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Abstract

This thesis presents high level theoretical data for beryllium mono-hydride, includ-

ing electron collisional data and a theoretical spectral model for the isotopologues

BeH, BeD and BeT in the visible and infrared. The R-matrix method is used to

perform high-level calculations of electron collisions with beryllium mono-hydride

at its equilibrium geometry with a particular emphasis on electron impact electronic

excitation. The calculations were performed using (1) the UKRMol suite which re-

lies on the use of Gaussian type orbitals (GTOs) to represent the continuum and (2)

using the new UKRMol+ suite which allows the inclusion of B-spline type orbitals

in the basis for the continuum. The final close-coupling scattering models used the

UKRMol+ code and a frozen core, valence full configuration interaction, method

based on a diffuse GTO atomic basis set. These calculation are also reproduced

over a range of internuclear separation to produce geometry dependent scattering

quantities. A theoretical model for the isotopologues of beryllium monohydride,

BeH, BeD and BeT, A 2Π to X 2Σ+ visible and X 2Σ+ to X 2Σ+ infrared rovibronic

spectra is also produced. From transition energies and Einstein coefficients, accu-

rate assigned synthetic spectra for BeH and its isotopologues are obtained at given

rotational and vibrational temperatures. The BeH spectrum is compared with a high

resolution hollow-cathode lamp spectrum and the BeD spectrum with high resolu-

tion spectra from JET giving effective vibrational and rotational temperatures. Both

the R-matrix and spectral modelling results are combined to produce vibrationally

averaged electron scattering results.
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peak values are 1.68× 106 Å2sr−1, 3.01× 106 Å2sr−1, 4.73× 106
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Chapter 1

Introduction

1.1 Data For Nuclear Fusion

Achieving controlled and sustained nuclear fusion on Earth has been a key goal

of multi-disciplinary physics for almost half a century (Winter 1975, Lister 2006,

Keilhacker et al. 2001). One of the most promising routes towards its practical im-

plementation is using a tokamak, a low density torus-shape plasma reactor, such as

joint European torus (JET) (Schumacher 1983, Gibson 1979). JET is conducting

vital research for the next generation of tokamaks, the international thermonuclear

experimental reactor (ITER) and DEMOnstration Power Station (DEMO). Specif-

ically the structure of JET is currently supporting an internal reactor wall called

the ITER-like wall (ILW) (Brezinsek et al. 2015). This is a wall with beryllium on

various plasma facing components (PFC) as proposed for use in ITER (Kupriyanov

et al. 2015). A proto-type of the wall that is proposed for use on ITER is currently

in use on JET as a test to ensure its viability at a larger scale and to bring to attention

any issues with a beryllium wall. This work is producing data specifically aimed

at testing the viability and to aid in flagging some such issues. A diagram of the

interior of the JET reactor vessel is show in figure 1.1. From this image it can be

seen that a substantial surface of the plasma facing components (PFC) are either

beryllium or beryllium coated.

In order to predict the erosion, migration and re–deposition of the Be first wall

in fusion devices such as JET, and in the future ITER, and in view of impurity pro-
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duction and lifetime of components, an understanding of the release and transport

of Be is an essential requirement. BeT is also important for modelling tritium re-

tention in beryllium containing fusion devices. The transport of BeH, BeD (and

eventually BeT) in the JET scrape-off layer (SOL) is important for tracking what

happens to the tritium in the reactor, both for the future of JET and for ITER (Do-

erner et al. 2007). BeDX release was shown to contribute more than 50% to the total

erosion in certain cases in JET D plasmas in a limiter configuration deduced from

BeD emission spectra (Brezinsek et al. 2014).

Figure 1.1: Image of the interior of JET showing the various compositions of plasma
facing components. The large portion of beryllium and beryllium coated
plasma facing components can be seen in green and blue. Image taken from
https://www.iter.org/newsline/-/3172.

The scrape-off layer (SOL) is the plasma layer closest to the PFCs. The plasma

here can interact with the reactor wall and therefore contains molecules which are

formed at the wall (Federici 2006). With the addition of beryllium to the PFCs

https://www.iter.org/newsline/-/3172
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one molecule known to be formed is BeH as well as the isotopologues containing

hydrogen isotope variations of deuterium (D) and tritium (T). BeH2 is suspected to

also be formed.

Figure 1.2 shows a temperature scale plot of a slice through one segment of

the JET vessel with magnetic field lines. The core temperature of the JET plasma

can reach in excess of 5 KeV (58,000,000 K), which for reference is almost four

times the temperature of the core of the sun which is at about 1.2 KeV (15,000,000

K). Within the ≈ 1 m interior radius of the vessel the temperature drops below

1 eV (<12,000 K) at the PFCs to around 700 eV (8,000,000 K) at the scrape-off

layer (SOL) with the bulk of the plasma retaining a temperature of about 4 KeV

(46,000,000 K). As can be seen in the diagram the temperature trends to remain

constant with the magnetic field lines. There is a very steep drop off in temperature

near the edge of the plasma called the pedestal region, only a few cm across, which

helps maintain a very hot plasma bulk and cool edge region. It is only within the

SOL that the plasma is cool enough to allow for the formation of molecules.

In a plasma, with its large density of free electrons, processes involving elec-

tron collisions with BeH play an important role in detecting and tracking the move-

ment and deposition of BeH around the reactor (Bessenrodt-Weberpals et al. 1987).

In particular a useful diagnostic is the radiative emission coming from the A 2Π→

X 2Σ+ transition in BeD (Duxbury et al. 1998, Doerner et al. 2009, Nishijima et al.

2008), where the initial excitation of BeD to the A-state is largely thought to origi-

nate in inelastic collisions of electrons with the molecule. There is therefore a need

for accurate data on electron impact electronic excitation for applications to fusion

(Samm 2005). Detailed studies of molecular spectra (Duxbury et al. 1998), such as

those for BeH, BeD, and BeT A – X bands can provide valuable input to codes used

for erosion modelling such as ERO (Borodin et al. 2011, Lasa et al. 2017). These

applications at present generally require data for BeD and will need BeT data in

future.
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LOS

Figure 1.2: Diagram representing temperature ranges and magnetic field lines in the JET
reactor during the peak of a pulse. White at the core ≈ 5 KeV, red for plasma
bulk ≈ 4 KeV, orange pedestal ≈ 700 eV, to scrape of layer in yellow ≈ 300
eV.

1.2 R-Matrix

One large portion of this work is electron scattering calculations and the data is

generated using the R-matrix method. This method divides the problem into an

inner region and an outer region, as show in figure 1.3. The inner region is con-

tained by a sphere of radius a0, the R-matrix radius, centred on the centre of mass

of the molecule. This region contains the target wavefunctions and in this portion

of the calculation all the complex quantum chemistry is calculated. The outer re-

gion is where the R-matrix is formed at the boundary between the two regions and

extrapolated to a distance at which the scattering wavefunctions are asymptotic.

There have been a number of recent studies on electron collisions with

BeH+ (Roos et al. 2009, Chakrabarti and Tennyson 2012, Celiberto et al. 2012b,
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Be H

e− Outer Region

Inner Region

R-matrix
Sphere

Figure 1.3: Diagram showing the division of the inner and outer regions in an R-matrix
calculation, a sphere of radius a0 dividing the inner region with its complex
quantum chemistry from the outer region in which a simpler analysis is possi-
ble.

Chakrabarti and Tennyson 2015, Niyonzima et al. 2017, Laporta et al. 2017), but

we are only aware of a single other study of electron collisional excitation of neu-

tral BeH. This was a recent R-matrix calculation by Celiberto et al. (2012a). In

their calculations Celiberto et al. (2012a) computed vibrationally-resolved results

for electron impact electronic excitation of the molecule by combining cross sec-

tions computed using the UKRMol codes (Carr et al. 2012) with a Franck-Condon

factor (FCF) method. These results considered only the lowest-lying electronically-

excited state of BeH, the A 2Π state, used a frozen core configuration interaction

(FC-CI) model for the target wavefunction, a small, double zeta plus polarisation

(DZP) basis set and ab initio potential energy curve (PEC)s from Pitarch-Ruiz et al.

(2008).

The work presented in this thesis aims to improve upon the work of Celiberto
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et al. (2012a) by considering many excited states, modelled using a larger basis set

with diffuse orbitals, and critically by including the Born correction for the dipole at

high partial waves. The inclusion of the diffuse basis functions is important for an

accurate description of the electronic spectrum of the molecule and of the scattering

observables.

The inclusion of diffuse electronic states presents a number of technical diffi-

culties for R-matrix scattering calculations using the UKRMol suite which we aim

to overcome here. The UKRMol suite (Carr et al. 2012) is a well-established set

of programs for calculations of electron – molecule scattering and other processes

using the R-matrix method (Tennyson 2010). The codes use Gaussian Type Orbitals

(GTOs) to represent both the target and the continuum wavefunction in the region

of the molecular target (Faure et al. 2002) and employ a methodology applicable to

the treatment of electronically inelastic processes (Tennyson 1996).

In practice diffuse atomic functions cannot be included in most calculations

using the UKRMol suite due to numerical problems which arise when a large Gaus-

sian type orbital (GTO)-only continuum basis is combined with a large R-matrix

sphere that must be used to contain the spatially extended electronic states of the

target molecule (Mašı́n and Gorfinkiel 2011). However, this limitation has been

recently overcome thanks to the newly-developed UKRMol+ suite (Zdenek Mašı́n

2017), which allows the inclusion of B-spline type orbital (BTO) basis functions to

represent the continuum. As we demonstrate below UKRMol+ can be used with

much larger R-matrix spheres than UKRMol while maintaining numerical stability

and quality of the continuum description.

Finally, BeH is an important molecule for testing ab initio methods, being

the smallest, neutral open shell molecule. Having only five electrons makes the

use of highly sophisticated methods with large basis sets computationally possible.

Therefore much work has been done on BeH using different quantum chemical

methodologies over more than 86 years (reviewed by Dattani (2015)). There is also

a recent study on morphing BeH potentials (Špirko 2016) which came out after that

review.
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Before now similar levels of consideration have not been applied to electron

collision calculations with BeH. That is something addressed in this work, where

we find that BeH provides a good benchmark system for such studies too. This

is born out by its use in the first intensive testing of the new UKRMol+ suite of

codes. There is a study by Celiberto et al. (2012b) which also includes a treatment

of BeH vibronically resolved electron collision cross-sections; this particular work

is further discussed below. There have been several electron collision studies with

BeH+ (Chakrabarti and Tennyson 2012, 2015, Niyonzima et al. 2017, Laporta et al.

2017, Niyonzima et al. 2018) some of which include a study of the resonant states

of that cation. There has even been a recent paper on the study of BeH2 electron

collisions using the R-matrix method (Gupta et al. 2019), also for application to

fusion plasma data. This work takes a step to achieving the same high quality of

treatment of the neutral that has been applied to the cation so far.

1.2.1 Vibrational Resolution

In order to produce useful rate equations we need to be able to resolve the vibra-

tional transition rates not just the electronic transition rates which come from the

R-matrix calculations. There are two methods for consideration here, firstly the

application of FCFs to the equilibrium geometry results and secondly a vibrational

averaging of multi-geometry R-matrix calculations. The first approach, using FCFs,

has the advantage of being usable with only a single geometry R-matrix calculation

and is easy to program as a simple weighted separation of the electronic cross-

section into vibrational parts. The drawbacks to this method are that it produces

vibrational resolution only between different electronic states as within a given state

the functions are orthogonal and only v′′= v′ is non-zero, is a more approximate ap-

proach and it makes additional, further restrictive, assumptions. This approach will

not allow a full radiative collisional model to be constructed as there are no rates

for relaxation within a state. The second approach uses multi-geometry R-matrix

calculations to provide T-matrices (scattering results) as functions of internuclear

separation which are convoluted with vibrational functions to give vibrational reso-

lution. This approach has the advantage of being able to provide transition data for
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every vibrational transition including those from within the same electronic state

as the orthogonality of the vibrational wavefunctions is relaxed by their convolu-

tion with the geometry dependent scattering quantities. Another advantage to this

method is that it includes the changes in scattering features that occur with geome-

try. The drawback to this method is that it requires many computationally expensive

R-matrix calculations for many geometries.

1.3 Spectral Modelling

As a major part of this project we develop a full spectroscopic model for BeH,

BeD and BeT X 2Σ+ and A 2Π states based on explicit PEC, spin-orbit (LS) and

Λ doubling (L+) couplings, Born-Oppenheimer breakdown (BOB) terms, and ab

initio dipole curves. The PECs, couplings, and BOB terms are derived using accu-

rate experimentally recorded transition frequencies. Previous PEC fittings for the

X state by Le Roy et al. (2006) and Koput (2011) have been improved upon by

Dattani (2015), and further refined in this work by fitting procedures involving the

X-A state transitions. The A state PEC was previously studied by Le Roy et al.

(2006) and is also improved upon here. The fitting in Duo (Yurchenko et al. 2018)

results in a full set of accurate transitions for BeH, BeD, and BeT from a single

set of PECs, couplings, and BOB terms (Le Roy 2017). These data are used to

determine temperatures in the experimental spectra. This method of using varia-

tional nuclear motion calculations with BOB terms to link isotopologue data differs

from the methods based on perturbation theory generally employed up until now,

see Duxbury et al. (1998) and Hornkohl et al. (1991). These older methods use

spectroscopic constants to calculate energies but cannot join isotopologue data and

thus do not provide predictions for yet–to–be observed isotopologues. They also

extrapolate to high J (rotational quantum number) or high v (vibrational quantum

number) inaccurately. Our approach is similar in spirit to that adopted by Parigger

et al. (2015) to model laser ablation and by McGuire et al. (2016) to model plasma

ablation.

Our linelists for BeH, BeD and BeT improve on those of Yadin et al. (2012)
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produced as part of the ExoMol project (Tennyson and Yurchenko 2012) both in

having greater range and improved accuracy in the transition frequencies. This the-

sis aims to give a more accurate fit to the spectrum of the BeD A – X transition than

was achieved by Duxbury et al. (1998) and Björkas et al. (2013) by using more ac-

curate transition data and allowing separate treatment of vibrational and rotational

temperatures. The use of different rotational and vibrational temperatures, which

implies there is no local thermodynamic equilibrium (non– local thermal equilib-

rium (LTE)), is expected to lead to a more accurate description of the experimental

spectrum.

We compare theoretically produced synthesised spectra to new experimental

BeD spectra recorded on JET and BeH spectra recorded in Be hollow cathode dis-

charges in Forschungszentrum Jülich. Both of these spectra were recorded employ-

ing spectrometers with high spectral resolution in the visible range, sufficient to

resolve the rotational lines.

1.4 Data and Code Storage and Availability

In this project we have the preservation of both intensive data from calculations and

original developed code to consider.

The first of these concerns has been partially addressed by supplementary in-

formation in the second of the major publications from this work (Darby-Lewis

et al. 2018). This contains all the data for the spectroscopic model and is freely

available online. The more difficult aspect is the storage and sharing of the BeH

electron scattering R-matrix data, especially the large quantity of data from the

multi–geometry and vibronic resolution calculations. One consideration for the

storage of these electron–molecule scattering data was the Atomic Data and Anal-

ysis Structure (ADAS) database (Summers and O’Mullane 2011). We engaged in

discussions on how to include molecular data in the ADAS format. For the mean-

time data will be stored on UCLsystems where it is available on request and it is

also being incorporated on a new IAEA database.

The second of these two concerns is more easily addressed as the majority of
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the code is written to be run as an extension to the calculations from the UKRMol

/UKRMol+ suites and as such the major portion of original code development will

be in the existing repositories for these codes, available on GitLab, https://

gitlab.com/Uk-amor.

1.5 Experimental Work at JET
During this project frequent visits were made to Culham Science Centre where JET

is located, and I was in placement there for several months. Some of this time

overlapped with the period of a deuterium campaign at JET and the group I was

placed in, the spectroscopy group, applied for experimental time for pulses allowing

us to take spectra we were interested in. Initially an overview spectra was taken to

find the position of the BeD A – X state emission, see section 3.4.2. Then I set

up the stepping of the whole spectral range with a high resolution spectrometer in

consecutive pulses with similar conditions. The stepping was necessary as the range

of the high resolution spectrometer was approximately one quarter the range of the

whole emission region of interest. This stepping was carried out with spectrometers

line of sight (LOS) looking at both limiter and divertor tiles. We found the limiter

LOS gave much clearer molecular spectra.

In addition to the collection of BeD A – X emission spectra, see section 3.4.2,

I also considered the possibility of BeD2 observation. We concluded that obser-

vations in the infrared would not be possible due interference and overwhelming

noise. Thus we considered observations in the near UV as emission from the first

electronic excited state. We found a suitable port that views a Be poloidal limiter

on the JET inner wall along a horizontal midplane line-of-sight. The port window

is quartz and spectra are recorded using a UV optimised optical fibre connected to

a small survey spectrometer. This spectrometer has now been installed on the JET

machine in time for the next experimental campaign.

https://gitlab.com/Uk-amor
https://gitlab.com/Uk-amor
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Theory

This chapter discusses the theory and methods used in the various parts of this

project. It is broken down into sections by the portion of the work.

The three major branches of theory involved in this work are quantum chem-

istry, nuclear motion and electron scattering. The quantum chemistry is all carried

out to a high-level of sophistication using ab initio methods and full treatment of the

electronic wavefunction. It is carried out mainly by the programs MolPro (Werner

et al. 2012) and scatci integrals, congen, scatci/mpi-scatci (Gillan et al. 1995, Mor-

gan et al. 1998, Al-Refaie and Tennyson 2017, Carr et al. 2012) in combination. The

nuclear motion is used in calculating the vibronic spectral model and for obtain-

ing vibrational wavefunctions for use in vibrationally averaging scattering results.

These calculations are carried out by the program Duo (Yurchenko et al. 2016) and

also with LEVEL (Le Roy 2017). The electron collision data is calculated using

the R-matrix method, a theory which divides space into two regions, and has the

advantage of producing high scattering energy resolution relatively cheaply. This is

calculated using the UKRMol and UKRMol+ suites of codes.
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2.1 Molecular Structure

Before calculating scattering quantities we must develop an appropriate target

model of the BeH molecule’s electronic structure (vibrational and rotational models

require nuclear motion). This chapter is taken largely from the book by Szabo and

Ostlund (2012). These target models can be computed at several different levels

of sophistication, and are all performed under the Born-Oppenheimer approxima-

tion (Born and Oppenheimer 1927). The Born-Oppenheimer approximation is that

the electron and nuclear motion can be separated (Atkins and Friedman 2011, Hui

1998, Szabo and Ostlund 2012), i.e.

Ψtotal(r,R) = Ψelec(r,R)×Ψnucl(R), (2.1.1)

where Ψtotal is the total molecular wavefunction, r are the combined electron posi-

tion coordinates, R are the combined nuclear position coordinates,Ψelec is the wave-

function of the electrons, Ψnucl is the wavefunction of the nuclei. Within our frame-

work the validity of this is dependent upon the underlying assumption that electrons

move significantly faster than the nuclei such that on the relevant time-scales either

the nuclei can be considered stationary (for calculating electronic motion) or the

electrons can be positioned averaged to being a cloud of electrical density (for cal-

culating nuclear motion). This validates our adiabatic treatment of the electronic

calculation.

