical properties, predictive for hepatotoxicity in combination with 
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assay activities, are linked to bioavailability, which were the number of rotatable bonds (less 

than 7) at a of level of 15mg/kg/day, and the number of rings (of less than 3) at level of 

500mg/kg/day. In summary, hepatotoxicity cannot very well be captured by single assay 

endpoints, but better by a combination of bioactivities in relevant assays, with the likelihood 

of hepatotoxicity increasing with assay promiscuity. Together these findings can be used to 

prioritize assay combinations which are appropriate to assess potential hepatotoxicity.
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INTRODUCTION 

The early anticipation of toxicity of compounds is a challenging yet important task for 

pharmaceutical and environmental stakeholders alike.1 The traditional methods of toxicity 

testing, as imposed by the regulatory authorities, involve in vitro screening as well as acute and 

chronic animal testing.2 The latter is not feasible for large compound sets either at early stages 

of drug development, or for the thousands industrial compounds which are untested and 

potentially hazardous to human and environment. Hence, in vitro bioactivity testing is often 

proposed as a potential alternative, since it provides the opportunity for detecting toxic effects 

of compounds in a more time and cost-efficient manner. Additionally, in vitro testing allows 

to associate biological perturbations, at molecular and cellular levels, with complex adverse 

effects such as hepatotoxicity.3  

In general, for an efficient translatability of in vitro outcomes in to in vivo effects, two key 

factors need to be considered. Firstly, the assays and endpoints relevant to the toxicological 

effect in question;4,5 and secondly, the relevant conditions such as multiple bioactivity 

stressors,6 as well as exposure and bioavailability.7,8 

Regarding the first factor, prioritizing relevant in vitro endpoints is not a straightforward 

task, primarily because hepatotoxicity is an adverse effect which involves complex 

pathological pathways. Based on expert knowledge and known mechanisms of hepatotoxicity, 

several in vitro models have been developed, such as cytotoxicity, bile salts pump inhibition, 

mitochondrial impairment9, Cytochrome P activity,10  and covalent binding.11 Alternative 

models consider immunological activity through changes in cytokines profiles.12 Another in 

vitro technique used to screen for hepatotoxic compounds is high content screening (HCS), 

which utilizes multiple cellular measurements, such as changes in nuclear size, cell count, 

mitochondrial mass and cell membrane integrity, as a biological response.13–15 Considering this 

diversity in biological mechanisms leading to hepatotoxicity, it is not surprising that in vitro 
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assays which adopt a fraction of this bioactivity space would suffer from relatively low 

detection rates, with sensitivity ranging from 40 to 60%.13–16 It has been hence recommended 

that in vitro models for hepatotoxicity should involve a broad range of bioassay endpoints that 

cover wider biological perturbation points and cellular phenotypes, in order to increase overall 

sensitivity.14,17  However, which endpoints to consider, and how to combine their readouts, is 

not clear. 

The second important factor for an efficient in vitro – in vivo translatability is exposure, i.e. 

to what extent a compound actually reaches the site where it exerts its action8, which is related 

(among others) to its physicochemical properties.18,19 Treating exposure appropriately poses 

considerable difficulties in predictive toxicology modelling, mostly because this information 

is difficult to obtain for large sets of compounds. As a proxy for exposure, parameters such as 

maximum plasma concentrations (Cmax) and administered dose levels have shown 

improvements in the prediction of compounds in vivo toxicity. 9,14,15 For example, compounds 

had significant odds for liver injury if their Cmax is greater than 1.1M combined with a set of 

three bioactivities, namely cytotoxicity with an IC50 below 100M, bile transport inhibition 

with an IC50 below 30M, and mitochondrial impairment assays IC50 below 25M.9 It has also 

previously been recommended, as a rule of thumb, to have 100-fold separation between the 

concentration at which compounds are toxic in in vitro HCS assays and Cmax value in vivo.14,15 

Another study has also shown that the likelihood for observing hepatotoxicity is significantly 

higher when the drug is administrated daily dose is higher than 100mg and the drug satisfy one 

of the following: i) forms active GHS adduct, ii) has 5-fold IC50 decrease in Cytochrome P450 

metabolism-dependent inhibition, iii)  binds covalently to proteins at levels higher than 200 

pmol eq/mg protein.11 These studies demonstrate how incorporating daily dose or Cmax can be 

powerful in improving the predictivity of hepatotoxicity. Obtaining these measurements from 
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in vivo experiments, however, is generally not feasible at early stages of drug development, or 

for profiling large number of compounds.  

In order to prioritize the important in vitro endpoints sufficient for detecting hepatotoxic 

compounds, available in vitro and in vivo data can be used to propose novel hypotheses for 

toxicity modes of action. To this end, the ToxCast database project20, which was launched in 

2007 and it is in its third testing phase, provides measurement data for over three thousands of 

compounds against more than 800 assays21. This enables the investigation of bioactivity 

endpoints and their relationship with in vivo toxic effects at a wider scale. Hence, several 

studies attempted mining the data to prioritize relevant bioactivity endpoints5,22 as well as to 

generate predictive models related for liver toxicity.23  A complementary database to ToxCast 

is Toxicity Reference Database24 (ToxRefDB) of the Environment Protection Agency (EPA), 

which is a source for measurements from standardized animal studies with several hundred 

compounds overlapping with ToxCast. Therefore, with appropriate statistical methods, these 

databases can be mined to identify the most representative assay combinations that capture 

compounds inducing toxicity. 

A possible approximation for exposure measures are physicochemical properties, which are 

associated with pharmacokinetic parameters18,19, and which are used in estimation of exposure 

in form of extrapolated plasma concentrations.25 Yet, the mechanistic understanding of how 

these physicochemical properties directly influence the concordance between in vitro 

measurements and in vivo toxic effects, and via bypassing Cmax estimation (or other equivalent 

plasma/cellular concentrations), to our knowledge, has not been investigated. Therefore, 

understanding and prioritizing biological effects of hepatotoxic compounds, and how these 

effects extrapolate into in vivo toxicity, should involve an approach which combine expert 

knowledge as well as statistical methods. 
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The goal of this study is identify the combination of predictive in vitro assays from ToxCast 

for in vivo hepatotoxicity and understand how physicochemical properties influence this 

translatability. The current study is to the best of our knowledge the first to apply modified 

rule-based models on ToxCast in vitro measurements and ToxRefDB in vivo hepatotoxicity 

data with the incorporation of physicochemical properties. Rule based classifiers describe each 

class label by a combination of conditions using the input property set.26 As such, rules can 

facilitate prioritizing predictive assays for the endpoint under consideration, as well as to 

interpret and analyze multivariate associations between in vitro activity and in vivo toxicity. 

However, conventional rule models are not constrained to the direction of associations between 

input features and outcome class, leading to associations that are either spurious or difficult to 

interpret.  

Therefore, we modified rules according to two key assumptions: 1.) Positive bioactivity in 

an assay (and not absence of an activity) potentially contributes to hepatotoxicity; and 2.) 

Multiple conditions influence in vitro–in vivo associations, which means for an assay to 

extrapolate well into in vivo outcome, number of other conditions have to be met. These 

conditions can be a combination of bioactivities and/or physicochemical properties (related to 

exposure). With those two key assumptions in mind, we manually modified the rules for 

hepatotoxicity to enhance interpretability and biological relevance and prioritize combinations 

of assays with 80% overall coverage of toxic compounds. The framework we described here 

can also generally be used to optimize in vitro models for toxicity by selecting significant assay 

combinations, as well as identifying relevant physicochemical conditions. 

 

 

 

 



 8 

 

  



 9 

MATERIALS AND METHODS 

 

The steps followed to generate and prioritize rule for hepatotoxic compounds are summarized 

in Figure 1.  

 

Data collection (Figure 1, step 1) 

Hepatotoxicity endpoints. Rodent hepatotoxicity measures were extracted from the 

Toxicity Reference Database (ToxRefDB, version toxrefdb_v1 released on October 2014).24 

Histopathological endpoints (Supporting Information File 2, Table S1) from rat studies in liver 

which were observed for chronic, sub chronic, multigenerational and prenatal development 

were used in this analysis, recorded as the lowest effective level (LEL) in mg/kg/day for 882 

compounds. These measurements were converted into a binary format by applying two toxicity 

thresholds of 500mg/kg/day and 15mg/kg/day which were subsequently analyzed separately. 

This classification was adapted from Martin et al27 considering the highest and lowest quantile 

bins for toxic effects, corresponding to 15mg/kg/day or less, and 500mg/kg/day or less. 

 

 In vitro measurements. Assay bioactivity data were extracted from the ToxCast database,28 

version December 2014, for 1,057 compounds tested in phases I and II. In vitro measurements 

in ToxCast are recorded as the concentrations at which half-maximum activity is reached 

(AC50). These measurements are generated from dose-response curves for more than 800 

assays in units of log10 M concentration. Assays were annotated by their “intended target 

type”, in the ToxCast assays summary file28 into protein, cellular, pathway, DNA, RNA or 

unspecified. We used this annotation to describe the assays as target-based or phenotypic; if 

the intended target type was described as a protein, it was considered target-based, otherwise, 

for high-dimensional readouts, assays are annotated as phenotypic. 
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Compound set. The compound set used in this study represents the intersection between 

compounds in ToxRefDB and ToxCast, resulting in 673 compounds in total (see 

Supplementary Table S2 for full list of compounds) matched by ToxCast compound ID. 

