Premorbid Adjustment and IQ in Patients with First Episode Psychosis: a multisite Case-Control Study of their Relationship with Cannabis Use.

Running Title
Premorbid Adjustment and Cannabis Use in Psychosis

* **Corresponding Author**
Laura Ferraro
Via Gaetano La Loggia, 1
90129 Palermo, Italy
tel. 091 6555175
fax. 091 6555164
e-mail. laura.ferraro@unipa.it

Word-counts
Abstract: 229.
Text body (including abstract, text body, acknowledgments and figure legend): 4,134.
List of Authors

Ferraro Laura1,2; La Cascia, Caterina1; Quattrone Diego2,3,4; Sideli Lucia1,5; Matranga, Domenica6; Capuccio Veronica7; Tripoli Giada8; Gayer-Anderson Charlotte9; Morgan Craig10; Sami, Musa5; Pak Sham9; de Haan, Lieuwe10; Velthorst, Eva10,11; Jongsma, Hannah12,13; Kirkbride, James B.13; Rutten, Bart PF14; Richards, Alexander L15; Roldan, Laura16; Arango, Celso15; Bernardo, Miquel17; Bobes, Julio18; Santos, Jose Luis19; Arrojo, Manuel20; Tarricone, Ilaria22; Tortelli, Andrea23,24; Del-Ben, Cristina Marta25; Selten, Jean-Paul14,26; Lynskey, Michael27; Jones, Peter B.12,28; Van Os J15,29; La Barbera, Daniele1; the WP2 EU-GEI GROUP6; Murray, Robin M.1,4,5 and Di Forti, Marta1,2,3,4 *

* Robin M. Murray and Marta Di Forti equally contributed to the supervision of the work. They both are last names.

1 Department of Biomedicine, Neuroscience and advanced Diagnostics (BiND), Psychiatry Section, University of Palermo.
2 Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
3 National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London;
4 South London and Maudsley NHS Mental Health Foundation Trust;
5 Department of Psychosis Studies, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK;
6 Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialities, University of Palermo
7 Department of Economic, Management and Statistical Sciences (DSEAS) University of Palermo.
8 Department of Health Service and Population Research, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK;
9 Centre for Genomic Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
10 Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands;
11 Departments of Psychiatry and Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York;
12 Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB2 0SZ, UK;
13 Psylife Group, Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London WIT 7NF, UK;
14 Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands;
15 Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK;
16 Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, ISGM, CIBERSAM, 1/Doctor Esquerdo 46, 28007 Madrid; Spain
17 Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Department of Medicine, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain; bernardo@clinic.cat
18 Department of Medicine, Psychiatry Area, School of Medicine, Universidad de Oviedo, ISPA, INEUROPA, CIBERSAM, Oviedo, Spain;
19 Department of Psychiatry, School of Medicine, Universidad de Valencia, CIBERSAM, Valencia, Spain; julio.sanjuan@uv.es
20 Department of Psychiatry, Servicio de Psiquiatría Hospital “Virgen de la Luz,” Cuenca, Spain, jlsantos@sescam.jccm.es
21 Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Spain, manuel.arrojo.romero@sergas.es
22 Department of Medical and Surgical Sciences, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy, llarita.tarricone@unibo.it
23 Etablissement Public de Santé Maison Blanche, Paris 75020, France; atortelli@wanadoo.fr
24 INSERM, U955, Equipe 15, 51 Avenue de Maréchal de Lattre de Tassigny, 94010 Crétteil, France, andrej.szoke@inserm.fr
25 Division of Psychiatry, Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, delhem@fmrp.usp.br
26 Rivierduinen Institute for Mental Health Care, Sandifortdreef 19, 2333 ZZ Leiden, The Netherlands; J.Selten@rivierduinen.nl
27 Department of Addiction, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK, michael.lynskey@kcl.ac.uk
28 CAMEO Early Intervention Service, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK; (pjb21@cam.ac.uk)
29 Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands.
† GROUP INFORMATION: The European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) WP2 Group members includes:

Amoretti, Silvia Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain, CIBERSAM, Spain;

Baudin, Grégoire MSc, AP-HP, Groupe Hospitalier “Mondor,” Pôle de Psychiatrie, Créteil, France, Institut National de la Santé et de la Recherche Médicale, U955, Créteil, France;

Beards, Stephanie PhD, Department of Health Service and Population Research, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London, England;

Berardi, Domenico Department of Medical and Surgical Sciences, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Popei 5, 40126 Bologna, Italy;

Bonetto, Chiara PhD, Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy;

Cabrera, Bibiana MSc, PhD, Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain, CIBERSAM, Spain;

Carracedo, Angel MD, PhD, Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario, Santiago de Compostela, Spain;

Charpeaud, Thomas, MD, Fondation Fondamental, Créteil, France, CMP B CHU, Clermont Ferrand, France, and Université Clermont Auvergne, Clermont-Ferrand, France;

Costas, Javier PhD, Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario, Santiago de Compostela, Spain;

Cristofalo, Doriana MA, Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy;

Cuadrado, Pedro, MD, Villa de Vallecas Mental Health Department, Villa de Vallecas Mental Health Centre, Hospital Universitario Infanta Leonor/Hospital Virgen de la Torre, Madrid, Spain;

Ferchiou, Aziz MD, AP-HP, Groupe Hospitalier “Mondor,” Pôle de Psychiatrie, Créteil, France, Institut National de la Santé et de la Recherche Médicale, U955, Créteil, France;

Franke, Nathalie, MSc, Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands;

Frijda, Flora MSc, Etablissement Public de Santé Maison Blanche, Paris, France;

García Bernardo, Enrique MD, Department of Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Investigación Sanitaria del Hospital Gregorio Marañón (CIBERSAM), Madrid, Spain;