The total Hamiltonian for the molecular system is given as

Ĥtotal(r,R) = K̂e(r)+ K̂n(R)+ V̂ee(r)+ V̂en(r,R)+ V̂nn(R), (2.1.2)

where Ĥtotal is the total molecular Hamiltonian, R, and r are as above, K̂e is the

electron kinetic energy operator, K̂n is the nuclear kinetic energy operator, V̂ee is

the potential due to the electron-electron interaction, V̂en is the potential due to the

electron-nuclear interaction, V̂nn is the potential due to the nuclear-nuclear inter-

action. The electronic structure calculations are solutions to the time-independent
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electronic Schrödinger equation at a given nuclear geometry

Ĥelec(r,R j)Ψelec(r,R j) = Eelec(R j)Ψelec(r,R j)

where Ĥelec(r,R j) = K̂e(r)+ V̂ee(r)+ V̂en(r,R j)+ V̂nn(R j),
(2.1.3)

where Ψelec and r are as above, R j is a specific arrangement of nuclear geometry,

Ĥelec is the electronic Hamiltonian and Eelec is the electronic energy. K̂e, V̂ee, V̂en,

and V̂nn are as defined above in equation 2.1.2. Most quantum chemistry packages

also include a potential term V̂nn(R j) which is the nuclear-nuclear repulsion and is

constant at given R j, i.e. it is not an operator of Ψelec. The fixing of the nuclear

coordinates leads to the common name for this as the clamped nuclei Schrödinger

equation. Function variables may be omitted where they have already been defined.

2.1.1 Molecular basis sets: atomic one-electron wavefunctions

All the quantum chemistry models start with a basis set of atomic orbitals for the

molecules constituent atoms, in this case hydrogen and beryllium, the atomic or-

bitals having s,p,d,f symmetries. These atomic orbitals are used to produce molecu-

lar orbitals (one electron wavefunctions) which in turn are in certain configurations

to generate molecular states. The quality of all the models scale with the quality of

the basis set. Gaussian type orbital (GTO) basis sets have a form

χ j = e−α jr2
. (2.1.4)

Here the atomic orbitals χ j are represented as Gaussian functions with exponents

α j set by the definition of your basis set. Using such a basis set is an approximation

because there are possible forms of the wavefunction which cannot be expressed

with a (finite) sum of primitive Gaussian functions. Contracted basis sets may also

be used, which are optimised per atom, and are of the form

χ j = ∑
κ

d jκe−ακ r2
. (2.1.5)
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Here the atomic orbitals χ j are are represented as a sum of Gaussian functions (non

contracted atomic orbitals) with exponents α j set by the definition of your basis

set as before and coefficients d jκ determining the weighting of the summation. As

stated above you wish to keep a similar level of accuracy for all atoms you wish to

treat with the basis set of choice. The basis sets used in this work are cc-pVXZ and

aug-cc-pVXZ sets where X=D,T or Q (representing double, triple or quadruple),

these are GTO basis sets which are known to scale very well as you go from D to

T to Q which represent increases in the number of basis functions. The ‘aug’ in the

above stands for augmented and it shows that the basis set contains additional basis

functions which are more diffuse, i.e. have a smaller α coefficient.

2.1.2 Molecular orbitals: one-electron wavefunctions

Atomic orbitals can form a molecular orbital (MO) via a theory called the linear

combination of atomic orbitals, which is given as

φi(r) = ∑
j

ai jχ j. (2.1.6)

Here an electron at position r is in the molecular orbital φi(r) and the components of

the atomic basis set χ j contribute to this orbital as set by the coefficients ai j. χ j are

some set of basis functions (or pre-optimised basis functions) and the coefficients

ai j are varied to produce the desired MO. Molecular orbitals have symmetries de-

pendent on the spherical harmonic which they are combined with, labelled σ , π ,

or δ . σ orbitals are non degenerate whereas π and δ orbitals are both doubly de-

generate i.e. they contain two orbitals each. The maximum number of MOs you

can construct is one to one with the number of basis functions whilst retaining lin-

ear independence due to the MOs being linear combinations of the basis functions.

Therefore the infinite number of energy levels in atoms (or molecules) cannot be

100% accurately represented with any finite basis set.

The true spacial symmetry of these orbitals depends on the point group of the

molecule, for a hetero–nuclear diatomic molecule like BeH this is C∞v. This gives

spacial symmetries such as σ+,σ−,π ,δ ,φ ,... and these are the labels given to or-
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bitals of molecules which belong to this point group and are an infinite series. The

symmetry of electronic states for molecules in this point group are given by the up-

per case Greek letters and are also an infinite series Σ+,Σ−,Π,∆,Φ.... However to

use these computationally it is useful to truncate the symmetry group to one with a

finite number of symmetries. Therefore most quantum chemistry packages, includ-

ing all of those being used in this work, truncate the symmetry group to the highest

finite applicable Abelian point group C2v which has the following four orbital sym-

metries a1, b1, b2, a2. As electronic state symmetries these are given as A1, B1, B2,

A2. This is clarified in table 2.1 where a conversion is given for a limited number

of the C∞v symmetries referenced in this work.

Table 2.1: Conversion between symmetries of the C∞v and C2v point groups.

C∞v C2v

Σ+ A1
Σ− A2
Π B1 + B2
∆ A1 + A2

These MOs are one electron spatial wavefunctions and in order to properly

consider building a multi-electron state we must add a spin (ω) coordinate to the

wavefunction. The new spin-orbitals are formed from a product of one of the pre-

vious spacial orbitals and a spin wavefunction, either spin up α(ω) or spin down

β (ω), this is shown as

Φi(X) = φi(r)α(ω) or φi(r)β (ω), (2.1.7)

where the joined spin-space coordinate is X = (r,ω) and the new spin-orbital Φ is a

product of the orbital, φi, and spin part, α or β . Consequently each spacial σ orbital

contains two one-electron spin-orbitals, but the double degeneracy of the spacial π

and δ orbitals means that they each contain four one-electron spin-orbitals. The

new spin-orbitals retain the spacial symmetry of their spacial part. These new spin-

orbitals can now be used to build the multi-electron molecular state wavefunction.
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2.1.3 Molecular states: multi-electron wavefunctions

Multi-electron wavefunctions are formed from products of one-electron wavefunc-

tions. The simplest way of making a state with a certain occupation is then to

generate what is known as a Hartree product (Szabo and Ostlund 2012) as

ψHP(X1, ...Xn) =
n

∏
i=1

Φi(Xi). (2.1.8)

Significantly, this form of a multi-electron wavefunction does not account for the

indistinguishability of the electrons. This means that the wavefunction should be

anti-symmetric upon the exchange of electron positions in the product. If an elec-

tron at r1, in orbital φ1, swapped its orbital with an electron r2, in orbital φ2, then the

resultant wavefunction, with φ2(r1) and φ1(r2) should be identical to the negative of

the previous one as the electrons themselves are indistinguishable fermions which

are anti-symmetric upon a swap of coordinates. This is achieved by something

called anti-symmetrisation, which is essentially a superposition of all the arrange-

ments of the electrons in all the occupied orbitals with relative phases of either 1 or

−1. The anti-symmetrised wavefunction can now be made to include the spin-space

orbitals,

ψsSD(X1, ...Xn) = ÂψHP(X1, ...Xn) = Â

(
n

∏
i=1

Φi(Xi)

)
. (2.1.9)

Here the molecular state wavefunction, a single Slater determinant wavefunction

ψsSD is of n electrons and is an anti-symmetrised Hartree product wavefunction,

ψHP, a product of one electron molecular orbitals, with the anti-symmetrisation be-

ing handled by an anti-symmetriser operator Â. Being anti-symmetrised ensures

that the wavefunction satisfies the Pauli principle that upon exchange of the elec-

tron at X1 and the electron at X2 the wavefunction changes sign. The effect of

the anti-symmetriser is to produce a wavefunction which is a superposition of rear-

rangements of the electrons and is properly anti-symmetrised upon the exchange of

any two electrons. This can be performed and represented using something called a
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Slater determinant (Szabo and Ostlund 2012), this is given by

ψsSD(X1, ...XN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(X1) Φ2(X1) . . . Φn(X1)

Φ1(X2) Φ2(X2) . . . Φn(X2)
...

... . . . ...

Φ1(XN) Φ2(XN) . . . Φn(XN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.1.10)

Here the matrix in the determinant contains all arrangements of the N electrons in

all of the occupied orbitals (of which there are also N, occupied orbitals only) with

the orbitals changing across the determinant and the electrons changing down. This

representation is exactly equivalent to the above in equation (2.1.9), which is why

this wavefunction is often known as a single Slater determinant wavefunction, ψsSD.

2.1.4 The Hartree-Fock Method

The quantum chemistry models tested started with the simplest case, a Hartree-

Fock (HF) calculation for the ground state (GS) of BeH. The HF calculation, also

known as a self consistent field (SCF) calculation, includes a single Slater determi-

nant meaning that a single configuration of molecular orbitals are considered. This

method works by optimising the coefficients, ai j, in the above equation (2.1.6) for a

molecular state as given in equation (2.1.9). The coefficients ai j in equation (2.1.6)

are taken from some initial guess, an ansatz of the wavefunction ψsSD, and varied it-

eratively until the energy of the Slater determinant converges self consistently. This

determines ai j and thus the form and energy of the molecular orbitals are set. Only

a single molecular state is generated in a HF calculation and its energy obeys the

variational principal.

2.1.5 Multi-Slater Determinant Methods

There are several different methods which take advantage of using a sum of multiple

Slater determinants with varying occupation of molecular orbitals as shown by

ψmSD(X1, ...XN) = ∑
i=1

Ciψ
i
sSD(X1, ...XN). (2.1.11)
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Here ψmSD is the multi–Slater determinant wavefunction and ψ i
sSD are single Slater

determinant wavefunctions with coefficients of expansion being Ci. This sum is per-

formed for a given symmetry and the individual single Slater determinants all have

the same total symmetry as the multi–Slater determinant. The differences between

each ψ i
sSD is in the occupied orbitals; for example, for a two electron system ψ1

sSD

might contain orbitals Φ1 and Φ2 whereas ψ2
sSD has orbitals Φ1 and Φ3. In both

ψ i
sSD’s however the Slater determinant still arranges a superposition of the arrange-

ment of each electron in each occupied orbital. Within the multi-Slater construct

each of these individual arrangements of occupied orbitals are called a configura-

tion state function (CSF).

These methods mostly start with a HF calculation and then use the orbitals

generated as a basis for optimising the superposition of the Slater determinants. This

optimisation is, as with the HF calculation above, done to minimise the total energy

of the wavefunction. Multi-Slater methods are variational and the absolute energies

cannot go below a “true” answer, though the excitation energies, the energies of the

excited states relative to the energy of the GS, are not variational.

There are various methods which allow different Slater determinants to make

part of the sum. For example the complete active space configuration interaction

(CAS-CI) method, which defines an active set of MOs, called a complete active

space (CAS), assigns an active number of electrons and then allows all possible

configurations of those electrons within that given space. This method scales fac-

torially on both the number of electrons and with the number of orbitals. Ignoring

any symmetry restrictions this gives a scaling factor for a complete active space

configuration interaction (CAS-CI) method of

Co,n =
(o+n)!

o!n!
, (2.1.12)

where Co,n is the scaling factor of the calculation, o are the number of orbitals in

the complete active space (CAS) and n is the number of active electrons.
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2.1.6 (Frozen Core) Full Configuration Interaction Methods

The most accurate way to represent the molecular states for a given basis set is by

doing a full configuration interaction (FCI) calculation. This method starts from

a HF calculation, then makes as many molecular orbitals as you have basis func-

tions; it is equivalent to defining a CAS with all MOs and all electrons. The actual

formulation of these molecular orbitals however is irrelevant as the full configu-

ration interaction (FCI) method arranges the molecular orbitals into as many state

configurations as possible. This means that the ai j coefficients in (2.1.6) are set by

the initial HF calculation and then as many Slater determinants as can be generated

with coefficients Ci as in (2.1.11) are summed. By principles of linear combination

the accuracy of the calculation depends only on the basis set and it gives the best

possible answer for a given basis set. As this method is expressible as a CAS with

all MOs and all electron it experiences the same scaling as given in equation 2.1.5

making it scale factorially with both with the number of electrons and the number

of basis functions.

In order to reduce this scaling there is a method called the frozen core full

configuration interaction (FC-FCI), essentially a special case of the CAS-CI. It can

be thought of as starting out as a FCI, but then reducing the number of electrons

in the CAS by isolating some in the lowest energy orbitals, and thus significantly

reducing the computational expense of the calculation while retaining many of the

benefits of the FCI method. This method uses HF orbitals for the core electrons and

completely fills them in all CSFs formed, forming a CAS from all the remaining

MOs and filling it with the valence electrons. In the case of BeH these are the two

lowest σ symmetry spin-MOs formed predominately from the 1s orbitals on the Be

atom. This means that the reduction takes away two active electrons and two spin-

orbitals from the CAS. The validity of doing this can be seen by comparison of the

results with a FCI calculation, see table 3.1 and also in considering the substantial

energy difference between these two core orbitals and the other MOs of BeH.



2.1. Molecular Structure 42

Table 2.2: Explanations of the target models.

Target Model Comments
HF A single Slater determinant wavefunction. Gives only the GS configuration.
CAS-CI A multi-Slater determinant wavefunction. Gives excited states, has a certain number of active orbitals and

active electrons.
FC-FCI A multi-Slater determinant wavefunction. Can be described as a special case of the CAS-CI where all

electrons and orbitals are active except for selected core orbitals which are fully occupied at all times.
FCI A multi-Slater determinant wavefunction. Can be described as a special case of the CAS-CI where all

electrons and orbitals are active.

2.1.7 Electronic Structure Constraints

Our primary focus in selecting an electronic structure target model is its use in the

inner region of an R-matrix calculation. This leads to three major factors to con-

sider in our selection of a electronic target model. (1) Primarily the selected basis

set should be able to deliver accurate energy levels (vertical excitation energies) and

target properties (e.g. permanent and transition dipole moments) for all molecular

states of interest. (2) The basis set should be small enough to be computationally

tractable when used, in conjunction with a continuum basis, in a scattering calcu-

lation. (3) The target wavefunctions must fit inside the R-matrix sphere as this is

the basic assumption of the method. In practice this requirement may be difficult to

satisfy because diffuse functions are often necessary to accurately represent certain

excited states and diffuse functions require a larger R-matrix sphere. The size of

the R-matrix sphere is limited by point (2), as using a larger sphere requires greater

computational resources due to the need to include many more continuum func-

tions in the basis. If the target wavefunctions are too spatially extended and “leak

out” of the R-matrix sphere then problems, such as spurious resonances, can arise

(Gorfinkiel et al. 2002). Furthermore, a large target and continuum basis can also

cause issues with numerical linear dependence which can manifest itself in the inner

region as unphysical bound states or R-matrix poles. A summary of the different

target models used in this work is given in table 2.2.

2.1.8 Potential Energy Curves

The ab initio methods described above in section 2.1.1 to 2.1.5 can be used to calcu-

late an adiabatic potential by varying the geometry of the nuclei in the calculation.

For a diatomic, such as BeH, this means varying a single variable, the internu-
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clear separation, and it produces a potential energy curve (PEC). It is given by

Eelec(R j) in equation 2.1.3 where multiple calculation results are concatenated to

form Êelec(R), which is now an operator with respect to the nuclear wavefunction.

Ab initio methods which provide a single electronic state produce only a single PEC

but multi-state methods, such as configuration interaction (CI), can produce multi-

ple PECs (one per state) i.e. Êi
elec(R) for a given electronic state Ψi

elec. A PEC is

the potential in which the nuclei moves in the Born-Oppenheimer approach to the

nuclear motion calculation.

In addition to being derived from ab inito calculations PECs can also be given

analytical forms. In this work the two electronic states of main interest in BeH are

the GS, X2Σ+, and the first excited state, A2Π and they are given the analytical

forms of a Morse long-range (MLR) potential (Roy and Henderson 2007) and an

extended Morse oscillator (EMO) potential (Lee et al. 1999) respectively.

The form of an EMO potential is represented by

V EMO(r)≡De

[
1− eβ (r)·(r−re)

]2
, (2.1.13)

where De,re are the well depth and equilibrium internuclear separation and β (r) is

given by

β (r) = β EMO(r)≡
Nβ

∑
i=1

βi[y ref
q (r)]i, (2.1.14)

where βi are parameters and y ref
q (r) is a Šurkus-type variable (Šurkus et al. 1984)

type given as

y ref
q (r) = yq(rlr ref)≡

rq− rq
ref

rq + rq
ref
, (2.1.15)

where i is a selected small positive integer and r ref a chosen expansion centre.

The form of the MLR potential is represented by

V MLR(r)≡De

[
1− u LR(r)

u LR(re)
eβ (r)·yre

p (r)
]2

, (2.1.16)

where they have a very similar form to the EMO-type potentials except in that the

radial variable in the exponent is now a Šurkus-type as in equation 2.1.15 with
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r ref = re. The function u LR(r) is defined as

u LR(r) =
last

∑
i=1

Dmi(ρr)
Cmi

rmi
, (2.1.17)

where Dmi(r) are “damping functions” and ρ is a system dependent range-scaling

parameter. For our purposes β (r) in equation 2.1.16 is defined as a polynomial

expansion in two Šurkus-type variables, given as

β (r) = β PE-MLR(r)≡ y ref
p (r)β∞ +

[
1− y ref

p (r)
] Nβ

∑
i=1

βi[y ref
q (r)]i. (2.1.18)

This gives us the form of a polynomial-exponent MLR, or PE-MLR, which is the

only type of MLR referred to in this work. More information on the formulation

of these variables can be found in the paper describing the program LEVEL by Le

Roy (2017).

2.1.9 Nuclear Motion Calculations

Our nuclear calculations are carried out on an adiabatic potential energy curve

(PEC) with additional adiabatic and non-adiabatic corrections. Nuclear motion cal-

culations can follow once an electronic structure is defined and the total Hamiltonian

from equation 2.1.2 can be redefined by substituting the result of equation 2.1.3 for

a given electronic state

ĤtotalΨ
i
total = (K̂n + Ĥelec)Ψ

i
elecΨnucl

= K̂nΨ
i
elecΨnucl + ĤelecΨ

i
elecΨnucl

= K̂nΨ
i
elecΨnucl + Êi

elecΨ
i
elecΨnucl.

(2.1.19)

Here we can take the first term of equation 2.1.19 and apply the differential chain

rule and then make an approximation supported by the mass ratio of the nuclei and

the electrons

K̂nΨ
i
elecΨnucl = Ψ

i
elecK̂nΨnucl +ΨnuclK̂nΨ

i
elec +mixed derivatives

≈Ψ
i
elecK̂nΨnucl,

(2.1.20)
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where the electron nuclear mass ratio makes the second two terms have very small

integrals in comparison to that of the first term. Now using the above and the fact

that Êi
elec is an not an operator with regards to Ψi

elec we can continue from equation

2.1.19

ĤtotalΨ
i
total ≈Ψ

i
elecK̂nΨnucl +Ψ

i
elecÊi

elecΨnucl

= Ψ
i
elec(K̂nΨnucl + Êi

elecΨnucl)

= Ψ
i
elec(K̂n + Êi

elec)Ψnucl

= Ψ
i
elec(K̂n + Êi

elec)Ψnucl

= Ψ
i
elecE i

totalΨnucl

= E i
totalΨtotal.

(2.1.21)

So the total molecular wavefunction can be solved within the Born-Oppenheimer

approximation by solving the nuclear motion within the potentials which are the

solutions of the electronic structure calculations, the PECs Êi
elec. Consequently, a

nuclear motion code, see section 2.3.2, only requires the PECs from an electronic

structure calculation to solve for the nuclear wavefunctions and total energies.