Applying the toxicity threshold of 500mg/kg/day resulted in 395 toxic compounds and 278 

non-toxic compounds, whereas at the threshold of 15mg/kg/day 162 compounds were 

annotated as toxic and 511 as non-toxic (Step 1 in Figure 1).  

 

Dataset curation. Assay endpoints with empty fields (missing values) were considered 

inactive and an arbitrary (very large) AC50 value of 106 M was assigned, adapted from Lui et 

al.23 In order to select a data matrix that was as complete as possible only assays which had 

valid AC50 measurements for at least 5% of the compounds were selected.  This step resulted 

in 361 assays which are listed in Supplementary Table S2. A recommended step in 

understanding adverse events resulted from pathway specific effects is to use assays frequently 

respond bellow the cytotoxicity concentrations (termed as cytotoxicity burst or CBT).29 

However, we decided to include all assays with sufficient number of AC50 measurements and 

apply rules to detect the best predictive assays for hepatotoxicity including those describing 

non-specific effects.  

 

Structural preprocessing and calculation of physicochemical properties. Compounds 

were standardized using ChemAxon standardizer30 (version 15.12.14.0) using the parameters 

cleaning 2D, mesomerisation, neutralization, tautomerization (generating the most stable 

tautomer) and removal of fragments of smaller sizes. Physicochemical properties were 

generated using RDKit31 via KNIME32 and the Calculator Plugins33 in Instant JChem (version 

15.12.14.0)34. A subset of 29 physicochemical properties were used in the current analysis 

which are listed in Supplementary Table S3.  
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Constructing rule-based classifiers (Figure 1, step 2) 

Multivariate associations between assays and hepatotoxicity endpoints were modelled via 

rule-based machine learning classifiers (Step 2 in Figure 1) as follows. Input variables were 29 

physicochemical properties and 361 ToxCast in vitro AC50 measurements for 673 compounds 

against two hepatotoxicity labels of 500mg/kg/day and 15mg/kg/day. The rules were generated 

using the C5.0 algorithm (modified from the C4.535 algorithms by Ross Quinlan) as 

implemented in the C5.036 and caret37 R packages using 5-fold repeated cross-validation with 

100 trials and without winnowing. Other parameters were set to default. The models with the 

highest correct classification rate (CCR) at each trial were retained to be used to generate the 

rules (accuracy distribution in Supporting Information, Figure S3). Throughout text, we refer 

to rules associated with hepatotoxicity as rules predictive for or describing toxicity, 

exchangeably.  

 

Rule modification (Figure 1, step 3) 

Each rule derived from the above procedure consists of one or more conditional statements 

to predict the hepatotoxicity label at a given dose, based on the input variables (ie 

physicochemical properties and ToxCast readouts; Step 3 in Figure 1). For example, a 

condition in a rule for toxic compounds may involve a bioactivity in an assay to be less than 

10M (possibly in combination with other properties), which then results (or doesn’t result) in 

hepatotoxicity at a given dose. However, inactive bioassay conditions in toxicity-describing 

rules are not able to explain in a biologically meaningful way how a compound triggers toxicity, 

and hence such rules will be less informative (or even meaningless) as a result. Hence to extract 

biologically relevant associations between activity in vitro and hepatotoxicity in vivo, rules 

were manually modified to retain interpretable and biologically meaningful patterns. To 
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achieve this, modification was applied by removing conditions of inactivity in assays from 

rules describing hepatotoxic compounds. On the other hand, positive activities in assays and 

physicochemical properties were kept for further analysis as provided by the machine learning 

method. As conventional rule methods that take continuous variables as input can generate 

conditional splits contradicting the assumption stated above, manual curation of rules was 

applied to retain only splits satisfying this assumption.  

Positive activity and inactivity in an assay were discriminated according to the direction of 

the conditional split. Since the compound potency in an assay is inversely related to the 

concentration at which a certain biological response was obtained (such as an IC50 value or 

similar), a bioactivity condition was considered active if the split represent a concentration 

range below a defined cutoff, and vice versa.  

One example of how rules were modified is provided in Figure 2 and illustrated in the 

following. For example, in the condition Tox21_p53_BLA_p5_viability <= 0.026, the first part 

describes the viability of a human intestinal cell line, and the second part (<= 0.026) represents 

the range of AC50 (in log10 M concentration) to be less than 0.026 (< ~1.06M) for the 

condition to be fulfilled. As the statement describes the range below a bioactivity cutoff (split 

point), this example represents a bioactivity condition with positive activity. On the other hand, 

the two conditions, i) APR_HepG2_MitoMembPot_72_up > 2.037 and ii) 

Tox21_HSE_BLA_agonist_ratio > 2, represent respectively the increase of mitochondrial 

membrane potential and Heat Shock Protein (HSP) agonism (both relative to negative control) 

with AC50 values higher than 100M. The latter conditions were considered inactive, and 

hence removed from rules capturing toxicity during the pruning process.  

 

Performance assessment and rule prioritization (Figure 1, steps 4 and 5) 
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In the current study, the performance of rules was assessed at two levels, for individual 

conditions used in original rule set as well as for rules before and after modification.  

Individual rule conditions were first extracted by collecting the unique set of features used 

by the rules. These were assessed for their association with the hepatotoxicity outcome, at both 

thresholds, 15mg/kg/day and 500mg/kg/day, by calculating the information gain38 (decrease in 

entropy) associated with this variable. The comparison was conducted with respect to condition 

type, which were categorized into three groups; conditions describing positive assay activity, 

inactivity in an assay, and physicochemical properties. 

As the applied modification may change rule performance, the next step was to assess the 

accuracy (confidence) and coverage of rules before and after modification (Step 4 in Figure 

1).Rule confidence, represents the percentage of correctly classified compounds for a given 

class, i.e. here hepatotoxicity. In order to account for the imbalanced distribution of toxicity 

classes, the balanced accuracy of modified rules was calculated by generating 500 randomly 

selected balanced data subsets, each composed of 300 data points, and then averaging the 

accuracy. Rule coverage was calculated for the number of toxic compounds that satisfy the rule 

conditions (true positives).  

As the modification arrived at a rule set that is overall not optimal, a set of prioritization and 

selection steps were conducted. The prioritized rules were subsequently assumed to capture 

biologically meaningful information to the maximum possible extent, given the unavoidable 

limitations of chemical space coverage and bias of the dataset that was available to us. 

The rules predictive of toxicity were filtered based on minimum coverage and accuracy (Step 

5 in Figure 1). Minimum coverage was set to 50 and 20 compounds per rule at thresholds of 

500mg/kg/day and 15mg/kg/day, respectively. The cutoffs for coverage represented the 

median values after modification, in other words, the best 50% of rules in terms of coverage 

were selected (see Supporting Information for coverage distributions, Figure S4). Secondly, an 
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accuracy cutoff of 70% was applied for both rule sets. Another selection step was undertaken 

to reduce assay redundancy, that is if an assay contributes to multiple rules, then the rule with 

the highest accuracy that contains that particular assay was selected. Finally, the minimal rule 

set which covers 80% of toxic compounds at each toxicity threshold was selected (see Results 

and Discussion below).  

To identify the key bioactivity groups captured in toxic compound in the dataset, the final 

rule set were clustered according to their similarity in compound membership. This was 

performed by generating a matrix of rules against compounds fulfilling the respective rule 

conditions, from which a rule similarity matrix (based on shared detected and not detected toxic 

compounds) was calculated based on the Jaccard index.39 Hierarchical clustering was applied 

to the similarity matrix using the Agglomeration method Ward.D240 algorithm via the ‘hclust’ 

function in R.41 The bioactivity assay conditions under each cluster were examined. 

External test set 

An external test set was used to examine the discriminating power of the biological space 

identified by rules. A set of drugs with DILI injury labels in humans110 were used and selected  

by matching their InChIKey identifiers with compounds in the ToxCast chemicals. We found 

29 drugs in the ToxCast chemical library with valid DILI labels but were not used in the 

training set (Table S10). Among these drugs, 12, 12 and 5 are of most, less and no DILI 

concern, respectively.  The chemical similarity of these drug to the nearest neighbor in the 

training ranged between 0.15 and 0.89 with a median of 0.33. These drugs were tested for 

matching i) the prioritized rules and ii) the biological space used in rules. The biological space 

was determined by all ToxCast assays covering the biological targets identical to those used in 

rules. These assays were called here as the equivalent assay set.  Positive activity calls in these 

assays was given for AC50 concentration values equal or below 100M. Promiscuity over the 
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biological space was also examined which was determined by the proportion of activity calls 

in the equivalent assays to the overall  activity calls in the all ToxCast assays. 