García-Portilla, Paz, MD, PhD, Department of Medicine, Psychiatry Area, School of Medicine, Universidad de Oviedo, ISPA, INEUROPA, CIBERSAM, Oviedo, Spain;

González Peñas, Javier Hospital Gregorio Marañón, IISGM, School of Medicine, Calle Dr Esquerdo, 46, Madrid 28007, Spain;

González, Emiliano PhD, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IISGM (CIBERSAM), Madrid, Spain;

Hubbard, Kathryn Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London;

Jamain, Stéphane PhD, Institut National de la Santé et de la Recherche Médicale, U955, Créteil, France, Faculté de Médecine, Université Paris-Est, Créteil, France, and Fondation Fondamental, Créteil, France;

Jiménez-López, Estela MSc, Department of Psychiatry, Servicio de Psiquiatría Hospital “Virgen de la Luz,” Cuenca, Spain;

Lasalvia, Antonio Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy;

Leboyer, Marion, MD, PhD, AP-HP, Groupe Hospitalier “Mondor,” Pôle de Psychiatrie, Créteil, France, Institut National de la Santé et de la Recherche Médicale, U955, Créteil, France, Faculté de Médecine, Université Paris-Est, Créteil, France, and Fondation Fondamental, Créteil, France;

López Montoya, Gonzalo PhD, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IISGM (CIBERSAM), Madrid, Spain;

Lorente-Rovira, Esther PhD, Department of Psychiatry, School of Medicine, Universidad de Valencia, CIBERSAM, Valencia, Spain;

M Díaz-Canaja, Covadonga Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain;

Marcelino Loureiro, Camila MD, Departamento de Neurociências e Ciencias do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil, and Núcleo de Pesquisa em Saúde Mental Populacional, Universidade de São Paulo, São Paulo, Brasil;

Marrazzo, Giovanna MD, PhD, Unit of Psychiatry, “P. Giaccone” General Hospital, Palermo, Italy;

Martínez, Covadonga MD, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IISGM, CIBERSAM, Madrid, Spain;

Mattei, Mario, MD, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IISGM (CIBERSAM), Madrid, Spain;
Abstract

Psychotic patients with a lifetime history of cannabis use generally show better cognitive functioning than other psychotic patients. Some authors suggest that cannabis-using patients may have been less cognitively impaired and less socially withdrawn in their premorbid life.

Using a dataset comprising 948 patients with first-episode psychosis (FEP) and 1313 population controls across six countries, we examined the extent to which IQ and both early academic (AF) and social adjustment (SF) are related to the lifetime frequency of cannabis use in both patients and controls. We expected a higher IQ and a better premorbid social adjustment in psychotic patients who had ever used cannabis compared to patients without any history of use. We did not expect such differences in controls.

In both patients and controls, IQ was three points higher among occasional-users than in never-users [(M\text{diff}=2.9, 95\% \text{ C.I.}=(1.2, 4.7)]. Both cases and control daily-users had lower AF compared to occasional [(M\text{diff}=-0.3, 95\% \text{ C.I.}=(-0.5; -0.2))] and never-users [(M\text{diff}=-0.4, 95\% \text{ C.I.}=(-0.6; -0.2)]. Finally, patient occasional [(M\text{diff}=0.3, 95\% \text{ C.I.}=(0.1; 0.5))] and daily-users [(M\text{diff}=0.4, 95\% \text{ C.I.}=(0.2; 0.6))] had better SF than their never-using counterparts. This difference was not present in controls (F\text{group*frequency(2, 2.205)=4.995, p=0.007}).

Our findings suggest that the better premorbid social functioning of FEP with a history of cannabis use may have contributed to their likelihood to begin using cannabis, exposing them to its reported risk-increasing effects for Psychotic Disorders.
1. Introduction

Cannabis use is well established as a risk factor for psychosis\(^1\)\(^-\)\(^3\). While cannabis is known to have an acute adverse effect on cognition in healthy subjects\(^4\)\(^,\)\(^5\), paradoxically, patients with psychotic disorders who report lifetime cannabis use, but not current use\(^6\), appear to have better cognitive performance than patients who do not\(^7\)\(^-\)\(^9\).

Many, but not all, people with a diagnosis of psychosis show subtle cognitive and social impairments before the emergence of prodromal symptoms\(^10\)\(^-\)\(^12\) and some authors suggest that cannabis-using patients may constitute a phenotypically distinct group, with different neurological, cognitive, clinical and prognostic characteristics\(^13\). One explanation of the counterintuitive cognitive findings concerning cannabis is that those psychotic patients who use cannabis had better premorbid cognitive function than those who have not.

In the GAP (Genetic and Psychotic Disorder) study\(^14\), we found that first episode psychotic patients (FEP) with a history of cannabis use at any time in their life, had a higher premorbid IQ compared to other FEP patients, a difference not witnessed among controls. We proposed that cannabis use increases the risk of psychosis in a subgroup of patients with less neurodevelopmental vulnerability to the disease\(^7\)\(^,\)\(^14\)\(^-\)\(^19\).

It has been suggested that good premorbid social functioning is crucial to develop and sustain an illegal drug habit\(^20\)\(^-\)\(^22\). However, there are few studies on the relationship between cannabis use and neurocognitive functioning in psychosis that controlled for premorbid functioning. One study on 104 FEP\(^22\) reported higher premorbid sociability, but not differences in premorbid IQ, in those with cannabis use before the onset compared to those without any use. Two other studies\(^23\)\(^,\)\(^24\) have shown that FEP with a history of cannabis use\(^23\) or cannabis use disorder\(^24\) have a better premorbid social adjustment but poorer premorbid academic adjustment and less educational attainment compared to other patients with no such history. Nonetheless, neither of these two studies had data on IQ.