2.1.10 Born-Oppenheimer breakdown

Within the accuracy of the ab inito quantum chemistry calculations of the electronic

structure there is no significant difference between the three different isotopologues

of BeH, BeD and BeT. However when it comes to the nuclear motion calculations

the difference is immediately obvious with the heaver isotopologues having decreas-

ing spacing between vibrational energy levels, more of them and tighter vibrational

wavefunctions. There are more subtle differences in the rovibronic levels also which

occur as the Born-Oppenheimer approximation loses validity. The significance of

these changes depend on the specific isotopologue in question. These changes can

however still be accounted for with the inclusion of BOB terms to the electronic

potentials, as given by Le Roy (2017). The first of these is an adiabatic correction
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which is a simple addition to the potential that scales with mass. It has the form

(
Ma−M ref

a
Ma

)(
yre

p ad
(r)ua

∞ +
[
1− yre

p ad
(r)
]Na

ad

∑
j=0

ua
j [y

re
q ad

(r)] j

)
, (2.1.22)

where Ma is the mass of the specific isotope of the atom a = Be or H, M ref
a is

the mass of the chosen reference isotope of that species, ua
∞ and ua

j are parameters

to be fit, yre
p ad

(r) and yre
q ad

(r) are of the Šurkus variable type as given in equation

2.1.15, but where r ref = re. There is also a non-adiabatic correction which is a

multiplicative factor on the centrifugal potential, [1+ gBe(r)+ gH(r)], and it takes

the form

(
M ref

a
Ma

)(
yeq

q na
(r)ta

∞ +
[
1− yeq

q na
(r)
]Na

na

∑
j=0

ta
j [y

eq
q na

(r)] j

)
, (2.1.23)

where this is a very similar form to that of equation 2.1.22 except that there is no

separate integer p na, parallel to p ad of equation 2.1.22, since no general theoretical

prediction of the limiting long range behaviours of these functions is available, see

Le Roy (2017).
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2.2 R-Matrix Method
We use the R-matrix method (Burke 2011, Tennyson 2010), the theory in this sec-

tion coming largely from Burke (2011). It spatially separates the scattering problem

into an inner and an outer region. The two regions are separated by a sphere of ra-

dius r = a upon which the energy-dependent R-matrix is constructed.

2.2.1 Inner Region

In the inner region, quantum chemistry methods are used to produce full scattering-

energy-independent wavefunctions for the target molecule and for the target

molecule plus the scattering electron. The form of the inner region wavefunction

for a given set of total symmetry is

Ψk = Â∑
i, j

ci jkψ
N
i η j +∑

m
bmkψ

N+1
m , (2.2.1)

where k is the index for the whole inner region solution Ψk. On the right of the

equation the first of the two terms is a sum over i, j, respectively the indices for

the scattering channels, and the continuum orbitals within a channel, ψN
i are the

N-electron target solutions and η j are the continuum spin-orbitals, where ci jk is

the coefficient for the ith, jth,kth term. Scattering channels are the final asymptotic

state of the system, i.e. resolved target states that obey symmetry rules in combi-

nation with the scattering electron. The index j is constrained to a set of η j contin-

uum spin-orbitals which, dependent upon the target state ψN
i , satisfy the symmetry

SYM[ψN
i η j] = SYM[Ψk]. Â is an anti-symmetriser as with the Slater determinant

above in equation 2.1.9 and 2.1.10 and deals with swapping electrons between the

N-electron wavefunction and the continuum spin-orbital. The second term, called

the L2 term, is necessary to describe polarisation/correlation and resonance forma-

tion, this involves forming a wavefunction of the target molecule plus the scattering

electron using occupied and virtual target orbitals, the N+1-electron solution, ψN+1
m ,

where bmk is the coefficient for the mth,kth term and m is an index over the N+1 so-

lutions. ψN
i and ψN+1

m are both multi-Slater wavefunctions as defined in equation

2.1.11.
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The inner region wavefunction in equation 2.2.1 is the solution of the inner

region expressed as

〈Ψk|ĤN+1 +L N+1 |Ψk′〉= Ekδk,k′, (2.2.2)

where ĤN+1 is the Hamiltonian of the inner region, L N+1 is an addition called the

Bloch term (Bloch 1946), and Ek are the energies of the inner region total (N+1)

eigenfunctions. The Bloch term is necessary to ensure Hermicity over the confined

region of space in the inner region of the R-matrix sphere of radius a0 and it is given

as

L N+1 =
1
2

N+1

∑
i=1

δ (ri−a0)

(
d

dri
− b0−1

ri

)
, (2.2.3)

where b0 is an arbitrary constant which may be set to zero and ri are electron co-

ordinates. The Bloch terms makes, by construction, ĤN+1 +L N+1 Hermitian over

the internal region of the sphere of radius a0. The application of a Buttle correction

is here not necessary as the functions satisfy arbitrary boundary conditions.

2.2.2 R-matrix Boundary

At the boundary the inner region wavefunction matches onto the outer region re-

duced radial wavefunction, which is given by

Fi(a0) = ∑
i′=1

Rii′(rN+1,E)
(

rN+1
dFi′(rN+1)

drN+1
−boFi′(rN+1)

)∣∣∣∣∣
rN+1=a0

, (2.2.4)

where the constant b0 may be set to zero. Here the reduced radial wavefunc-

tion is being given as a function of its derivative and the link between the inner

and outer functions, the titular radial or R-matrix. The elements of the R-matrix,

Rii′(rN+1 = a0,E), which are functions of the scattering energy and the scattering

electron coordinates and are given as

Rii′(a0,E) =
1

2a0

∞

∑
k

wikwi′k

Ek−E

where wik =
〈
ψ

N
i
∣∣Ψk
〉∣∣∣∣

rN+1=a0

= ∑
j

ci jkη j(a0),

(2.2.5)
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where term definitions are as above, and Rii′ is an initial and final channel element

of the R-matrix, a0 is the radius of the R-matrix sphere, and Ek are the energies

of the inner region solutions Ψk referred to as the R-matrix poles. The bra-ket〈
ψN

i

∣∣Ψk
〉

is being integrated over the N-electron coordinates and the remaining

electron coordinate of rN+1 is evaluated at a0. E, the total scattering energy, is

given as

E = Ekinetic
i +Ei, (2.2.6)

where Ekinetic
i is the incoming scattering electron kinetic energy and Ei the target

state energy associated with channel i (eigenenergy of target bound state ΨN
i ).

2.2.3 Outer Region

The outer region wavefunction is a function of the energy of the scattering electron

and it is given as

Ψ
N+1(E) =

n

∑
i=1

ψ
N
i Fi(rN+1)Yli,mi(θ ,φ), (2.2.7)

where the radial part, Fi(rN+1), has been generalised to a function over the scatter-

ing electron coordinates, the sum over i goes from 1→ n, the number of channels,

Yli,mi(θ ,φ) is a spherical harmonic function (Weisstein 2004), and ψN
i is a target

molecule wavefunction. The spherical harmonics, Yli,mi(θ ,φ), link to the angular

momentum (partial wave) of the channel, i, as shown by the sum script on the an-

gular momentum, li, and magnetic angular momentum, mi, quantum numbers. This

gives us a partial wave model of the scattering wavefunctions where computation-

ally only a finite number of partial waves, angular momenta li, are included in the

summation calculations given by equation 2.2.7. This leaves a infinite number of

partial waves unaccounted for, a problem which is partially addressed below in sec-

tion 2.2.10.

The asymptotic solutions to the reduced radial functions for when channel i to

channel i′ is open is given as

Fii′(rN+1→ ∞)≈ 1√
ki
(δii′ sinθi +Kii′ cosθi), (2.2.8)
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where ki is the scattering wave number for channel i and is given as ki =
√

2Ekinetic
i

where Ekinetic
i is as defined in equation 2.2.6, being proportional to the scattering

electron momentum. θi is the channel angle and is given as θ = kir− 1
2 liπ . Kii′ are

the elements of the K-matrix, explained below.

From its initial calculation at the boundary the R-matrix is incrementally cal-

culated propagating outwards radially until a convergence is reached. In program-

matic terms this is not a propagation to infinity as equation 2.2.8 would suggest,

but just to some finite large distance usually of the order of 100 a.u.. This propa-

gation of the R-matrix, proportional to the wavefunction divided by its derivative

(see equation 2.2.4) has greater numerical stability than a direct propagation of the

wavefunction. The propagation uses the asymptotic expansion method of Gaili-

tis (1976) which impose boundary conditions on the reduced radial wavefunctions

(see equation 2.2.4) through their matching to the asymptotic solutions (see equa-

tion 2.2.8) (Noble and Nesbet 1984). The final, converged, R-matrix is used to

calculate K-matrices which are functions of the scattering energy, which are related

to the scattering eigenphases. The K-matrix elements given by equation 2.2.8 form

a matrix as

K(E) = ∑
i,i′

Kii′(E) |i〉
〈
i′
∣∣ . (2.2.9)

The K-matrices are used to calculate T-matrices which are related to the scat-

tering cross-sections, and are given as

T =
2iK

I− iK
, (2.2.10)

where T are T-matrices, K are K-matrices, I is the identity matrix and i is the imag-

inary unit.

T–matrices are used to calculate the cross-sections for inelastic processes as

given by Burke (2011)

σ(i→ j) =
π

k2
i
∑
S

2S+1
2(2Si +1) ∑

liL j

∣∣∣T̂SΓ

ili jl j

∣∣∣2, (2.2.11)
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where i, j denote an initial and a final state (i 6= j), ki is as defined above, Si is

the spin of the state i and the total spin of the system is S, Γ represents spacial

symmetry, and li, l j represent the partial wave connected with the initial and final

states i, j. For elastic cross-sections (i = j) equation 2.2.11 using T-matrices will

not work and so we use S-matrices which are given as S = T− I.

2.2.4 Scattering models

The description of the scattering model involves including an additional set of or-

bitals to represent the continuum which must be orthogonal to the orbitals used to

represent the target and the addition of the scattering electron. The simplest scat-

tering model is the static exchange (SE) model, consisting of a HF target, i = 1 in

Equation 2.2.1. In this model the ψN+1
m functions are formed by the target wave-

function, ψN
1 , multiplied by singularly occupied target virtual spin-orbitals, m = 1

to the number of virtual spin-orbitals included. This type of calculation is only able

to represent electronically elastic collisions since there is only one target state. The

lack of excited states also limits the resonances that can be represented to shape

resonances.

The static exchange plus polarisation (SEP) model includes all the L2 functions

generated in a static exchange (SE) calculation and an additional set of L2 functions

in which a single electron is excited into the the virtual orbitals along with the

scattering electron. This model represents collisions where the incoming electron

momentarily polarises the target molecule in the interaction but leaves it in the initial

state, asymptotically, after scattering. Thanks to the polarisation it can represent

some Feshbach resonances, as well as the shape resonances. However, like the SE

model, it does not include any excited states and therefore cannot give parent states

for these Feshbach resonances and it represents only elastic scattering.

Using any target model with more than one target electronic state produces

what is called a close coupling (CC) scattering model. One target model that can

be used to achieve this would be the CAS-CI; this method (Tennyson 1996) and

its special case the frozen core full configuration interaction (FC-FCI) are used ex-

tensively in this work. Target states are the states formed by the CAS-CI and the
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ψN+1
m functions are formed by adding one more electron to the CAS, where the

CAS for the N + 1 wavefunction has optionally been increased by the addition of

virtual spin-orbitals.

The most complete treatment of the scattering model is a close coupling-full

configuration interaction (CC-FCI) calculation. This method has the advantage that

it allows a balanced treatment of the target and scattering problems as demonstrated

in scattering calculations for few-electron targets (Stibbe and Tennyson 1997). It

forms target states by an FCI calculation and the ψN+1
m functions are formed by

adding one more electron to the CAS. Here the addition of virtuals is unnecessary

and would also impossible as the target CAS already contains all the spin-orbitals

as per the definition of the FCI. A close coupling-frozen core full configuration

interaction (CC-FC-FCI) calculation comes close to this level of accuracy as here

also all spin-orbitals are already included in the target model. The only loss on a

frozen core method is in the flexibility of the wavefunction as the core electrons

cannot move from the core orbitals. The impact of this is discussed below in the

target model results.

2.2.5 Representation of the continuum

In our calculations the continuum orbitals (see η j(r) in Equation 2.2.1) are built

from an additional set of continuum functions centred on the centre of mass (Faure

et al. 2002) orthogonalizing the continuum functions against the given set of target

orbitals. The orthogonalization proceeds by performing at first Gramm-Schmidt or-

thogonalization of the continuum orbitals against the set of target orbitals. In the

second step the continuum orbitals are orthogonalized using symmetric orthogonal-

ization and those continuum orbitals with eigenvalue of the overlap matrix smaller

than a given threshold are removed from the basis. The last step is crucial to main-

tain numerical stability of the integral calculation: continuum orbitals correspond-

ing to eigenvalues of the overlap matrix smaller than approximately 10−7 contain

large coefficients with alternating signs which can cause a significant precision loss

(even in double precision) when performing transformation of the atomic integrals

to the molecular orbital basis. In other words, a careful choice of the deletion thresh-
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old is needed to prevent numerical linear dependency problems in the continuum

orbital basis.

In the UKRMol suite the continuum functions are GTOs, derived as described

by Faure et al. (2002). There is a linear molecules code which has an option to use

a Slater type orbital (STO) (Slater 1930) basis set for the target and numerically

defined continuum basis set. This STO option has the advantage of being usable

with an arbitrarily large R-matrix sphere. However, due to the numerical continuum

it suffers from numerical problems to do with the need to evaluate the molecular

integrals numerically which leads to linear dependence difficulties with larger target

basis sets, especially at larger energies. Therefore it is not acceptable for use in this

project. In practice recent high-accuracy studies have used the GTO option even for

diatomic molecules (Little and Tennyson 2013, 2014) where the integrals over the

interior of the R-matrix sphere can be evaluated efficiently and accurately (Morgan

et al. 1997).

However use of GTOs to represent the continuum puts a strong upper limit on

the size of the R-matrix sphere, because increasing the radius of the sphere lowers

the effective energy range for which the continuum basis is sufficiently good (Tarana

and Tennyson 2008). This problem can be solved by adding more continuum basis

functions but only up to a certain number of functions: too many continuum basis

functions will cause numerical linear dependence problems within the continuum.

These limitations are best overcome by substituting the radial parts of the con-

tinuum GTOs with functions more suitable for representation of the oscillating con-

tinuum wavefunction such as numerical functions with compact support. This is

the approach used in the new UKRMol+ (Zdenek Mašı́n 2017, Darby-Lewis et al.

2017) suite where the Gaussian radial part of the continuum functions is replaced

with B-splines. As opposed to Gaussians the B-spline radial basis set is very flex-

ible and does not suffer from numerical linear dependencies. The corresponding

B-spline type orbital (BTO) has the form (Zatsarinny 2006)

B(r)i,l,m =
Bi(r)

r
Xlm(Ω), (2.2.12)
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where Bi(r) is the i-th radial B-spline drawn from the set of B-splines which are

uniquely specified by the set of knots, breakpoints and polynomial order of the

B-splines and Xlm(Ω) is the real spherical harmonic. B-splines have been used suc-

cessfully in various atomic (Zatsarinny and Bartschat 2004, Zatsarinny 2006) and

molecular calculations (Sanchez and Martin 1997, Bachau et al. 2001). However, to

the best of our knowledge there is currently no application of B-splines to represent

the continuum in molecular problems where the target molecule is represented by

the standard quantum chemistry form of atom-centred GTOs. This application of

BTOs to molecular R-matrix calculations was developed in code by Zdenek Mašı́n

(2017).

In our approach the BTOs and the continuum GTOs can be mixed freely. This

approach is useful when the set of BTOs (radial B-splines) is chosen to span the ra-

dial range aGTO < r≤ a, i.e. the radial range outside of the sphere with radius aGTO

up to the radius of the R-matrix sphere a. It is convenient to choose aGTO so that

all core-type GTOs and possibly the inner valence GTOs are fully contained inside

it. Consequently, all mixed BTO/GTO integrals involving the product of a GTO

fully contained inside the sphere r ≤ aGTO and a BTO are zero, thus alleviating

substantially the computational demand required to calculate the mixed integrals.

For small and medium-sized molecules aGTO would be typically less than about

5 Bohr. In this reduced radial range, GTOs can be used to represent the continuum

without linear dependency problems and to give a good representation over a wide

energy range. The long distance part of the continuum wavefunction is represented

by BTOs: the quality of the radial wavefunction is controlled easily by the density

of the knots and the order of the B-splines. Finally, we note that our codes do not

require the use of continuum GTOs, i.e. in principle only BTOs can be used over the

whole radial range (aGTO = 0) and vice-versa the new method for continuum repre-

sentation does not require the use of BTOs, i.e. the traditional GTO-only approach

(aGTO = a) is still available.

Despite their attractive properties in describing the continuum, the use of nu-

merical functions leads to the problem of performing an efficient and accurate cal-
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culation of the multi-centric molecular integrals involving the numerical function

and the GTOs. An approach combining the use of a finite element method - discrete

variable representation (FEM-DVR) for the continuum and atom-centred GTOs has

been used successfully for small molecules in the photo-ionisation calculations of

Yip et al. (2014). Legendre expansion of the Coulomb potential and Lebedev nu-

merical quadrature were used to calculate required molecular integrals for one and

two particles in the continuum.

2.2.6 Structure of the UKRMol+ Inner Region Codes

The calculation of both GTO-only and the mixed BTO/GTO molecular integrals

has been implemented in a new integral library (Zdenek Mašı́n 2017). The new

code replaces completely the original GTO integral core of the inner region part of

the UKRMol suite (programs swmol3, sword, swtrmo, gausprop, swedmos) with a

single new binary (scatci integrals). The calculation of the atomic integrals, gen-

eration of the continuum orbitals and the integral transformation are all carried out

at once using a parallelised integral library. The new integral library and the set of

UKRMol programs adapted to it form the UKRMol+ suite of codes.

The polyatomic codes UKRMol and UKRMol+, in common with most quan-

tum chemistry codes, cannot use full linear symmetry. Figure 2.1 shows a flow

diagram of the binaries involved in the UKRMol+ calculations in this work. All

calculations presented here were therefore performed in C2v; C2v-symmetry no-

tation is used when discussing input to the codes but all final results, except for

eigenphases, are transformed to the full (C∞v) symmetry notation which is straight-

forward to achieve. Table 2.1 gives the C2v to C∞v translation as used in this work.

The total symmetry is a combination of spacial and spin symmetry, that is, due to

the addition of the scattering electron, the scattering symmetry is different from the

target symmetry by a change in the total spin of 1
2 . This is equivalent to a change

from even to odd (or vice versa) multiplicity between the target molecule and the

scattering symmetries.

The integral calculation requires on input a set of molecular orbitals saved in

the MOLDEN format (Schaftenaar and Noordik 2000) which can be obtained using
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MolPro

Orbital
data file

(MOLDEN)

scatci integrals

Molecular
integrals
(moints)

N electron Calculation

congen

N electron
CSFs (fort.X)

(mpi )scatci

N CI
vectors
(fort.25)

denprop

Target
properties
(fort.24)

N+1 electron Calculation

congen

N+1 electron
CSFs (fort.13)

(mpi )scatci

N+1 CI
vectors
(fort.25)

Figure 2.1: Flow diagram showing the inner region UKRMol+ calculation. Programs are
in rounded boxes with grey backgrounds and output data files are in sharp cor-
nered boxes with white backgrounds. Output files in the green boxes are needed
for the outer region calculation. The “moints” file is soft linked to fort.16 and
fort.17 for the N electron scatci calculation, to fort.17 for the N+1 scatci calcu-
lation and then to fort.22 for sw interf in the outer region. The two dashed red
boxes, left and right, are repeated for each N and N+1 symmetry respectively.
The blue dashed box is the target calculation.

a range of quantum chemistry software; in this work MolPro (Werner et al. 2012)

was used. The integral calculation is carried out by the scatci integrals program

and all the integrals, atomic and molecular basis sets are saved in a single file and

accessed by the standard UKRMol (Carr et al. 2012) programs.

