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ABSTRACT 

Car-sharing could have substantial benefits. However, there is not enough evidence about if more 

people choosing car-sharing would reduce private car usage or public transport demand. This work 

aims to bring forward some insights by studying short-term car-sharing choice behavior. A mode 

choice analysis is conducted first followed by a simulation analysis to evaluate modal substitution 

pattern. Policy implications are obtained in terms of the possible measures that could effectively 

bring down private car usage. The case study is Taiyuan-China; stated and revealed preference 

data are collected. Mixed nested logit models are developed to study the pooled SP/RP data. The 

analysis is conducted separately for a shorter trip case (2km to 5km) and a longer trip case (more 

than 5km) to examine if results would differ by distance. It is found that raising the cost of private 

car usage (travel cost, parking cost) should be prioritized for shorter trips since car is more difficult 

to be substituted when trip distance increases. Shorter trips also need such direct measures to help 

suppress the demand for private car when promoting a car-sharing service; otherwise car-sharing 

would attract more bus users instead. Longer trips need a more effective solution to bring down 

private car usage and that is discovered as making car-sharing service more appealing so that it can 

serve as a practical substitute to private car. A number of informative indicators (e.g. willingness to 

pay for travel time savings, direct and cross point elasticity) are also derived to enrich the findings. 

 

 

 

 

Keywords: Car-sharing policy, Mode choice, Value of time, Mixed NL model, Pooled SP/RP data, 

China 
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1. INTRODUCTION 
Over the last two decades car-sharing services have sprung up across the globe (Shaheen et 

al., 1999; Enoch and Taylor, 2006; Shaheen and Cohen, 2007; Shaheen et al., 2009; Shaheen and 

Cohen, 2013). From the traditional round-trip mode to the recent free-floating mode, users have 

enjoyed the increasing flexibility that car-sharing offers. The service may also bring wider social 

benefits. On the one hand, many car-sharing operators have replaced their gasoline fleets with the 

more environmental-friendly electric vehicles in the last few years (Bakker and Trip, 2013; 

Shaheen and Chan, 2015). On the other hand, various studies have shown that car-sharing could 

help to reduce car ownership and traffic volume (Cervero et al., 2007; Martin et al., 2010; Mishra 

et al., 2015; Bondorová and Archer, 2017; Vij, 2017). In addition, Clewlow (2016) indicated that 

the personal vehicles owned by frequent car-sharing users were more likely to be those with a 

smaller environmental footprint (e.g., hybrid, plug-in hybrid electric, and battery electric). 

Given the expected benefits of car-sharing, many research attempts have been made with 

respect to the demand for using this service. Jorge and Correia (2013) conducted a literature 

review study summarizing the important works by the time. One of the gaps they identified was a 

lack of clear evidence on the modal substitution pattern, and in particular, if more people using 

car-sharing “reduces the use of private vehicles or if, on the contrary, it reduces the number of 

public transport users (p.216)”. This is the information that policy makers are keen to find out, 

especially when they need to determine whether or not to endorse car-sharing (via subsidies, 

legislation etc.). Later, Le Vine et al. (2014) investigated how an introduction of car-sharing 

service could influence car and public transport usage. The work showed the answer to such a 

puzzle could be a joint outcome of travellers’ long-term and short-term behaviors; in other words, 

tactical-level behaviors at the short-run (i.e. mode choice for a trip, such as car-sharing, car or 

public transport) could be influenced by strategic-level behaviors at the long-run (i.e. mobility 

resource choice, such as car ownership and subscription to a car-sharing program). Nevertheless, 

given the limited amount of car-sharing choice data collected, the contribution of this work is more 

on the joint analytical framework it developed, rather than providing empirical answers to the 

aforementioned puzzle. Kopp et al. (2015) also explored modal substitution pattern by comparing 

the travel behavior across a car-sharing member group and a non-member group. They found 

public transport demand was similar, while the demand for motorized private transport was 

significantly lower in the member group. However, they noticed that the result could be biased due 

to the sampled car-sharing user group already had a low rate of motorized private transport usage 

before joining the car-sharing scheme, and hence, further research was called for. One earlier 

attempt not mentioned by Jorge and Correia (2013), was made by Martin and Shaheen (2011), in 

which the authors looked directly at their survey statistics and saw car-sharing’s impact on travel 

pattern was rather complex, where members from some organizations increased their public 

transits, while others shifted away, and the magnitudes were largely variable across member 

groups. In general, more robust evidence on modal substitution pattern is needed to better inform 

policy decisions. Unfortunately, to our best knowledge, the puzzle has remained overlooked apart 

from the few studies mentioned above, though some more recent works have shown up and 

significantly enhanced our understanding of car-sharing choice behavior. Their main contributions 

are highlighted below. 