 

Software 

The analysis in this study was conducted in R41 environment (version 3.3.2) . Visualizations 

were generated using ‘ggplot2’42 and basic R. 
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RESULTS AND DISCUSSION 

 

Extracting biologically relevant rules for toxic compounds 

Information content of conditions in hepatotoxicity rule-based classifiers 

To have a picture of how original rules were structured, Table 1 describes the average 

frequency of each condition type. Overall, on average rules capturing toxicity include one 

positive assay activity and four inactive bioassay conditions at both toxicity levels. Close to 

one (0.9) physicochemical condition is on average involved in toxic rules at a threshold of 

15mg/kg/day, whereas only on average 0.6 physicochemical conditions are included in rules 

at a threshold of 500mg/kg/day. Hence, although inactive conditions are by themselves not 

very information-rich, they frequently are contained in automatically derived rules. Given that 

inactive assay conditions cannot mechanistically meaningfully linked to toxic events this 

underlines the need for rule modification as our method of choice (the difficulty of deriving 

toxicity predictors entirely automatically from ToxCast data has also been discussed, using 

different methods, before).4,43 

In order to evaluate to what extent individual assays might be able to predict hepatotoxicity 

we firstly examined how much information was gained from each type of conditions in the 

rules. Given the distribution of data points in the classes of the overall dataset, the maximum 

possible information gain was 0.79 and 0.98, at thresholds of 15mg/kg/day and 500mg/kg/day, 

respectively. Figure 3 displays the distribution of the information gain (IG), for positive 

bioactivities, negative bioactivities, and physicochemical conditions in toxic rules at toxicity 

levels of 15mg/kg/day and 500mg/kg/day, respectively, and we can observe two key trends. 

Firstly, the maximum observed IG obtained by any split is very low overall, with the maximum 

IG being only slightly higher than 0.04 and the median IG of positive bioactivity conditions 

being around 0.01. This indicates that single assays on their own have little predictivity for 

hepatotoxicity. Secondly, the median IG for physicochemical and negative bioactivity 
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conditions is even lower and does not exceed 0.005. This means that these conditions on their 

own are less predictive for hepatotoxicity than active assay conditions.  

Although positive bioactivities provide the relatively highest IG overall, their still in absolute 

terms low quantitative values indicate that one condition (or assay) is certainly not sufficient 

to discriminate between all toxic from non-toxic compounds. This observation can be attributed 

to two factors: Firstly, hepatotoxicity involves diverse and complex mechanisms that cannot 

usually be captured by single endpoints.6,44 Secondly, without considering exposure (or at least 

some proxies, such as chemical properties),18 assay readout do not translate readily into in vivo 

outcomes,43.45 Our conclusion in this work is hence that, in order to improve our ability to 

predict in vivo toxicity, we need to use rules which, on the one hand, involve a combination of 

assay endpoints to cover wider bioactivity space, and on the second hand incorporate also 

physicochemical conditions.  

 

Rule modification (Figure 1, steps 3-5) 

To make rules capturing toxicity more biologically meaningful, we next modified them by 

removing inactive assay conditions, and then keeping rules which retain the highest accuracy 

and coverage (as described in Methods).  

The changes in error rates (accuracy) from rule modification are presented in Figure 4. 

modification resulted overall in a deterioration in accuracy of 10% and 20% on average for 

rules set at thresholds of 15mg/kg/day and 500mg/kg/day, respectively, as shown in Figure 4. 

The change in accuracy is broad, ranging between -20% up to +40% at both toxicity levels. 

However, the improvement in accuracy (negative values in Figure 4) can be seen for one fifth 

of rules at the level of 15mg/kg/day and less than a quarter of the rules at level of 500mg/kg/day 

(Figure 4).  
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Prioritizing predictive rule sets (Figure 1, step 6) 

 As some modified rules have shown severe deterioration in accuracy, a selection step was 

next introduced to retain only highly performing modified rules, defined as those possessing at 

least 70% minimum accuracy, in addition to a minimum of 50 and 20 compounds being 

covered (corresponding to the median in coverage of all rules) at the toxicity thresholds of 

500mg/kg/day and 15mg/kg/day, respectively. The resulting rules were ranked by accuracy 

and the rule set able to detect a minimum of 80% of all hepatotoxic compounds was selected 

(Step 6 in Figure 1).  

Figure 6 shows the relationship between the overall compound coverage at both toxicity 

thresholds with i) the minimum rule accuracy and ii) the number of unique bioassays used in 

the rules . Firstly, if higher percentages of toxic compounds are to be detected, then more rules 

(some of which will have lower accuracy) are needed. For example, to obtain collectively 80% 

compound coverage at a threshold of 500mg/kg/day requires including 35 rules up to a lower 

limit of 73% accuracy. On the other hand, in order to achieve equivalent coverage at a threshold 

of 15mg/kg/day 20 rules with a lower accuracy limit of 81% is sufficient. Hence, potent 

toxicants can be captured by rules of higher confidence than compounds fall under weaker 

toxicity levels.   

Secondly, in order to cover larger proportions of compounds, higher numbers of unique assays 

to be used by the rules. It can be seen that up to 50% of compounds, at both thresholds, can be 

described in rules using readouts from 11 assays. For 80% compound coverage, 24 and 39 

assays are needed in rules, at thresholds 15mg/kg/day and 500mg/kg/day, respectively. Further 

for 90% coverage, 34 unique assays are needed in rules at 15mg/kg/day, whereas, more than 

70 unique assays are required to cover the same proportion of toxicants at 500mg/kg/day 

threshold.  
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Hence overall, single assay endpoints, for the dataset employed here, are only sufficient to 

anticipate in vivo hepatotoxicity for rather few compounds individually. Instead, a combination 

of bioactivity measurements is required for enhancing the detection rate of hepatotoxic 

compounds, for which larger numbers of assays (with broader mechanistic coverage) are 

needed. 

 

Prioritizing assay endpoints for hepatotoxicity detection 

We next interpreted the bioactivity endpoints used in rules predicting hepatotoxicity, as 

determined from the assays used by the best-performing rules covering 80% of the toxic 

compounds at both LELs of 15mg/kg/day and 500mg/kg/day.  

Tables 2 and 3 present the rule clusters capturing the key bioactivity classes in compounds 

covered by these rules. At both thresholds of 15mg/kg/day and 500mg/kg/day, the rules 

clustered into three bioactivity groups (according to the most common biological activity in 

each cluster), namely those involving primarily i) the group of Cytochrome P enzymes, ii) 

immune responses, and iii) nuclear receptors and transcription factor elements. 

 

Cytochrome P 

Activity against Cytochrome P enzymes is one of the key properties of hepatotoxic 

compounds at both toxicity thresholds (Tables 2 and 3, cluster 1). There are multiple assays in 

the rules describing activity against different Cytochrome P isoforms, namely against CYP3A, 

CYP2C18 and CYP2C19 at a dose of 500mg/kg/day, and against CYP2A, CYP2C6, 

CYP2C12, CYP2C13 and CYP2C19 at a level of 15mg/kg/day. All Cytochrome P enzymes 

were associated with information gain (IG) values between 0.021 and 0.035 that are higher 

than average in the selected assay set (Tables 2 and 3, cluster 1), i.e. higher than 0.02 and 0.022 

at levels of 500mg/kg/day and 15mg/kg/day, respectively. The average potency in rules 
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covering compounds active against Cytochrome P enzymes is less than 10M (Figure S5). 

Activity against Cytochrome P isoforms CYP3A4 and CYP2C19, which are responsible for 

the majority of drug metabolic reactions,46 can be linked to liver injury via generating toxic 

metabolites or interfering with the metabolism of co-administered resulting in slow elimination 

and chemical accumulation.47   

 

Immunological responses 

Multiple assays utilized to anticipate hepatotoxicity in our rules were found to contribute to 

immunological responses at both toxicity cutoffs (Tables 2 and 3, cluster 2). Immunological 

response conditions in hepatotoxicity rules, in general, had shown assay potency requirements 

lower than Cytochrome P activities, of around 40M (see Figure S5 for details). At a threshold 

of 500mg/kg/day, assays associated with the downregulation of cytokines CXCL10 (IL-10) 

and CD40 were used by rules, and they also had an individual information gain values above 

the median (0.02) at values around 0.029, namely the assays “A.15”, “A.17” and “A.20”. These 

cytokines are associated with both proinflammatory and regenerative responses depending on 

downstream signaling.48,49 For example, CD40-mediated activation of IL-12 has a 

proinflammatory effect.50,51 On the other hand, it can also activate IL-10 immune response, 

which primarily participates in regenerating and repairing hepatic cells via anti-inflammatory 

responses.48,52 Similarly, the induction of CXCL10 cytokine can reduce liver injury in mice 

models via upregulation of CXCR2.53 Yet, also blocking CXCL10 has a regenerative effect 

after liver damage.49 Hence, the observed hepatotoxic effect on the organism level seems to 

depend on other factors than purely the direction of the regulatory effect on the gene level. 