Hamiltonian construction and diagonalisation is carried out by scatci or mpi-

scatci (Al-Refaie and Tennyson 2017). For the N electron calculation this requires

the N-electron CSFs generated by congen, in fort.X, and the N electron molecular

integral calculations by soft linking the moints file to fort.16 and fort.17. This pro-

duces eigen-energy and eigen-vector results on file fort.25. For a calculation with
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multiple target states (i.e. a CI calculation) this requires a congen and scatci calcu-

lation for each symmetry for which there are target states. The results from each of

these calculations are concatenated in different sets into the same fort.25 file. The

fort.X files from congen calculations are given per symmetry, usually X=69+ S

where S equals zero to max symmetries minus one. Dipoles and quadrupoles are

then calculated by denprop and along with target energies and quantum numbers are

printed into a file containing all the target electronic information, fort.24. For the

N+1 electron calculation scatci requires the moints file to be softlinked to fort.17

and the N+1 electron CSFs from congen on fort.13. The N+1 congen and scatci cal-

culation is repeated for each N+1 (scattering) symmetry. The results can be saved

in separate fort.25 files or in the same file in concatenated sets. An interface to the

cdenprop program used for photoionization calculations has been implemented too

but not used as part of the work in this project (Harvey et al. 2013). Three files

produced in this inner region calculation need to be preserved for use in the outer

region calculation; they are the molecular integral file, moints, the target properties

file, fort.24, and the N+1 CI vectors file, fort.25.

2.2.7 Structure of the UKRMol+ Outer Region Codes

The outer region codes of the UKRMol suite remain mostly unchanged for use

in UKRMol+ but have received updated routines in sw interf for reading the

scatci integrals output. The three files preserved from the inner region calculation

now serve as the basis for constructing an R-matrix and propagating it to obtain

scattering quantities. First however the inner region data is converted into a format

which is used by the outer region codes. This is done by sw interf and results in

a channel data file, fort.10 and a boundary amplitudes data file, fort.21. This and

subsequent steps in an outer region calculation are shown in a flow chart in figure

2.2. The individual binaries are discussed further below.

After the inner region conversion is performed by sw interf all the necessary

inner region data is contained in the two files it produced and only fort.24 from the

inner region need be retained, as it is used by some outer region binaries (not shown

in figure). The R-matrix is actually formed and propagated by the program r solve,
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Target
properties
(fort.24)

Molecular
integrals
(moints)

N+1 CI
vectors
(fort.25)

sw interf

Channel Data
(fort.10)

Boundry Data
(fort.21)

r solve K-matrices
(fort.19)

eigen pt matrx

T-matrices
(fort.12)

Eigenphases
(fort.50)

reson fi xsecs

ResonancesX-Sections
(fort.30)

Figure 2.2: Flow diagram showing the outer region UKRMol+ calculation. Programs are
in rounded boxes with grey backgrounds and output data files are in sharp cor-
nered boxes with white backgrounds. Output files in the green boxes contain
final scattering data. The “moints” file is soft linked to fort.22 for sw interf.
X-sections is short for cross-sections.

which produces K-matrices that are written to fort.19. The K-matrices and the

channel data file are both used by t matrx and eigen p, these programs respectively

calculating the T-matrices, file fort.12, and the eigenphases, fort.50. The program

i xsecs then calculates the X-sections, short for cross-sections, from the T-matrices.

The program reson f (Tennyson and Noble 1984) can be used to calculate reso-

nances from the eigenphases (Tennyson and Noble 1984) and is recursive, meaning

that it calculates new K-matrices at new energies to give a finer grid for finding and

isolating resonances. It finds resonances by fitting eigenphases to the Breit-Wigner

form (Breit and Wigner 1936) which is given as

δ (E) = δo(E)+
m

∑
i=1

tan−1(
Γi

2(Eres
i )−E

), (2.2.13)

where Eres
i , Γi are the the resonance positions and widths respectively and δ0(E)

represents the background eigenphase contribution; in reson f, these are considered
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to be low order polynomials.

Each of the binaries represented here can be compiled into a single executable

which contains the binaries you wish to run or alternatively can be compiled into

separate binaries and run individually.

2.2.8 Vibrational Resolution

In this work I have programmed two methods for the vibrational resolution of R-

matrix electron scattering data. R-matrix data produces elastic and inelastic elec-

tronic channels and the aim is to have elastic and inelastic vibronic channels. The

two methods are implemented in two different programs: the first and simpler

method uses Franck-Condon factors (Franck and Dymond 1926, Condon 1926)

and single-geometry R-matrix results and is implemented in the program fcfcros;

the second approach uses vibrational wavefunction averaging and multi-geometry

R-matrix results and is implemented in the program vibaver. The methods are ex-

plained in detail below in sections 2.2.8.1 and 2.2.9 and a flow chart showing the

operation of each program is given in figure 2.3.

Vibrational resolution of cross-sections from R-matrix calculations has been

performed using both these methods before (Danby and Tennyson 1991, Stibbe and

Tennyson 1997, Rabadán et al. 1998, Teillet-Billy et al. 1999). There have also

been recent calculations on BeH+ cation vibrational resolution (Laporta et al. 2017,

Faure et al. 2017). As far as we are aware only the FCF method has so far been

applied to BeH (Celiberto et al. 2012a).

2.2.8.1 Franck-Condon Factor Method

The simplest method for achieving vibronic resolution from electronic scattering

results is to use a weighted averaging approach where the electronic inelastic results

are split into an initial vibrational state in the initial electronic level and a final

vibrational state in the final electronic level. The value of the weights is given by the

overlap of the initial and a final vibrational wavefunctions, this is a Franck-Condon

factor (FCF). FCFs are calculated by the nuclear motion code Duo (Yurchenko et al.
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wavefunctions

Vibrational
vectors
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geometry
T-matrices
(fort.12)
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X-sections
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Figure 2.3: Flow diagram showing the two paths taken to vibrational resolution. Programs
are in rounded boxes with grey backgrounds and data files are in sharp cor-
nered boxes with white backgrounds. Output data files in green are scattering
quantities, and in red are files from nuclear motion code Duo. The left blue
dashed box shows vibrational resolution by the vibrational averaging of multi-
geometry T-matrices, the right dashed box shows the use of Franck-Condon
factors and single geometry scattering calculations.

2016) and are given by the formula (Franck and Dymond 1926, Condon 1926)

Fe′′,v′′,e′,v′ =
∫
|
〈
φe′′,v′′(R)

∣∣φe′,v′(R)
〉
|2dr =

0→ 1, Real number between 0 and 1,

δv′′,v′, if e′′ = e′,
(2.2.14)

where e′,v′ here indicate the initial electronic and vibrational state, e′′,v′′ indicate

the final electronic and vibrational state, and
∣∣φe′,v′(R)

〉
is the vibrational wave-

function from the electronic state e′ and with vibrational quanta v′. Within a given

electronic state all FCFs are zero except those between the same vibrational state.

This is assuming that the vibrational wavefunctions are totally and perfectly or-
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thornormal, otherwise there maybe off diagonal values within an electronic state.

This is likely to occur computationally and numerically where the integral cannot

truly go over all space and thus there is not complete closure with the basis of the

vibrational wavefunctions. The vibronic resolution from FCFs is therefore elastic

within an electronic state and can only be inelastic when there is a change in elec-

tronic state. The vibronic results can be given by T-matrices or by cross-sections,

the former as block diagonal T-matrices and the cross-sections given by

σe′′,v′′,e′,v′(E) = σe′′,e′(E)Fe′′,v′′,e′,v′, (2.2.15)

where σe′′,e′ is the electronically resolved cross section from the equilibrium geom-

etry R-matrix calculation, E is the scattering energy, Fe′′,v′′,e′,v′ is the FCF as defined

above. This method requires only the equilibrium geometry R-matrix calculation

data. The FCF method has previously been applied to R-matrix results for BeH by

Celiberto et al. (2012a).

2.2.9 Vibrational Wavefunction Averaging

Vibrational averaging is the other method of producing vibronic scattering results

which I have used in this project. The method of vibrational averaging is used

to transform a function of geometry into a matrix with vibrational resolution. This

method has been used previously and was also developed for ground electronic state

vibrational excitation calculation with the UKRMol code (Rabadán and Tennyson

1999). My approach is to allow a vibronic (de)excitation from any vibronic state

to any other. The method is applied in our application to T-matrices and is best

understood by looking at a single geometry calculation for a T-matrix as an operator

on electronic channels as

T̂ (E) = ∑
e′′,e′

Ce′′,e′(E)
∣∣e′′〉〈e′∣∣ , (2.2.16)

where T̂ is the T-matrix, as a function of E, the scattering energy (in reality each en-

ergy is a separate calculation point), Ce′′,e′ is the value of the T-matrix element with
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initial electronic channel e′ and final electronic channel e′′ and the ket and bra pair

represent those electronic channels. It should be noted that e′ and e′′ are electronic

channels not electronic states, which means that they include the asymptotic state

of both the target molecule (electronic state) and of the scattering electron (angular

momentum of a partial wave); as such there may be multiple electronic channels

each mapping to one electronic state i. Using this representation of the T-matrix we

can also add the multi-geometry aspect by considering each calculation of T̂ along

with its internuclear separation, R j to be T̂R j and concatenating these results along

j to give a point-wise function of geometry T̂ (R) just as we implicitly did so for the

cross sections and T-matrices above in making them functions of scattering energy.

Now we can consider taking the expectation value of the T-matrices with the

vibrational functions, because as functions of geometry they may now also be con-

sidered operators of the vibrational wavefunctions. Looking at calculating a single

element of this new vibronically resolved T-matrix gives us

Ti′′,v′′,i′,v′(E) =
〈
φe′′,v′′(R)

∣∣T̂i′′,i′(E,R)
∣∣φe′,v′(R)

〉
, (2.2.17)

where Ti′′,v′′,i′,v′(k) is an element of the vibronically resolved T-matrix (still a func-

tion of the scattering energy),
∣∣φe′,v′(R)

〉
is a vibrational wavefunction as defined

above for equation 2.2.14 and where e′ is the electronic state represented in the

electronic channel i′, and T̂i′′,i′(E,R) is an element of the electronically resolved

T-matrix, T̂i′′,i′(E,R) =Ci′′,i′,R(E).

The code developed in this work to do this process of vibrationally averaging

electronic T-matrices is called vibaver. This program requires input from the R-

matrix codes, specifically the inner region file fort.24 (target properties) and outer

region files fort.10 (channels) and fort.12 (T-matrices) all for multiple geometries.

It also requires input from Duo containing the vibrational wavefunctions and some

auxiliary information. In this project the Duo files were already generated as part

of the spectral modelling. The vibaver program is currently restricted in its use to

only cover geometries between which electronic states do not cross each other.

One important note to make on this theory is the assumption made in linking
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results from different geometries along the scattering energy axis. This is an issue

because the definition of the total scattering energy, the energy of each outer region

calculation, is not strictly geometry independent as it depends on the initial target

state energy. The usual definition of the scattering energy is given as

E = Ek,l +El = Ek,u +Eu, (2.2.18)

where the total energy E is the scattering energy at which calculations are per-

formed and El,Eu are the energies of the upper and lower states, Ek,u and Ek,l are

the electron kinetic energy linked with the upper and lower states (in a time depen-

dent framework one would be the initial and the other the final kinetic energy of

the electron). However the multi–geometry calculation means we are actually deal-

ing with El and Eu which vary with geometry, and thus the definition of the total

scattering energy, E, also varies with geometry as the electron kinetic energy is the

geometry independent component. The assumption made in the vibrational averag-

ing program vibaver is that the quantities Ek,l and Ek,u are geometry independent.

The result of this assumption is given by the rearrangement of equation 2.2.18

E(R) = Ek,l +El(R) = Ek,u +Eu(R)→ Ek,u−Ek,l = ∆E ul = El(R)−Eu(R),

(2.2.19)

where the quantity ∆E ul represents the difference in the initial and final kinetic ener-

gies which in a vibrationally averaging calculation comes to represent the difference

in energy between the upper and lower vibrational states. This is a definitively ge-

ometry independent quantity. For the resultant equality of equation 2.2.19 to be

true the geometry dependence of the upper and lower states must cancel each other

out, i.e. the PECs must parallel. Provided this assumption is approximately true,

valid it validates our concatenation of the multi–geometry results along the scatter-

ing energy. This is equivalent to the assumption made by Trevisan and Tennyson

(2002) in asserting that: ”The bond-length dependent E out+ε(R) is not exactly the

incoming electron energy E in. However, this approximation is necessary to allow a

well defined energy for the nuclear continuum function.”
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2.2.10 Born correction and Principal of Detailed Balance and

Extrapolation

The R-matrix method calculates the scattering results by propagating partial waves

in the outer region for a finite number of angular momenta, from l = 0 to lmax. This

means that there is in fact an infinite number of partial waves left unaccounted for,

and even though it is the lowest partial waves which have the largest contribution

the remaining waves, from lmax to l = ∞, can still include a significant area. This

extra area is especially significant in the case where there is a strong long range

dipole for the transition (or permanent dipole for an elastic cross-section). This is

because, for neutral molecules, a long range dipole changes the long range potential

from being ∝ 1/R3 to ∝ 1/R2.

We use a model for the Born cross-section detailed by Kaur et al. (2008) and

implemented in the code borncros. The work of Norcross and Padial (1982) gives a

more complete picture of electron scattering off by polar molecules. This takes the

R-matrix cross-sections and adds a Born cross-section for l = 0 to ∞ and subtracts

a Born cross-section from l = 0 to lmax.

σtot(E) = σ
RMat
l=0→lmax

(E)+σ
Born
l=0→∞(E)−

lmax

∑
l

σ
Born
l (E), (2.2.20)

where E is the scattering energy, σRMat
l=0→lmax

is the cross-section from the R-matrix

calculations, including contributions from partial waves of angular momenta up to

l = lmax, σBorn
l=0→∞

is the Born correction for all partial waves and σBorn
l is the Born

correction for a given partial wave. The reason for making the correction in this

fashion is due to the existence of an analytical form of the Born cross-section from

l = 0 to ∞ given by

σ
Born
l=0→∞ = gc

8π

3
D2

k2
i

ln
(ki + k f )

(ki− k f )
, (2.2.21)

where D is the relevant dipole and ki, k f are the initial and final momentum of

the scattering electron and gc is a combined statistical weighting. The form of the

partial and total Born cross-section is given by Kaur et al. (2008).

For elastic and lower to upper state transitions the Born correction is applied
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as above however in the cases where the transition is from a higher energy state to a

lower one I have modified the program to use the principle of detailed balance. The

principle of detailed balance (Tolman 1979) uses the time-independence of electron

scattering processes to calculate a cross-section from an upper state to a lower state

using a cross-section from the lower state to the upper state. It is given by

σl→u(Ek,l)glEk,l = σu→l(Ek,u)guEk,u (2.2.22)

where σl→u and σu→l are cross-sections from lower to upper and upper to lower

states respectively, gl,gu are statistical weights for the lower and upper states, Ek,l

Ek,u are electron kinetic energies which are related to the total energy as given in

equation 2.2.18. This definition of energy is related to either vibrational state ener-

gies, which are geometry independent, or to single geometry electronic state ener-

gies. The addition of detailed balance to the borncros code was made by myself as

a part of this project.

This has led to the borncros program being significantly changed, although

the underlying physics remains the same. There is one final task for which the

borncros code has been adapted. This is to extrapolate the cross-sections to higher

energy regions. When there are dipoles, the extrapolations are made using the Born

correction of equation 2.2.21, σBorn
l=0→∞

(E), scaled to match the cross-section area

for the last energy where the total cross-section, σtot(E), is calculated. In the case

where there is no significant dipole it just applies a 1/E scaling factor, which gives

a faster decline in area than the and is the appropriate form for a non-dipole Born

correction. This makes physical sense, since if there is no dipole the cross-section

would be expected to be lower.

The use of the borncros program is shown as a flow chart in figure 2.4. The

borncros code uses the cross-sections produced by i xsecs (fort.30) and the inner

region target properties file (fort.24) to produce a cross-sections file for the Born

correction and a cross-sections file which contains the R-matrix cross-sections plus

the correction. It also produces a separate, optional, set of files which contain cross-

sections printed with the extrapolations and the scattering electron kinetic energy
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rather than the total scattering energy present in the standard cross-sections files.

The program can also work with the vibrational cross-sections produced from the

vibrationally averaged T-matrices of vibaver by providing a file with vibrational

energy corrections, containing the difference between the vibrational and electronic

energies. This makes the calculation of rates much easier as these files can have

their data directly convoluted with a Boltzmann distribution.

X-sections for
symmetry 1

(fort.30)

Target
properties
(fort.24)

Rotational
constants

Vibrational
corrections

...
X-sections for

symmetry i
(fort.(29+i))

...

X-sections for
symmetry N
(fort.(29+N))

borncros

Born
X-sections

(fort.1)

Summed
X-sections
(fort.57)

Corrected
X-sections
(fort.77)

Ekinetic
i

Extrapolated
X-sections

Figure 2.4: Flow diagram the use of the modified borncros program, in a rounded box
with grey background, data files are in sharp cornered boxes with white back-
grounds. Output data files containing cross–sections are in green.
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2.3 Spectral Modelling
There are four main steps used here in generating assigned synthetic spectra fitted

with rotational and vibrational temperatures. Experimental transitions are inverted

to give vibronic energy levels using the online implementation of MARVEL (mea-

sured active rotation vibration energy levels)(Furtenbacher et al. 2007). These are

then used in Duo to fit PECs which can accurately reproduce all the empirical energy

levels. Empirical energy levels belonging to the X 2Σ+, A 2Π and C 2Σ+ electronic

states are provided by our MARVEL treatment, although PECs were fitted only for

the X and A states. This is because of a lack of transition data for the C state, which

in any case does not give rise to a significant feature in the JET emission spectrum

(Darby-Lewis et al. 2018). To date, the molecular spectrum is dominated by the A

– X band. I use an ab initio X state to A state transition dipole, from Pitarch-Ruiz

et al. (2008), to produce Einstein A–coefficients for the observed X to A transi-

tions. The output from Duo contains all transitions between states within a given

wavenumber range (parameter in the Duo input, see supplementary data) and all the

Einstein A–coefficients associated with those energy levels. These are used by Ex-

oCross (Yurchenko et al. 2018) to generate synthetic spectra with varying rotational

and vibrational temperatures. These spectra are compared to experimental spectra

to obtain a metric for the fit.The flowchart in Figure 2.5 illustrates the links between

the steps of this process, each step is presented in detail below.