Carteni et al. (2016) used a binomial logit choice model to analyze the mode choice 

between car-sharing and private car. The key finding from the choice model and the follow-up 

elasticity analysis was that travel cost has a much greater impact than travel time on affecting 

car-sharing choice. Similarly, in De Luca and Di Pace (2015), travel cost was identified as one of 

the critical factors alongside access time to car-sharing spots, trip frequency, car availability and 
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the type of trip etc. Moreover, De Luca and Di Pace (2015) showed via a cross-elasticity analysis 

that a change in car-sharing travel cost has much larger effect on the probability to choose to 

carpool than on the probabilities to choose bus and private car. Martinez et al. (2017) highlighted 

an important conclusion that the preference towards car-sharing would increase with trip length; in 

other words, the service could more likely be chosen as trips became longer. Becker et al. (2017) 

put particular attention on the socio-economic groups from which the usage of free-floating and 

station-based car-sharing services could come from. The results demonstrated both schemes could 

attract younger and educated people, which were in line with the key findings from the other two 

studies dedicated to revealing the influence of socio-economic factors on the general car-sharing 

choice (Dias et al., 2017; Prieto et al., 2017). However, a critical difference was emphasized such 

that a free-floating service was normally used by those higher incomes earners whose home 

location poorly served by public transportation whereas the station-based was preferred by 

self-employed workers who would appreciate the flexibility of using a car when needed. Apart 

from those rather fundamental factors and effects, a few more novel subjects were also explored, 

such as a parking price increase (Balac et al., 2017), introducing autonomous vehicle fleets 

(Winter et al., 2017), placing a station outside a technology firm (El Zarwi et al., 2017), all of 

which could potentially boost car-sharing adoption. 

Some studies applied more advanced modeling techniques to investigate the impacts of 

latent variables/unobserved attributes on car-sharing choice. Kim et al. (2016) developed a hybrid 

choice model and found that social influence (i.e. the phenomenon that individuals’ decisions are 

influenced by the choices made by others) was significant in car-sharing decisions. Specifically, 

the magnitude of social influence could vary according to the strength of social relationship 

between individuals. Efthymiou and Antoniou (2016) focused on latent classes in a case study at 

Athens, Greece. They demonstrated that people who used taxi for social activities, those with 

medium to low income, and the environmentally conscious, were more willing to join a 

hypothetical car-sharing scheme. Recently, Fleury et al. (2017) analyzed the results from an online 

survey of 259 people in France and highlighted that perceived effort expectancy (i.e. degree of 

ease associated with use) was the most important psychological factor that could determine the 

intention to use corporate car-sharing. 

Many earlier works that involved factors affecting car-sharing choice and demand have 

been captured by Jorge and Correia (2013) and for which repeated reviews should be avoided, for 

example Catalano et al. (2008), Zheng et al. (2009), Morency et al. (2012), Ciari et al. (2013) and 

De Lorimier and El-Geneidy (2013), though two of them (Catalano et al., 2008; Zheng et al., 2009) 

also attempted to study modal substitution patterns; nevertheless, both works have rather specific 

focuses (i.e. Catalano et al. (2008) analyzed 500 commuters’ morning rush-hour trips heading to 

city center; Zheng et al. (2009) studied car-sharing in a university campus) and more research 

would certainly be needed to offer broader insights. In addition, there were two other studies 

aiming at assessing the choice between electric and hybrid vehicle types within a car-sharing 

system (Zoepf and Keith, 2016; Wielinski et al., 2017), which should also be acknowledged. 

Overall, the existing studies offered valuable insights on car-sharing choice behavior, 

though more effort is needed to disclose the modal substitution pattern hidden behind a potential 

increase of car-sharing’s demand. This research aims to contribute to such an understanding by 

looking at people’s short-term mode choice behavior. Specifically, we would like to investigate 

how policy interventions could effectively step in and make car-sharing a more appealing choice 

among various daily mobility options. As a result, we will first study the car-sharing choice 

behavior using a mode choice analysis and then evaluate the modal substitution pattern via a 

simulation analysis. In particular, policy implications will be derived from the latter part of the 
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work, in which different measures aiming at promoting car-sharing usage will be proposed and 

their effects on modal substitution pattern will be assessed. 

