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Abstract We describe a new method of constructing an equilibrium magnetopause surface based on
the pressure balance between external and internal pressure sources. Details are given for every step
of the procedure, including the initial pressure balance condition (which determines magnetopause
morphology), the related underlying assumptions, and the final optimized magnetopause surface. Our
method produces a final equilibrium magnetopause surface that satisfies the local balance between the
solar wind dynamic pressure and planetary magnetic pressure with an error no greater than 1%. We
also discuss the contribution of hot plasma pressure and equatorial ring currents and their effects on
magnetopause morphology. For each optimized magnetopause boundary, we give coefficients for fitted
polynomial approximations to allow simple and accurate reproductions for practical applications. We
specifically discuss the potential application to the modeling of Saturn's magnetopause and describe how
the equilibrium magnetopause model can be used to estimate the compressibility of the boundary.

1. Introduction
The magnetopause is the boundary enclosing the magnetosphere of a magnetized body which separates it
from the solar wind plasma. Its structure is inherently described by the interaction between the incident
solar wind and internal pressure sources linked to the planetary magnetic and plasma environment.

The shape of this magnetic envelope is difficult to predict, as the detailed magnetic configuration close
to a planet stems from an interplay of both internal and external magnetic fields and charged particles.
Local or external sources of plasma, for example, may lead to magnetic contributions comparable to those
of fields generated in the planet's interior or of solar origin. Thus, not only is the magnetopause sur-
face system-dependent, it is also continuously accelerated due to the highly dynamic nature of these local
pressure sources (Kaufmann & Konradi, 1969; Escoubet et al., 2013, 2015).

This dynamical behavior is largely governed by the magnetosphere trying to establish an equilibrium, or
balance, between the internal and external sources of pressure. A static magnetopause surface at exact pres-
sure balance could be considered as a good approximation of the boundary during “quiet times.” Predicting
its shape would help in understanding the general behavior of the magnetopause, as well as its local struc-
ture and dynamics under different regimes of exterior/interior pressure. It could also be a powerful tool for
auroral studies and solar wind pressure estimation.

A self-consistent model for such an equilibrium magnetopause was first developed by Mead and Beard
(1964): Using a dipolar planetary field, the pressure balance in this study was solved, moving radially from
the subsolar nose and using a mix of discretization and extrapolation methods. The surface was then cor-
rected by iterative computations of the shielding field associated with the magnetopause surface currents.
Since then, several studies have aimed at determining the equilibrium surface under the introduction of
diverse current systems (Maurice & Engle, 1995; Sotirelis & Meng, 1999; Zaharia et al., 2004).

Observations from the Saturn orbiter Cassini have recently motivated more empirical studies and model-
ing approaches of a planetary magnetopause. In the absence of an upstream solar-wind monitor, observed
magnetopause crossings were used to model the shape of the boundary including variable solar wind pres-
sure (Arridge et al., 2006; Kanani et al., 2010) and the behavior of the surface in response to variations in the
internal plasma pressure distributions (Achilleos et al., 2010; Pilkington et al., 2014; Sorba et al., 2017). This
latter effect was shown to have significant large-scale effects on the size and shape of Saturn's magnetopause
(Pilkington et al., 2015).
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This work describes the first steps toward a new numerical framework aiming at delivering a comprehensive
theoretical model of Saturn's magnetopause. It is based on a modern take on self-consistent methods while
also making use of the recent work and models developed using the data from the Cassini mission. The
outlined method introduces new ways to account for different magnetic and pressure contributions—such
as pressure resulting from hot plasma sources or the interplanetary magnetic field (IMF)—and presents
efficient ways to compute, visualize, and assess equilibrium magnetopause boundaries.

Section 2 will define the magnetopause using the criterion of local pressure balance before introducing our
numerical scheme. Section 3 will then describe how an equilibrium, field-dominated surface can be obtained
using an initial guess surface which is constrained by specific profiles in the equatorial and noon-midnight
meridian planes. Finally, in section 4, we will discuss potential future applications to Saturn's magnetopause
by considering the separate introductions of hot plasma pressure and equatorial ring currents in the model.

2. Magnetopause Definition Using Local Pressure Balance
2.1. Local Solar Wind-Planetary Field Interactions
At Earth, the shape of the magnetopause boundary is mainly governed by the local pressure balance between
the solar wind ram pressure and the magnetic pressure due to the dipole-like contribution of the intrin-
sic planetary field. This is not always the case in the vicinity of the gas giants Saturn and Jupiter, since
their magnetospheres are strongly influenced by significant internal plasma populations. The correspond-
ing additional plasma pressure has been shown to displace the magnetopause by up to 10–15 planetary radii
at constant solar wind dynamic pressure for the case of Saturn (Pilkington et al., 2015). In a plasma-depleted
state in which the magnetosphere is compressed toward the planet, however, the planetary contribution to
the interior field may dominate (Arridge et al., 2008; Sorba et al., 2017). The magnetopause boundary would
then be described by interactions similar to that of the Earth.

This section will study magnetopause equilibrium by focusing on the interior contribution of the planetary
magnetic field. Further account for internal plasma pressure distribution, for example, will be considered in
the rest of the paper and future work. In the next section, we will explain how this method can be adapted
to describe more complete interactions.

Let us start by considering the following pressure balance equation

𝜌v2
⟂ =

B2
tot||

2𝜇0
, (1)

where 𝜌 denotes the solar wind mass density, and v⟂ the locally normal component of the solar wind velocity
vector v onto the magnetopause surface. On the right-hand side, 𝜇0 is the vacuum permeability and Btot||
is the tangential component of the total interior magnetic field Btot at the boundary. This local equation
implicitly defines the morphology of the equilibrium magnetopause surface.