Longitudinal studies on non-psychotic subjects consistently showed a relationship between higher IQ in childhood and occasional or discontinued cannabis-use (but not to habitual use which was
linked to lower or equal IQ, compared with non-use) probably due to the tendency of those with higher IQ to experiment with drugs25-31.

Using data from the EUropean network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) study, we set out to examine the association between current IQ, premorbid social and academic adjustment and lifetime frequency of cannabis use in patients with a first episode psychotic disorder (FEP) and a sample of population controls.

We expected a higher IQ and a better social premorbid adjustment in psychotic patients who had ever used cannabis compared to patients without any history of use. We did not expect such differences in controls.

2. Methods

2.1. Study Design

Data were derived from The European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) study (\url{http://www.eu-gei.eu})32,33. Subjects were identified between 01/05/2010 and 01/04/2015 across centres in five different European countries and Brazil to examine incidence rates of psychotic disorders. We performed an extensive assessment of approximately 1000 FEP patients and 1000 population-based controls during the same period to investigate risk factors for psychosis.

2.2. Subjects

Patients: Screening was run by skilled researchers on all potential FEP patients at their first contact with the mental health services and residents in each catchment area, who were aged 18-64 years and received a diagnosis of psychoses (ICD-10: F20-F33)34 in the study period. We excluded those with psychotic symptoms precipitated by acute intoxication (ICD10: F1X.5), or psychosis due to another medical condition (ICD10: F09), and those who had previously received antipsychotic medication.
Controls: Population-based volunteers aged 18 to 64 years, who had never received treatment for psychosis, representative of each local population, were recruited through a mixture of random and quota sampling (population stratification by age, gender and ethnicity)33,35. All the study sites received approval from their local ethical committees. All subjects signed a written consent form and data was stored anonymously32.

2.3. Measures

We used the modified version of the Medical Research Council (MRC) socio-demographic scale36. Diagnoses, first ascertained by clinical interview, were operationalised through the 90-item computerised OPCRIT system for psychosis37,38. The Cannabis Experience Questionnaire, further modified for the EUGEI study (CEQ\textsubscript{EUGEI})35, included a section from Composite International Diagnostic Interview (CIDI) on other substances of abuse, and tobacco use in the last 12 months39.

An abbreviated version of the WAIS was used in patients and controls in order to estimate full scale-IQ scores40. Given the multi-site design, we could not use a psychometric test to assess premorbid IQ, but only performed an exploratory supplementary analysis on the WAIS subtests, to examine the relation with cannabis use of the “hold” intellectual capacities41. To assess premorbid adjustment, we used nine scales from the Premorbid Adjustment Scale (PAS)42,43 to examine in patients and controls “the degree of achievement of developmental goals”44–46, in two distinct developmental age-periods: childhood to age 11 and early adolescence (i.e. 12 to age 16), so that all patients could score the same scales, regardless of their age-of-onset47,48 (further details on measures are in the Supplementary Material).

2.4. Statistical Analysis

In the patient/control comparisons, we used either t-test or ANCOVA and Welch test for continuous variables and the Chi-square tests, for categorical variables, with adjusted ORs and 95\% C.I.s for cannabis variables. Confounders were selected if they resulted associated with both
patient/control status and the outcomes. Cannabis and premorbid variables were adjusted for gender, age, ethnicity and country. IQ was further corrected by education.

The frequency of cannabis-use in the lifetime was reduced to three categories by adjusted logistic regression and codified as never use=0; occasional use=1; daily use=2. Daily use was conservatively chosen as the highest category. Never use was separated a priori as the baseline category, for theoretical reasons. Occasional-users were people who used cannabis up to “more than once a week” (Supplementary Material, Supplementary-Table 1).

We calculated a reverse-score and extracted two factors from the Premorbid Adjustment Scale (PAS), namely the Social Factor (SF) and the Academic Factor (AF), obtained by a principal-component analysis (PCA), which explained the 64.4% of the variance (Supplementary Material).

In order to establish differences in SF, AF and IQ (i.e. the outcomes) related to frequency of cannabis use and patient/control group as fixed factors, we performed a MANCOVA which allowed us to take into account the correlation among these dependent variables. In the case of asymmetric distributions of the outcomes, bias-corrected and accelerated (BCa) 95% confidence intervals (C.I.s) were calculated, using 1000 Bootstrap samples. Box’s M was used to test the covariance matrix. Pillai’s trace statistics tested statistical significance. Bonferroni multiplicity correction for multiple comparisons was applied. Interactions were explored in a follow-up ANCOVA for each dependent variable.

One hypothesised mechanism involving cannabis in risk of psychosis implicates dopaminergic disregulation, similarly to other drugs’, such as stimulants and tobacco. Additionally, current cannabis use is associated with worse cognitive performance, and the effect of nicotine on neurocognition is still controversial in schizophrenia. Therefore, to ensure that the results were not biased, we ran sensitivity analyses by eliminating from the sample, alternatively and then simultaneously in any combination, all subjects (i) who used cannabis in the last twelve months (i.e. current cannabis users), (ii) who used tobacco in the last twelve months (i.e. current tobacco users), and (iii) who abused at least one illegal drug, other than cannabis, in their lifetime (i.e. lifetime other
drug-abusers). Figures were obtained by transforming the outcome variables into standardised scores. To account for symptomatology, which could confound results in IQ, we wanted to exploratory correct the primary analysis, by including the patients’ group only, for the negative symptoms dimension score extracted from the OPRCIT. We used an inverse probability weight, calculated on key demographics such as age, gender and ethnicity, to account for controls’ under- or oversampling and this weight was applied to all the analyses (Supplementary Material). All statistical analyses were conducted using SPSS 25.