2.3.1 MARVEL

The MARVEL procedure (Furtenbacher et al. 2007, Furtenbacher and Császár

2012) is implemented in a program with an online user interface (MARVEL On-

line) and works by taking experimental transition frequencies and calculates net-

works of empirical energy levels. These are called spectroscopic networks as they

are networks of energy levels linked to each other by recorded spectroscopic transi-

tions (Császár and Furtenbacher 2011). Each transition consists of (1) a transition

frequency in cm−1 (2) as uncertainty in cm−1 (3) a set of assigned quantum num-

bers for the upper and one for the lower state and (4) a unique label referring to

the source. The MARVEL procedure weights each transition per its uncertainty and
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Experimental
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Energy Levels
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Duo
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Rovibronic
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Figure 2.5: Flow diagram showing the production of high accuracy synthetic spectra, start-
ing in the top left corner with collated experimental transitions and resulting
in, bottom centre, synthetic spectra with the best fit rotational and vibrational
temperatures.

produces multiple spectroscopic networks if there aren’t transitions to join each en-

ergy level to others through at least one path. This is commonly the case if there are

ortho- and para-states or spin splitting between which transitions are forbidden.

These transitions are run through the program and various unlinked spectro-

scopic networks of energy levels are generated. Separate networks can be joined

with “linking” transitions, e.g. joining the degenerate spin up and spin down states

of the ground state with a transition of zero energy from one degenerate state to

another. This linking transition is an artificial transition whose energy, sometime

called a “magic” wavenumber, may be calculated from empirical, effective Hamil-

tonian energy levels belonging to separate networks or, as in this work taken to

produce the correct degeneracy between two levels in separate networks. The re-

sult of this process is to give a set of empirical energy levels with quantum number

assignments.

The “good” quantum numbers in this application are the total rotational quan-
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tum number (J) and total parity (+ or -). Quantum numbers of operators not strictly

conserved in this application can still be used in state assignment. They are elec-

tronic state, vibrational quantum number (v), nuclear rotational angular momen-

tum (N), projection of total spin angular momentum (Σ), projection of total orbital

angular momentum (Λ), and the projection of total electronic angular momentum

Ω = Λ+Σ. This places our representation in Hund’s case b (Huber and Herzberg

1979, Bernath 2005).

2.3.2 Duo

Duo (Yurchenko et al. 2016) is a fully-coupled rovibronic nuclear motion

code which generates rovibronic energy levels and wavefunctions for diatomic

molecules from potential energy curve (PEC)s, couplings between PECs, and

Born-Oppenheimer breakdown terms. This program contains an iterative fitting

procedure where PECs and other terms can be fitted to experimental, or empirical

data. Additions were made to the program Duo by myself to include the potential

form given in equation 2.1.16.

The iterative fitting procedure allowed the ground and first excited state PECs

to be modified by the fitting of adiabatic and non–adiabatic Born-Oppenheimer

breakdown (BOB) curves as given in equations 2.1.23 and 2.1.22 (Le Roy 2017)

using the BeD and BeT isotopologue energy level data from MARVEL. Using BOB

correction terms makes these data applicable to all isotopologues of BeH through

providing an accurate scaling with atomic masses of the small scale changes in the

molecular structure. This allows data from all three isotopologues to improve the fit

from the same set of PECs and coupling terms.

2.3.3 Exocross

The final step in generating an assigned synthetic spectra is performed using a pro-

gram called ExoCross (Yurchenko et al. 2018). ExoCross produces cross-sections

for the absorption or emission of photons by molecules. It was modified by my-

self to use rotational, vibrational and electronic temperatures to produce a statistical

(Boltzmann) population model for emission spectra. The equation for the popula-
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tion of a state: Pe,v,J where e = electronic state, v = vibrational quanta, and J = total

angular momentum quantum number is

Pe,v,J = e−
(Ee,v,J−Ee,v,J=0)

kTrot e−
(Ee,v,J=0−Ee,v=0,J=0)

kTvib e−
Ee,v=0,J=0

kTele , (2.3.1)

where the temperature dependence is split into three exponentials with exponents

relating to the rotational, vibrational and electronic state temperatures respectively.

The first term is a function of the rotational temperature, Trot, and pure rotational

energy, (Ee,v,J − Ee,v,J=0), the second the vibrational temperature, Tvib, and pure

vibrational energy, (Ee,v,J=0−Ee,v=0,J=0), and the third the electronic state temper-

ature, Tele, and the pure electronic state energy, Ee,v=0,J=0.

Einstein A-values, here provided by Duo, along with the populations are used

to generate transition intensities, Ie′′,v′′,J′′,e′,v′,J′ . ExoCross then uses line positions,

also from Duo, and the width of the comparison spectrometer’s instrument function

to generate Gaussians with areas equal to the calculated transition intensities. These

are then summed to give the emitted intensity profile.

In taking different rotational, vibrational and electronic temperatures ExoCross

allows us to more accurately fit non– LTE spectra. This procedure is useful in the

case where LTE has not been reached by the molecule producing the spectra. In

such an instance the different spacing between electronic, vibrational, and rotational

energy levels means that they adapt to changing temperatures and plasma conditions

at different rates.

2.3.4 Program: diffspec

The program diffspec was written by myself to quantify the fit of a theoretical spec-

trum to an experimental spectrum. The fit is given a quality index which takes into

account only the relative shapes of the spectra and not the absolute value of either as

it is intended to be used at a stage before calibration between theory and experiment

has been fixed; indeed it can provide a method of fixing it after a full fitting has

been achieved.

The program is run many times while looping over a range of temperatures
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at which the theoretical spectrum is produced, potentially varying vibrational and

rotational temperatures separately or making any other changes to the theoretical

spectrum with each iteration of the loop. This part of the process is shown in the

green box in figure 2.5. For each iteration diffspec compares the theoretical spec-

trum to the experimental spectrum by integrating the area under both curves, finding

the overlap, and integrating the area between the curves, finding the difference. The

metric minimised to find the best fit temperature is the difference divided by the

overlap.

The theoretical and experimental spectra are both normalised, in the first in-

stance, to have Q-branch peak values of 1.0. A multiplicative factor is then required

to allow the peak values to differ. The experimental spectrum may also contain

a background intensity which must be removed before matching to the theoretical

spectrum. This necessitates a threshold being placed on the experimental spectrum.

Also a higher weighting should be placed on fitting to the more intense parts of

the experimental spectrum, since these have the smallest experimental uncertainties

in measurement. To this end, there are three inputs which adjust the intensity to

control the nature of the fitting: factors, background thresholds and weight. The

factors are applied to the synthetic spectrum by multiplying the intensity by a series

of factors allowing the normalised spectra of arbitrary intensities to have different

maximum values with respect to one another. For each factor, background thresh-

olds are applied to the experimental spectrum, adding or subtracting each threshold

so as to account for the background in the experimental spectrum as indicated by

the quality index. The last control input is a weight, allowing a higher weighting

to be given to the higher intensity portions of the spectrum for both the difference

and the overlap. This is achieved by weighting each intensity by a power. Usually

a weighting of 2.0 was used effectively, squaring the area, ensuring a sensible rela-

tion between the uncertainty in an intensity measurement and the magnitude of that

intensity. Finally diffspec can take input parameters instructing it to ignore certain

regions of the spectra from the area summation, which is used in the case of invasive

transitions from other species into the experimental spectra.



Chapter 3

Results

This chapter discusses the results from the various parts of this project. It is broken

down into sections by the portion of the work.

There are four main sections to the results, the raw electron scattering data,

the vibrational resolution of the R-matrix scattering data, the theoretical spectro-

scopic model produced, and the comparison to experimental spectra. The electron

scattering data is produced using UKRMol/UKRMol+, detailed results being given

for the equilibrium geometry results which are also compared to previous literature

and an overview is given for the multi–geometry results. The vibrationally resolved

scattering results are shown and a comparison in words to the vibrational resolution

of R-matrix scattering results given by Celiberto et al. (2012b) is included.

The spectroscopic models for BeH, BeD and BeT are explained in detail and

results for comparisons to experimental transitions are given. The experimental

work is outlined and the recording of spectra on JET by myself as part this project

is highlighted. This experimental spectra is compared to the theoretical spectra

produced by the spectroscopic model provided in this work and a prediction of

spectra that could be observed in future tritium campaigns on JET or ITER is given.
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3.1 R-Matrix

3.1.1 Equilibrium Geometry

3.1.1.1 Target Model Comparisons

The target model selection was based upon the premise of getting the most accurate

target energies and dipole moments within the allowed computational and R-matrix

radius constraints. To select the optimal model we tested the use of different atomic

basis sets in combination with the FCI and FC-FCI methods. We also tested a

smaller CAS-CI model in which the two core electrons on Be are frozen and three

electrons occupy a smaller set of 8a1, 3b1, 3b2 and 1a2 molecular orbitals. Due

to the factorial scaling of the CI methods the computational demands significantly

increase when going from three (i.e. frozen core) to five (i.e. all) active electrons

and from the double zeta (pVDZ) to triple zeta (pVTZ) basis sets.

While some tests were performed for our target wavefunctions over a range

of bond-lengths, all calculations presented here were performed in the centre-of-

mass frame at the experimental equilibrium bond-length of R = 1.3426 Å (Huber

and Herzberg 1979). The target calculations were performed using Hartree-Fock

orbitals generated using MolPro (Werner et al. 2012).

Table 3.1 shows the calculated ground state (GS) energy, in Hartree, verti-

cal electronic excitation energies, in eV, and the dipole moments for the various

models tested by us and in comparison with the high accuracy electronic structure

calculations of Pitarch-Ruiz et al. (2007) and the available experimental values of

adiabatic excitation energies. The state labels and the experimental values have

been taken from Pitarch-Ruiz et al. (2007). We note that Pitarch-Ruiz et al. (2007)

used a slightly different value for the bond length (1.326903 Å) in their single ge-

ometry calculations, but this difference has only a minimal effect on the calculated

values. Nonetheless energies in Table 3.1 are taken from potential energy curves

from Pitarch-Ruiz et al. (2008). According to Pitarch-Ruiz et al. (2007) the adia-

batic nature of the experimental electronic excitation energies compared to the ver-

tical nature of theoretical excitation energies is the most important factor explaining
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Table 3.1: Ground state energy (in Hartree), vertical excitation energies (in eV), permanent
dipole moment for the ground state (in a.u.) and the magnitudes of the transition
dipole moments for the initial ground state (in a.u.) as calculated in this work
and compared with reference experimental and theoretical values.

Ground state energy and excitation energies
CAS-CI FCI FC-FCI

State Experimentala Literatureb cc-pVDZ cc-pVDZ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ
X 2Σ+ -15.194 -15.173 -15.189 -15.188 -15.190 -15.196 -15.197
1 (A) 2Π 2.48 2.500 2.481 2.554 2.557 2.524 2.519 2.500
2 2Σ+ 5.539 5.614 5.690 5.695 5.530 5.696 5.521
3 (C) 2Σ+ 3.84 5.532 7.617 7.647 7.649 5.633 6.812 5.646
1 4Π 5.770 5.609 5.796 5.799 5.753 5.852 5.821
4 2Σ+ 6.06 6.107 8.989 9.055 9.054 6.233 7.202 6.226
2 (B) 2Π 6.31 6.313 7.472 7.582 7.592 6.435 7.564 6.465
5 2Σ+ 6.706 10.059 10.221 10.227 7.450 9.077 7.219
3 (D?) 2Π 6.71 6.712 7.948 8.100 8.109 7.366 7.905 7.316
6 (E) 2Σ+ 6.71 7.019 10.876 10.992 10.998 7.645 10.391 7.420
4 (G) 2Π 7.28 7.352 9.860 9.933 9.936 7.814 8.434 7.766
1 (D?) 2∆ 6.74 6.747 9.039 9.255 9.261 8.290 9.109 7.942
5 2Π 7.266 13.468 13.632 13.636 8.576 12.147 8.165

Permanent Dipole Moment for the ground state
CAS-CI FCI FC-FCI

State Literatureb,c cc-pVDZ cc-pVDZ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ
X 2Σ+ 0.065 (0.0561) 0.003 0.061 0.060 0.095 0.070 0.090

Transition Dipole Moments for the initial ground state
CAS-CI FCI FC-FCI

State Literatureb cc-pVDZ cc-pVDZ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ
1 (A) 2Π 0.871 0.812 0.840 0.840 0.859 0.857 0.865
2 2Σ+ 0.612 0.352 0.303 0.302 0.577 0.291 0.595
3 (C) 2Σ+ 0.188 1.051 1.077 1.078 0.207 0.051 0.101
4 2Σ+ 0.594 0.772 0.732 0.729 0.369 1.152 0.443
2 (B) 2Π 0.390 0.819 0.917 0.917 0.212 0.879 0.246
5 2Σ+ 0.757 0.525 0.560 0.563 1.327 1.003 1.380
3 (D?) 2Π 0.417 1.086 0.957 0.961 0.720 0.961 0.733
6 (E) 2Σ+ 0.207 0.466 0.430 0.428 0.540 0.051 0.109
4 (G) 2Π 0.307 0.251 0.244 0.240 1.015 0.135 0.979
5 2Π 0.342 0.164 0.166 0.065 0.935 0.184 0.907

a Collected experimental adiabatic excitation energies taken from Pitarch-Ruiz
et al. (2007). b Theoretical results of Pitarch-Ruiz et al. (2007) and Pitarch-Ruiz

et al. (2008). c The value in braces is from calculations by Celiberto et al. (2012b)

the sometimes significant differences between their calculated and the experimental

values, like the large difference between these values for the C-state. Excluding

the C-state the agreement of their calculated data with experiment is very good and

therefore in the following we use the calculated values of Pitarch-Ruiz et al. (2007)

as an accurate reference for our calculations.

Comparing our results obtained using the cc-pVDZ basis set and the three dif-

ferent models for electron correlation, we observe only negligible differences be-

tween the FCI and the FC-FCI results for both the vertical excitation energies and

the dipole moments. We conclude that the frozen core approximation leads to an
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insignificant loss of accuracy, especially for the low-lying states, compared to the

five-electron FCI calculation, despite a very significant reduction in computational

cost. The differences between the FC-FCI model and the CAS-CI model are mostly

small but non-negligible making the FC-FCI model preferable.

The vertical excitation energies obtained using the FC-FCI (cc-pVDZ) model

are in good agreement (within 0.2 eV) with the reference values only for the states

1 (A) 2Π, 2 2Σ+ and 1 4Π which are all valence states while most of the remaining

states have a Rydberg character (Pitarch-Ruiz et al. 2007). These results suggest

that the main deficiency of this model is the absence of diffuse functions in the

atomic basis. Indeed, as seen from the Table the use of the cc-pVTZ basis which

is larger than cc-pVDZ but does not include diffuse functions does not lead to a

better agreement between ours and the reference values for the diffuse states. The

agreement with the reference values is dramatically improved when the FC-FCI

method together with the augmented (diffuse) basis sets is used: the agreement is

excellent (within 0.12 eV) for the lowest six excited states. The differences between

the aug-cc-pVDZ and aug-cc-pVTZ are mostly negligible but the FC-FCI model

using the aug-cc-pVDZ basis is computationally significantly cheaper than the one

using the aug-cc-pVTZ basis. We also tested the use of the aug-cc-pVQZ basis set

(not shown) but found little improvement over the aug-cc-pVTZ results despite the

increase in computational cost.

Table 3.1 includes the dipole transition moments between the ground state and

the excited states and the value of the permanent dipole moment for the ground state

obtained using the different target models. The comparison of the dipole transition

moments for the FC-FCI (aug-cc-pVDZ) model with the reference values shows

larger differences in comparison with the vertical energies but that is to be expected

since dipole moments are generally the more sensitive property. Nevertheless, the

agreement with the reference values for the first six states is still good. We conclude

that the FC-FCI model using the aug-cc-pVDZ atomic basis is optimal in terms of

accuracy and computational cost. This will be our preferred model for use in the

scattering calculations.
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3.1.1.2 Scattering models for GTO-only UKRMol calculations

The calculations using the GTO-only representation of the continuum were per-

formed using the UKRMol suite (Carr et al. 2012). We found that the scattering

calculations using our preferred target model FC-FCI (aug-cc-pVDZ) were not pos-

sible due to the limits on the size of the R-matrix sphere and the diffuse character

of the target states resp. target orbitals. To avoid these problems we have used the

compact cc-pVDZ atomic basis set and R-matrix radius a = 14 Bohr. The expo-

nents of the continuum GTOs were optimised according to the methods of Faure

et al. (2002) and a largest angular momentum for the continuum electron of l = 4.

The deletion threshold used in the symmetric orthogonalization was set to 2×10−7.

Figure 3.1: Eigenphase sums for the 3A1 and 3B1/2 symmetry calculated using UKRMol
and various scattering models: static exchange using all virtuals (SE-AV), static
exchange using a reduced set of virtuals (SE-RV) and complete active space CI
(CAS-CI).

We have found that even with the compact atomic basis we could not include all

target molecular orbitals in the calculation: some virtual orbitals were too spatially

extended to be contained within the R-matrix sphere. To illustrate this point we
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show in Figure 3.1 eigenphase sums for the 3A1 and 3B1/2 scattering symmetries

obtained from three different models: the static exchange model using all virtuals

(SE-AV), the static exchange model using a reduced set of virtuals (SE-RV) and the

CAS-CI model using the reduced set of virtuals and all 21 target states lying below

11 eV (CAS-CI). The SE calculations are not able to describe electronically inelastic

processes and therefore have only a limited validity for electron energies larger

than the threshold for the first electronically excited state (≈ 2.5 eV). The CAS-CI

calculations are reliable up to the ionisation threshold (≈ 8.2 eV); the results beyond

this energy must be interpreted with care.

The calculations using the SE-AV model included the HF wavefunction to rep-

resent the ground state of the molecule and all virtual orbitals available (10a1, 4b1,

4b2 and 1a2) coupled to it to represent the L2 functions in the scattering model (see

Equation (2.2.1) above). The eigenphase sum for the SE models 3B1/2 symmetry

displays a broad jump around 5 eV which is a signature of a shape resonance - the

only type of resonance the SE model can represent. In the CAS model this same
3B1/2 resonance appears much lower in energy, around 0.2 eV, due to a more accu-

rate representation of the BeH− states. The eigenphase sum for the SE-AV model
3A1 symmetry displays a sharp jump around 0.5 eV and a broader one around 9 eV.

In the SE-RV model the number of virtual orbitals used is decreased to 8a1, 3b1,

3b2 and 1a2 and both of the resonance structures in the 3A1 disappear, confirming

they are unphysical. This problem is typical for calculations in which some of the

target orbitals are not fully contained by the R-matrix sphere. Increasing the size of

the R-matrix sphere beyond 14 Bohr is possible but only at the expense of reducing

the energy range for the scattering electron. For the present case of a = 14 Bohr the

continuum basis set is accurate up to scattering energy of approximately 15 eV but

increasing the radius to 16 Bohr makes the valid energy range drop to below 10 eV.

To the best of our knowledge the largest radius used in any GTO-based R-matrix

scattering calculation was the calculation of Tarana et al. (2009) on Li2 where a

radius of 22 Bohr was used but the electron energy range was limited to energies

below approx. 2.5 eV.
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The results for the CAS-CI model using the reduced set of virtuals and 21 target

states represent the highest-level results obtained in this work using the UKRMol

code. The eigenphase sums for this model clearly show a number of resonances

which we further discuss below. Here we only note the importance of modelling

polarisation/correlation for and accurate description of the lowest-lying resonance

in the 3B1/2 symmetry which appears much lower in energy and has a smaller width

in the CAS-CI results compared with the SE-AV results.

Although a CAS-CI calculation with the cc-pVTZ atomic basis is computa-

tionally tractable it has worse issues with linear dependence and functions leaking

outside of the sphere. The increase in accuracy potentially achievable from the in-

crease from cc-pVDZ to cc-pVTZ, as discussed in the preceding section, is also not

significant in comparison to the increase in computational cost.