By introducing the unit vector n̂ locally normal to the surface and pointing outward, this relation can be
written as

2𝜇0𝜌(v · n̂)2 = ‖‖n̂ ∧ Btot
‖‖2
. (2)

A comparison of the validity of this pressure balance equation with the one from Petrinec and Russell (1997)
can be found in section A.1. The total internal magnetic field Btot may be expressed as (Mead & Beard, 1964)

Btot = Bplanet + Bfringing , (3)

where

• Bplanet is the intrinsic magnetic field of the planet.
• Bfringing denotes the shielding field produced by the currents flowing onto the surface consistent with the

discontinuity of the parallel component of the field at the boundary. It can be expressed as the sum of a
surface current planar field Bp and a curvature field Bc, leading to

Btot = Bplanet + Bp + Bc . (4)
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Similarly to Mead and Beard (1964), assuming an infinitesimally thin surface boundary, the field just outside
of the magnetopause can then be considered as

Bout = Bplanet + Bc − Bp = BIMF , (5)

with BIMF being the interplanetary field. Using equations (4) and (5), the total interior field can be expressed
as

Btot = 2
(

Bplanet + Bc
)
− BIMF . (6)

This equation differs from Mead and Beard's (1964) in its inclusion of the IMF BIMF, as there was a paucity
of IMF data in the 1960s, in the early days of the Mariner program.

Assuming a typical value of BIMF ≈ 1 nT at Saturn, the contribution of the interplanetary field might initially
be considered negligible when compared to the incident solar wind pressure. At points where the boundary
is practically tangential to the solar wind flow, however, it may lead to a measurable effect on the shape of
the surface. Such introduction of the IMF in the pressure balance will be considered in future work, but it
has been neglected in this study.

Additionally, the curvature field Bc can be computed iteratively starting from a first optimized surface, as
described by Mead and Beard (1964). Though its contribution can lead to a potentially useful model for the
total interior field by canceling the normal component to the surface, its influence on the position of the
magnetopause boundary has been shown to not be particularly significant (Mead & Beard, 1964). In this first
step, we thus consider Bc = 0; this remains a reasonable approach since we consider the tangential compo-
nent of the internal field in the initial pressure balance described by equation (1). The full contribution of
the fringing field will be introduced in future work and is discussed in section 4.3.

These considerations lead to

2𝜇0𝜌(v · n̂)2 = 4‖‖‖n̂ ∧ B planet
‖‖‖2

; (7)

let us introduce the following scaling factors:

• a magnetic scaling factor

b0 =
√

2𝜇0𝜌v2 ; (8)

• a unit of distance

r0 = Rp

(
2B2

equ

𝜇0𝜌v2

) 1
6

, (9)

corresponding to the location of the subsolar point. Bequ and Rp denote the planet's equatorial surface field
and radius, respectively.

By dividing both sides of equation (7) by b0, the balance between the solar wind dynamic pressure and the
magnetic pressure at the magnetopause boundary can be described by the dimensionless equation

‖‖‖ n̂ ∧ B∗
planet

‖‖‖ − (
−1

2
n̂ · v̂

)
= 0 , (10)

where the hat symbol indicates unit vectors, and the asterisk normalized variables. As illustrated in Figure 1,
the solar wind velocity vector v is chosen to be normal to the planetary magnetic moment, in the opposite
direction of the Z axis. Detailed expressions for the vectors can be found in section A.2.

From this point on, unless stated otherwise, we will work with the dimensionless pressure balance equation,
equation (10), and the hat and asterisk symbols will be omitted. The term on the left of the minus sign
corresponds to a scaled magnetic pressure, and the term in brackets linked to a scaled solar wind dynamic
pressure. The following subsection describes how this pressure balance equation can be solved numerically
using the method of finite differences.
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Figure 1. Cartoon illustrating the spherical coordinate system (r, 𝜃, 𝜙) used to locate a point on the magnetopause
surface. The red arrow M represents the magnetic moment of the planet and points in the negative Y direction; the Z
axis points toward the Sun, and the X axis completes the coordinate system.

2.2. Discretized Problem and Finite-Difference Approach
Using the spherical coordinates (r, 𝜃, 𝜙) illustrated in Figure 1, the pressure balance described in
equation (10) is discretized on the two-dimensional 𝜃×𝜙 grid shown in Figure 2. On every point of this grid,
we now wish to find the radial distance r at which the solar wind dynamic pressure balances the planetary
magnetic pressure.

This two-dimensional grid can be remapped into a long one-dimensional array in order to identify each point
of the grid by a single integer index k (see section A.3 for more details). The partial derivatives can now be
approximated using centered finite differences as follows: At a point of the grid designated by an integer k,

Figure 2. Cartoon of the two-dimensional grid on which a finite-difference scheme for equation (10) is expressed; the
five-point stencil is illustrated by the “cross” in the center of the grid. 𝜃max and 𝜙max were chosen to be 120◦ and 90◦,
respectively, and 𝛥𝜃 = 𝛥𝜙 = 0.5◦. The spherical coordinates r, 𝜃, and 𝜙 are the ones illustrated on Figure 1. Several
values of the single index k are shown in red and orange to depict the mapping between the 2-D and 1-D grids.
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Figure 3. Cartoon depicting the construction of the initial guess surface using solutions in the equatorial (orange
curve) and noon-midnight meridian (green curve) planes. The blue dotted lines indicate the elliptical cross sections,
the red arrow the planetary magnetic moment, and v the solar wind flow. The “quadrant” of surface shown above is
used to construct the full initial guess by assuming north-south and dawn-dusk symmetries.