3. Results

3.1. Descriptive Characteristics

The sample studied comprised those 2261 subjects (948 patients and 1313 controls) from the original sample who completed at least the CEQ EU-GEI and the PAS instrument (Supplementary-Figure 1; Supplementary-Table 2). Patients were more often men [61.9% (587) vs 47.6% (625); \(\chi^2(1)=45.3\)] and younger than controls [mean age= 30 (10.4) vs 36.1 (13); \(t(2257)=-10.9\)]. Controls were more likely to be of white ethnicity [77.3% (1015) vs 63.2% (599); \(\chi^2(2)=54.8\)] and to have achieved a university degree [38.8% (508) vs 16% (151); \(\chi^2(3)=222.7\)] than patients. Patients were more often unemployed at the time of the interview [73.8% (962) vs 42.4% (394); \(\chi^2(1)=225.2\)]; they were also more likely to be single [64.1% (605) vs 30.5% (399); \(\chi^2(2)=272.6\)] or living with their parents [57.5% (539) vs 27.1% (353); \(\chi^2(2)=252.9\)] (all \(p<0.001\)) (Supplementary-Table 3).

3.2. Cannabis Use

Patients were almost twice as likely to have used cannabis in their lifetime [OR=1.71 95% C.I.=(1.41; 2.07)], to have chosen high potency cannabis [OR=1.73, 95% C.I.=(1.31; 2.27)] (i.e. total levels of THC\(\geq10\%\)) and to currently use cannabis [OR=1.61, 95% C.I.=(1.26; 2.06)]; patients were also five times more likely to have used cannabis on a daily basis [OR=5.0, 95% C.I.=(3.75; 6.69)], compared to controls. 77.3% (464) of patients and 84.9% (535) of controls [\(\chi^2(1)=11.5, p=0.001\)]
who had ever used cannabis declared they started smoking cannabis socially, i.e. because their friends were using it. However, patients mostly used cannabis in solitude at the time of the interview compared to controls \([\text{OR}=3.78, 95\% \text{ C.I.}=(2.69; 5.32)]\). Finally, patients were more than three times more likely to be current tobacco-users \((\text{OR}=3.47, 95\% \text{ C.I.}=[2.88; 4.19])\) and to have abused other drugs in their lifetime \((\text{OR}=3.43, 95\% \text{ C.I.}=[2.35; 4.99])\) (Supplementary-Table 4).

3.3. Clinical Characteristics

Compared to controls, patients had lower IQ \([\text{mean difference} (M_{\text{diff}})=-17.3, 95\% \text{ C.I.}=(-18.6; -15.40)]\), lower SF \([M_{\text{diff}} -0.4, 95\% \text{ C.I.}=(-0.5; -0.3)]\), and AF scores \([M_{\text{diff}}=-0.5, 95\% \text{ C.I.}=(-0.6; -0.4)]\) (Table 1).

The outcomes (SF, AF and IQ) were weakly skewed \((\text{SF}=-0.68; \text{AF}=-0.97; \text{IQ}=0.13)\). SF and AF were related to IQ \((\text{Spearman’s Rho: IQ*AF}=0.439, p<0.001; \text{IQ*SF}=0.049, p<0.026)\).

3.4. IQ and Premorbid Adjustment by Frequency of Cannabis Use in Patients and Controls

There was a significant effect of patient/control status \([\text{Pillai}=0.15, F(1, 2040)=122.8; p<0.001]\), frequency of cannabis use \([\text{Pillai}=0.03 \ F(2, 2040)=13.6, p<0.001]\), country \([\text{Pillai}=0.16, F(5, 2040)=23, p<0.001]\), gender \([\text{Pillai}=0.04, F(1, 2040)=30.8, p<0.001]\), age \([\text{Pillai}=0.008, F(1, 2040)=5.5, p=0.001]\), and ethnicity \([\text{Pillai}=0.11; F(2, 2040)=42.8, p<0.001]\) on IQ, SF and AF scores (Table 2). The association between the three outcomes and frequency of cannabis use was different in patients and controls \([\text{Pillai}_{\text{group*frequency}}=0.006, F(2, 2040)=2.17, p=0.042]\). Follow up analysis revealed that frequency of use had a similar effect on the IQ of patients and controls \([F_{\text{group*frequency}}(2, 2062)=0.45, p=0.635]\). Overall, occasional-users had three points higher IQ, compared to never-users \([M_{\text{diff}}=2.9, 95\% \text{ C.I.}=(1.2, 4.7)]\), but there were no differences between daily-users and both occasional \([M_{\text{diff}}=-2.1, 95\% \text{ C.I.}=(-4.6, 0.3)]\) and never-users \([M_{\text{diff}}=0.8, 95\% \text{ C.I.}=(1.7, 3.3)]\).

On the other hand, patients and controls who were daily cannabis-users were very similar to each other regarding AF \([M_{\text{diff}}=-0.2, 95\% \text{ C.I.}=(-0.6; 0.003)]\) and they both had lower scores, as compared
to their respective occasional \([M_{\text{diff}}=-0.3, 95\% \text{ C.I.}=(-0.5; -0.2)] \) and never-using counterparts \([M_{\text{diff}}=-0.4, 95\% \text{ C.I.}=(-0.6; -0.2)] \) \([F_{\text{group*frequency}}(2, 2.205)=1.22, p=0.295] \).

Regarding SF, we found a significant interaction effect \([F_{\text{group*frequency}}(2, 2.205)=4.99, p=0.007] \): SF was better in patients who were occasional \([M_{\text{diff}}=0.3, 95\% \text{ C.I.}=(0.1; 0.5)] \) or daily-users \([M_{\text{diff}}=0.4, 95\% \text{ C.I.}=(0.2; 0.6)] \), compared to never-user patients, while there was no effect of cannabis use on SF in controls (Table 2, Figure 1).

