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Abstract
There is yet no consensus on the application of functional imaging and qualitative image interpretation in the management of gastric
cancer. In this second part, we will discuss the role of image-derived quantitative parameters from dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) and '*F-fluorodeoxyglucose positron emission tomography/computed tomography (‘*F-FDG PET/
CT) in gastric cancer, as both techniques have been shown to be promising and useful tools in the clinical decision making of this
disease. We will focus on different aspects including aggressiveness assessment, staging and Lauren type discrimination, prognosis
prediction and response evaluation. Although both the number of articles and the patients enrolled in the studies were rather small, there
is evidence that quantitative parameters from DCE-MRI such as K™, V, K, and AUC could be promising image-derived surrogate
parameters for the management of gastric cancer. Data from '*F-FDG PET/CT studies showed that standardised uptake value (SUV) is
significantly associated with the aggressiveness, treatment response and prognosis of this disease. Along with the results from
diffusion-weighted MRI and contrast-enhanced multidetector computed tomography presented in Part 1 of this critical review, there
are additional image-derived quantitative parameters from DCE-MRI and '*F-FDG PET/CT that hold promise as effective tools in the
diagnostic pathway of gastric cancer.
Key Points
* Quantitative analysis from DCE-MRI and "*F-FDG PET/CT allows the extrapolation of multiple image-derived parameters.
* Data from DCE-MRI (K", V,, K., and AUC) and 8E_FDG PET/CT (SUV) are non-invasive, quantitative image-derived
parameters that hold promise in the evaluation of the aggressiveness, treatment response and prognosis of gastric cancer.

Keywords Stomach neoplasms - Biomarkers - Magnetic resonance imaging - Positron emission tomography - Quantitative
parameters
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VEGF Vascular endothelial growth factor
HER Human epidermal growth factor
Introduction

Gastric cancer (GC) is one of the most common malignancies
worldwide [1]. As already discussed in the first part (Part 1) of
this critical review [2], this disease is managed through a
standardised multidisciplinary approach where radiology
plays a crucial role in the detection, staging, treatment plan-
ning and follow-up [3, 4].

The most useful techniques are endoscopic ultrasound,
computed tomography (CT), magnetic resonance imaging
(MRI) and '®F-fluorodeoxyglucose positron emission to-
mography ('®F-FDG PET)/CT. At this regard, the
PLASTIC trial [5] is an ongoing study that will evaluate
the impact and cost-effectiveness of PET and staging lap-
aroscopy in addition to initial staging in patients with lo-
cally advanced GC.

Different image-derived quantitative parameters from these
techniques could be considered promising tools in the man-
agement of GC [6, 7], as they reflect a variety of biological
processes (normal or pathological) both at baseline and after
therapeutic interventions.

Quantitative imaging has the potential to improve the
value of diagnostic testing and enhance clinical productiv-
ity and is increasingly important in preclinical studies, clin-
ical research, and clinical practice [7]. Oncological imag-
ing represents an ideal setting for the collection of new
image-derived quantitative parameters from different tech-
niques that can be potentially included in the clinical sce-
nario [6]. The Radiological Society of North America
underlined their importance as non-invasive tools with dif-
ferent applications in oncology and has promoted their use
in clinical trials [7].

In the second part, we will provide a critical review on the
state of the art of dynamic contrast-enhanced (DCE) MRI and
"F_FDG PET/CT findings.

Evidence acquisition

We searched MEDLINE/PubMed for manuscripts published
from inception to 17 August 2018 (Fig. 1).

DCE-MRI and image-derived quantitative
parameters

DCE-MRI is a functional imaging technique in which mul-

tiphase images are acquired over a few minutes at baseline,
during and after rapid intravenous injection of a contrast
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agent and a saline flush. Changes in signal intensity
(reflecting tissue vascularity) can be observed and para-
metric maps of specific microvascular image-derived
quantitative parameters can be derived [8, 9]. Basic recom-
mendations include an adequate spatial/temporal resolu-
tion and knowledge of the inherent characteristics of the
contrast agent. Semi-quantitative and quantitative analysis
can be performed on specific regions of interest (ROIs) or
on a pixel-by-pixel basis.

DCE-MRI requires high temporal resolution (usually 4—
6 s/phase) and can be degraded by motion artefacts (e.g.
respiratory or bowel peristalsis) [10]. Therefore, an injec-
tion of intravenous/intramuscular anti-peristaltic agent is
advised to reduce the mobility of the gastric walls.