(
𝜕r
𝜕𝜃

)
=

r(k + N𝜙) − r(k − N𝜙)
2Δ𝜃

+ (Δ𝜃)2 , (11)

(
𝜕r
𝜕𝜙

)
= r(k + 1) − r(k − 1)

2Δ𝜙
+ (Δ𝜙)2 , (12)

where N𝜙 is the maximum extension of the corresponding 2-D grid in the 𝜙 direction. Equivalently, N𝜃 will
be used to describe the maximum extension of the grid in the 𝜃 direction.

Using these finite difference approximations in equations (A6)–(A8), equation (10) can now be expressed
as a set of algebraic pressure balance relations (k), one for each point of the grid: ∀k ∈ [1;N𝜃N𝜙],

k

(
rk, rk+N𝜙 , rk−N𝜙 , rk+1, rk−1, 𝜃k, 𝜙k

)
= 0 . (13)

The specific expressions of each function k will depend on whether point k describes a point interior to the
grid, or in contact with one of its boundaries (see section A.3 for more details).

The discretized equilibrium magnetopause surface is now defined on the grid by the position vector solution
of the equation

𝓕(r) = 0 , (14)

where 𝓕 = (k) is the vector of local pressure balance relations on the grid and r = (rk) the vector of radial
position coordinates for points on the model magnetopause boundary.

The equilibrium surface can be found by solving equation (14) using numerical iterative methods: Starting
from an initial guess surface, the boundary is refined at every iteration by stepping in a direction inspired by
the Jacobian matrix J𝓕 (see section A.4 for more details), until it converges to the final equilibrium surface.

2.3. Construction of the Initial Guess Surface
The construction of the initial guess surface is illustrated in Figure 3 and relies on three steps:

1. In the equatorial plane, the pressure balance equation, equation (10), is solved explicitly starting from
the subsolar nose. Note that the pressure balance is exactly satisfied at the nose, through correct choice
of the stand-off distance.

2. We consider the noon-midnight meridian plane as the top boundary of the grid: This allows us to make
use of the inherent local symmetry of the magnetopause boundary and thus significantly reduces the
dimension of the problem. Additionally, this helps to prevent the characteristic singular structure of the
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Figure 4. Relative error from exact pressure balance on the initial guess surface: The color bar indicates the percentage
error using the indicator |ΔP| ∕ |⟨P⟩| defined in equation (15). The axes are scaled to the stand-off distance r0 defined in
equation (9). The planet is at the origin of the plot, the arrow indicating its magnetic moment. The bottom and top
boundaries—equatorial and noon-midnight meridian solutions, respectively—are illustrated by the orange and green
dotted curves projected onto the bottom and left planes. The cusp in the noon-midnight meridian plane leads to a
“joint” where the initial error peaks at around ≈ 50%.

surface close to the polar cusp. The position of the polar cusp was determined accurately by considering
the intersection of two branch solutions: one resulting from satisfying the pressure balance equation
starting from the subsolar nose and the other obtained similarly starting from the point on the surface
just above the planetary north pole. The method is briefly explained in section A.5 and will be detailed
in future work.

3. Finally, these two solution curves are used to generate elliptical cross sections for fixed values of 𝜃;
this procedure thus results in a quarter of a three-dimensional initial magnetopause guess. Along the
equatorial and noon-midnight profiles, we are making use of the surface symmetry by assuming 𝜕r

𝜕𝜙
= 0.

The full initial magnetopause guess surface is found after imposing consecutive north-south and dawn-dusk
symmetries. That surface is then iteratively adjusted to approach the local pressure balance at every point,
until it converges to the final equilibrium boundary.

3. A Dipole-Dominated Magnetopause
3.1. Analysis of the Initial Guess Surface
In order to evaluate the accuracy of the initial equilibrium magnetopause surface, we consider the local
value of the relative error defined by the ratio of the pressure difference 𝛥P between the interior and exterior,
to the local mean pressure ⟨P⟩: At a point k of the grid, the relative error then corresponds to||||ΔP⟨P⟩ |||| (k) , (15)

where ΔP =
(‖‖‖ n̂ ∧ B∗

planet
‖‖‖ − (

− 1
2

n̂ · v̂
))

denotes the local discretized pressure balance residual of

equation (13); ⟨P⟩ = 1
2

(‖‖‖ n̂ ∧ B∗
planet

‖‖‖ + (
− 1

2
n̂ · v̂

))
is the local average value of the solar wind and

magnetic pressure on each side of the boundary. The choice of using this estimate to assess the accuracy of
the surface differs from previous studies: Mead and Beard (1964), for example, considered how small the
exterior field was compared to the dipole field, or how tangential to the surface the interior field became
after introduction of the shielding field. The method we have described is extremely useful to visualize how
well each section of the surface quantitatively satisfies the pressure balance.

The relative error |ΔP| ∕ |⟨P⟩| on the initial guess surface is illustrated in Figure 4. By construction, the
surface already satisfies the pressure balance to a satisfactory precision around the subsolar nose area and
the equatorial and noon-midnight meridian planes.
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Figure 5. Relative error from exact pressure balance on the optimized magnetopause surface: The color bar indicates
the percentage of error using the indicator |ΔP| ∕ |⟨P⟩|) defined in equation (15); the black lines represent cross
sections of the surface with planes of constant Z values. The axes are scaled to the stand-off distance r0 defined in
equation (9). The planet is at the origin of the plot, the arrow indicating its magnetic moment. The bottom and top
boundaries—equatorial and noon-midnight meridian solutions, respectively—are illustrated by the orange and green
dotted curves projected onto the bottom and left planes. Some iso-𝜃 contours are shown in white on the surface.

There are four regions on the dayside in which the initial-guess boundary does not describe the pressure
balance accurately, with a relative error close to ≈ 50%. This is partly explained by the fact that these regions
intercept a comparatively small dynamic pressure from the solar wind flow due to the local curvature of the
surface, leading to small values of the mean pressure ⟨P⟩. They extend to a value of 𝜃 which corresponds to
the position of the cusp in the noon-midnight meridian plane.