The results concerning the patient group stayed consistent once corrected for negative symptoms \((Pillai_{\text{frequency}}=0.052, F(6, 1.542)=6.84, p<0.001) \) (Supplementary-Table 5).

3.5 Sensitivity-analysis

We identified (i) 209 FEP and 146 controls who were current cannabis-users; (ii) 515 FEP and 311 controls who were current tobacco-users; (iii) 120 FEP and 37 controls who were lifetime other drug-abusers (Supplementary-Table 2). When these subjects were removed, in any combination, the results were consistent with the primary analysis. The most interesting result was revealed when all previous categories were simultaneously removed. This final sample comprised 382 patients and 921 controls. We found a significant interaction effect on IQ \([F_{\text{group*frequency}}(2, 1.208)=4.42, p=0.012] \). Patients who were occasional-users (N=97; mean IQ=87.6, SE=1.8) had eight points higher IQ \([M_{\text{diff}}=8.3, 95\% \text{ C.I.}=(4.2; 12.7)] \) than never-user patients (N=249; mean IQ=79.3, SE=1.1), while in controls we only found a three points difference \([M_{\text{diff}}=2.8, 95\% \text{ C.I.}=(0.07; 5.6)] \) between occasional (N=302, mean IQ=98.7, SD=1.1) and never-users (N=584; mean= 95.8, SE=0.8).

In line with the original analysis, AF was similarly related to cannabis use in patients and in controls \([F_{\text{group*frequency}}(2, 1.272)=0.93, p=0.392] \). Both patients and control daily-users had lower scores than never- \([M_{\text{diff}}=-0.5, 95\% \text{ C.I.}=(-0.8; -0.2)] \) and occasional-users \([M_{\text{diff}}=-0.5, 95\% \text{ C.I.}=(-0.8; -0.1)] \), but difference with occasional-users was more significant for controls (Table 3).

Regarding SF, we replicated the interaction effect of frequency of cannabis use in patients, but not in controls \([F_{\text{group*frequency}}(2, 1.272)=6.75, p=0.001] \): patients who were occasional \([M_{\text{diff}}=0.2, 95\%
C.I.=(0.006; 0.5)] or daily-users [M_{diff}=0.7, 95% C.I.=(0.3; 1.1)] had higher scores than never-user patients, and daily-users scored better than occasional-users [M_{diff}=0.4, 95% C.I.=(0.05; 0.8)]. Furthermore, patients who were daily-users had 1) similar IQ (M_{diff}=-5.5, 95% C.I.=[-17.1, 4.2]) and AF (M_{diff}=-0.07, 95% C.I.=[-0.6; 0.4]) compared to daily-user controls; and 2) they had very similar or even better mean scores of SF (mean=0.2, 95% C.I.=[-0.1; 0.5]) than control daily- (mean=0.3, 95% C.I.=[0.03; 0.5]), occasional (mean=0.2, 95% C.I.=[0.1; 0.3]), and never-users (mean=0.1, 95% C.I.=[0.07; 0.2]) (Table 3, Figure 2).

4. Discussion

4.1 Summary of main results

Our first main finding indicated higher IQ in the cannabis occasional-using subgroup of patients compared with their never-user counterparts, and a similar effect in controls. Early academic adjustment (AF) was lower when the frequency of cannabis use increased in both patients and controls. Finally, patients with a history of occasional or daily cannabis use had been less socially withdrawn (i.e. had higher SF scores) compared to those psychotic patients who never used cannabis, a difference that was not seen within controls.

4.2 Comparison with previous literature

All differences between patients and controls, in terms of socio-demographics and premorbid conditions were expected as the control group was selected to be representative of the general population of each area and not to be matched with the case group. We also confirmed the expected differences between patients and controls in patterns of cannabis use.

Regarding IQ, we confirmed that cannabis-using patients have higher IQ than never-users and showed that this effect is attributable to occasional cannabis-users, who represent the biggest
proportion of users68. In contrast to previous research with a similar design69, our results remained consistent after controlling for several confounders and the sensitivity analysis revealed an IQ more than eight points higher in occasional-using patients than in never-users, a much greater effect than the three-points difference detected among controls (see also70,71). To date, this is the first study that a) included a control group in exploring this effect and b) found a higher IQ in cannabis occasional-using population controls. These findings differ from the Dunedin study, which identified an IQ decline in cannabis-users but this latter was over several decades of adult life72. Nevertheless, in the Dunedin study, those who reported lifetime use of cannabis, but not dependence, were cognitively spared, while in currently dependent people cognition declined72. The descriptive differences we found between daily- and occasional-user controls indicate a higher academic achievement and a later contact with the substance in the latter, which could have prevented them from dependence and related academic failure, thus influencing future IQ. However, education was not sufficient to account for the differences in IQ according to frequency of cannabis use in our analysis, when it was inserted to adjust comparisons. This is not surprising, as we know that IQ scores are multi-determined and partially hereditary73, and therefore probably differently related to premorbid IQ accordingly to patterns of cannabis use, as suggested in longitudinal studies of non-psychotic subjects25–31. Additionally, there are recent suggestions that IQ in psychosis is associated with the polygenic risk score (PRS) that indexes cognition in the general population and is partly independent from PRS predisposing to schizophrenia74; this could corroborate our finding of a similar relationship of IQ with cannabis use in patients and controls.

Those patients and controls who used cannabis, especially daily-users, had shown lower AF. A recent longitudinal study conducted in the UK on a representative cohort of pupils showed that high childhood academic adjustment at age 11 increased the risk of both occasional and persistent cannabis use in late adolescence (19-20 years)75. Our study embraces different countries, and the results are in line with those from other studies with non-psychotic people, which indicated that poor school performance was a common antecedent of cannabis and other substance use, regardless of IQ, with
the odds of dropping out from school increasing with the frequency of use. Similar mechanisms are probably implicated in determining AF in patients.