Similarly, immunological endpoints detected at a threshold of 15mg/kg/day involve the 

downregulation of CXCL10 and CD40, as above, and in addition that of CCL2, captured by 

the assays “B.13”, “B.15” and “B.10”, respectively. At this threshold, downregulation of CCL2 
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had a high associated information gain of 0.037, hinting to its importance for hepatotoxicity 

prediction. CCL2 expression can increase tissue damage via IL-12  signaling54, but 

simultaneously has a protective effect by activating the hepatoprotective cytokine IL-10.54,55 A 

previous study has shown an overall downregulation of a variety of cytokines (CCL2, IL-10, 

IL-12 and IL-16) in primary and liver sinusoidal endothelial (LSEC) cell lines upon the 

exposure to free fatty acids in contrast to hepatocytes. The authors suggested the anti-

inflammatory effect as a response to overcome liver damage.56 Therefore, assays which detect 

changes in the expression of immunological cytokines, such as CXCL10 and CCL2, are 

biologically not entirely understood, but nonetheless they are informative and hence can be 

regarded as valuable in hepatotoxicity in vitro models. 

 

Nuclear receptors and response elements 

Activity against nuclear receptors is an important contributor to the overall bioactivity profile 

of hepatotoxic compounds (cluster 3 in Tables 2 and 3). Compared to the above bioactivity 

groups, lower potencies of approximately 50M were used as a rule condition in this case 

(Figure S5). Endocrine disruption is included in predictive rules for hepatotoxicity at both 

thresholds, such as activity against estrogen and androgen receptors, which is captured in 

multiple assays (“A.3”, “A24”, “A.34”, “B.4”, “B.12”, “B18”, “B23”). There are established 

links between estrogen and glucocorticoid receptors (“A.35”) with cholestasis (impairment of 

bile flow)57 and steatosis (fatty liver)58, respectively. In addition, androgen receptor antagonism 

is associated with a range of hepatotoxic effects with hepatitis as most commonly reported.59 

Rules obtained at both thresholds for hepatotoxicity also share activity against CAR 

(constitutive androstane receptor), FXR (farnesoid X receptor) and PPAR (peroxisome 

proliferator-activated receptor) which are described by the assays “A10”, “A.11”, “B.24”, 

“A.2” and “B.17”. Both CAR and FXR play a key role in preventing xenobiotic-induced 
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hepatotoxicity by regulating a number of genes including phase I and II metabolizing enzymes 

and bile acid transporters.60,61 The activity of FXR was found to be correlated with the degree 

of protection from chemical-induced liver injury previously.61 PPAR- agonist activity, which 

represented by up regulation in A.2, is known to be involved in chemical-induced liver injury.62 

Whereas, PPAR- has a hepatoprotective effects against toxicants63. 

Additionally, there were bioactivities contributing specifically to each toxicity cutoff under 

the nuclear receptor activity class. For example, at 500mg/kg/day, several transcription factor 

response elements were involved in cluster 3 in Table 2, such as the regulation of cyclic-AMP 

response element binding protein (CREB), which provided a relatively high information gain, 

at this dose, of 0.048 in “A.31”. It has been found that the activation of CREB-binding 

protein/-catenin interaction promotes liver fibrosis.64 Another response element is the 

upregulation of SMAD (assay “A.28”) , which mediates TGF--induced apoptosis and fibrosis 

via downstream immune responses.65,66 

At a toxicity threshold of 15mg/kg/day, bioactivities under the nuclear receptors cluster 

included those against the vitamin D (VDR) and liver X receptors (LXR) in the assays “B.8” 

and “A.21”. Upregulation of the VDR response element (VDRE) is associated with anti-

inflammatory properties and xenobiotic metabolism,67,68 while LXR has an anti-inflammatory 

effect67 and can reduce chemical-induced toxicity.69 Thus, the activation of these nuclear 

receptors can be linked to triggering protective response against xenobiotics. We observed that 

the cytochrome P and nuclear receptor assays clustered into separated groups. However, the 

NR which regulate the expression of metabolizing enzymes were embedded within the 

Cytochrome P group, such as CAR, FXR and VDR. 

 

Other observed bioactivities in prioritized rules   

 Phenotypic assays 
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Furthermore, the prioritized rules involved several phenotypic activities that cannot be 

attributed to a specific target. Assays describing cell morphology and cell cycle are more 

frequent at threshold 500mg/kg/day (Table 2), at which some selected endpoints can be 

attributed to a broad range of perturbations. These include as cytotoxicity, cell cycle arrest, 

oxidative stress and mitochondrial impairment. There are ten assays describing cell cycle or 

cell morphology in rules capturing hepatotoxicity at a toxicity level of 500mg/kg/day, whereas 

only four assays are in the rules derived at 15mg/kg/day (Table 2 and Table 3). Also, these 

assays had shown significant difference in the overall assay potencies, of around 50M, 

between levels of 500mg/kg/day and 15/mg/kg/day. The phenotypic assays overlapping 

between the two toxicity levels include increase in nuclear size and mitochondrial mass, 

represented by “A.1”, “A.25”, “B.19” and “B.20”. Mitochondrial dysfunction is one of the key 

mechanisms of chemical-induced hepatotoxicity.44,52,70,71 Nuclear size increase, which was 

seen part of the cluster for nuclear receptor activity, can be a result of activating gene 

expression. This endpoint is also common in high content screening models due its predictivity 

of toxic compounds.13,15 Additionally, at a threshold of 500mg/kg/day, two assays describe 

mitochondrial effects with information gain higher than the median (0.02 and 0.029), which 

are associated to changes in mitochondrial membrane potential, namely “A.22” and “A.23”. 

Chemical toxicants can cause mitochondrial permeability transition (MPT) via the opening of 

permeability transition pores in the mitochondrial membrane,52 either directly or indirectly. As 

a result, mitochondrial depolarization takes place which leads to ATP depletion and reactive 

oxygen species (ROS) release, followed by mitochondrial membrane rupture and apoptosis or 

necrosis.44 Another phenotypic effect is the increase in stress kinase expression as a response 

to stress (assay “A.27”). This assay has the highest information gains of all assays (of 0.052) 

and the accuracy of its rule is 95%, which indicates that it is highly associated with toxicity at 

a 500mg/kg/day level. Also, rules at this level involve other cell cycle assays which screen for 
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cytotoxicity, oxidative stress and cell cycle arrest (see Table 2). Hence, we can conclude that 

less potent hepatotoxic compounds are relatively more frequently detected by phenotypic 

assays than more potent hepatotoxic compounds.  

Despite the overall consistency in bioactivity classes in rules describing the two toxicity 

levels, there were also variations. More unspecific effects observed at higher doses, potent 

toxicants have shown narrower, more specific modes of action. Judson et al reported a greater 

likelihood of disrupting target specific pathways when active concentrations fall within the 

range of eliciting cytotoxicity.72 What we observe here is an association between potency of 

toxicity in vivo and specificity of in vitro effects that are predictive for toxicity. Also, for 

compound to be toxic at low doses, they are required, according to the rules, to be more potent 

in assays (as shown in Figure S5).  

 

 Other target-based activities 

In addition to the major assay clusters described above, further rules for hepatotoxicity 

involved other target and phenotypic assays. For example, the transporter SLC6A3, which was 

described by assays “A.6” and “B.22”, has relatively high information gain of 0.021 and 0.024 

(see Figure 3 for distributions of information gain values) at 500mg/kg/day and 15mg/kg/day, 

respectively. The SLC6A3 gene encodes for the dopamine transporter (DAT). DAT-dependent 

neurological degeneration is linked with hepatic dysfunction related to ROS overproduction 

and mitochondrial impairment in rodents.73 Another endpoint related to the toxicity threshold 

of 500mg/kg/day is the translocator protein (TSPO) (assay “A.9”), which is involved in the 

transport of cholesterol across the mitochondrial membrane. The expression of TPSO has also 

been found to be associated with activating macrophages in chemical-induced liver injury and 

hence leads to cell death.74,75 At a toxicity level of 15mg/kg/day, upregulation of prostaglandin 

E2 (PGE2), in assay “B.1, was also used by rules. PGE2 is a lipid autocoid which protects 
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against liver damage by downregulating the expression of inflammatory cytokines.76,77 It has 

also been reported that PGE2 participates in liver regeneration upon injury.78 

Therefore, we can overall conclude that hepatotoxicity can be initiated by a variety of 

mechanisms (also very likely beyond the ones covered in the assays used here), hence 

supporting the need for broad range of endpoints when screening for potential hepatotoxic 

compounds.  

 Combined bioactivity readouts 

Our study goes beyond interpreting univariate associations into investigating rules 

constructed from multiple assay conditions. Some rules for hepatotoxicity involve two 

bioactivities at a time (linked by the symbol  in Tables 2 and 3). There are seven and six rules 

including multiple bioactivity features at toxicity thresholds 500mg/kg/day and 15mg/kg/day, 

respectively. Some assays formed diverse combinations in rules which are in some cases shared 

between the two toxicity thresholds. For example, androgen receptor activity was combined 

with mitochondrial membrane potential, at a threshold of 500mg/kg/day, Cytochrome P 

(CYP2A1) activity at 15mg/kg/day, and PPAR activity at both thresholds. An AR ligand, 

dihydrotestosterone, has shown to disrupt mitochondrial membrane potential79, which 

established a link between AR modulation and disrupting mitochondrial membrane. 