DCE-MRI reflects tumour angiogenesis (i.e. the crea-
tion of new blood vessels) and is directly associated with
tumour growth and inversely correlated with prognosis
[11-13].

Different quantitative parameters can be extrapolated from
DCE-MRI maps (Tofts model) [14] such as:

« K™ (min'): volume transfer constant of gadolinium
from blood plasma to the extravascular extracellular space
(EES)

* V. (0 to 100%): volume of the EES per unit volume of
tissue (i.e. the amount of “space” available within the in-
terstitium for accumulating gadolinium)

c K¢ (min'): rate constant gadolinium reflux from the
EES back into the vascular system (i.e. it is the ratio:
Ktrans /Ve)

* AUC (mmol/s): area under the gadolinium concentration
curve during a certain period of time.

The application of DCE-MRI in GC has been increas-
ingly growing over the last few years thanks to the techni-
cal developments (e.g. the shortening of temporal resolu-
tion) and the advantage of free-from-radiation damage
compared with CT.

Although certainly interesting in a research context,
this technique has been mainly applied for neuro-
oncological imaging so far. However, DCE-MRI in organ
systems outside the central nervous system for oncologi-
cal applications remains an active area of research, espe-
cially for breast, liver and prostate cancer. Other applica-
tions of DCE-MRI have been investigated, but as yet are
not routinely used in clinical practice for GC. A possible
explanation is that tumours are biologically complex
structures and, differently from other organs such as the
brain, the DCE-MRI protocols for GC are flawed by the
presence of several artefacts (especially due to peristalsis)
that can easily undermine the quality of the scan and the
interpretation of quantitative data from the regions of in-
terest analysed.
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Fig. 1 Flow diagrams showing the a

outcome of the initial searches
resulting in the full studies

73 records identified

88 records identified

included in the review for dynamic
contrast-enhanced magnetic
resonance imaging (DCE-MRI)
(a) and "®F-fluorodeoxyglucose
positron emission tomography/
computed tomography ('*F-FDG

69 records not relevant to
research question

68 record not relevant to
research question

PET/CT) (b)

4 articles
on image-derived
quantitative parameters from
DCE-MRI and gastric cancer

20 articles on image-derived

DCE-MRI in the detection and diagnosis of gastric
cancer

Table 1 summarises the main studies analysing the role of
DCE-MRI in GC.

The first study by Kang and colleagues dates back to
2000 [15] and reports the usefulness of dynamic and de-
layed MRI for T staging. The thickness and enhancement
pattern of normal and pathological gastric walls were com-
pared in 46 patients through a dynamic protocol including
precontrast images and additional acquisitions of 30, 60,
90 and 240-300 s after injection of gadolinium. The path-
ological outer layers (mucosa and submucosa) showed ear-
lier enhancement (i.e. between 30 and 90 s) than the nor-
mal gastric wall in 43/46 patients (93%) and the peak en-
hancement of the normal gastric wall was > 90 s in 17/46
patients (37%). A reasonable high consistency between
MR staging and pathological staging for all T stages was
reported (accuracy for T stage, 83%). Such results, al-
though not related to any specific quantitative parameter,
show that dynamic MR imaging was already a promising
technique for predicting T staging in GC at that time.

Joo and colleagues [16] correlated DCE-MRI parame-
ters with prognostic factors such as pathological T staging
and epidermal growth factor receptor (EGFR) expression.
V. and iAUC were significantly higher for GC (0.133 and
5.533 mmol/s, respectively) when compared with normal
gastric wall (0.063 and 3.894, respectively) (all p <0.05).
Additionally, V., was positively correlated with T staging
(p =0.483, p =0.023) and K" was significantly correlat-
ed with EGFR expression (p =0.460, p =0.031). These
findings suggest that DCE-MRI reflects tumour biology,
providing prognostic information in patients with GC.