Finally, we found that patients, but not controls who were cannabis users, particularly daily-users had shown better SF than their non-using counterparts. This was even more evident when lifetime abusers of other drugs, current cannabis-users, and current tobacco-users were removed from the model, and daily-users scored similarly or even better than controls in SF scores.

In this sensitivity analysis, the confidence intervals in IQ, SF and AF scores increased in patients who used cannabis occasionally or daily, compared to never-users; this higher variability is present also in control daily users, compared to the other two groups. This may suggest a higher intragroup variability in cognition and premorbid functioning or it could, of course, be due to the small numbers, which can additionally mask the differences between patients and control daily-users, at least regarding the five-point mean-difference in IQ.

The majority of studies that explored premorbid functioning in psychotic patients selected current or recent daily-users and compared them with non-users, revealing worse academic functioning in the former, conceptually in line with our results on lifetime daily-users. Other studies found no association between premorbid function and drug or cannabis abuse, probably because they used total PAS mean scores; therefore, inverse results in social and academic factors, related to cannabis-use, could have nullified each-other. Some authors used a different methodology, focusing on recent cannabis-use, and did not find any relationships with premorbid sociability, but better current social cognition in recent cannabis-abusers. This last result was not replicated in a recent study, which looked at lifetime cannabis use in relation to current social cognition. However, as the authors state, it is possible that subjects with psychosis and cannabis use, had higher levels of premorbid social cognition, responsible for the contact with the substance, which then decreased after the diagnosis.
4.3 What can we speculate about premorbid predisposition to psychosis related to cannabis use?

Cannabis use is probably first self-selected, depending on predisposing factors, such as higher early sociability, and later reinforced, in some patients, in a pattern of abuse; this involves the subject in a less challenging world (e.g. dropping out from school86–89), that contributes to lower the future IQ. This latter does not happen in occasional-users whose IQ is more representative of their premorbid cognition14 (see also exploratory analysis on the WAIS subtest – Supplementary Material).

The early neuropsychological and social deficits (i.e. lower IQ and SF) of non-using patients evoke a more ‘classical’ profile of people at-risk to develop psychosis90, in line with the neurodevelopmental hypothesis10,91,92. Non-using patients and controls had higher AF before their 16th year, compared with cannabis users. While this result is intuitive in controls, it apparently contradicts the expectation of a greater impairment in this group of neurodevelopmentally impaired psychotic individuals. Previous results showed that premorbid academic adjustment in psychosis is impaired and further declines from childhood to late adolescence93,94. These studies reported the most significant deterioration between 16 and 18 years (late adolescence), while our PAS measures stop at age 16 (early adolescence). Interestingly, one of them93 reported a greater premorbid academic decline in those with less premorbid social impairment, whom they defined “non-deficit” schizophrenic patients, similarly to our results; however, they did not account for cannabis-use.

4.4 Strengths and Limitations

The EU-GEI study has strengths, such as the large sample size and the use of samples from several countries. Even if a prospective cohort study would be able to provide the most robust design for establishing causal connections, such a design is problematic, because psychosis is a rare disorder, with a large time lag between the occurrence of environmental adversities and the onset.

The quota sampling strategy to obtain controls with characteristics of each of the study catchment areas’ population at risk38 allowed us to have a more representative control sample, as compared to previous studies, and suggests that the prevalence of patterns of cannabis use in our controls represent
those of the local population. Sensitivity supplementary analysis revealed the appropriateness of this strategy for the outcomes measured, because selection bias was unlikely to explain our findings (Supplementary Material).

The higher IQ in occasional cannabis using controls could be identified thanks to the large sample across different countries. People with psychotic disorders might be more likely to recall risk factors and, for example, could recall greater disadvantages in their early life in PAS or to have used drugs in CEQ interview. However, the interviews were completed by at least one corroborative source of information (e.g. family, clinical notes, other clinicians), and the validity of self-report at the PAS has been supported in persons with schizophrenia. Unlike present use, a history of lifetime use of cannabis cannot be assessed by a biological test. Results from our previous study suggest that the accuracy of self-reported data on cannabis use is high.

Finally, family history for psychosis could be associated with the relationship between cognition and cannabis use in patients. However, no substantial difference in PRS for schizophrenia was found in the GAP study between FEP cannabis users and non-users.

4.5 Implications

Those patients who use cannabis daily, and only cannabis, in their lifetime were very similar to daily-using controls regarding IQ, early sociability and academic adjustment. Thus we can speculate that cannabis could have had a role in their psychosis onset, acting as a crucial risk factor.

This evidence, coupled with recent confirmations about the strong link between cannabis daily use and increased risk for psychosis, further supports the need to improve primary prevention in the general population, and suggests that future studies should look at those factors that make the difference between cannabis daily-using subjects that develop psychosis and those who do not.
4.6 Conclusions

The study confirms that patients with first-episode psychosis who used cannabis occasionally have higher IQ than never using patients. The findings also demonstrate that both occasional and daily cannabis-using patients have better premorbid sociability than non-using patients and that this difference is not present among controls. Our findings are compatible with the view that the better premorbid social adjustment of cannabis-using patients may have contributed to their early contact with the substance, and that cannabis use increases the risk of psychosis in a subgroup of patients with less neurodevelopmental vulnerability for psychosis.

Acknowledgements

Special acknowledgement to all the patients and the EU-GEI team, Institute of Psychiatry, King's College (London) and the University of Palermo that supported this work.