Additionally, CYP2A1, which metabolizes 90% of the endogenous ligand for AR 

(testosterone) 80, is subject to modulation leading to an imbalance of serum testosterone.81 

Hence, the dual activity of AR antagonism and CYP2A1 modulation can cause compounds to 

be hepatotoxic.  The combined activity of AR and PPAR isoforms can be explained by 

established bidirectional crosstalk between the two receptors by which each can influence the 

expression as well as the transcriptional activity of the other.82,83 Primary hepatocytes of obese 

male AR-knockout mice had shown hepatic steatosis which is associated with altered PPAR-

 and PPAR- expression.84  
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Other interactions which are seen at a level of 500mg/kg/day include multiple combinations 

Firstly, CYP2C19 appeared in conjunction with SLC6A3 (dopamine transporter) in rules 

(Table 2). It is found that the antagonists of D2 dopaminergic receptors interfere with the 

regulation if CYP2C enzymes.85,86 This can support the link between interfering dopamine 

transportation and CYP2C19 activity highlighted in the rules. Secondly is the combination of 

CD40 with IL-8 cytokine. Activation of CD40 increases the secretion of IL-8 in hepatic stellate 

cells resulting in an amplification of proinflammatory effects.87  Also, the hypoxia inducible 

factor-1 (HIF-1) was combined with CCAAT/enhancer binding protein B (C/EBPB) (Table 2).  

Studies have shown mutual regulation between these two transcription factors in expression 

and transcription.88,89 Also, HIF-1 is one of the key transcription factors which binds to 

C/EBPB during liver regeneration.90  

At 15mg/kg/day, multiple assay combinations predictive for hepatotoxicity can be seen in 

Table 3, including CYP2C6 with VDR and CXCL-9 with ER agonists. VDR involves in the 

metabolic liver damage and its expression correlates inversely with the severity of liver 

steatosis91 and fibrosis.92 In response to xenobiotics, VDR directly induces the upregulation of 

CYP2C6.93 Hence, it is plausible that compounds that combine activity against CYP2C6 and 

upregulation of VDR are more likely to cause hepatotoxicity. Studies have shown links 

between ER agonists and CXCL9, at which estrogen-treated mice have shown a significant 

reduction in the expression of CXCL9,94 a cytokine associated with liver fibrosis.95  

These observations support the importance of conditional associations in studying the 

translatability of in vitro activity into in vivo effects, and using rules we were able to suggest 

which assays are most predictive for hepatotoxicity when used in combination, based on the 

dataset used here. 

 

The case study of troglitazone 
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As a case study for the benefit of considering bioactivity combinations in screening 

hepatotoxic compounds, we chose troglitazone, an antidiabetic drug that was withdrawn from 

the market in 2000 due to incidences of hepatotoxicity.96 It was reported that the mechanism 

of troglitazone liver toxicity combines mitochondrial impairment, cellular stress and the 

generation of reactive metabolites.96–98 It was also argued that risk factors including genetic 

and environmental factors, besides biological activity of the compound itself, play a 

contributing role.99  

Troglitazone is labelled in our data as toxic at the LEL level of 500mg/mg/day, but not at 

15mg/kg/day in the ToxRefDB dataset. It matched ten of the toxicity rules at the level of 

500mg/kg/day and two rules at the level of 15mg/kg/day, and assays comprise mitochondrial 

toxicity, endocrine disruption and activity of immunological responses as endpoints (see 

Supporting Information, Table S9). At a level of 500mg/kg/day, troglitazone fulfilled the rules 

describing the combinations of AR with PPAR- as well as IL-8 with CD40 (see “Combined 

bioactivity readouts”). Additionally, this compounds also matched multiple rules in which 

cytotoxicity was combined with specific target activities for both toxicity levels (see 

Supporting Information, Table S9). The average hepatotoxic compound, however, satisfied 

only four rules at 500mg/mg/day and two rules at 15mg/kg/day (Figure S6). Also, there is 

significant difference in number of satisfied rules by toxic and non-toxic compounds at both 

thresholds (Figure S6). Given the number of rules satisfied by troglitazone (Figur S6), it had 

more bioactive liabilities compared to the average toxic compound at the level 500mg/kg/day 

and equivalent to the average liability at the level of 15mg/kg/day. Therefore, troglitazone’s 

promiscuity in hepatotoxic rule space predict it to be likely hepatotoxic in vivo. 

 

Comparison of prioritized bioactivities with commercial hepatotoxic assay endpoints 
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Further, we compared the bioactivities covered by prioritized rules with the in vitro endpoints 

measured by commercial models for hepatotoxicity. Bale et al., reviewed a series of 

commercially available in vitro platforms for the detection of hepatotoxic compounds,3 which 

we will use here. From this review, we selected four in vitro models that showed high diversity 

in screened endpoints, namely Cellciphr,100 3D Insight,101 Hepatopac102 and RegeneMed12, 

which are summarized in Table 4. 

There is an overall large overlap between bioassay endpoints (see Table 4) screened within 

commercial hepatotoxicity screens, and assays prioritized by the rules generated in this study. 

Firstly, all models, as well as the rules derived in the current study, involve screening against 

mitochondrial impairment and cell stress, which are known as key signals for hepatotoxicity.44 

Secondly, phenotypic readouts associated with cell growth or morphology are used by 

CellCiphr, InSphero 3D Insight as well as in the rules, examples of which are apoptosis, 

cell loss and changes in nuclear size and mitochondrial mass. Additionally, screening for 

Cytochrome P activity is an endpoint used in InSphero 3D Insight, Hepatopac and 

RegeneMed. 3D Insight and RegeneMed also screen for changes in cytokine profile, which 

agrees with the assays identified as important in the current study. Another endpoint is the 

inhibition of the bile acid transporter which is screened in 3D Insightand Hepatopac. While 

the ToxCast assay set we used in this analysis did not include the inhibition of bile acid 

transporters, the rules detected activity against FXR and CAR, which directly regulate the 

expression of bile acid transporters.60 Inhibition of a set of ubiquitous proteins, such as 

albumin, urea, and fibrinogen is conducted by InSphero 3D Insight, Hepatopac and 

RegeneMed, where the (in this case rather unspecific) counterpart  used in our prioritized rules 

would be the decrease in total protein level in the cell (“A.21”). 

In addition to the above endpoints, our analysis also identified assay readouts with 

association with hepatotoxicity, in particular nuclear receptor activity (Tables 2 and 3), that at 
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the current stage are less covered in commercial hepatotoxicity assays.  The involvement of 

nuclear receptors in causing hepatotoxicity is well supported by mechanistic studies - for 

example, Liu et al. reported that estrogen and androgen antagonism are related to proliferative 

lesions.23 Additionally, Hu et al., demonstrated a significant univariate association of two 

ToxCast assays for androgen receptor activity with human hepatotoxicity.22 Hence, although it 

is known that estrogen and androgen disruption can cause hepatotoxicity57,59, this endpoint is 

not currently used in commercial assay setups (Table 4). Therefore, while generally overlap 

between the features identified in our work and commercial assays for hepatotoxicity exists, 

we suggest that including endocrine activity among in vitro models can improve the coverage, 

and hence detection, of hepatotoxic compounds beyond the current state of the art. 

 

Influence of physicochemical properties on improving in vitro/in vivo associations 

 

We next analyzed the significance of physicochemical properties in the prioritized rule sets, 

to see to what extent those proxies for exposure18,19 add value when attempting to anticipate 

the hepatotoxicity of compounds. For this, the deterioration in accuracy after removal of 

physicochemical conditions from prioritized rules was quantified with respect to the two 

toxicity thresholds. The absolute drop in accuracy by removing physicochemical conditions 

from all bioactivity rules ranges from 0% to around 15% (for details see Figure S7). The overall 

drop in accuracy, in average, is higher at a toxicity threshold of 15mg/kg/day, with the overall 

error rate typically increasing by approximately 6-11%. The distribution of error rate as a result 

of removing physicochemical conditions from rules at 500mg/kg/day is broad, ranging from 

no effect to up to 9%. Hence, incorporating physicochemical properties improve in vitro-in 

vivo associations, especially at a lower dose (and hence for the more potent toxicants). 
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The error rate varies not only by the toxic dose level but also by assay class, as shown in 

Figure 6. The error rates of physicochemical conditions are minimal in rules defined by 

Cytochrome P activity, particularly at 500mg/kg/day. Immunological and phenotypic 

bioactivities have moderate accuracy deterioration from discarding physicochemical 

properties, at around 5%. Yet rules describing phenotypic assays show a significant difference 

between toxicity thresholds, of more than 10% (p<0.05 Wilcoxon rank sum test). Rules related 

to nuclear receptor activity show the largest increase in error upon removing physicochemical 

conditions, especially at a threshold of 15mg/kg/day, reaching values higher than 10%. The 

highest accuracy drop can be observed for glucocorticoid receptor activity at almost 20%, 

followed by over 15% for androgen receptor activity at the toxicity level of 500mg/kg/day 

(Supporting Information, Table S7). Estrogen receptor activity shows an approximately 13% 

drop in accuracy at both toxicity thresholds (Supporting Information Table S7 and Table S8).  