Ma and colleagues [17] compared DCE-MRI parame-
ters in different histological subtypes of GC and investi-
gated their correlation with vascular endothelial growth

quantitative parameters from
18F-FDG-PET and gastric cancer

[ 1 ]

6 articles 6 articles
(TNM (treatment
staging) response)

8 articles
(prognosis)

factor (VEGF) expression levels in 32 patients treated
with surgical resection. Differently from the other studies,
the ROIs were placed only on the lesions and the size was
constant for each patient (10 mm). Mucinous adenocarci-
nomas showed higher V. (0.491) and lower K"
(0.077 min ') values than non-mucinous tumours (0.288
and 0.274 min"', respectively) (p <0.01). Differences
were also observed for the Lauren classification, as the
diffuse type showed higher V. and K" (0.466 and
0.249 min ', respectively) values than the intestinal type
(0.253 and 0.183 min ', respectively) (p <0.001).
Additionally, K"™" showed a significant correlation with
the level of VEGF expression (p =0.762, p <0.001).
K" and VEGF are both related to the endothelial and
microvascular permeability, which are in turn related to
the neo-angiogenesis that is seen in tumours: in other
words, a higher K"*" is related to a higher level of
VEGF, which is strictly related to a greater degree of an-
giogenesis. Together with the previous study [16], these
findings suggest that angiogenesis increases the extrava-
sation of gadolinium from the intravascular to the intersti-
tial space, supporting the role of DCE-MRI as a potential
tool to differentiate GC according to different histopatho-
logical features.

Li and colleagues [18] compared the performance of con-
ventional breath-hold to free-breathing DCE-MRI using
volume-interpolated breath-hold examination sequences.
DCE-MRI parameters of normal gastric wall and GC were
collected and perfusion parameters for both normal and path-
ological gastric walls were obtained. K., was lower (0.750 vs
1.081 min"'; p <0.05) while V, was higher in GC (0.228 vs
0.162; p <0.05). No significant differences for K™" and
1AUC values between normal and pathological gastric walls
were observed (p > 0.05).

Some examples of DCE-MRI in GC are shown in Figs. 2, 3
and 4.
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Fig. 2 DCE-MRI showing a tumour of the gastric antrum (a) in a 73-year-
old male. The K™ (b) was 0.279 min ", the K¢p (©) was 0.605 min ! and
the V, (d) was 0.482. Final pathology (e): diffuse type (Lauren classification),
staged as pT4aN3. DCE-MRI of a tumour of the gastro-oesophageal junction
(Siewert I1T) (f) in a 68-year-old male. The K™ (g) was 0.117 min ', the Kep

'8F_FDG PET/CT and image-derived
quantitative parameters

"F_FDG PET/CT is recommended for patients with newly
diagnosed GC if clinically indicated and if metastatic cancer
is not evident, as well as in the posttreatment assessment and
restaging.

The standardised uptake value (SUV) from '*F-FDG PET/
CT is a dimensionless ratio used to distinguish between nor-
mal and abnormal levels of glucose uptake and can be

Fig. 3 DCE-MRI showing a tumour of the gastric antrum (a) in a 66-
year-old female. In the pretreatment scan, the K™ (b) was 0.078 min ™",
the K¢, (¢) was 0.237 min ! and the V, (d) was 0.347. The tumour was

confirmed at biopsy (e). In the posttreatment scan, there was a reduction

V) B

(h) was 0.461 min ' and the V, (i) was 0.253. Final pathology (j): mixed type
(Lauren classification), staged as pT3N1. DCE-MRI of a tumour of the
gastric antrum (k) in a 49-year-old male. The K™ (I) was 0.016 min !,
the K, (m) was 0.575 min ! and the V. (n) was 0.029. Final pathology (0):
intestinal type (Lauren classification), staged as pT4aN2

considered an image-derived semi-quantitative parameter, de-
fined as the ratio activity per unit volume of a ROI to the
activity per unit whole-body volume (Figs. 5 and 6) [19].

'8F-FDG PET/CT to assess the primary lesion in gastric
cancer

Table 2 summarises the studies on the role of '*F-FDG PET/
CT to assess the primary lesion in GC.

: ey
in tumour size (f), and the K™ (g) was 0.070 min"', the K, (h) was

0.295 min ' and the V, (i) was 0.263. Final pathology (j): intestinal type
(Lauren classification), staged as ypT1bNO (tumour regression grade 1)

@ Springer
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Fig. 4 DCE-MRI of a tumour of the gastric antrum (a) in a 61-year-old
female. In the pretreatment scan, the K™ (b) was 0.085 min", the Kep
(¢) was 0.176 min "' and the V, (d) was 0.539. The tumour was confirmed
at biopsy (e). In the posttreatment scan, the tumour is still visible (f), and

Stahl and colleagues [20] analysed the relationship be-
tween SUV ean and different tumour features from biopsy
(including intestinal vs non-intestinal) in 40 patients. PET
had a sensitivity of 60% in identifying locally advanced GC
and the SUV e, Was higher in the intestinal than in the non-
intestinal type (6.7 vs 4.8; p = 0.03). No significant differences
in the survival rate of patients with or without FDG accumu-
lation (SUV ycan cut-off, 4.6; p = 0.75) were observed. A clear
limitation of this study is that the reference standard was bi-
opsy and not radical surgery.