3.1.1.3 Scattering models for GTO/BTO UKRMol+ calculations

The calculations performed using UKRMol+ and the mixed GTO/BTO basis for

the continuum were not limited by the size of the R-matrix sphere, a crucial advan-

tage over UKRMol. Here we present only the results obtained using the preferred

model FC-FCI (aug-cc-pVDZ) but calculations were performed using the simpler

UKRMol models to verify the correctness of the new code. The close-coupling cal-

culations included all electronic states below 12 eV, 50 states in total. We found that

to confine them sufficiently a large radius of 35 Bohr is needed. This was achieved

using a mixed basis for the continuum comprising a small set of continuum GTOs

with exponents shown in Table 3.2 and a basis of BTOs built from a basis of radial

B-splines spanning the radial range from aGTO = 3.5 Bohr to the R-matrix sphere.

Continuum angular momenta up to l = 6 were included in the calculation. The

basis of continuum GTOs was optimised using NUMCBAS and GTOBAS (Faure

et al. 2002) for a small radius of 4 Bohr. The basis of radial B-splines comprised

20 functions of order 9 but the first two had to be removed from the calculation

since they do not have smooth first derivatives at the starting point r = 3.5 Bohr.

Figure 3.2 shows the continuum GTOs and BTOs selected for use in this scattering

model normalised as they are for use in the calculation by the scatci integrals pro-



3.1. R-Matrix 79

gram. Since the linear dependency problems are mitigated when BTOs are used the

deletion threshold for orthogonalization was set to 10−5, a value much larger than

in the UKRMol calculations, while removing only a few continuum orbitals per

symmetry from the basis. With these parameters the continuum basis was accurate

for electron energies up to approx. 15 eV. Table 3.3 shows a summary of the issues

with the trialed target and scattering models.
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Figure 3.2: The continuum GTOs optimised for a sphere of 3.5 Bohr are shown centred
on R = 0 and are coloured from red to cyan. The continuum BTOs optimised
for a sphere of 35 Bohr are shown in black and maroon. In dashed blue and
violet are the BTO discarded for being discontinuous in the function and first
derivative respectively.

Table 3.2: Exponents of the continuum GTOs for partial waves up to l = 6 optimized for
radius of 4 Bohr.

l Exponents
0 0.6018850 0.2517630 0.0997470 0.0355189
1 0.6279660 0.3026600 0.1392060 0.0575246
2 0.4300720 0.2046800 0.0891347
3 0.4744870 0.2373500 0.1088240
4 0.3118840 0.1353390
5 0.3484640 0.1577080
6 0.3847250 0.1798360
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3.1.1.4 Scattering Results

In Figure 3.3 we show the elastic and total scattering cross sections for the ground

electronic state. Results of several calculations are shown: the UKRMol calcula-

tions were performed using the CAS-CI (cc-pVDZ) model while the UKRMol+

calculations employed the FC-FCI (aug-cc-pVDZ) model. Since the BeH molecule

has a permanent dipole moment the long range interaction of the dipole with the

continuum electron causes a slow convergence of the partial wave expansion for

the continuum wavefunction. We estimate the contribution of partial waves beyond

l = 4 (UKRMol) and l = 6 (UKRMol+) using the Born correction for the rotating

dipole as implemented in borncros Norcross and Padial (1982). The corresponding

Born–corrected total and elastic cross sections are plotted using solid lines, the total

Born correction including the elastic and inelastic Born corrections.

Figure 3.3: Total and elastic fixed geometry cross-sections for the ground state calculated
using the UKRMol and UKRMol+ codes. The cross sections including the
Born correction are plotted using solid lines.
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Comparing first the elastic cross sections obtained using UKRMol (green) and

UKRMol+ (red) we see that the latter is larger which can be explained mainly by the

larger dipole moment of the ground state in the FC-FCI model (0.095 a.u.) com-

pared with the CAS-CI value (0.003 a.u.). The small magnitude of the CAS-CI

permanent dipole is also reflected in a very small contribution of the Born correc-

tion making the ab initio (dashed green line) and the Born-corrected cross sections

(solid green line) indistinguishable in the plot. However, the UKRMol and UKR-

Mol+ cross sections have a similar shape and show the same resonant peaks with

the exception of a few narrow peaks appearing in the UKRMol+ results, discussed

below.

The total cross sections (blue UKRMol, black UKRMol+) are much larger than

the elastic ones for energies beyond the first excited state highlighting the impor-

tance of inelastic processes for electron collisions with BeH. We also observe the

significant difference between the magnitudes of the UKRMol and UKRMol+ to-

tal cross sections at higher energies which is not explained by the difference in the

elastic cross sections alone and points to the importance of using a highly accurate

model to describe electronically inelastic processes.

Figure 3.4 gives a log plot of the cross-sections for electron impact electronic

excitation from the ground state to the first six excited states. In solid lines are in-

elastic cross-sections including the Born correction calculated using the approach

of Norcross and Padial (1982). The Born correction was calculated for all dipole

allowed transitions from the ground state, i.e. excluding the spin-forbidden transi-

tion to the 1 4Π state. We can see that the Born correction makes a very significant

contribution to the cross section for excitation of some of the states, e.g. the first

excited state 1 (A) 2Π and reflects the magnitudes of the corresponding transition

dipole moments listed in Table 3.1.

Figure 3.5 compares our cross sections for impact excitation of the A-state with

the one calculated by Celiberto et al. (2012a). The blue line is the R-matrix cross-

section from Figure 3.5 of the paper by Celiberto et al. (2012a). The lines in black

are results from the final model of UKRMol+ and in red are the results from the
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Figure 3.4: Electron impact electronic excitation cross-sections for the ground initial state
(X 2Σ+) and the six lowest lying final electronic states calculated using UKR-
Mol+. The cross sections including (excluding) the Born correction are plotted
in solid (dashed) lines.

final model of UKRMol. The results in dashed lines are without the Born correc-

tion and the solid lines are results with the Born correction added. We observe that

above about 8 eV our uncorrected cross sections are significantly smaller than those

of Celiberto et al. (2012a) and that the resonances in our calculations are found at

lower energies and have smaller widths. This is consistent with our target and scat-

tering models being larger and more accurate at describing polarisation/correlation

effects.

Figure 3.5 also shows the importance of the Born correction: at 10 eV the

Born-corrected results are approximately a factor of three to four larger than the

corresponding uncorrected results. This finding can be put in contrast with the

results of Celiberto et al. (2012a). Celiberto et al. (2012a) calculate the impact

cross section in the Born approximation, which includes contributions of all partial

waves, and compare it to their ab initio result which includes partial waves only
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Figure 3.5: Comparison of electron impact electronic excitation cross-sections from the
ground state, X 2Σ+, to the lowest lying excited state, A 2Π. Solid lines are the
cross sections including the Born correction. Dashed blue line is the R-Matrix
result from literature Celiberto et al. (2012a).

up to l = 4 and to a result of the Modified Mott-Massey approximation (TM MM)

scaled down to match the R-matrix result. The scaled TM MM results are then

used to estimate the cross section for very large electron energies up to 1000 eV.

However, since the Born correction is large scaling the TM MM result to a cross

section not including it causes a significant underestimation of the TM MM results

for the whole energy range.

Figure 3.6 shows sample differential cross sections, calculated using POLY-

DCS (Sanna and Gianturco 1998) for scattering energies of 1.01 eV, 1.49 eV, 2.01

eV and 2.49 eV. As would be expected for a dipolar system, the cross sections are

largest at 0o, where the cross sections are all in the order of 106 Å2sr−1 in compari-

son to the magnitude of 101 Å2sr−1 at higher angles.

Electron resonances can influence cross sections for a range of processes in-
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Figure 3.6: Differential cross sections of from the UKRMol+ final model. The peak values
are 1.68× 106 Å2sr−1, 3.01× 106 Å2sr−1, 4.73× 106 Å2sr−1 and 6.52× 106

Å2sr−1 at scattering energies of 1.01 eV, 1.49 eV, 2.01 eV and 2.49 eV respec-
tively.

cluding impact excitation. This can be seen, for example, in Figure 3.5 where the

most prominent peak at around 5.2 eV is caused by a resonance. Table 3.4 collects

the resonances and their parameters found in our results by fitting the eigenphase

sums to the Breit-Wigner form. The Table compares the resonance parameters as

obtained using the cc-pVDZ atomic basis and UKRMol suite with the results of

the FC-FCI (aug-cc-pVDZ) model and UKRMol+ suite. We find a single narrow

shape resonance of 3Π symmetry close to the threshold. This is also the only res-

onance that can be described by the SE (Hartree-Fock) model. We have used the

static exchange plus polarisation (SEP) method (not shown) to see if more shape

resonances are present but no additional resonances are found. The close-coupling

models reveal the formation of a number of resonances of core-excited character.

The parent state, 1 (A) 2Π, with the SCF configuration 1σ22σ21π might be ex-
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pected to support three resonances with the configuration 1σ22σ21π2 . Resonances

with 1∆ symmetry at ≈ 2.6 eV, and 1Σ+ symmetry at ≈ 5.2 eV can clearly be seen.

However the expected, lower-lying resonance of 3Σ− symmetry is not observed.

This is because this state lies below the 1 (A) 2Π target parent state, and there is no

allowed decay route to the GS. The 3Σ− state therefore forms a bound state in the

continuum or a resonance with infinitesimal width (Stillinger and Herrick 1975).

The most prominent resonance from Figure 3.5, the 3Π at ≈ 5.5 eV, lies about

8% lower in energy in our work from UKRMol than in the work of Celiberto et al.

(2012a). There is also an uncertainty between our UKRMol and UKRMol+ models

of about 2% for the position of this resonance and an average difference in the

position of resonances of ± 30meV.

Table 3.4: Resonances found using the various scattering models employing UKRMol
(SE, SEP, CC CAS-CI) and UKRMol+ (CC FC-FCI). Resonance positions and
widths (in brackets) are in eV. Tentative resonance classifications and associated
configurations are also given.

SE SEP CC CAS-CI CC FC-FCI Resonance classification
3Π 0.572 [0.909] 0.235 [0.204] 0.155 [0.126] 0.090 [0.092] [1σ22σ23σ11π1] Shape
1∆ 2.572 [0.352] 2.55 [0.2]a [1σ22σ21π2] Core excited
1Σ+ 5.63 [0.05]a 5.195 [0.024] [1σ22σ21π2] Core excited
3Σ+ 5.64 [0.04]a 5.366 [0.008] [1σ22σ24σ15σ1] Feshbach
3Π 5.364 [0.142] 5.487 [0.017] [1σ22σ21π14σ1] Feshbach
3Σ− 5.810 [0.943] 5.8 [0.9]a [1σ22σ13σ11π2] Core excited

a Estimated, not fitted.
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3.1.2 Multi Geometry

In order to produce a full vibrational resolution model of the R-matrix data we need

R-matrix data for a range of geometries. So the single geometry calculation from

section 3.1.1 above is repeated, varying the internuclear separation in the calcula-

tion, which is done on the input to MolPro (see figure 2.1). The target and scattering

models selected in the single geometry case are used in all the multi geometry cal-

culations. The validity of the target model was checked prior to its confirmation in

the single geometry case. Evidence for this is shown in the comparison of the PECs

from the chosen target model to those from literature (Pitarch-Ruiz et al. 2008) and

our own fitted PECs from Duo in figure 3.7.
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Figure 3.7: PEC comparison of the aug-ccpVDZ FC-FCI target model (solid lines) with
those of Pitarch-Ruiz et al. (2008) ( adashed lines), and the fitted PECs of this
work from Duo ( bdotted lines). The various calculations are all zeroed at their
respective GS minima as the comparisons of absolute energies is not of sig-
nificance to this work. The two vertical black lines show the region in which
the multi-geometry electron scattering calculations were used in the vibrational
averaging model.

The main results of these multi–geometry calculations are scattering quantities,

in the form of T-matrices, as a function of the internuclear separation. However as
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T-matrices themselves are difficult to present in any medium, in figure 3.8 we dis-

play the GS, X 2Σ+, to first excited state, A 2Π, electronic excitation cross section

as a function of geometry and scattering energy. Cross-sections are calculated from

T–matrices as given in equation 2.2.11. It can be seen in this figure that the energy

position of the resonance feature, the spike, moves to a higher energy as the inter-

nuclear separation decreases, see figure 3.9 and the attached table. The position

of this resonance depends on the energy of some state of the BeH− anion formed

temporarily during scattering and longer lived when a resonance is present. Due to

the highly parallel nature of these two PECs, see Figure 3.7, the vertical excitation

energy is almost constant over this energy range and thus the threshold, the starting

scattering energy for the cross–section is almost constant.

One important observation here is that the individual calculations are separated

by a broad enough gap in the internuclear separation such that the widths of the res-

onances do not overlap, i.e. at each geometry the resonance has moved by more than

the resonance width away from its position at one geometry higher or lower. This

is a potential source of complications for the vibrational averaging calculations, as

it shows a non smoothly varying function in the T-matrix elements with geometry.

This was unavoidable however as the computational expense of each geometry cal-

culation limited the number of calculations that could be achieved in a reasonable

time frame. This is further discussed when results from the vibrational averaging

model are given below.

3.2 Vibrational Resolution

The results for vibrational resolution of the T-matrices are given in this section.

However as the T-matrices themselves are difficult to represent and are not partic-

ularly physically meaningful here we present cross-sections for some of the vari-

ous transitions. These vibrationally resolved cross-sections can be convoluted with

Maxwell–Boltzmann energy distributions to give rates for the various transitions.

The R-matrix scattering calculation was carried out up to a total scattering energy

of 7.5 eV which relates to a different initial electron kinetic energy dependent on
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Figure 3.8: X - A cross sections, σ , as a function of the internuclear separation, R, and
scattering energy, E. The main resonance can bee seen moving to lower energy
with increasing internuclear separation.

the initial state of the target molecule.

The energy range of the cross-section has been extended by extrapolation using

either a total Born cross-section or by the functional form of σ(Ek) ∝
1

Ek
. The ex-

trapolated portion of the cross-section is scaled to the magnitude of the partial–Born

+ R-matrix cross-section just before it. The total Born extrapolation is used when

the transition involves a significant dipole, otherwise the functional form extrapola-

tion is applied. This results in a faster drop in cross-section area for the case where

there is no significant dipole (see section 2.2.10) which is what would be expected.

This extrapolation of the cross-section gives a more accurate evaluation of the rates

as a function of the transition and electron temperature as it allows the high energy

tail of the Maxwell–Boltzmann to be accounted for.

In the various cross–section figures in this section BeH, BeD, and BeT are
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Figure 3.9 & Table 3.5: The 3Π resonance position as a function of geometry, this reso-
nance being visible in the X–A cross-section in figure 3.8. For
the equilibrium geometry, marked with a, the resonance position
was fitted, for all other geometries the positions were estimated
not fitted.

represented in solid, dashed and dotted lines respectively, and vibrational quanta

are given in black, red, green, blue, orange, violet, cyan, magenta, indigo, maroon

for v = 0→ 9 respectively.

3.2.1 Quasi-Franck-Condon Factor Model

The quasi–FCF were obtained by application of the vibaver program (see sec-

tion 2.2.9) to a single R-matrix calculation. This vibrationally averages T-matrices

which are constant with geometry so vibrational averaging reduces to an application

of
〈
φi′′,v′′(R)

∣∣φi′,v′(R)
〉

to the T-matrix channels which are squared when calculating

cross-sections. This results in cross-sections with factors of |
〈
φi′′,v′′(R)

∣∣φi′,v′(R)
〉
|2

applied, which are the FCFs (see section 2.2.8.1 and equation 2.2.14).

One draw back to this method of vibrationally averaging single geometry re-

sults is that the X-X and A-A (electronically elastic) cross sections are non–zero

only when ∆v = 0. This is a direct result of the application +of FCFs. The resul-

tant cross-sections are essentially just a factor times the equivalent electron cross-

section, shifted to the correct threshold.
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This can be seen in Figure 3.10 which shows cross-sections with the initial

state X v = 0 to the final state X v = 0 or A v = 0− 2. However as the FCFs are

diagonal within a given electronic state there are no X v > 0 final states to show

here. It is also noteworthy that the A v = 1 final state cross–section is significantly

reduced in comparison to the A v = 0 final state cross-section which is contrasted

with this result in the full geometry model below, see Figure 3.13.

As the FCFs are all equal to one within a given electronic state where ∆v = 0

the various elastic X-X cross-sections with ∆v = 0 are all equal to the X v = 0 to X

v = 0 cross-section shown in the higher solid black line in Figure 3.10; this is also

true for the various isotopologues. The various isotopologues are also degenerate

on the X v = 0 to A v = 0 cross-section as these FCFs are all ≈ 1.

0 1 2 3 4 5 6 7 8
Scattering Electron Inital Energy / eV

0.0001

0.01

1

100

C
ro

ss
-S

ec
tio

ns
 / 

Å
 2

v = 0
v = 1
v = 2
BeD
BeT

Figure 3.10: Vibronic cross–sections for the quasi–FCF, single geometry, model from ini-
tial state X 2Σ+, v = 0 to the final states X 2Σ+, v = 0 (higher black lines),
A 2Π, v = 0 (lower black lines starting at ≈ 2.5 eV), and A 2Π, v = 1− 2.
Both sets of black lines are overlapped for the BeH, BeD and BeT results.

On the matter of comparison between our FCF results and those of Celiberto

et al. (2012a) the curves given by their paper are a functional form fitted to the mag-

nitude of the R-matrix cross-sections and as such they suffer from the same issue

present in their single geometry results, a comparison for which is shown in figure
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3.5. Here they have not applied the top up Born correction (see equation 2.2.20)

to their R-matrix results and thus have omitted a major component of the cross–

section resulting from the remaining partial waves in the expansion. This means

that although their cross-sections compare well in terms of approximate magnitude

when comparing to only the quasi–FCF R-matrix results, which ours are shown

in figure 3.10, the comparison is unfavourable once the top up Born correction is

applied. To see Born corrected results look at figures 3.14 and 3.15 below and for

further comparison between the FCF model and the Born corrected results see figure

3.13 below.

3.2.2 Multi Geometry Data Model

The final set of results from this work are sets of vibronically resolved electron

scattering cross-sections produced from vibrationally averaged multi-geometry T-

matrices calculated using the R-matrix method. These may be used to calculate a

complete set of rates for a collisional radiative model for a plasma environment and

are available for BeH, BeD and BeT.

The assumption stated in the section 2.2.9 equation 2.2.19 that the PECs must

be approximately parallel satisfactorily holds true for the X and A states of interest

here. This can be seen in figure 3.7, where the shapes of the X (in black) and A

(in red) curves can be seen to be largely the same with the A state being shifted up

by ≈ 2.5 eV, at least within the region of interest (and in fact especially at higher

geometries).

One major difference between these results and the results from the Quasi–

FCF method is that this approach offers a complete set of cross-sections, including

those between differing vibrational sates within a given electronic state, i.e. elastic

scattering. This is shown in Figure 3.11 where the cross–sections for the transitions

from the initial vibronic GS X 2Σ+, v = 0 to states X 2Σ+, v = 1− 3 are given; in

the FCF model these are all zero.