Direct perturbation of nuclear receptors requires compounds to penetrate not just the cell 

membrane but also the nucleus membrane to be toxic at low doses. Overall, for an improved 

association with in vivo effect, some assay bioactivities, such as phenotypic and nuclear related 

effects, are more dependent on meeting physicochemical conditions, and hence even more 

urgently require a proxy for exposure. This influence is overall more pronounced for more 

potent toxicants, than less toxic ones. 

We next analyzed the most frequent physicochemical properties occurring in the rules (Table 

5). At a threshold of 15mg/kg/day, these were the number of rotatable bonds (which are equal 

to or below 6 in rules describing hepatotoxicity), the number of hydrogen bond donors (where 

hydrogen bond donors are required to be absent) and the number of aliphatic rings (which needs 

to be equal to or smaller than two). The number of rotatable bonds has the highest frequency, 

occurring in over a third of the rules. This physicochemical condition is associated with an 

accuracy deterioration, or error rates, equivalent to 8% when it is removed from the rules. The 
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number of rotatable bonds is however not abundant among rules at the level of 500mg/kg/day. 

Instead, the number of rings (<=3) is the most abundant physicochemical property in this case 

and is associated with an increase in error rate of 6% and an abundance across rules at this 

toxicity level of 29%.  

The above increase in error rates when removing physicochemical properties from rules 

anticipating hepatotoxicity is apparently due to a link between the physicochemical properties 

of compounds and in vivo bioavailability.19,103 Bioavailability is governed by the extent and 

onset of absorption and distribution, which are linked to molecular properties such as 

membrane permeability and plasma protein binding. Good bioavailability in vivo means that, 

upon exposure, compounds achieve sufficient concentrations to achieve an effect at the site of 

action. Rotatable bond count, for example affects the magnitude of cell membrane permeability 

of compounds.104 The majority of compounds that contain six or fewer rotatable bonds show 

oral bioavailability higher than 20%, irrespective to their molecular weight.104 Additionally, a 

number of aromatic rings greater than 3 in a compound is linked to higher plasma protein 

binding (PPB) (>90%), irrespective of cLogP.105 Strong PPB may slow the rate of compound 

distribution among body compartments which will consequently affect the concentration at the 

site of action (and hence hepatotoxicity).106,107 Additionally, higher numbers for aromatic rings 

are linked with Cytochrome P inhibition and higher lipophilicity, both of which are associated 

with toxicity.105,108 DeGoey et al. have introduced a simple multiparametric scoring function 

to describe rat oral bioavailability consisting of three properties, namely cLogD, the number of 

rotatable bonds and the number of rings of a compound.109 This score sums the values of these 

properties with a correction for cLogD. The authors reported a negative correlation between 

this score and bioavailability with correlation coefficient of -0.41, in agreement with our 

findings above.  

An additional observation, however, is that rules used different properties at different potency 
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levels, but consistent properties within each potency threshold. Also, different assay types have 

shown variable magnitudes of dependence on physicochemical properties when measurements 

are extrapolated into in vivo effects. Still, it is apparent that also simple proxies for 

bioavailability are able to improve the prediction of hepatotoxic compounds on the dataset 

employed here. Hence, given that in vivo exposure parameters (i.e. dose and Cmax) are often 

not available at primary stages of drug development, these simple proxies such as the number 

of rings and rotatable bonds may act as simple alternatives to exposure measures to anticipate 

the hepatotoxicity of compounds at an early stage. 

Applying rules to detect drugs inducing liver injury 

In order to examine how the rules can be used on untested compounds, we used a set of drugs 

with 29 DILI injury labels in humans110 as an external set (Table S10). Among these drugs, 12, 

12 and 5 are of most, less and no DILI concern, respectively.  The chemical similarity of these 

drug to the nearest neighbor in the training ranged between 0.15 and 0.89 with a median of 

0.33. We examined how theses drug matched the rules describing hepatotoxicity. Using rules 

at level 500mg/kg/day, we observed that drugs with no-DILI-concern show 0-1 rule match per 

drug, whereas 75% and 25% of drugs with less and high DILI concern match 3 rules or more, 

respectively (Figure S9). Few drugs with most and less DILI concern matched rules at level 

15mg/kg/day (Figure S11). This is not surprising given that the rule selection process involved 

removing rules describing redundant bioactivities (assays describing the same target). 

Therefore, we examined the biological space of drugs in the external set. This was done by 

identifying equivalent ToxCast assays not necessarily used by the rules but target the same 

gene as assays used in the rules, which resulted in a pool of 72 and 88 ToxCast assays at 

threshold of 15mg/kg/day and 500mg/kg/day, respectively (Tables S11 and S12). We 

calculated the relative promiscuity for each drug which represents the proportion of the number 

of activity calls (activity below 100M) in the equivalent assays to the number of activity calls 
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in the all ToxCast assays. We observed that drugs with most DILI concern have shown around 

20% or higher promiscuity in equivalent assays in both thresholds, in comparison to 10% or 

less promiscuity by drugs with no DILI concern (See Figure S8 andS9). Using assays predictive 

for hepatotoxicity at 15mg/kg/day, there were four times higher odds that drugs with 

promiscuity higher than 20% to be of high DILI concern. Also, the majority of drugs with high 

DILI concern had less than 6 rotatable bonds. The odds of observing high DILI concern is 5.6 

when the drug combines 20% or higher promiscuity (over assays selected at level 

15mg/kg/day) in addition to number of rotatable bonds less than 6. Although these observations 

align with findings from the training set, a larger external set is required to support a statistically 

significant  outcome.  

Overall, we can conclude that promiscuity over the relevant biological space can indicate the 

potential of liver toxicity. This knowledge can also be used to better leverage in vitro models 

by prioritizing the relevant biological space and physicochemical properties. 

 

 

Conclusion 

 
We proposed in this work a novel framework for generating interpretable rules for the 

hepatotoxicity of compounds, which use both in vitro bioactivity measurements and 

physicochemical properties. Rules generated from machine learning algorithms were pruned 

to remove biologically not meaningful inactive assay conditions from rules describing toxicity. 

The resulting interpretable rules were used first to prioritize hepatotoxicity in vitro endpoints, 

considering accuracy as well as more than 80% toxic compound coverage. The resulting rules 

were compared with four commercial in vitro models for hepatotoxicity. Finally, the influence 

of physicochemical properties on the derived in vitro- in vivo associations were investigated 

separately for each assay class. 
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Our results suggest that a set of multiple ToxCast assays are needed for a sufficiently high 

coverage of hepatotoxic compounds, as no single assay can discriminate toxic from non-toxic 

compounds. This was also apparent from the information gain derived for single ToxCast 

assays alone. At two toxicity threshold levels of 15mg/kg/day and 500mg/kg/day, the best- 

performing modified rules, which cover 80% of toxic compounds, cluster into three major 

bioactivity classes, namely Cytochrome P activities, immunological responses, and nuclear 

receptor activities. While overall assays selected for predicting hepatotoxicity overlapped with 

endpoints used in in vitro models from commercial sources, nuclear receptor activity, which 

represented an independent mechanistic cluster, is not currently covered in this way.  

Specific bioactivity combinations were seen in the rules, such as disruption of androgen 

receptors combined with activities against PPARs, Cytochrome P and increase in 

mitochondrial membrane potential. These describe perturbation in multiple biological 

pathways resulting together in a greater likelihood of observing toxicity in vivo. Incorporating 

physicochemical properties, in general, also improved the accuracy of rules describing toxicity 

especially for potent toxicants, i.e. those toxic at the toxicity level of 15mg/kg/day. The likely 

explanation is that, for those compounds, bioavailability plays an important role for toxicity to 

be observed, which to some extent can be anticipated by physicochemical properties. The most 

frequent physicochemical properties used in rules, namely the number of rotatable bonds and 

the number of rings, are linked to bioavailability parameters, such as membrane permeability 

and plasma protein binding, respectively. Hence, the likelihood of a compound to be 

hepatotoxic in vivo increases both if it is active in relevant bioassays as well as showing the 

necessary bioavailability. 

There has been an increasing interest in understanding the molecular mechanisms 

responsible for initiating toxic side effects, in the form of adverse outcome pathways (AOP) 

frameworks. The assay endpoints screened in the ToxCast project can in principle describe key 
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events in an AOP,111 since they provide insights to the perturbation in biological processes in 

the cells by the screened compounds. Our proposed rule-based method can be used as a tool to 

generate molecular hypotheses to guide the identification of key events of the AOPs. In order 

to be practically successful in this direction, assay coverage in biological space, compound 

coverage in chemical space and a complete data matrix linking both domains are crucial. 