Mochiki and colleagues [21] reported a significant associ-
ation between SUV ,can and the depth of invasion, tumour size
and nodal metastasis. They compared '*F-FDG PET findings
with CT and found that '®*F-FDG PET was less accurate for
nodal staging (23% vs 65%). The SUV can Was higher for
T2-T4 than T1 tumours (p <0.05). Differently from the

SUVrmax=10.7
SUVmin=0.6
SUVavg=25
SUVstd=24
Arsa=45.71 cm*

SUVmax=4.3
SUVmin=0.1
SUVavg=1.3
SUVstd=1
Arsa=25.74 cm*

Fig. 5 '"F-FDG PET/CT scan of a 72-year-old man with gastro-
oesophageal junction cancer (a—d) demonstrated by an intense uptake

of "SF-FDG before treatment (SUV e = 10.7) (¢). After two cycles of

@ Springer

the K™ (g) was 0.128 min_'
was 0.455. Final pathology (j): diffuse type (Lauren classification), staged
as ypT3NO (tumour regression grade 3)

previous study [20], they observed a significant difference in
the survival rate (p < 0.05).

Chen and colleagues [22] reported a sensitivity of 94% for
E_FDG PET/CT (SUV pean = 7) and a significant association
between FDG uptake and tumour size, nodal involvement and
other histological features. They were among the first showing
that the combination of '*F-FDG PET and CT was more ac-
curate for preoperative staging than either modality alone
(66% vs 51%, 66% vs. 47%; p =0.002).

Oh and colleagues [23] performed a retrospective '*F-FDG
PET/CT analysis of 136 patients treated with radical surgery.
They set a threshold for SUV ey from primary tumour of 3.2
to define hypermetabolic lesions and found that this was associ-
ated with tumour depth and nodal involvement (p < 0.001). The
sensitivity and specificity for nodal involvement using the afore-
mentioned threshold were 75% and 74% respectively.

chemotherapy (paclitaxel + cisplatin + fluorouracil) (e-h), the SUV . of
the lesion decreased to 4.8 (g), showing good response to the therapy.
Final pathology (i) ypT3NO (tumour regression grade 1)
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0 BUYmde=ay
SUVmin=0.2
SUVavg=15
SUVst=1.1
Area=39.83 cm*

" SUanx-a
SUVmin=0.1
SUVavg=14
SUVsid=1.2
Area=51.43 cm*

Fig. 6 '8F-FDG PET/CT scan of a 48-year-old woman with gastric can-
cer (a—d) demonstrated by an intense uptake of '*F-FDG before treatment
(SUVmax=4.7) (¢). After one cycle of chemotherapy (capecitabine +

Another group [24] reported the relationship between measur-
able and non-measurable GC on '®F-FDG PET/CT (defined as
1.35*%SUV ,ax Of liver+2*standard deviation of liver SUV).
Among different parameters, a higher proportion of measurable
tumours was found in well- or moderately differentiated GC than
poorly differentiated tumours (71% vs 33% p < 0.05). Differently
from the previous study [24], there was no difference for primary
tumour stage and nodal metastasis.

Namikawa and colleagues [25] reported a sensitivity of 79%
for the detection of GC for '"®F-FDG PET/CT and a significant
difference for SUV ., for patients with T3/T4 vs T1/T2 (9.0 vs.
3.8; p <0.001), with and without distant metastasis (9.5 vs. 7.7;
p =0.018), and between stage III/IV and stage I/I (9.0 vs. 4.7;
p =0.017) after radical surgery. The SUV,,,, of the primary
tumour was correlated with tumour size (r =0.461; p <0.001).
The sensitivity, specificity and accuracy of '"*F-FDG PET/CT for
nodal involvement were 64%, 86% and 71% respectively.

'8F-FDG PET/CT in treatment response of gastric
cancer

We found six studies reporting on '*F-FDG PET/CT and treat-
ment response in GC (Table 3).