Funding Details

The European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) Project is funded by grant agreement HEALTH-F2-2010-241909 (Project EU-GEI) from the European Community’s Seventh Framework Programme. The project was further funded by the National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. Marta Di Forti was supported by Clinician Scientist Medical Research Council fellowship (project reference MR/M008436/1); Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (grant n. 101272/ Z/13/Z) granted James Kirkbride; The Brazilian study was funded by the São Paulo Research Foundation under (grant n. 2012/0417-0); Eva Velthorst was supported by the Seaver Foundation, NY; she is a Seaver Faculty Scholar; Hannah Jongsma and Prof. Peter B Jones were funded by the National Institute of Health Research Collaboration of Leadership in Applied Health Research and Care East of England. The funders contributed to the salaries of the researchers.
involved, but they did not contribute in design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript, and decision to submit the manuscript for publication.
Bibliography

38. Collaborative project Large Scale Integrating Project 2.2.1-2: Genetic and Environmental Interactions SEVENTH FRAMEWORK PROGRAMME THEME [HEALTH] [Identifying genetic and environmental interactions in schizophrenia.] Grant agreement for: Collaborative

Figure 1. Standardised scores (estimated marginal means and standard errors) of IQ, Academic Factor (AF) and Social Factor (SF) by frequency of cannabis use in patients and controls.

Figure 2. Sensitivity analysis. Standardised scores (estimated marginal means and standard errors) of IQ, Academic Factor (AF) and Social Factor (SF) by frequency of cannabis use in patients and controls.
Table 1. Comparison Between Psychotic Patients and Controls for Social Factor (SF), Academic Factor (AF) and IQ: Estimated Marginal Mean and Partial Eta.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean (SD)</th>
<th>Mean difference (95% C.I.)(^a)</th>
<th>Partial Eta(^2)</th>
<th>Estimated marginal mean (SE)(^b)</th>
<th>Adjusted Mean difference (95% C.I.)(^a)</th>
<th>Adjusted Partial Eta(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ, N= 2087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>85.28 (18.04)</td>
<td>-17.04 (-18.8; -15.35)</td>
<td>0.178</td>
<td>80.40 (0.01)</td>
<td>-11.8 (-11.83; -11.77)</td>
<td>0.102</td>
</tr>
<tr>
<td>Controls</td>
<td>102.24 (17.6)</td>
<td></td>
<td></td>
<td>92.27 (0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF, N= 2234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>-0.26 (1.1)</td>
<td>-0.44 (-0.52; -0.36)</td>
<td>0.048</td>
<td>0.26 (0.47)</td>
<td>-0.48 (-0.57; -0.4)</td>
<td>0.053</td>
</tr>
<tr>
<td>Controls</td>
<td>0.18 (0.87)</td>
<td></td>
<td></td>
<td>0.22 (0.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF, N= 2234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>-0.35 (1.05)</td>
<td>-0.61 (-0.59; -0.53)</td>
<td>0.092</td>
<td>-0.37 (0.03)</td>
<td>-0.51 (-0.6; -0.43)</td>
<td>0.060</td>
</tr>
<tr>
<td>Controls</td>
<td>0.25 (0.87)</td>
<td></td>
<td></td>
<td>0.14 (0.03)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Confidence intervals for the mean difference. Bonferroni adjusted and 1000 samples bootstrapped, Bias-corrected and accelerated.

\(^b\)IQ was adjusted for age, gender, education, ethnicity and country. SF and AF were adjusted for age, gender, ethnicity and country.
Table 2. Relationship Between IQ, Social Factor (SF) and Academic Factor (AF) by Group and Lifetime Frequency of Cannabis Use: Pairwise comparisons obtained from the MANCOVA.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group</th>
<th>IQ Mean diff. (95% C.I.)a</th>
<th>SF Mean diff. (95% C.I.)a</th>
<th>AF Mean diff. (95% C.I.)a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients vs Control</td>
<td>-15.11 (-16.93; -13.29)</td>
<td>-0.47 (-0.58; -0.37)</td>
<td>-0.41 (-0.51; -0.31)</td>
</tr>
<tr>
<td></td>
<td>Lifetime Frequency of Cannabis use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occasional Use vs Never Use</td>
<td></td>
<td>3.03 (0.86; 5.2)</td>
<td>0.21 (0.09; 0.33)</td>
<td>-0.09 (-0.21; 0.027)</td>
</tr>
<tr>
<td>Daily Use vs Never Use</td>
<td></td>
<td>0.76 (-2.19; 3.71)</td>
<td>0.28 (0.12; 0.45)</td>
<td>-0.43 (-0.59; -0.26)</td>
</tr>
<tr>
<td>Sex</td>
<td>Female vs Male</td>
<td>-3.7 (-5.18; -2.23)</td>
<td>0.004 (0.08; -0.07)</td>
<td>0.24 (0.16; 0.33)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>-0.08 (-0.08; -0.08)</td>
<td>-0.004 (-0.004; -0.004)</td>
<td>-0.002 (-0.002; -0.001)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Black vs White</td>
<td>-17.99 (-20.81; -15.17)</td>
<td>0.18 (0.3; 0.34)</td>
<td>-0.24 (-0.4; -0.08)</td>
</tr>
<tr>
<td></td>
<td>Other vs White</td>
<td>-7.91 (-10.32; -5.5)</td>
<td>0.07 (0.21; -0.05)</td>
<td>-0.005 (-0.14; -0.13)</td>
</tr>
<tr>
<td>Country</td>
<td>Holland vs UK</td>
<td>-2.93 (-0.54; 6.41)</td>
<td>0.02 (-0.17; 0.21)</td>
<td>0.01 (-0.17; 0.21)</td>
</tr>
<tr>
<td></td>
<td>Spain vs UK</td>
<td>-10.96 (-7.37; -14.55)</td>
<td>0.4 (0.2; 0.6)</td>
<td>-0.38 (-0.58; -0.17)</td>
</tr>
<tr>
<td></td>
<td>France vs UK</td>
<td>-12.42 (-8.25; -16.59)</td>
<td>0.19 (-0.04; 0.42)</td>
<td>-0.28 (-0.51; -0.04)</td>
</tr>
<tr>
<td></td>
<td>Italy vs UK</td>
<td>-4.53 (-0.39; -8.78)</td>
<td>0.36 (0.13; 0.59)</td>
<td>-0.23 (-0.46; -0.001)</td>
</tr>
<tr>
<td></td>
<td>Brazil vs UK</td>
<td>-3.25 (0.21; 6.71)</td>
<td>0.83 (0.63; 1.02)</td>
<td>-0.13 (-0.33; 0.05)</td>
</tr>
<tr>
<td></td>
<td>Group*Lifetime Frequency of Cannabis Useb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>Never Use vs Occasional use</td>
<td>-3.5 (-6.48; -0.21)</td>
<td>-0.33 (-0.51; -0.14)</td>
<td>0.08 (-0.06; 0.24)</td>
</tr>
<tr>
<td></td>
<td>Never Use vs Daily use</td>
<td>-1.89 (-5.04; 1.8)</td>
<td>-0.48 (-0.66; -0.3)</td>
<td>0.34 (0.17; 0.52)</td>
</tr>
<tr>
<td></td>
<td>Occasional use vs Daily use</td>
<td>1.61 (-1.41; 4.68)</td>
<td>-0.15 (-0.31; 0.004)</td>
<td>0.26 (0.1; 0.43)</td>
</tr>
<tr>
<td>Controls</td>
<td>Never Use vs Occasional use</td>
<td>-2.47 (-4.79; -0.26)</td>
<td>-0.1 (-0.22; 0.04)</td>
<td>0.11 (-0.001; 0.21)</td>
</tr>
<tr>
<td></td>
<td>Never Use vs Daily use</td>
<td>0.21 (-3.79; 4.29)</td>
<td>-0.14 (-0.38; 0.12)</td>
<td>0.54 (0.25; 0.82)</td>
</tr>
<tr>
<td></td>
<td>Occasional use vs Daily use</td>
<td>2.68 (-1.49; 6.94)</td>
<td>-0.03 (-0.26; 0.22)</td>
<td>0.43 (0.11; 0.73)</td>
</tr>
</tbody>
</table>