Another application to this rule method framework is to optimize in vitro models for toxicity 

screening. For example, in order to improve the compound coverage of hepatotoxicity in vitro 

models, we recommend to incorporate assays from three major bioactivity classes when testing 

for hepatotoxicity, which are Cytochrome P activity, immune responses and endocrine 

disruption. This is in addition to phenotypic readouts such as cell viability, cell stress, 

mitochondrial impairment and changes in cellular organelles. The combination of assays from 

all areas will then allow for the more likely detection of hepatotoxic compounds. We also 

recommend considering physiochemical properties as simple proxies for in vivo exposure 

measures, such as Cmax, when attempting to anticipate potential hepatotoxicity. While simple, 

those properties are fast to calculate and they are able to improve predictivity of in vivo 

hepatotoxicity, at least on the data based in this study.  

The workflow presented here can finally be generalized to other types of toxicity, considering 

any type of chemical and biological input data, provided coverage in the chemical and 

biological domain for the toxic endpoint of interest is given. 
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FIGURES  

 

Figure 1. Dataset and workflow for extracting biologically relevant rules for hepatotoxic 

compounds. Firstly, ToxCast bioactivity measurements and an interpretable set of 

physicochemical properties were used as descriptors to generate rule-based classifiers via the 

C5.0 algorithm. Rat hepatotoxicity endpoints, from the ToxRefDB, were converted into binary 

labels by setting two maximum exposure thresholds for lowest effective level (LEL), 

500mg/kg/day and 15mg/kg/day. At each threshold level, rules capturing toxicity were pruned 

by removing inactive assay statements. Next, the modified rules were reassessed in terms of 

balanced accuracy and number of correctly classified compounds (true positives). Prioritization 

of biologically relevant rules was conducted in multiple steps. The primary selection involved 
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performance measures, keeping rules that exerted at least 70% accuracy and median value of 

coverage (50 at 500mg/kg/day and 20 at 15mg/kg/day). The secondary selection was 

performed based on overall compound coverage, by prioritizing the combination of most 

accurate rules that describe 80% of toxic compound set. The final set of prioritized rules were 

analyzed in terms of contributing bioactivity and physicochemical conditions. 
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Figure 2. An example of rule pruning to retain biologically relevant rules. Left: unmodified 

rule, describing toxic compounds, as generated by the C5.0 algorithm. This rule consists of five 

conditions, namely two inactive bioactivities (shown in red), one positive bioactivity and two 

physicochemical properties: he increase in mitochondrial membrane potential (inactive), heat 

shock protein agonist (inactive), cytotoxicity assay (active), average molecular weight, and 

number of aromatic heterocycles. The rule was then modified by removing the inactive 

bioactivities to retain only positive bioactivity readout (cytotoxicity) and physicochemical 

properties (right), which are statistically more meaningful, and biologically more plausible to 

be associated with toxicity. 

 

 

 

 

 

 

 

Original rule:

APR_HepG2_MitoMembPot_72h_up > 2.036928

Tox21_HSE_BLA_agonist_ratio > 2.40309

Tox21_p53_BLA_p5_viability <= 0.02595656

AMW > 192.001

NumAromaticHeterocycles <= 1

>>  class toxic  

Modified rule:

Tox21_p53_BLA_p5_viability <= 0.02595656

AMW > 192.001

NumAromaticHeterocycles <= 1

>>  class toxic  

Original rule:

APR_HepG2_MitoMembPot_72h_up > 2.036928

Tox21_HSE_BLA_agonist_ratio > 2.40309

Tox21_p53_BLA_p5_viability <= 0.02595656

AMW > 192.001

NumAromaticHeterocycles <= 1

>>  class toxic  

Modified rule:

Tox21_p53_BLA_p5_viability <= 0.02595656

AMW > 192.001

NumAromaticHeterocycles <= 1

>>  class toxic  

Pruning
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Figure 3. The distributions of the information gain (IG) for each condition type (positive 

bioactivity, assay inactivity and physicochemical properties), in rules capturing toxicity, at two 

toxicity thresholds, LEL= 500mg/kg/day and 15 mg/kg/day. IG is a metric used to describe to 

which extent particular condition (split) improves the homogeneity (purity) of the partitioned 

data, and which features are hence associated with the classes under consideration. The Overall 

values of IG are low compared to the maximum possible values to fully discriminate between 

all toxic from non-toxic compounds, which is corresponding to 0.79 and 0.98, for levels of 

15mg/kg/day and 500mg/kg/day, respectively. Positive bioactivity conditions had the greatest 

average IG in comparison to other condition types, whereas, negative bioactivity conditions 

had the lowest (p<0.05 Wilcoxon rank sum test for IG of activity in assays and both inactivity 

and physiochemical properties). This means that the predictive power of a single positive 

activity in classifying toxic compounds is generally larger than single bioassay inactivity and 

physicochemical property conditions. Yet, single assays on their own are not sufficient to fully 

predict compounds in the dataset, which aligns with findings in previous studies.43,112,113
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Figure 4. The change error rate (accuracy deterioration) in percentage from removing inactive 

bioactivity conditions from rules. The deterioration of rule accuracy after modification is, in 

general, greater at threshold 500mg/kg/day, at an average of 20%, whereas, the overall drop in 

accuracy at 15mg/kg/day after modification is 10%.  
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Figure 5?. Percentage of overall toxic compounds covered by the rules. The x-axis represents the percentage overall toxic compound 

coverage as a function of minimum rule accuracy (Y-axis, red) and number of unique bioactivity assays used in rule combination (Y-

axis, black). The most accurate rule sets enough to cover 80% of toxic compounds, at each threshold level, were selected as the 

minimal rule set to describe hepatotoxicity. Fewer numbers of unique assays were required at a threshold of 15mg/kg/day in 

comparison to level of 500mg/kg/day to cover 80% of all compounds, namely 24 and 39 assays, respectively.
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Figure 6. Change in error rates in percentage as a result of removing physicochemical property 

conditions from best performing rules as a function of assay class. The overall deterioration of 

accuracy by removing physicochemical conditions varies with the assay class. The accuracy drop 

is minimal among rule of Cytochrome P activity in particular in case of the higher dose level of 

500mg/kg/day, while very significant accuracy deterioration is seen in rules described by nuclear 

receptor activity, especially at a threshold of 15mg/kg/day. 
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TABLES.  

Table 1. Average number of conditions per toxic rule in the original set.  

 Condition type in toxic rules 

Toxicity 

threshold 

Active in an 

assay 

Inactive in an 

assay 

physicochemical 

15mg/kg/day 1 3.8 0.9 

500mg/kg/day 1 3.6 0.6 

Overall per rule, there is one positive bioactivity, four negative bioactivities and one 

physicochemical property. The abundance of inactive assay conditions and physicochemical 

conditions is slightly lower at toxicity threshold 500mg/kg/day. 
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Table 2. Clustering of unique bioactivity assays in prioritized rules capturing toxicity which cover combined 80% of all toxic compounds at a 

threshold of 500mg/kg/day. Rules were clustered according to similarity in compound coverage, which resulted in three major clusters, namely of 

mainly Cytochrome P activity, immunological responses and nuclear receptor activity. Rules using two assay conditions at a time are linked by the 

symbol  .
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 Bioactivity class Index Associated assay Information gain 
(split) 

Accuracy 
(rule) 

Coverage 
(rule) 

Gene 
symbol 

Function Use of 
Physchem* 

 

Activity against 
Cytochrome P 

A.1 APR_HepG2_MitoMass_24h_up 0.019 0.921 66 - Cell morphology ✓ 
A.2 ATG_PPARg_TRANS_up 0.045 0.874 78 PPARG Nuclear receptor ✓ 
A.3  ë  OT_AR_ARSRC1_0480 0.033 0.874 78 AR Nuclear receptor ✓ 

A.4 NVS_ADME_hCYP2C18 0.028 0.817 64 CYP2C18 Cyp ✓ 
A.5 NVS_ADME_hCYP2C19 0.025 0.752 57 CYP2C19 Cyp - 
A.6  ë  NVS_TR_hDAT 0.021 0.752 57 SLC6A3 Transporter - 

A.7 NVS_ADME_rCYP3A1 0.035 0.881 52 Cyp3a23/3a1 Cyp - 
A.8 NVS_ADME_rCYP3A2 0.021 0.767 56 Cyp3a2 Cyp - 
A.9 NVS_MP_hPBR 0.011 0.734 62 TSPO Transporter ✓ 
A.10 NVS_NR_hCAR_Antagonist 0.017 0.760 54 NR1I3 Nuclear receptor ✓ 
A.11 OT_FXR_FXRSRC1_0480 0.014 0.748 113 NR1H4 Nuclear receptor ✓ 

Immunological 
activity 

A.12 APR_HepG2_CellCycleArrest_72h_dn 0.022 0.749 96 - Cell cycle - 
A.13  ë  Tox21_FXR_BLA_antagonist_ratio 0.013 0.749 96 NR1H4 Nuclear receptor - 