Stahl and colleagues [26] compared different '*F-FDG PET/
CT protocols and calculations of the SUV s, (time delay after
8E_FDG administration, acquisition protocol, reconstruction al-
gorithm, SUV normalisation) for the early prediction of treatment
response at baseline and after the first cycle of chemotherapy.
They did not find any significant difference in the baseline and
follow-up SUV ,can calculation between protocols (p > 0.05), but
higher SUV changes for responders than non-responders were

paclitaxel) (e-h), no significant changes in BE_FDG uptake (SUV ax =
4.8) were observed (g). Final pathology (i) ypT4aN1 (tumour regression
grade 3)

observed (p <0.01). They were among the first to demonstrate
the robustness of '*F-FDG PET/CT for therapeutic monitoring,
supporting the comparability of studies obtained with different
protocols.

Vallbohmer and colleagues [27] analysed the differences
in pre- and posttreatment SUV ., between responders and
non-responders using the same histological definition as
Stahl [26] (i.e. < 10% viable tumour cells in the specimen)
but no correlation with treatment response was observed
(p =0.733). Significant differences in SUV ., were ob-
served for the Lauren classification (p = 0.023) and tumour
location (p =0.041).

In another study on 17 patients [28] undergoing diffusion-
weighted MRI and '*F-FDG PET/CT before and after treat-
ment, no differences in treatment response were observed for
pre- or posttreatment SUV ..., (and their percentage change)
(p=0.605, p=0.524 and p = 0.480). Treatment response was
based on tumour regression grade (TRG) [32] and responders
were considered TRG 1, 2 and 3 (i.e. including patients with
more than 10% of viable cells).

Two studies [29, 30] evaluated the relationship between
SUV nax and treatment response in advanced GC (i.e. no surgi-
cal specimens were used as the reference standard). Although
follow-up imaging was performed at different time points
(14 days vs 6 weeks after the start of chemotherapy) and differ-
ent SUV thresholds for response were applied (40% vs 50%),
both studies showed that metabolic changes in '*F-FDG PET/
CT are predictive markers for response disease also for ad-
vanced GC. One study [30] showed a correlation between hu-
man epidermal growth factor HER2 status positivity (i.e. more
aggressive cancer) and higher SUV uptake (p = 0.002).

@ Springer
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Key messages

Reference
standard

Histological
definition of

Number of '8F-
FDG PET scans

distinguish between
responders and non
responders

Type of study No. of ROI placement SUV reduction to
patients

Study (ref.)) Year Country

Table 3 (continued)

@ Springer

treatment response

SUV hax irrespective of tumour size

(p<0.001)
HER2—positive tumours showed in-

creased SUV .« than HER2—negative

=0.002)
Metabolic response was observed in

tumours (p

< 10% viable tumour Surgery

Baseline and

35%

Tumour

2018 Switzerland Retrospective 30

Schneider

67% and no response in 33%
Prediction of pathological response by

cells in the
specimen

2 weeks after

etal [31]

the completion

of

SUV had a sensitivity of 91% and a

specificity of 47%, with an overall

accuracy of 63%

chemotherapy

ROI region of interest, SUV standardised uptake value, PET positron emission tomography, NR not reported, 7RG tumour regression grade, HER human epidermal growth factor receptor

4RECIST criteria were used

Schneider and colleagues [31] reported that '*F-FDG PET/
CT is able to detect non-responders (sensitivity, 91%; speci-
ficity, 47%; positive predictive value, 50%; negative predic-
tive value, 90%; accuracy, 63%) but they could not prove that
"F_-FDG PET/CT after the first cycle of chemotherapy can
predict overall pathological response.

Similarly to the PRIDE study in oesophageal cancer [33],
there is growing interest to develop models that predict the
probability of response to neoadjuvant therapy in GC based on
quantitative parameters derived from MRI and '*F-FDG PET/
CT. However, given the controversial results at this regard
[34], further studies are needed.

'8F-FDG PET/CT in the prognosis of gastric cancer

We found eight studies on '"*F-FDG PET/CT and prognosis in
GC (Table 4). Significant results on the relationship between
SUVnax and SUV ean and overall survival were reported by
seven of them [35-38, 40-42], even though each study used
different SUV,,,.x and SUV . cut-offs (Table 4). The study
that did not show any significant difference in SUV,,,, and
SUV hean With regard to prognosis was performed by
Grabinska and colleagues [39]. A possible explanation is that a
long range of follow-up was introduced in this study (range,
6 days to 5.2 years; median, 9.5 months), as also reported by
the same authors. Therefore, the survival analysis from their
study should be interpreted with caution. However, there is evi-
dence of the relationship between SUV, . and SUV ., and
prognosis in GC (Table 4).