a confidence intervals for mean-difference. Bonferroni adjusted and 1000 samples bootstrapped, Bias-corrected and accelerated.

b Pairwise Comparisons resulting from ANCOVAs to explore interactions
Table 3. Sensitivity analysis: Pairwise Comparisons resulting from follow-up ANCOVAs to explore interactions.

<table>
<thead>
<tr>
<th>Group</th>
<th>Dependent variable</th>
<th>Cannabis Frequency</th>
<th>Mean difference</th>
<th>SE</th>
<th>p-valuec</th>
<th>95% C.I. diff</th>
<th>BCa*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>IQ</td>
<td>Never</td>
<td>-8.32*</td>
<td>2.13</td>
<td>0.001</td>
<td>-12.54</td>
<td>-4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daily use</td>
<td>-7.1</td>
<td>3.73</td>
<td>0.364</td>
<td>-4.68</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occasional use Daily use</td>
<td>1.21</td>
<td>3.93</td>
<td>0.124</td>
<td>-2.58</td>
<td>14.9</td>
</tr>
<tr>
<td>SF</td>
<td>Never</td>
<td>Occasional use</td>
<td>-0.29</td>
<td>0.14</td>
<td>0.046</td>
<td>-0.57</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Daily use</td>
<td>-0.78*</td>
<td>0.18</td>
<td>0.001</td>
<td>-1.12</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occasional use Daily use</td>
<td>-0.48*</td>
<td>0.2</td>
<td>0.019</td>
<td>-0.89</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Never</td>
<td>Occasional use</td>
<td>-0.01</td>
<td>0.11</td>
<td>0.923</td>
<td>-0.24</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Daily use</td>
<td>0.39*</td>
<td>0.22</td>
<td>0.067</td>
<td>0.008</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occasional use Daily use</td>
<td>0.4</td>
<td>0.23</td>
<td>0.080</td>
<td>-0.01</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>IQ</td>
<td>Never</td>
<td>-2.88*</td>
<td>1.39</td>
<td>0.048</td>
<td>-5.62</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Daily use</td>
<td>3.86</td>
<td>4.41</td>
<td>0.364</td>
<td>-4.68</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occasional use Daily use</td>
<td>6.74</td>
<td>4.57</td>
<td>0.124</td>
<td>-2.58</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>Never</td>
<td>Occasional use</td>
<td>-0.06</td>
<td>0.06</td>
<td>0.322</td>
<td>-0.18</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Daily use</td>
<td>0.15</td>
<td>0.24</td>
<td>0.521</td>
<td>-0.28</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occasional use Daily use</td>
<td>0.22</td>
<td>0.24</td>
<td>0.367</td>
<td>-0.22</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Never</td>
<td>Occasional use</td>
<td>0.07</td>
<td>0.06</td>
<td>0.244</td>
<td>-0.04</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Daily use</td>
<td>0.71*</td>
<td>0.18</td>
<td>0.001</td>
<td>0.28</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occasional use Daily use</td>
<td>0.63*</td>
<td>0.18</td>
<td>0.002</td>
<td>0.22</td>
<td>0.97</td>
<td></td>
</tr>
</tbody>
</table>

*aConfidence intervals for the mean difference. Bonferroni adjusted and 1000 samples bootstrapped, Bias-corrected and accelerated.

* The mean difference is significant at the 0.05 level.