We can then distinguish between two sections of the magnetopause surface: one section on the dayside
extending from the subsolar nose to the 𝜃 value of the polar cusp, where the relative error goes up to ≈ 50%,
and another “downstream” section corresponding to the rest of the surface, in which the initial percentage
error is of the order of the unity. These two sections will be respectively named the dayside cap and the tail
region.

3.2. Optimization Toward Pressure Balance
In order to reduce the size of the optimization problem and mitigate any error propagation in the derivative
approximations due to the singular nature of the polar cusp, the optimization of the initial guess surface was
done in three steps:

1. The magnetopause initial guess surface was cut at the 𝜃 value of the cusp to separate the dayside cap from
the tail region. The dayside cap was first adjusted to satisfy the local pressure balance at every point using
a Levenberg-Marquardt method (see section A.4 for more details).

2. The tail region was then corrected in the same way using the previous optimized surface to define its left
boundary, the downstream boundary of the cusp being used as the upstream boundary of the tail.

3. The two optimized sections were finally merged back together to form a final optimized equilibrium
boundary.

Using the Jacobian matrix (based on finite differences) defined in section A.4, the total optimization process
converges to a final equilibrium surface in 20 or so iterations. This occurs when the values of the residuals on
the surface become satisfyingly small; the stopping criterion is arbitrarily chosen as ‖𝓕(r)‖2 < 10−5 where
𝓕(r) is defined in equation (14) and ‖.‖2 is the Euclidean L2-norm.

3.3. Analysis of the Final Optimized Boundary
The local relative error from exact pressure balance on the final optimized surface is shown in Figure 5. We
can see that the adjustment of the initial surface was very efficient: At almost every point of the magne-
topause boundary, the difference between the solar wind dynamic pressure and the magnetic pressure does

HARDY ET AL. 7
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Figure 6. View of the equilibrium magnetopause surface from the Sun, each curve representing the cross section of the
boundary at constant values of 𝜃. 𝜌𝜃(𝜙) is the polar description of each curve corresponding to equation (16). The
planet is at the origin of the plot, the arrow indicating its magnetic moment. The color bar indicates the “depth” of the
surface—its position along the Z axis.

not exceed 1% of the local mean pressure. In particular, the method was particularly effective at correcting
the region on the dayside where the relative error was initially quite high (see Figure 4). Some numerical
artifacts can be seen on the final surface close to the polar cusp, but the corresponding numerical “jitter”
remains negligible when compared to the local curvature of the boundary.

In order to allow a simple and accurate construction of the equilibrium magnetopause surface, we performed
a least squares fit of polynomial descriptions for cross sections of the first quadrant of the optimized surface
at constant 𝜃. Looking at the planet from the position of the Sun, these curves, shown in Figure 6, can be
described by the radial distance from the Z axis 𝜌𝜃 = r sin 𝜃; this distance is expressed as a fourth-order
polynomial in 𝜙

𝜌𝜃 = r sin 𝜃 =
4∑

k=0
a𝜃,k𝜙k , (16)

where 𝜙 ∈ [0; 𝜋
2
] is expressed in radians, and the values of the polynomial coefficients a𝜃,k for different

angular positions 𝜃 are given in Table A1. The full surface can be obtained by building the first quadrant
using equation (16) and applying consecutive north-south and dawn-dusk symmetries.

4. Potential Applications and Refinements of the Model
4.1. Introduction of Interior Plasma Pressure
In order to assess in a simple way the effect of hot plasma pressure on the position of the magnetopause
surface, let us refine the initial equation (1) by considering the following pressure balance relation

𝜌v2
⟂ =

B2
tot||

2𝜇0
(1 + 𝛽) , (17)

where 𝛽 is the local ratio of the hot plasma pressure to magnetic pressure.

This new equation is, in effect, equivalent to a problem governed by the initial pressure balance equation
described in equation (1) where the initial stand-off distance r0 of equation (9) is replaced by an effective
value (1 + 𝛽)

1
6 r0. Because the work in the previous section was done with distances being scaled to the

position of the subsolar nose, the final equilibrium magnetopause boundary illustrated in Figure 5 is still
applicable to equation (17).

The hot plasma pressure thus contributes to inflating the “zero-𝛽” magnetopause surface by a factor of
(1 + 𝛽)

1
6 . Using the initial expression for the stand-off distance r0 given in equation (9), this corresponds to

HARDY ET AL. 8
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Figure 7. Inflation of Saturn's magnetopause due to hot plasma pressure as a function of plasma 𝛽—see equation (18).
The left axis is expressed in units of r0, which corresponds to the stand-off distance in the dipole dominated case
defined in equation (9); the right axis is expressed in units of Saturn's radius Rs. The green dotted lines correspond to
the means 20.7Rs and 27.1Rs for the bimodal distribution found by Pilkington et al. (2015) after fitting their model to
magnetopause crossing data. Small values of beta correspond to a plasma depleted state, and high beta values
correspond to a plasma loaded state in which the plasma pressure can dominate over the magnetic pressure.

a radial displacement 𝛥r of the magnetopause boundary of

Δr = r0

(
(1 + 𝛽)

1
6 − 1

)
≈ 17.8 Rs

(
(1 + 𝛽)

1
6 − 1

)
, (18)

for typical example values of the solar wind dynamic pressure and equatorial field for Saturn, Rs denoting
the planetary radius. The inflation of the boundary 𝛥r is plotted as a function of plasma 𝛽 in Figure 7; for
𝛽 = 3, for example, the magnetopause surface would be pushed outward by around 4.6 planetary radii. These
simple considerations produce similar 𝛥r values to the analogous observational and theoretical results of
Pilkington et al. (2015) and Sorba et al. (2017) for the Kronian magnetopause, respectively.