A.14 BSK_BE3C_uPA_down 0.016 0.791 53 PLAU Protease ✓ 
A.15 BSK_KF3CT_IP10_down 0.029 0.745 104 CXCL10 Cytokine ✓ 
A.16 BSK_KF3CT_MMP9_down 0.022 0.762 77 MMP9 Protease ✓ 
A.17 BSK_LPS_CD40_down 0.017 0.752 56 CD40 Cytokine - 
A.18  ë  BSK_3C_IL8_down 0.014 0.752 56 CXCL8 Cytokine - 

A.19 BSK_LPS_MCP1_down 0.019 0.805 75 CCL2 Cytokine ✓ 
A.20 BSK_SAg_CD40_down 0.026 0.772 90 CD40 Cytokine ✓ 
A.21 BSK_SAg_SRB_down 0.030 0.807 100 - Cell cycle ✓ 

Nuclear receptor 
activity/ 

phenotypic 
readouts 

A.22 APR_HepG2_MitoMembPot_72h_up 0.020 0.819 52 - Cell morphology ✓ 
A.23 APR_HepG2_MitoMembPot_1h_dn 0.029 0.888 65 - Cell morphology ✓ 
A.24  ë  Tox21_AR_BLA_Antagonist_ratio 0.020 0.888 65 AR Nuclear receptor ✓ 

A.25 APR_HepG2_NuclearSize_24h_up 0.018 0.761 63 - Cell morphology ✓ 
A.26 APR_HepG2_OxidativeStress_1h_up 0.025 0.789 59 - Cell cycle - 
A.27 APR_HepG2_StressKinase_1h_up 0.052 0.956 63 - Cell cycle  ✓ 
A.28 ATG_BRE_CIS_up 0.021 0.734 75 SMAD1 DNA binding ✓ 
A.29 ATG_C_EBP_CIS_up 0.038 0.843 54 CEBPB DNA binding ✓ 
A.30  ë  ATG_HIF1a_CIS_up 0.013 0.843 54 HIF1A DNA binding ✓ 

A.31 ATG_CRE_CIS_up 0.048 0.731 151 CREB3 DNA binding ✓ 
A.32 ATG_FoxA2_CIS_up 0.018 0.741 57 FOXA2 DNA binding - 
A.33 BSK_SAg_PBMCCytotoxicity_up 0.019 0.758 54 - Cell cycle - 
A.34 Tox21_ERa_LUC_BG1_Agonist 0.009 0.793 54 ESR1 Nuclear receptor ✓ 
A.35 Tox21_GR_BLA_Antagonist_ratio 0.009 0.787 61 NR3C1 Nuclear receptor ✓ 
A.36 Tox21_MitochondrialToxicity_viability 0.018 0.946 51 - Cell cycle ✓ 

  A.37  ë  ATG_p53_CIS_up 0.014 0.946 51 TP53 DNA binding ✓ 
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The information gain is highlighted for values higher than median (0.02) 

Table 3. Description of unique bioactivity assays in best performing rules capturing toxicity, which cover, combined, 80% of toxic compounds, at 

threshold of 15mg/kg/day. Rules were clustered according to similarity in compound coverage, which resulted in three major clusters of rules. Similar 

to findings in Table 2, the predominant assay class used by each rule cluster are Cytochrome P activity, immunological responses and nuclear receptor 

activity. Some rules used two assay conditions at a time, and these assays are linked in the table by the symbol; . 

 

 
Rule cluster/key 
mechanism Index Associated assay Information 

gain (split) 
Accuracy 

(rule) 
Coverage 

(rule) 
Gene 

symbol function Use of 
Physchem* 

 

Activity against 
Cytochrome P 

B.1 BSK_LPS_PGE2_up 0.0215 0.861 23 PTGER2 gpcr ✓ 
B.2 NVS_ADME_hCYP2C19 0.0287 0.856 22 CYP2C19 cyp ✓ 
B.3 NVS_ADME_rCYP2A1 0.0278 0.853 24 Cyp2a1 cyp - 
B.4 ë  OT_AR_ARSRC1_0480 0.0290 0.853 24 AR nuclear receptor - 

B.5 NVS_ADME_rCYP2C12 0.0294 0.908 20 Cyp2c12 cyp ✓ 
B.6 NVS_ADME_rCYP2C13 0.0271 0.854 21 Cyp2c13 cyp ✓ 
B.7 NVS_ADME_rCYP2C6 0.0294 0.985 20 Cyp2c6v1 cyp ✓ 

 B.8 ë  ATG_VDRE_CIS_up 0.0203 0.985 20 VDR nuclear receptor ✓ 

Immunological 
activity/Endocrine 

disruption 

B.9 BSK_3C_ICAM1_down 0.0182 0.810 25 ICAM1 cell adhesion molecules ✓ 

B.10 BSK_4H_MCP1_down 0.0370 0.814 40 CCL2 cytokine ✓ 
B.11 BSK_BE3C_MIG_down 0.0287 0.867 25 CXCL9 cytokine - 

B.12 ë  Tox21_ERa_BLA_Agonist_ratio 0.0236 0.867 25 ESR1 nuclear receptor - 

B.13 BSK_hDFCGF_IP10_down 0.0402 0.899 25 CXCL10 cytokine - 

B.14 ë Tox21_MitochondrialToxicity_viability 0.0208 0.899 25 NA cell cycle - 

B.15 BSK_SAg_CD40_down 0.0190 0.808 20 CD40 cytokine ✓ 

B.16 Tox21_AR_BLA_Antagonist_viability 0.0251 0.893 25 NA cell cycle ✓ 

B.17 ë Tox21_PPARd_BLA_antagonist_ratio 0.0130 0.893 25 PPARD nuclear receptor ✓ 

B.18 Tox21_ERa_BLA_Antagonist_ratio 0.0191 0.856 30 ESR1 nuclear receptor ✓ 

Nuclear receptor 
activity 

B.19 APR_HepG2_MitoMass_72h_up 0.0162 0.833 23 NA cell morphology ✓ 
B.20 ë  APR_HepG2_NuclearSize_24h_up 0.0181 0.833 23 NA cell morphology ✓ 

B.21 ATG_LXRb_TRANS_up 0.0141 0.824 23 NR1H2 nuclear receptor ✓ 

B.22 NVS_TR_hDAT 0.0243 0.848 31 SLC6A3 transporter ✓ 
B.23 OT_ER_ERbERb_0480 0.0098 0.826 22 ESR2 nuclear receptor ✓ 
B.24 Tox21_FXR_BLA_agonist_ratio 0.0153 0.820 23 NR1H4 nuclear receptor ✓  
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The information gain is highlighted for values higher than median (0.022) 
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Table 4. Comparison of bioactivities used in prioritized rules and assay endpoints adopted by commercial in vitro models for hepatotoxicity. While 

the assays identified as important in rules in this work and a large number of endpoints used in hepatotoxicity models agree, nuclear hormone 

receptor activities may constitute an additional relevant endpoint to use for this purpose, as derived from ToxCast data in the current study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In vitro 
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Metabolism 
Viability/phenotypic 

changes 
Cell stress 
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Inhibition 

of protein 

synthesis 

Mitochondrial 
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Endocrine 
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Cyprotex 

CellCiphr  
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Cell loss 

Cytoskeletal 
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DNA fragmentation 

and damage 
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Mitosis marker 

Nuclear size 

 Phospholipidosis 
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Glutathione 
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 Stress kinase 

activation 

Reactive 

oxygen species 

   
Mitochondrial 

function 
 

InShero 3D 
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Glutathione 
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IL-6 
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Clearance 
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RegeneMed Cytochrome activity 
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 Glutathione  
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Albumin, 
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transferrin 

ATP  

Modified 

rules Cytochrome activity 

Cell cycle arrest 

Cytotoxicity 

Nuclear size 

Mitochondrial mass 

Oxidative stress 

Stress kinase 

IL-9, IL-

10,CCL2 

and CD40  

FXR 
Cellular 

protein 

content 

Mitochondrial 

membrane 

potential/toxicity 

Estrogen and 

androgen 

receptors 

activity 
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Table 5. Physicochemical properties frequently present in in prioritized hepatotoxicity rules. The 

most frequent physicochemical property in rules for a toxicity threshold of 15mg/kg/day is the 

number of rotatable bonds, while the number of rings is the most frequent physicochemical 

property in rules predicting toxicity at a 500mg/kg/day level.  

 15mg/kg/day 

Physicochemical condition 
Error 

rate%* 
Frequency %** 

 

NumRotatableBonds <= 6 

 

7.8 ± 3.2 

 

35 

NumHBD <= 0 9.2 ± 3.7 10 

NumAliphaticRings <= 2 2.7 ± 0.3 10 

 

 

 

 

 

 

 

*Error rate % represents the deterioration in rule accuracy as a result of removing each of the 

physicochemical properties presented in the table (mean ± standard deviation). 

** Frequency % is the percentage of rules containing the physicochemical property out of all 

prioritized rule set. 

 

 

 

 

 

 500mg/kg/day 

Physicochemical condition 
Error 

rate %* 
Frequency %** 

 

NumRings <= 3 

 

5.7±3.6 

 

29 

NumHeavyAtoms <= 33 3.9±0.5 11 

NumAromaticCarbocycles > 0 11.5±1.9 9 
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