8F-FDG PET/CT and radiomics in gastric cancer

There is growing evidence of the importance of radiomics in
medical imaging [43] and this applies also to '*F-FDG PET/
CT findings [44, 45].

A recent review has shown the promising role of radiomics
obtained from different techniques—including '*F-FDG PET/
CT—in gastro-oesophageal tumours [46].

Jiang and colleagues [47] have also developed a dedicated
radiomic score using the features from '*F-FDG PET/CT in
GC. In their study, they concluded that the radiomic signature
was a powerful predictor of overall and disease-free survival and
could add prognostic value to the traditional staging system.

However, as the current literature on this specific topic is still
preliminary, there is a need of standardisation and different
multicentre studies before including radiomics from '*F-FDG
PET/CT in the clinical routine for GC.

Limitations

Quantitative imaging is becoming an increasingly common tool
in modern radiology and its potential impact on patient care and
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In multivariate analysis, high SUV was negatively correlated with

Surgery

7.6°
4.6°
5.64

Retrospective 727 325 Tumour

2018 South

Chon et al [42]

disease-free survival (HR, 2.17) and overall survival (HR, 2.47) (both

<0.001) in patients with diffuse type
In multivariate analysis, high SUV was negatively correlated with

Korea

0.005) and overall survival (HR,

0.003) in patients with signet ring cell carcinoma

This negative prognostic impact was not observed in patients with

disease-free survival (HR, 2.26; p

2.61;p

intestinal type or well- or moderately differentiated histology

ROI region of interest, NR not reported, SUV standardised uptake value, TNM tumour node metastasis, /* F-FDG 18-fluorodeoxyglucose, HR hazard ratio

# After chemotherapy
® Intestinal type
¢ Diffuse type

9 Mixed type

on clinical outcomes is huge. However, it is broadly accepted that
surrogate quantitative parameters of tumour biology assessed by
imaging still require extensive standardisation and validation to
proof that the surrogate represents the pathophysiological process
under investigation. As reported by Rosenkrantz and colleagues
[48], there are some practical aspects that should be considered
when discussing the role of image-derived quantitative parame-
ters. These are (i) accuracy (of a measurement, for example); (ii)
repeatability and (iii) reproducibility (especially when quantita-
tive imaging is performed in serial scans over time, as this allows
to discriminate measurement error from biologic change) and (iv)
clinical validity (i.e. impacting and improving patient’s life).

Therefore, some limitations from the papers discussed in this
study should be reported. Firstly, for DCE-MRI, our review
shows that the ROIs in all studies have been drawn on one
selected axial section. This represents an important limitation,
as these findings may be less representative of the whole tumour.
Future studies should perform quantitative analysis on the whole
volume obtained by contouring the tumour borders on each slice
by planimetry. There is also a lack of optimised perfusion MRI
protocols, dedicated postprocessing software programmes and
high variability between MR scanners.

As far as 'F-FDG PET/CT imaging is concerned, a clear
limitation is that the SUV is dependent on many factors including
the ROI delineation, the activity injected, plasma glucose levels,
and body size. There is variability between '*F-FDG PET/CT
scanners, as well as in the accuracy of the image reconstruction
and correction algorithms. The increased '*F-FDG uptake can be
also seen in inflammatory or granulomatous processes and in
sites of physiological tracer biodistribution.

Gastric distention, achieved by the consumption of water,
milk or foaming agents before scanning, and a late-time-point
"®F_.FDG PET/CT scanning can relatively differentiate the phys-
iological uptake from the malignant lesion.

Finally, standardised guidelines on how to interpret the quan-
titative results from DCE-MRI and '*F-FDG PET/CT have yet to
be reported.

Conclusions

Similarly to the ADC from diffusion-weighted MRI and texture
analysis from CT [2], different image-derived quantitative pa-
rameters from DCE-MRI and "*F-FDG PET/CT are promising
tools in the management of GC. However, extensive
standardisation and validation are still required before they can
become an essential corerstone for GC.
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