4.2. Modeling the Contribution of Equatorial Ring Currents and Estimating Magnetopause
Compressibility
At Saturn and Jupiter, the dynamics of the rapidly rotating magnetospheres are driven by internal sources
of plasma from the planetary moons Enceladus and Io. The material ejected by these satellites is partially
ionized, accelerated toward corotation with the ambient disk plasma, and confined toward the rotational
equator by the centrifugal force. The resulting plasma sheet and currents distort the field into a “disk-like”
structure known as a magnetodisk; it is characterized by field lines being stretched outward close to the
equatorial plane and is supported by an azimuthal ring current. The activity of this ring current is enhanced
by a population of hotter plasma originating from the outer magnetosphere (Sergis et al., 2007).

In order to model the position of a corresponding equilibrium magnetopause envelope, the local pressure
balance thus needs to account for the contribution of the magnetic field produced by this azimuthal ring
current. Work is currently being carried out to model the internal magnetodisk structure using Achilleos
et al., 2010's (2010) force balance model. For the present purposes, this is done by superposing the dipolar
(internal) planetary field and the field produced by a CAN-disk—in reference to Connerney, Acuña, Ness
(Connerney et al., 1981, 1983)—to consider the following pressure balance relation

𝜌v2
⟂ = 1

2𝜇0

||||||2 (Bplanet|| + Bdisk||)||||||2 (1 + 𝛽) , (19)

where Bplanet is the dipolar planetary field and Bdisk models the contribution of the equatorial ring current,
according to the formalism of the CAN model; the subscript || is used to denote the components of the
field tangential to the surface. The inner and outer radii were fixed to 8Rs and 15.5Rs, respectively, the disk
half-thickness to 3Rs and 𝜇0I0 to 60.4 nT (Connerney et al., 1983), Rs denoting the radius of Saturn.

Following the method described in sections 2 and 3, equation (19) was used to build the initial guess sur-
face illustrated in Figure 8; the surface was then iteratively corrected until it converged to the equilibrium

HARDY ET AL. 9
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Figure 8. Relative error from the pressure balance described in equation (19) on the initial guess surface: The color bar
indicates the percentage of error using the indicator |ΔP| ∕ |⟨P⟩| defined in equation (15). The axes are scaled to the
stand-off distance r0 in the dipole-dominated state, defined in equation (9). The planet is at the origin of the plot, the
arrow indicating its magnetic moment. The bottom and top boundaries—equatorial and noon-midnight meridian
solutions, respectively—are illustrated by the orange and green dotted curves projected onto the bottom and left planes.
The CAN disk structure used to model the azimuthal current contribution is shown around the magnetic axis; the
inner and outer radii were fixed to 8Rs and 15.5Rs, the disk half-thickness to 3Rs and 𝜇0I0 to 60.4 nT, with Rs denoting
the radius of Saturn. CAN = Connerney, Acuña, Ness.

boundary shown in Figure 9. As with the dipole-dominated surface obtained in section 3.2, least squares fits
of polynomial descriptions were performed for iso-𝜃 cross sections: The first quadrant of the final equilib-
rium surface can be constructed using the polynomials in equation (16), with the corresponding coefficients
listed in Table A2.

Figure 9. Relative error from the pressure balance described in equation (19) on the corrected surface: The color bar
indicates the percentage of error using the indicator |ΔP| ∕ |⟨P⟩| defined in equation (15). The axes are scaled to the
stand-off distance r0 in the dipole-dominated state, defined in equation (9). The planet is at the origin of the plot, the
arrow indicating its magnetic moment. The bottom and top boundaries—equatorial and noon-midnight meridian
solutions, respectively—are illustrated by the orange and green dotted curves projected onto the bottom and left planes.
The CAN disk structure used to model the azimuthal current contribution is shown around the magnetic axis; the
parameters used are the same as the ones of Figure 8. CAN = Connerney, Acuña, Ness.

HARDY ET AL. 10
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Figure 10. Determination of the compressibility parameter 𝛼 using
observed magnetopause crossings of the Cassini spacecraft and the
relationship RMP ∝ P−1∕𝛼

sw , RMP and Psw denoting the stand-off distance and
solar wind pressure, respectively. The crossings have been clustered in three
groups using a k-clustering algorithm, depending on their local values of
plasma 𝛽: 0 ≤ 𝛽 ≤ 2.41 in the dark blue cluster, 2.43 ≤ 𝛽 ≤ 6.67 in the
green-blue cluster, and 6.69 ≤ 𝛽 ≤ 14.45 in the yellow cluster. The average
compressibility parameter is found to be 𝛼 ≈ 5.2.

Using the final equilibrium surface found in section 3 corresponding to
a dipole-dominated case, we can estimate the equatorial “inflation” of
the boundary due to the CAN disk: The terminator has been displaced
by a distance 𝛥r0 ≈ 0.38 r0, with r0 denoting the value of the stand-off
distance in the purely dipolar case defined in equation (9). Similarly, the
positions of the boundary along the X axis and Y axis have been dis-
placed by a distance of 𝛥r0X ≈ 0.37 r0X and 𝛥r0Y ≈ 0.32 r0Y , r0X and r0Y
being the positions of the magnetopause along the X and Y axes in the
dipole-dominated case, respectively. The CAN disk has then led to an
inflation of the boundary by approximately 37% and 38% along the X and
Z axes in the equatorial plane and an inflation of around 32% along the Y
axis in the noon-midnight meridian plane.