The vibrational averaging process also does not necessarily follow the same

pattern as the FCFs, as shown in Figure 3.12. In this figure it can be seen that

the largest cross-section is actually the ∆v = 1 component (X, v = 0 to A, v = 1)
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Figure 3.11: Vibronic transition cross–sections for the full vibrational averaging, multi–
geometry, model from initial state X 2Σ+,v = 0 to states X 2Σ+, v = 1→ 3.
With BeH in solid, BeD in dashed, and BeT in dotted lines as shown in the
legend.

and not the ∆v = 0 component as the FCFs would suggest. This pattern is similar

for other initial vibrational quanta of the X state to the A state where the ∆v = 1

transition is actually the largest component. This is due to how to components of

the T-matrix vary with geometry and how that matches up with the shape of the

vibrational wavefunctions.

This marked difference between the FCF method and the vibrational averag-

ing method in the off diagonal transitions where there is a change in electronic

state and vibrational quanta, e.g. X, v = 0 to A, v 6= 0 is further demonstrated

in Figure 3.13. The non–Born corrected versions for some these cross–sections

are shown in figures 3.10 and 3.13, contrasting them shows the Born correction in

these off diagonal components only makes a significant contribution to the much

lower quasi-FCF cross-sections. This figure shows a direct comparison of some

of these cross-sections from the FCF calculation and the vibaver calculation. The

cross-sections in this figure are the Born corrected vibronic cross-sections with the

extrapolation as applied by the borncros program and described in section 2.2.10.
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Figure 3.12: Vibronic cross–sections for the full vibrational averaging, multi geometry,
model for the initial state X 2Σ+, v = 0 and final states X 2Π, v = 0→ 4
with BeH (solid lines), BeD(dashed lines), and BeT (dotted lines)as shown in
the legend.

For the cross-sections shown, X, v = 0 to A, v = 1→ 3, all of the vibrationally av-

eraged results are significantly greater then the FCF results. The FCF results appear

to show greater variation between the isotopologues. However this is mostly due

to the Born correction being applied and the fact that it makes a more significant

contribution to the smaller cross–sections. Also the Born correction being applied

is almost the same in the FCF and the vibrational averaging models as it depends

mostly on the dipoles from the Duo calculation.

This similarity between the quasi–FCF and multi–geometry vibrationally av-

eraged results after application of the Born correction is shown most strongly in the

vibronically elastic components where there are large dipoles. This makes the Born

correction in these cases more significant to the cross–sections than the R-matrix

results themselves. Vibronically elastic Born corrected results for BeH, and the

full multi–geometry model (though there is insignificant difference in these elastic

components for the single–geometry model) are shown in figure 3.14. The equiv-
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Figure 3.13: Born corrected vibronic cross–sections comparison with initial state X 2Σ+,
v= 0 and final states A 2Π, v= 1→ 3 for BeH/D/T as shown in the legend. All
the cross-sections which reach above the black dividing line labelled vibaver
are from the vibrational averaging model and those below it are the quasi-FCF
calculation results.

alent results for BeT are given in figure 3.15 to show in contrast the two extremes

of the elastic cross–sections, with the BeD results falling predictably in between

these two sets. The first thing to point out in these results is that the cross-section

of the elastic X 2Σ+ vibrational state curves increases with increasing vibrational

quanta, the scattering is more likely for the higher vibrational states. In contrast, in

the A 2Π vibrational states this situation is reversed and the scattering is more likely

for lower vibrational quanta. The second thing to point out here is the difference

between BeT and BeH, where though the X states intensities do not change signifi-

cantly the A states show an larger increases for higher vibrational quanta. As these

cross–sections are dominated by the Born correction these effects are mostly the

result of the vibrational dipoles from the Duo calculations. The cross-sections here

are orders of magnitude greater than in the equilibrium geometry case due to the fact

that the vibrational dipoles are much greater than the equilibrium geometry dipoles.
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This is due to a similar effect that causes the features mentioned above where the

∆v = 1 cross-sections are greater than the ∆v = 0 cross-sections. Which is that the

shape of the function and how it conforms with the vibrational functions effects the

vibrational results. Here the electronic transition dipole crosses through zero close

to equilibrium making the equilibrium dipole relatively weak in comparison to the

vibrationally averaged dipole.
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Figure 3.14: Elastic cross–section BeH states X 2Σ+, v = 0→ 9 (lower set of curves) and
states A 2Π, v = 0→ 9 (upper set of curves).
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Figure 3.15: Elastic cross–section BeT states X 2Σ+, v = 0→ 9 (lower set of curves) and
states A 2Π, v = 0→ 9 (upper set of curves).
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3.3 Spectral Modelling

3.3.1 MARVEL

My MARVEL analysis of BeH, BeD and BeT used transitions involving X 2Σ+,

A 2Π and C 2Σ+ states, with assigned quantum numbers taken from the literature

(Le Roy et al. 2006, Shayesteh et al. 2003). In particular Le Roy et al. (2006) give

transition data compiled from many sources including Shayesteh et al. (2003), Colin

et al. (1983), Focsa et al. (1998) and De Greef and Colin (1974).

Table 3.6: Input transitions for MARVEL Online, in column A/V are the number of transi-
tions all/validated. *See text for discussion on the comments

Isotope Tag Range (cm−1) States A/V Largest
Network Comments

BeH
LeRoy. 15132-20822 A – X, C – X 1894/1886

1264
*H1

Shay. 1802-2239 X – X 160/160 *H2
BeD

LeRoy. 15164-20619 A – X, C – X 2335/2276
1495

*D1
Shay. 1240-1680 X – X 167/167 *D2

BeT
LeRoy. 19824-20424 A – X, ∆v = 0 only. 534/524 215 *T1

Table 3.6 shows the transition data sources used for input to MARVEL. Com-

ments on individual sources are as follows:

*H1 Le Roy et al. (2006) contains A – X transitions ∆v = 0 up to v′′ = 6, ∆v = +1

up to v′′ = 6 and some transitions for C – X with v′′ = 0 – 2 and v′ = 6 – 10.

*H2 Shayesteh et al. (2003) infrared, rovibrational transitions, were duplicated for

Σ = ±0.5 giving 314 valid transitions.

*D1 Le Roy et al. (2006) contains A – X transitions ∆v = 0 up to v′′ = 6, ∆v = +1

up to v′′ = 5 and some transitions for C – X with v′′ = 0 and v′ = 8 – 12.

*D2 Shayesteh et al. (2003) infrared, rovibrational transitions, were duplicated for

Σ = ±0.5 giving 328 valid transitions.

*T1 Le Roy et al. (2006) contains only A – X transitions ∆v = 0.
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Table 3.7: Table of MARVEL input transitions for BeH with column labels and explana-
tions.

1 2 3 4 5 6 7 8 9 10 11 12 13
ṽ ∆ṽ State′ v’ (J′+ 1

2 ) P′ Σ′ State′′ v′ (J′′+ 1
2 ) P′′ Σ′′ ID

20.3282 0.001 1 0 1 - -0.5 1 0 1 + 0.5 MAGIC.001
15132.42 0.1 3 0 13 + 0.5 1 9 14 - 0.5 LeRoy.00001
15204.53 0.1 3 0 12 - 0.5 1 9 13 + 0.5 LeRoy.00002
15224.66 0.1 3 0 22 - 0.5 1 8 23 + 0.5 LeRoy.00003
15273.77 0.2 3 0 11 + 0.5 1 9 12 - 0.5 LeRoy.00004
15335.3 0.1 3 0 21 + 0.5 1 8 22 - 0.5 LeRoy.00005

15339.62 0.1 3 0 10 - 0.5 1 9 11 + 0.5 LeRoy.00006
15401.44 0.1 3 0 9 + 0.5 1 9 10 - 0.5 LeRoy.00007
15433.71 0.1 3 0 13 + 0.5 1 9 12 - 0.5 LeRoy.00008
15458.91 0.1 3 0 8 - 0.5 1 9 9 + 0.5 LeRoy.00009
15485.93 0.1 3 0 12 - 0.5 1 9 11 + 0.5 LeRoy.00010
Column Notation

1 ṽ Transition frequency (cm−1).
2 ∆ṽ Estimated uncertainty in transition frequency (cm−1).
3 State′ Initial electronic state, 1 = X 2Σ+, 2 = A 2Π, 3 = C 2Σ+.
4 v′ Initial vibrational quantum number.
5 (J′+ 1

2 ) Initial total angular momentum quantum number plus 0.5.
6 P′ Initial parity quantum number.
7 Σ′ Initial electron angular momentum quantum number.
8 State′′ Final electronic state, 1 = X 2Σ+, 2 = A 2Π, 3 = C 2Σ+.
9 v′′ Final vibrational quantum number.

10 (J′′+ 1
2 ) Final total angular momentum quantum number plus 0.5.

11 P′′ Final parity quantum number.
12 Σ′′ Final electron angular momentum quantum number.
13 ID Unique ID for transition with source label and counting number.

A small portion of the MARVEL input file for BeH is shown in Table 3.7 where the

column format is explained. The number of quantum numbers used for assignment

here is 5. The thresholds for changing uncertainties and for deletion were both set

to 3. The full files are given in the supplementary data for our paper (Darby-Lewis

et al. 2018).

For BeH and BeD the infrared data of Shayesteh et al. (2003) brings together

separate vibrational networks found in other data. This results in two large net-

works separated along the quantum number Σ, where Σ = -0.5 for one network and

Σ = 0.5 for the other. These two networks are joined via a linking transition with a

“magic” wavenumber, between states with opposing spin, as shown for BeH by the

transition labelled MAGIC.001 in Table 3.7. This magic transition is an artificial

transition calculated from empirical, effective Hamiltonian energy levels belonging
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to separate networks (Furtenbacher et al. 2007). The frequency of the magic tran-

sition is calculated to produce degeneracy between the states with differing spin at

low J.

Figure 3.16 shows the rovibrational energy levels of the largest component net-

work for BeH, BeD and BeT. The almost straight lines with isotopologue-dependent

gradients are vibrational bands and the gradients depend on the rotational constants

(∝ 1/reduced mass). Since the electronic states being represented here are doublets

each point for an energy level shown in this figure actually corresponds to two spin

degenerate states.
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Figure 3.16: Output rovibronic energy levels from MARVEL for the largest spectroscopic
networks of BeH, BeD, and BeT, against nuclear rotational quantum number,
N, times nuclear rotational quantum number plus one. The rovibrational states
of X 2Σ+ are the lower set and the A 2Π rovibrational states start at 20000
cm−1. Each of the states represented here actually corresponds to two spin
degenerate states as both the X and the A states are doublets.

3.3.2 Duo

Previous work has been done for BeH, BeD and BeT using both ab initio quantum

chemistry (Yadin et al. 2012) and empirical fitting methods (Špirko 2016) to pro-

duce PECs (Dattani 2015). The iterative fitting procedure of the Duo code was used

to refit the potential form of the GS PEC, a Morse long range (MLR) type potential
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(Le Roy et al. 2011) as given by Pitarch-Ruiz et al. (2008), using energy levels out-

put from MARVEL. A new PEC, of the extended Morse oscillator (EMO) type (Lee

et al. 1999), is fitted to the A 2Π excited state using energy levels output from MAR-

VEL. The A 2Π PEC is modified by the addition of a spin-orbit (LS) coupling curve

and an X to A state L+ (Λ–doubling) coupling curve. Both the ground and excited

state PECs are modified by the fitting of adiabatic and non–adiabatic BOB curves

(Le Roy 2017) using the BeD and BeT isotopologue energy level data from MAR-

VEL. Using BOB correction terms makes these data applicable to all isotopologues

of BeH. This allows data from all three isotopologues to improve the fit from the

same set of PECs and coupling terms. The fitting of BOB terms is achieved using

an iterative process in Duo. The non-adiabatic BOB term is an additive correction

to the PEC which has an increasing effect with increasing isotope mass (from zero

effect on H, to 1
2 on D, to 2

3 on T). However due to the limited data for BeT it is

initially fitted to the BeD data and adjusted iteratively for BeT. The adiabatic BOB

term is a multiplicative factor applied to the centrifugal potential and has great-

est effect on the lighter isotope; it is therefore initially fitted to BeH and adjusted

to model BeD and BeT. When a suitable fit is produced for both states using the

available energy levels from MARVEL, Duo allows fittings to be performed using

the transitions. This allows a larger set of data to be used in the fitting routine, as

some of the energy levels output by MARVEL cannot be connected to the main

spectroscopic network.

Tables 3.8 and 3.9 show some of the energy levels generated by Duo for BeH,

BeD and BeT for both the X and A states, they are each followed by the energies

from MARVEL used in the fitting for those levels. As shown earlier, in Table 3.6,

only the v = 0 component of BeT joins the main network of transitions, as there are

no measured ∆v 6= 0 transitions for BeT. Overall the root mean square (RMS) of the

fit for each isotopologue is: BeH, 0.542 cm−1; BeD, 0.614 cm−1; BeT, 0.384 cm−1.

PECs modified and fit by Duo for the X and A states of BeH, BeD and BeT are

shown in figure 3.17. The Zero Point Energy (ZPE) of these curves are: 1022.0292

cm−1 for BeH; 742.7911 cm−1 for BeD; 626.2844 cm−1 for BeT. The Duo input
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containing the PECs, couplings and BOB terms is given for BeH, BeD and BeT in

the supplementary data for our paper Darby-Lewis et al. (2018). Predissociation is

not included in this model.

Figure 3.17: Fitted PECs for the X 2Σ+ state and the A 2Π state with vibrational energies
at J = 0.5 for BeH, BeD, and BeT.

Fully fitted PECs, couplings and BOB terms are used in conjunction with an

ab initio transition dipole curve (Pitarch-Ruiz et al. 2008) for the A to X state to

generate Einstein A-coefficients for the rovibronic transitions. Duo outputs two files

for the linelist of each isotopologue, one containing the list of the states involved

in the transitions and the other being a list of the transitions between states and

their A-values; this corresponds to the format of the ExoMol database (Tennyson

et al. 2013, 2016). The start of the states file and the start of the trans file for BeH

are shown respectively in Tables 3.10 and 3.11 followed by an explanation of their

column formats. The entirety of the linelist in ExoMol format, states and trans

files, for each isotopologue can be found in the supplementary data for our paper

Darby-Lewis et al. (2018) and on the ExoMol website (www.exomol.com).
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Table 3.8: Comparison of excitation energies as a function of vibrational quanta, v, com-
puted with Duo and obtained by MARVEL for: BeH and BeD X 2Σ+ at J=0.5,
Ω = 0.5, parity = +; BeT X 2Σ+ at J=2.5, Ω = 0.5, parity = -.

v X 2Σ

BeH BeD BeT
Duo MARVEL Duo MARVEL Duo MARVEL

0 0 0 0 0 49.2756 50.3
1 1986.3054 1986.4169 1488.4401 1488.8472 1323.9046
2 3896.8004 3896.8707 2935.6045 2936.1953 2568.5846
3 5729.2711 5729.2613 4340.7423 4341.3802 3782.8768
4 7480.4545 7480.4219 5702.8860 4966.2478
5 9145.4221 7020.7372 6118.0189
6 10716.6777 8292.5346 7237.3131
7 12182.7098 9515.8791 8322.9914
8 13525.5493 10687.4899 9373.5704
9 14716.2767 11802.8549 10387.1133
10 15705.6510 12855.7188 11361.0802
11 16402.4285 13837.299 12292.1239
12 16664.9980 14735.0110 13175.8010
13 15530.2285 14006.1479
14 16194.0499 14775.0274
15 16679.3277 15471.0599
16 16918.4202 16077.7733
17 16956.8145 16570.2919
18 16910.3608
19 17056.2519
20 17076.5405

3.4 Experimental Comparison
There were two original experimental spectra used in this work to show the agree-

ment of the theoretical spectral model to experiment. The BeH spectrum was pro-

vided by co-authors on the paper Darby-Lewis et al. (2018), further details below,

and the BeD spectrum was recorded by myself during time spent at JET. This com-

parison shows the ability of our spectral model not only in dealing with differing

isotopologues but also in the accurate reproduction of spectra from very different

plasma conditions; one, the BeD spectrum, is in a LTE like environment; two, the

BeH spectrum, is very much in a non–LTE environment.

3.4.1 BeH Hollow Cathode Discharge Spectrum

Experimental BeH spectrum was supplied by a collaborator Sebastijan Brezinsek at

Institut für Energie und Klimaforschung Plasmaphysik Forschungszentrum Jülich
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Table 3.9: Comparison of excitation energies as a function of vibrational quanta, v, com-
puted with Duo and obtained by MARVEL for: BeH and BeD A 2Π+ at J=1.5,
Ω = 0.5, parity = +; BeT A Π+ at J=2.5, Ω = 0.5, parity = -.

v A 2Π

BeH BeD BeT
Duo MARVEL Duo MARVEL Duo MARVEL

0 20050.8587 20092.2658 20048.3803 20071.3872 20089.3230 20090.7
1 22056.7376 22097.0590 21552.7700 21575.8314 21378.1542
2 23978.5785 24017.3355 23011.6534 23034.2030 22634.0613
3 25813.4908 25850.6970 24423.8044 24445.6549 23856.2579
4 27558.2734 27594.5151 25788.0151 25043.9940
5 29208.9935 29243.2969 27102.9758 26196.4966
6 30760.6586 30793.4022 28367.1779 27312.9196
7 32206.9278 29578.8347 28392.3027
8 33539.8057 30735.8129 29433.5357
9 34749.2511 31835.5682 30435.3273
10 35822.6125 32875.0780 31396.1765
11 36743.7529 33850.7620 32314.3426
12 37491.6119 34758.3833 33187.8099
13 38037.6829 35592.9147 34014.2541
14 38341.2611 36348.3556 34790.9884
15 37017.4704 35514.9038
16 37591.4032 36182.3870
17 38059.0891 36789.2084
18 38406.3136 37330.3688
19 38614.1568 37799.8866
20 38190.4670
21 38493.0018
22 38695.7499
23 38779.4876

GmbH Wilhelm-Johnen-Straße. This spectrum was recorded using a high resolu-

tion visible spectrometer, in cross-dispersion arrangement (grating and prism) cov-

ering the spectral range between 373 nm and 680 nm simultaneously in more than

50 orders with an almost constant resolving power of l/DL ≈ 20000, as show by

Brezinsek et al. (2008). In the spectral range of interest the spectrometer’s instru-

ment function is w ≈ 1.5 Å ( ≈ 0.6 cm−1). The spectral source was a beryllium

hollow-cathode discharge lamp with a neon/hydrogen mixture as a working gas.

Inside the lamp, the metallic Be target plate is biased, resulting in it being bom-

barded by the impurity ions with Be being sputtered, either as Be or BeHX . The

current and voltage can be varied changing the plasma characteristics as well as the

impact energy of the impinging ions. The released Be or BeH is then excited by
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Table 3.10: Section of the states file produced by Duo for BeH with column format expla-
nation.

1 2 3 4 5 6 7 8 9 10 11
n E m J P+/− Pe/ f State v Λ Σ Ω

1 0 16 0.5 + e X2Sigma+ 0 0 0.5 0.5
2 1986.305446 16 0.5 + e X2Sigma+ 1 0 0.5 0.5
3 3896.800417 16 0.5 + e X2Sigma+ 2 0 0.5 0.5
4 5729.271094 16 0.5 + e X2Sigma+ 3 0 0.5 0.5
5 7480.45445 16 0.5 + e X2Sigma+ 4 0 0.5 0.5
6 9145.422113 16 0.5 + e X2Sigma+ 5 0 0.5 0.5
7 10716.677675 16 0.5 + e X2Sigma+ 6 0 0.5 0.5
8 12182.709789 16 0.5 + e X2Sigma+ 7 0 0.5 0.5
9 13525.549349 16 0.5 + e X2Sigma+ 8 0 0.5 0.5

10 14716.276652 16 0.5 + e X2Sigma+ 9 0 0.5 0.5
Column Notation

1 n Rovibronic counting number.
2 E Energy of rovibronic state relative to ground state (cm−1).
3 m multiplicity, including nuclear spin degeneracy.
4 J Total angular momentum quantum number.
5 P+/− Parity in +/- notation.
6 Pe/ f Parity in e/f notation.
7 State Electronic state.
8 v Vibrational quantum number.
9 Λ Projection of electronic orbital angular momentum quantum number.