It is also possible to assess the effect of the modeled ring currents on how
“compressed” the magnetopause is along the Y direction: The value of
the flattening parameter 𝜖 = r0Y

r0X
drops from 0.93 in the purely dipolar

case (corresponding to a flattening of ≈ 7%) to 0.90 with the modeled
magnetodisk structure (flattening of ≈ 10%). This is consistent with Pilk-
ington et al., 2014's (2014) treatment of in situ data obtained by the
Cassini spacecraft between 2007 and 2009, which indicates that the mag-
netopause boundary at Saturn is best described by a flattened surface
along the north-south direction. The value of the surface flattening found
by Pilkington et al. (2014) is, however, larger by a factor of 2—around
≈ 20%. This value corresponds to a simple dilation to an axisymmet-
ric magnetopause boundary along the north-south direction: Due to the
high concentration of low-latitude crossings in the data set, and since a

compressed boundary cannot describe the “flaring” of the surface downstream from the cusp, it seems rea-
sonable that we obtain a larger value for the flattening parameter 𝜖. Just upstream from the cusp, for example,
the flattening parameter takes a value of 𝜖 ≈ 0.81: This corresponds to a flattening of the boundary of ≈ 19%
and is consistent with Pilkington et al., 2014's (2014) treatment of Cassini data.

Now that the effects of internal plasma activity have been introduced in the model, the equilibrium surfaces
can also be used to estimate the compressibility of the magnetopause boundary at Saturn. The procedure
can be summarized as follows:

• Magnetopause crossings of the Cassini spacecraft are identified using the Electron Spectrometer sensor of
the Cassini Plasma Spectrometer instruments (Pilkington et al., 2015).

• At each crossing, measurements of the magnetic field strength and plasma activity are used alongside an
equilibrium magnetopause surface to estimate the local solar wind pressure Psw.

• Equilibrium boundaries are computed to “pass through” each crossing in order to estimate the correspond-
ing stand-off distances RMP.

• The compressibility parameter 𝛼 is considered to link the magnetospheric scale to the solar wind pressure
according to RMP ∝ P−1∕𝛼

sw ; a plot of log RMP with respect to log Psw is shown in Figure 10, with the crossings
being clustered depending on their values of plasma 𝛽. The average compressibility is found to be 𝛼 ≈ 5.2.

• In order to assess this value of the compressibility and visualize the corresponding response of the mag-
netopause boundary to changes in solar wind pressure, the magnetopause crossings can be scaled to a
reference pressure Pref by considering the scaled crossing positions

OMscaled = OMobserved

(
Pref

Psw

)−1∕𝛼

. (20)

The results are shown in Figure 11: most of the scaled crossings are seen to cluster around the equilibrium
surface, which seems to illustrate the validity of both the model—at least for a large part of the dayside
magnetopause—and its application to determining the compressibility at Saturn.

4.3. Toward the Computation of the Induced Shielding Field
The final equilibrium magnetopause boundary can be used to compute the shielding field induced by cur-
rents flowing onto the surface. Because the initial pressure balance equation already considers the tangential

HARDY ET AL. 11



Journal of Geophysical Research: Space Physics 10.1029/2019JA026751

Figure 11. Distances of nonscaled (a and c) and scaled (b and d) crossings from an equilibrium magnetopause surface.
The degree of scatter is similar to the residuals found when fitting purely empirical models (Arridge et al., 2006;
Pilkington et al., 2015). All the crossings with local plasma 𝛽 inferior to 15 were kept.

component of the interior field, the additional contribution of this magnetic field would only lead to small
corrections in the local magnetopause morphology, as shown by Mead and Beard (1964). However, introduc-
ing the shielding field would prove useful in correcting the interior field by canceling its normal component
to the boundary, thus leading to a model for the magnetospheric field consistent with the equilibrium mag-
netopause surface. The contribution of the shielding field will be presented in future work, but preliminary
studies show that its effect accounts for a displacement of the subsolar nose of the order of 10%.

5. Conclusion
The method described in this paper can be used to construct an equilibrium magnetopause boundary on
which the external and internal pressure sources are balanced. We explain how the local pressure balance
can be used to define the steady-state magnetopause as the solution of an optimization problem. We detail
the construction of an initial nonaxisymmetric boundary using solutions of the pressure balance at the
subsolar nose and along the equatorial and noon-midnight meridian planes.

A numerical scheme is implemented to correct the initial surface and obtain a final optimized magne-
topause surface that satisfies pressure equilibrium with a relative error inferior to 1%. In particular, the final
boundary allows a particularly novel and accurate description of the high-latitude structure close to the
polar cusp.
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We explain how the method can be refined with the introduction of hot plasma pressure and modeled con-
tributions of azimuthal ring currents. When applied to Saturn, the model is then shown to be in concordance
with results derived from Cassini magnetospheric data. We also describe how the equilibrium surfaces can
be used alongside observed magnetopause crossings to estimate local values of solar wind pressure and
the compressibility of the magnetopause boundary. Further refinements of the model—for example, the
inclusion of an “efficiency” fraction for the IMF contribution to the interior magnetospheric field model
(Alexeev & Belenkaya, 2005) and the modeling of the magnetopause oscillating effects due to corotating
partial ring currents evidenced by many Cassini-ENA measurements (Krimigis et al., 2007)—will be con-
sidered. The method lends itself well to 3-D visualizations of the optimized surface morphology and its
accuracy regarding exact pressure balance. Polynomial descriptions of surface contours are given to allow
simple and accurate constructions of the entire magnetopause boundary.

Appendix A
A.1. Describing the Local Pressure Balance
The model described in this paper makes use of the pressure balance equation, equation (1), assuming per-
fect elastic specular reflection of solar wind particles. A more detailed formalism, which accounts for effects
of magnetosheath plasma flow, could read (Petrinec & Russell, 1997)

Pext = KPswcos2𝜓 + P0sin2𝜓 = Pint , (A1)

where 𝜓 is the angle between the solar wind flow direction and the normal of the surface, P0 the static
thermal pressure, and K the coefficient accounting for the divergence of the incident magnetosheath flow.
The additional P0 term would only become important for values of 𝜓 satisfying, for example,

P0sin2𝜓 > 0.2
(

KPswcos2𝜓
)
, (A2)

leading to

tan2𝜓 > 0.2K
Psw

P0
≈ 0.2

Psw

P0
, (A3)

K being of the order of unity. The pressure ratio Psw∕P0 is approximately equal to the square of the upstream
sonic Mach number at Saturn MS ≈ 14 (Achilleos et al., 2006; Masters et al., 2008), leading to a limiting
value 𝜓 c

𝜓c ≈ tan−1
(

14
√

0.2
)
≈ 81◦ . (A4)

This corresponds to a position quite far downstream; the model described in this paper could thus be
considered valid for a large portion of the dayside magnetopause.

A.2. Formal Definition of the Magnetopause Surface
Equation (10) allows us to define explicitly the magnetopause boundary through the local pressure balance:
Using the spherical coordinates illustrated in Figure 1, the surface corresponds to the set of points  =
{A(r, 𝜃, 𝜙) ∈ R

3} such that

F(r, 𝜃, 𝜙) = r − 𝑓 (𝜃, 𝜙) = 0 ,

where 𝑓 ∶ [0;𝜋[×[0; 2𝜋[→ R | ‖‖‖ n̂ ∧ B∗
planet

‖‖‖ + 1
2

n̂ · v̂ = 0 ,

with n̂ = ∇F||∇F|| = êr − ∇𝑓||∇êr − ∇𝑓 ||
(A5)

The vectors can be expressed in the same coordinate system as follows:

1. The unit outward vector n̂ locally normal to the surface is a scaled gradient

n̂ =

(
êr −

1
r
𝜕𝑓

𝜕𝜃
ê𝜽 − 1

r sin 𝜃
𝜕𝑓

𝜕𝜙
ê𝝓
)

‖n‖ =

(
êr −

1
r∗
𝜕𝑓∗

𝜕𝜃
ê𝜽 − 1

r∗ sin 𝜃
𝜕𝑓∗

𝜕𝜙
ê𝝓
)

‖n‖ (A6)
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with r∗ = 𝑓 ∗(𝜃, 𝜙) = 𝑓 (𝜃,𝜙)
r0

= r
r0

, r0 corresponding to the location of the subsolar point defined in
equation (9).

2. B∗
planet is the scaled magnetic field of the planet; it is modeled by a dipolar field with its magnetic moment

aligned with the Y axis (see Figure 1)

B∗
planet =

Bplanet

b0
= M∗

r∗3

(
−2 sin 𝜃 sin𝜙êr + cos 𝜃 sin𝜙ê𝜽 + cos𝜙ê𝝓

)
, (A7)

with M∗ = Bequ

b0

(
Rp

r0

)3
playing the role of a normalized magnetic moment, Bequ and Rp denoting the

planet's equatorial surface field and radius, respectively.
3. v̂ is the unit velocity vector of the incoming solar wind plasma stream

v̂ = − cos 𝜃 êr + sin 𝜃 ê𝜽 . (A8)

A.3. Description of the Grid and Its Boundary Conditions
We distinguish between three distinct sets of points in Figure 2:

1. the interior points on the blue lines describing a N𝜃 by N𝜙 grid, where N𝜃 and N𝜙 denote the maximum
extensions of the grid in the 𝜃 and 𝜙 directions. Every point on this interior grid is associated to its linear
index k; as illustrated in Figure 2, this index can be defined using the Cartesian coordinates (j, i) on the
following grid:

k = ( 𝑗 − 1)N𝜙 + i. (A9)

2. the boundary points of the grid, on the green lines: These points, which define the limits of the grid, are
the ones on which the boundary conditions of the orange lines will have a direct impact through the
discretization of the differentiation operators.

3. the outer points surrounding the grid, on the orange lines: They are the points on which the boundary
conditions are fixed, thus conditioning the optimization of the surface on the interior grid. Points on the
left boundary of the grid correspond to the subsolar nose: r = r(𝜃 = 0) = r0 = 1. The bottom boundary
describes the equatorial plane 𝜙 = 0: The values of the points are given by the equatorial solution men-
tioned in section 2.3. The top boundary was chosen to describe the noon-midnight meridian plane 𝜙 = 𝜋

2
;

the curve solution found in that plane determines the values of the points on that boundary. Finally, the
right boundary was defined as a linear extrapolation in the 𝜃 direction using the previous values of r on
the following grid:

r(k) = 2 r(k − N𝜙) − r(k − 2N𝜙) for k ∈ [N𝜙N𝜃 − N𝜙 + 1,N𝜙N𝜃]. (A10)

A.4. Optimization Method Using a Levenberg-Marquardt Method
The final equilibrium magnetopause surface is found by adjusting the initial guess surface described
in section 2.3 toward external-internal pressure balance. This is done iteratively following a
Levenberg-Marquardt method: At each step, the search direction is a cross between the Gauss-Newton
direction and the steepest descent direction. The adjustment 𝛿rk to the surface rk at step k is considered to
be the solution of

(
(J𝓕(rk))TJ𝓕(rk) + 𝜆k

)
𝜹rk = −(J𝓕(rk))T𝓕(rk), (A11)

where 𝓕 = (Fk) is the vector of local pressure balance relations on the grid introduced in equation (14);  is
the identity matrix, and 𝜆k a damping parameter controlling both the norm and direction of the correction
𝛿rk and adjusted at each iteration to ensure descent at every step. 𝜆k = 0 corresponds to a direction of 𝛿rk

identical to that of the Gauss-Newton method; this direction tends toward the steepest descent direction as
𝜆k tends to infinity.