10 Σ Projection of electron spin angular momentum quantum number.
11 Ω Projection of total electronic angular momentum quantum number

Table 3.11: Section of the trans file produced by Duo for BeH with column format expla-
nation.

1 2 3 4
n′′ n′ A ṽ
71 1 4.58E-10 16933.174781
89 1 5.63E-02 38037.68383
65 1 8.17E-11 16699.528089
58 1 2.58E-07 12198.141744
95 1 6.48E-03 38492.659618
83 1 1.95E-01 32206.945906
51 1 1.12E-09 20.326390

Column Notation
1 n′ Initial rovibronic state number, see table 3.10
2 n′′ Final rovibronic state number, see table 3.10
3 A Eisenstein A-coefficient (s−1).
4 ṽ Transition wavenumber (cm−1).
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electron impact leading to the emission of Be I, Be II as well as BeH light. Figure

3.18 shows the experimental spectrum of the BeH A – X transition as well as the

best-fitting simulated spectrum. After fitting the experimental spectrum with an as-

signed synthetic spectrum we can rescale the whole thing to the absolute intensity

of the cross-section from the theoretical calculation, allowing estimations of further

parameters and inferences about the plasma conditions to be made.

3.4.2 BeD JET edge emission spectra

An experimental BeD A – X spectrum was measured in four consecutive (92493 -

92496) JET 2.4 T, 2.0 MA D discharges, figure 3.20a, with comparable conditions

during the limiter phase (Fundamenski 2008) of the pulse at 4.7 – 5.1 s. During

this time, the plasma was limited by the inner poloidal Be limiter and the inter-

action of the D plasma with the limiter led to the release of BeD molecules with

the subsequent emission of BeD radiation from this region. This can be seen in

the bottom trace of figure 3.20a which is very low around the time our spectra

was being recorded, and goes to zero around ≈ 46 s. The four consecutive pulses

were used to step through the spectral range of interest while maintaining similar

plasma conditions and was necessary as the range of the high resolution spectrom-

eter was approximately one quarter the range of the whole emission region of inter-

est. The spectrum was recorded with a high resolution visible spectrometer (known

locally as KS3), a 1 m Czerny-Turner configuration with a grating ruled with 1800

lines/mm (Czerny and Turner 1930), which directly observed the low density edge

plasma close to the inner poloidal limiter along the LOS shown in figure 3.20b. In

the spectral range of interest the spectrometer’s instrument function is w ≈ 1.5 Å (

≈ 0.6 cm−1). The four consecutive discharges were chosen to form a joined image,

see figure 3.21, with comparable plasma conditions as well as assumed comparable

rovibrational populations. After fitting the experimental spectrum with an assigned

synthetic spectrum we can apply the same re-scaling, back to the absolute intensity

of the theoretical spectrum, can be applied.
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3.5 Spectral Analysis
The final step in generating an assigned synthetic spectra is performed using a pro-

gram called ExoCross (Yurchenko et al. 2018). ExoCross produces cross-sections

for the absorption or emission of photons by molecules. It uses rotational, vibra-

tional and electronic temperatures to produce a statistical (Boltzmann) population

model as given in equation 2.3.1

In taking different rotational, vibrational and electronic temperatures ExoCross

allows us to more accurately fit non-LTE spectra. This procedure is useful in the

case where LTE has not been reached by the molecule producing the spectra. In

such an instance the different spacing between electronic, vibrational, and rotational

energy levels means that they adapt to changing temperatures and plasma conditions

at different rates. In the cases discussed here the necessary time to reach equilibrium

is too long and the plasma density too low for LTE conditions.

The ExoCross calculation is repeated for rotational and vibrational tempera-

tures varying independently from 500 K to 10000 K.

3.5.1 BeH Analysis

Figures 3.18 and 3.19 compare experimental BeH spectra with the theoretical spec-

tra generated by the computational methods described in section 2.3. An invasive

H-atom line, Hβ , is marked in Figure 3.18; this region was excluded from the tem-

perature fitting procedure in diffspec as described above. The best fit temperature

for this spectra has Trot = (540± 70) K and Tvib = (3300± 300) K meaning that

the emission is from a non– LTE plasma. The fitting metric for this combination of

rotational and vibrational temperatures = 0.208. Uncertainties were obtained from

the greatest variation in temperature within 10% increase of the metric. The ex-

treme difference between the vibrational and rotational temperatures is a product

of the method by which the spectrum was produced. The need for a much higher

vibrational temperature is illustrated by the presence of the 1 – 1 vibrational band

head around 20050 cm−1 in Figure 3.18 which is absent for Tvib = Trot = 540 K.

This would be the spectrum of BeH in LTE at 540 K and it clearly shows all of the

primary peaks, that is all the transitions from fundamental vibrational quanta v′ = 0
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to v′′ = 0. What is missing are all the lower intensity peaks which are produced

by transitions from higher vibrational states. When the vibrational temperature is

brought up to the best fit temperature of 3300 K the lower intensity, higher vibra-

tional, components of the spectrum are brought sharply into alignment with the

experimentally observed spectrum.

The degree of matching to the experimental spectra is highlighted by the close–

up view of the R-branch shown in Figure 3.19. The transition assignment labels here

show how the vibrational quanta v′ = 0 – v′′ = 0 transitions are more intense and

those of higher vibrational quanta are lower in intensity. The assignments show in

order left to right: v′ = upper state vibrational quantum number, N′ = upper state

nuclear rotational quantum number, v′′ = lower state vibrational quantum number,

N′′ = lower state nuclear rotational quantum number. The heights of the transition

lines in this figure are proportional to the A-values of the transitions not to the tran-

sition intensities. Hence, these lines do not necessarily correspond one to one to the

height of the peaks in the synthetic spectrum which are dependent on temperature

based populations, see equation (2.3.1), as well as A-values.

3.5.2 BeD Analysis

A match was made between the experimental BeD spectrum from JET and a the-

oretical spectrum by varying the vibrational and rotational temperatures. Figure

3.21 shows an assigned synthetic spectrum generated at Trot = (3800±700) K and

Tvib = (4700± 800) K using our BeD line list. The fitting metric for this combi-

nation of rotational and vibrational temperatures = 0.254. Uncertainties were ob-

tained from the greatest variation in temperature within 10% increase of the metric.

This combination of experimental BeD spectra has also been fitted assuming LTE

(Trot = Tvib). This gave a result of Trot = Tvib = (4300± 600) K with the fitting

metric = 0.274. This temperature fitting was also repeated while excluding the vi-

brational 0 – 0 band head for both non– LTE and LTE assumptions. This gave a

result of Trot = (4100±700) K and Tvib = (4700±800) K for non–LTE with the fit-

ting metric = 0.236 and Trot = Tvib = (4400±600) K for LTE with the fitting metric

= 0.252.
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The vibrational and rotational temperatures fitted to the joined spectrum for

BeD are much closer than in the BeH spectrum above, meaning that, after allowing

for uncertainties, the plasma conditions were in fact consistent with LTE conditions.

There are four features, around ≈ 20000 cm−1 in the JET spectra which are not re-

produced in the synthetic spectrum. These are invasive features from other species,

two being impurity lines of remaining nitrogen in the plasma.

Figure 3.22 shows a close up section of the Q–branch with black drop lines at

every transition energy in the region. This figure demonstrates the high degree of

accuracy present across the range of these calculations.

Duxbury et al. (1998) showed fits for several molecular features in JET spectra

including a BeD spectrum of the A to X transition. They fit a synthetic spectrum

to an observed spectrum, which is generated using molecular constants. These con-

stants are only valid for each isotopologue individually. By visual comparison, our

work shows an improvement in both line positions and intensities.

3.5.3 BeT Predictions

Figure 3.23 shows a predicted synthetic spectrum of the A – X transition of BeT.

The rotational and vibrational temperatures used to generate this spectrum are those

found for BeD in the JET discharges discussed before. This is the BeT rovibronic

spectrum expected to be observed in JET during a pure tritium campaign in dis-

charges similar to those in which the BeD spectra were observed. The degree of

accuracy in the results for BeT, and any isotopologue of BeH, is expected to be

as seen in Figure 3.19 for BeD. This will be compared with future JET and ITER

spectra with their D/T fuel mix.

[h]
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3.6 Other Molecules
This section briefly discusses the results from the auxiliary parts of this project

performed either as outreach or in which I played an assisting role.

3.6.1 R-matrix electron collision calculations with He+2
The first work to mention in brief is that performed by Michel Epée Epée during his

time at UCL, visiting from the University of Douala in Cameroon. While he was at

UCL I assisted Michel in the use of the UKRMol suite of R-matrix codes to obtain

results for electron scattering with He+2 .

The aim of these calculations was an investigation of the resonant and bound

states of He2 and these findings were subsequently published (Epée Epée et al.

2017). The result of these calculations show an improvement over the previous

work in the area by Royal and Orel (2005). These results will be used as input for

dissociate recombination calculations.

3.6.2 MARVEL analysis of 14NH

This work, now published, was carried out mostly as part of an outreach program

called ORBYTS (Sousa-Silva et al. 2018) which is linked to the upcoming TWIN-

KLE satellite mission (Tessenyi et al. 2015). This program is utilised at secondary

schools in which a PhD student takes the role of tutor and along with a team of

junior scientists from among the scientifically gifted students at the school embark

on a research project.

Here I was the tutor, the school was Preston Manor High School and the five

students are all named authors on the paper labelled as submitted to the Journal of

Molecular Spectroscopy on the publications list (page 3) at the beginning of this

thesis; student authors are from the second to sixth authors listed. The project was

to conduct a literature survey of the experimental transition data for the molecule
14NH, to extract this data and uniformly format it into a spreadsheet and finally to

run this data through the MARVEL program.

There was a significant quantity of data for this molecule and the students

did a good job extracting most of it from the literature. After the student side of
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the program there was still a significant amount of work necessary to make a final

collation of all the data gathered, in which the main work was done by myself and

my supervisor, Jonathan Tennyson. There was also additional data provided by

collaborators on the paper, Peter Bernath and Roland Tóbiás, and also contributions

from the authors of the MARVEL code, Tibor Furtenbacher and Atilla G. Császár.



Chapter 4

Conclusions

4.1 R-Matrix Electron Collision Calculations

I have performed R-matrix calculations of elastic and inelastic electron collisions

with BeH using scattering models ranging from static-exchange to full configura-

tion interaction. This work is the first application of the new set of UKRMol+

R-matrix codes which use a mixed B-spline/Gaussian basis for the continuum. The

new suite has allowed us to use a large R-matrix radius of 35 Bohr without compro-

mising the quality of the continuum description thus enabling the use of a diffuse

atomic basis to represent accurately electronic states of the target molecule. The

vertical excitation energies and the properties of the low-lying electronic states (up

to 6.5 eV) are in excellent agreement with experiment and high-level electronic

structure calculations. A careful comparison of the scattering results obtained with

the new UKRMol+ and the old UKRMol codes has been done to verify the validity

and accuracy of the new code.

Full configuration interaction models have been used to calculate elastic and

electron impact electronic excitation cross sections using more accurate models than

in the previous studies. This includes a correct treatment of the Born correction for

the inelastic cross section. We demonstrate the importance of the Born correction

for this system and in particular for the cross section for electron impact excitation

of the lowest-lying excited state A 2Π. It is radiative emissions from this state

that have been observed in fusion plasmas and we find that this cross section was



4.2. Spectra Modelling 117

significantly underestimated in the only previous R-matrix study. I also found and

characterised several electron resonances which appear below 8 eV and enhance

both the elastic and inelastic cross sections.

4.1.1 Multi–Geometry Calculations and Vibrational Averaging

These R-matrix calculations have been completed over a range of geometries and

the resultant calculations have given a very robust test of the new UKRMol+ suite of

codes including the MPI implementation of scatci (Al-Refaie and Tennyson 2017).

This involved thousands of hours in wall clock time to compute and approximately

30,000 hours of CPU time to complete. The multi geometry results show smoothly

varying cross–sections with geometry, see figure 3.8, attesting to the reliability of

these calculations.

Though the multi-geometry data is of interest by itself, and has been requested

by colleagues working on scattering problems involving BeH−, to us it is mostly of

interest in forming the vibrationally resolved results.

The vibronic results from this work have given some interesting, and even

surprising results. Initially the quasi–FCF results are not unexpected, just providing

cross-sections varying with the FCFs. The novel part of the quasi–FCF model is

the application of Born corrections, which, considering the significant values of

the vibrational dipoles, makes a significant impact. The surprising results really

come form the full multi–geometry vibrationally averaged model in which it can be

seen that the largest vibronic components of the cross-sections are not as the FCFs

predicted to be the ∆v = 0 components but rather seem to be the ∆v = 1 components

in many cases as seen in figure 3.12.

4.2 Spectra Modelling
I have constructed line lists for the species BeH, BeD and BeT by using a mixture of

fits to empirical energy levels to obtain PECs, coupling terms and BOB corrections.

It was concluded from a comparison of a synthetic spectrum fitted to experimental

BeH and BeD spectra that our line lists reproduce the spectra of BeH, BeD and BeT

to good accuracy. This accuracy is shown in Figures 3.19 and 3.22 and is assured
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for BeT by the isotopologue consistency of our model. The comparisons show

discrepancies in the intensities, for example, in the case of the BeD spectrum mostly

seen in the Q-branch v = 0 – 0 band head. In the synthetic spectrum, the rotational

temperature is too high to match this band head, which increases in relative intensity

with decreasing rotational temperature.

There are two possible explanations for this issue: firstly the theoretical model

uses a statistical population model, which assumes a thermal equilibrium; the sec-

ond possibility is that the line of sight for the experimental spectrum passes through

different temperature regions, all radiating and giving a cumulative result. The first

of these issues will be addressed in a future publication (Darby-Lewis et al. 2019)

by introducing a full collisional–radiative population model utilising vibrationally

averaged R-Matrix results from the calculations of Darby-Lewis et al. (2017) ex-

tended over bond lengths. The issue with the line of sight can be solved with a line

of sight integration calculation applied to the results of the full population model.

A possible third explanation is self absorption but given the very thin (less than

1 cm) layer of plasma containing BeD in the limiter region observed this is not

thought to be able to significantly contribute to the effect seen on the 0 – 0 vibra-

tional band head. This assumption will be tested in future work when we include a

full collisional–radiative population model.

Finally in a comparison with the previous work on BeD spectra modelling at

JET by Duxbury et al. (1998) we conclude that a more accurate and more com-

prehensive model has been achieved for two reasons. Firstly, the accuracy of the

transition frequency fitting is much increased in our work. Secondly, our model

is built using a single dataset derived from all the experimental transition data to

model the three isotopologues. Not only does this improve the accuracy of the

model, but it also enables accurate predictions to be made for the sparsely observed

BeT isotopologue.

This work is an important step forward in providing high accuracy theoretical

data necessary in fusion applications, especially that required by modellers at JET.

Further work will focus on scattering calculations for a range of bond lengths which



4.3. Future Work 119

will be used to produce vibrationally-resolved excitation cross sections.

4.3 Future Work
Most of the future work resulting from this project is expected to be computational,

involving the programs developed and data calculated. The data provided will be

used in a future publication to build an electron collisional radiative model (see

below). The code for vibrational averaging is available from the UK-AMOR repos-

itory (UKA) and can be used as a method for obtaining vibronic electron collisional

data in conjunction with the UKRMol/UKRMol+ suites.

However there is also a portion of work planned being carried at JET with

the start of a new campaign which is experimental. The observation of BeD2 is

planned using a small survey spectrometer, through a quartz port window and a UV

optimised fibre. This new spectrometer is now in place and has begun recording

data. Preliminary calculations were done predicting the position of the GS to first

excited state transition spectrum and the observational region in the UV was planned

based on these predictions. What is still needed here is a spectral model of BeD2,

and its isotopologue, in the UV as this is still unknown.

4.3.1 Electron Collisional Radiative Model

The most important follow up to the work presented in this thesis is the final applica-

tion of the multi-geometry vibrationally averaged R-matrix cross–sections to a full

electron collisional radiative model. This work is planned for a future publication

which will include: (1) the multi-geometry R-matrix results; (2) the vibronically

resolved R-matrix results with (2.a) the vibrationally averaged R-matrix results in

comparison to (2.b) the quasi–FCF single geometry results; (3) the transition rates

as calculated from the convolution of the cross-sections with a Maxwell–Boltzmann

distribution of electron energies as a function of electron temperature; (4) the com-

bination of these rates with the Einstein A-value rates from the spectral modelling

phase of this work into a total radiative collisional model; (5) the comparison of

the spectral predictions of these calculation in contrast to the previous theoretical

spectra produced using vibrational and rotational temperature fitting.
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Most of the work planned for this future publication is already completed and

what remains is the calculation of rates, the production of a collisional radiative

model and the generation and fitting of theoretical to experimental spectra. This

final phase represents the combination of the two main branches of work in this

project, the vibrationally averaged R-matrix calculations feeding into a spectral

model through collisional radiative modelling providing, hopefully, better synthetic

spectra fittings with more useful information to JET plasma modellers.
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Zdenek Mašı́n. The UKRMol+ codes, 2017.


	Acronyms
	Glossary
	Introduction
	Data For Nuclear Fusion
	R-Matrix
	Vibrational Resolution

	Spectral Modelling
	Data and Code Storage and Availability
	Experimental Work at JET

	Theory
	Molecular Structure
	Molecular basis sets: atomic one-electron wavefunctions
	Molecular orbitals: one-electron wavefunctions
	Molecular states: multi-electron wavefunctions
	The Hartree-Fock Method
	Multi-Slater Determinant Methods
	(Frozen Core) Full Configuration Interaction Methods
	Electronic Structure Constraints
	Potential Energy Curves
	Nuclear Motion Calculations
	Born-Oppenheimer breakdown

	R-Matrix Method
	Inner Region
	R-matrix Boundary
	Outer Region
	Scattering models
	Representation of the continuum
	Structure of the UKRMol+ Inner Region Codes
	Structure of the UKRMol+ Outer Region Codes
	Vibrational Resolution
	Franck-Condon Factor Method

	Vibrational Wavefunction Averaging
	Born correction and Principal of Detailed Balance and Extrapolation

	Spectral Modelling
	MARVEL
	Duo
	Exocross
	Program: diffspec


	Results
	R-Matrix
	Equilibrium Geometry
	Target Model Comparisons
	Scattering models for GTO-only UKRMol calculations
	Scattering models for GTO/BTO UKRMol+ calculations
	Scattering Results

	Multi Geometry

	Vibrational Resolution
	Quasi-Franck-Condon Factor Model
	Multi Geometry Data Model

	Spectral Modelling
	MARVEL
	Duo

	Experimental Comparison
	BeH Hollow Cathode Discharge Spectrum
	BeD JET edge emission spectra

	Spectral Analysis
	BeH Analysis
	BeD Analysis
	BeT Predictions

	Other Molecules
	R-matrix electron collision calculations with He2+
	MARVEL analysis of 14NH


	Conclusions
	R-Matrix Electron Collision Calculations
	Multi–Geometry Calculations and Vibrational Averaging

	Spectra Modelling
	Future Work
	Electron Collisional Radiative Model


	Bibliography