J𝓕 denotes the Jacobian matrix
(
𝜕Fi
𝜕r𝑗

)
(i,𝑗)

, each index i and j ranging from 1 to N𝜙N𝜃 . It was computed ana-
lytically before being evaluated at every step, which sped up the optimization of the surface significantly.
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Figure A1. The two branch solutions found by integrating the pressure balance equation, equation (10), in the
noon-midnight meridian plane, in the dipole-dominated case. The blue curve is the solution of an integration starting
from the subsolar nose, defined in equation (9); A1 is the point at which the branch crosses the Y axis locally parallel to
the solar wind flow. The green branch is the solution of two consecutive integrations—upstream and
downstream—starting from A2. This point corresponds to the position at which the surface crosses the Y axis with a
nonzero inclination. The overall profile is found by keeping the segments “facing” the solar wind flow, with the polar
cusp corresponding to the intersection of both branches. r0, v, and M denote the stand-off distance, the solar wind
velocity vector, and planetary magnetic moment, respectively.

Given the expressions of each function Fi in equation (13), this matrix is sparse with only five nonzero
subdiagonals:

J𝓕 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕F1
𝜕r1

𝜕F1
𝜕r2

𝜕F1
𝜕rN𝜙+1

𝜕F2
𝜕r1

⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱
𝜕FN𝜙N𝜃−N𝜙

𝜕rN𝜙N𝜃

⋱ ⋱ ⋱
𝜕FN𝜙+1

𝜕r1
⋱ ⋱ ⋱

⋱ ⋱ ⋱
𝜕FN𝜙N𝜃−1

𝜕rN𝜙N𝜃
𝜕FN𝜙N𝜃

𝜕rN𝜙N𝜃−N𝜙

𝜕FN𝜙N𝜃

𝜕rN𝜙N𝜃−1

𝜕FN𝜙N𝜃

𝜕rN𝜙N𝜃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A12)

Table A1
Coefficients of the Radial Distance 𝜌𝜃 of Equation (16) Fitted to the
Equilibrium Surface Corresponding to the Pure Dipole Case (See Section 3.3)

𝜃(◦) a𝜃,0 a𝜃,1 a𝜃,2 a𝜃,3 a𝜃,4

5 0.0872 0.0000 −0.0001 0.0000 0.0000
20 0.3464 0.0003 −0.0054 0.0019 0.0002
35 0.5968 0.0006 −0.0214 0.0017 0.0036
50 0.8325 −0.0049 −0.0239 −0.0325 0.0207
65 1.0488 −0.0245 0.0205 −0.1153 0.0475
70 1.1147 −0.0168 −0.0170 −0.0710 0.0268
75 1.1795 −0.0398 0.0615 −0.1686 0.0647
80 1.2396 −0.0364 0.0599 −0.1829 0.0783
100 1.4468 0.0113 −0.0872 0.0400 0.0010
120 1.6041 0.0074 −0.0043 0.0384 −0.0166
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Table A2
Coefficients of the Radial Distance 𝜌𝜃 of Equation (16) Fitted to the Equilibrium
Surface Modeling the Effect of Interior Plasma Pressure and the Contribution of
Equatorial Ring Currents (See Section 4.2)

𝜃(◦) a𝜃,0 a𝜃,1 a𝜃,2 a𝜃,3 a𝜃,4

6 0.1450 0.0000 −0.0004 0.0002 0.0000
26 0.6201 0.0010 −0.0252 0.0087 0.0011
46 1.0656 −0.0004 −0.0863 0.0073 0.0144
66 1.4624 −0.0212 −0.0921 −0.0653 0.0426
70 1.5337 −0.0096 −0.1527 0.0047 0.0128
74 1.6041 −0.0326 −0.0714 −0.1095 0.0601
78 1.6710 −0.0409 −0.0399 −0.1625 0.0869
82 1.7341 −0.0289 −0.0815 −0.1218 0.0787
100 1.9825 0.0040 −0.1897 0.0818 0.0034
120 2.1888 0.0210 −0.1153 0.1059 −0.0267

A.5. Finding the Profiles in the Equatorial and Noon-Midnight Meridian Planes
The bottom and top boundaries of the grid are, respectively, fixed to 𝜙 = 0 and 𝜙 = 𝜋

2
, corresponding to the

equatorial and noon-midnight meridian planes. The pressure balance relation described in equation (10)
can be solved along those planes by integrating it numerically from specific points of the magnetopause
surface. The detailed method will be described in future work, but we present here its main points.

Specifically, in the equatorial plane, the starting point of the integration can be chosen as the subsolar nose,
whose position along the Z axis is given by equation (9).

In the noon-midnight meridian plane, the structure close to the cusp can be solved by finding two branch
solutions through three consecutive integrations:

• A first one starting from the subsolar nose, leading to the blue branch in Figure A1; this solution crosses
the Y axis parallel to the solar wind flow at a point named A1.

• A second integration can be carried out downstream, starting from the point A2. The location of this point
is found by determining analytically where the surface crosses the Y axis with a nonzero inclination.

• A third and last upstream integration starting from A2 completes the green branch shown in Figure A1.

The final profile in the noon-midnight meridian plane—corresponding to the green curve shown in Figure 3,
for example—is found by keeping the segments of the branches that “intercept” the solar wind flow; the
polar cusp is found at the intersection of both branches.

A.6. Coefficients for Polynomial Fits to the Equilibrium Magnetopause Surfaces
As described in section 3.3, the optimized surfaces can be reproduced using equation (16), Figure 6, and
the coefficients from Table A1 for the purely dipole case or Table A2 for additional contributions of interior
plasma pressure and equatorial ring currents.
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