The work presented in this paper involves a case study in a Chinese city, Taiyuan, which 

has more than 3 million citizens and operates a successful bike-sharing system. In China, the 

concept of car-sharing has gained tremendous attention recently (Hao, 2017; Xinhua, 2017) 

though a few small schemes have existed in several cities for a longer time. A stated preference 

(SP) survey was launched in 2015 to study the mode choice behavior of Taiyuan citizens towards a 

potential car-sharing service and other existing modes. Data was collected separately for 

medium-distance (“mid-dist”, 2km to 5km) trips and long-distance (“long-dist”, more than 5km) 

trips1. In this work, we develop models and generate results separately for the two trip cases to see 

if the modal substitution pattern would differ by distance. The modeling approach that we use is 

mixed nested logit (Hess et al., 2004) in order to address both inter-alternative correlation and 

panel effect, while avoiding the confounding effect when accommodating the two issues in a 

mixed multinomial logit model (Cherchi, 2009; Ortúzar and Willumsen, 2011). Revealed 

preference (RP) data is also introduced to perform a joint analysis with the SP data. The 

combination of the two types of data will help to correct each other’s weakness and increase the 

credibility of model estimation results (Hensher and Bradley, 1993; Ben-Akiva et al., 1994). 

Overall, the findings are expected to offer an insight to the puzzle that if more people 

choosing car-sharing “reduces the use of private vehicles or if, on the contrary, it reduces the 

number of public transport users” (Jorge and Correia, 2013), from a short-term perspective. Policy 

makers can clearly see the modal substitution pattern as a result of different measures that they 

could possibly adopt to promote car-sharing usage, and meanwhile, policy options that could more 

effectively bring down private car usage will also be identified in the end. 

The paper is structured as follows. Section 2 explains the data source, followed by the 

modeling framework in section 3. Section 4 presents the model estimation results and based on 

which a number of informative indicators (e.g. willingness to pay for travel time savings, direct 

and cross point elasticity) are derived. The policy impact analysis and relevant discussion are 

given in section 5. Section 6 concludes the paper. 

 

 

2. CASE STUDY AND DATA 
The authors designed a paper-based questionnaire survey to collect both SP and RP mode 

choice data, as well as socio-economic information, from the citizens of a Chinese city, Taiyuan. It 

is the capital city of Shanxi, a northern province in the country. More than 3 million people live in 

the urban area of this city. In particular, a bike-sharing system, which was introduced in 2012 and 

operated by the local government, has won great international reputation owing to its huge success 

(Burkholder, 2015; Hiles, 2015). Car-sharing, on the other hand, is not yet a travel option in 

Taiyuan. However, given the nationwide attention that has been drawn upon car-sharing over the 

recent time in China (Hao, 2017; Xinhua, 2017) the service is expected to enter Taiyuan in near 

future. Thus, one of the objectives of our survey is to capture the mode choice behavior towards 

car-sharing in order to be prepared for its future deployment in the city2. 

We designed an SP mode choice experiment in our survey to fulfill this requirement. The 

                                                      
1 They are named as “medium” and “long” distances because the survey also collected short-distance (within 2km) trip data. 

However, < 2km trips are excluded from this research since car-sharing is not expected to be competitive within such a distance due 

to the associated access and alighting time (Martinez et al., 2017). 
2 Recall the strategic-tactical choice framework in Le Vine et al. (2014), our survey did not address the strategic-level car-sharing 

choice behavior; this is because most car-sharing services in China do not require regular membership fee/long-term commitment, 

which makes the effect of strategic choice trivial. 
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experiment presented to each individual respondent hypothetical daily trip scenarios and asked 

them to choose which transport mode they would use. Hence, it offers a way to capture the choice 

of car-sharing, even if the service was not yet available in Taiyuan at the time of the survey. In fact, 

it is also a useful technique for deriving wider policy implications, as SP data usually captures “a 

wider and broader array of preference-driven behaviors” (Louviere et al., 2003; p. 231) than the 

conventional RP data. 

Nevertheless, before we came up with the final design of the SP experiment, we conducted 

a pilot survey, which aimed to help us identify what elements need to be incorporated in the SP 

scenarios. Around 150 Taiyuan citizens participated during the pilot phase and provided with their 

opinions on the questionnaire design. 

The first important insight that we gained from the pilot survey was the need to have 

different SP scenarios based on the distance travelled; this was an outcome both from analyzing the 

RP trip diary data and from the comments made by the participants. In particular, we observed that 

when distances went beyond 2km, the number of walking trips dropped substantially whereas 

when distances went below 2km, taxi trips were rarely seen. In light of such rather distinct trends, 

we decided to split the scenarios in our SP survey by trip distance and assign different choice sets 

accordingly, i.e. making “walk” available only for short trips (within 2km) and making “taxi” 

available only for longer trips (over 2km) to approximate the mode choice situation towards a 

real-life case. Moreover, by hearing from participants describing their daily travel experience in 

Taiyuan, we further split the trips over 2km to “between 2km and 5km” and “more than 5km” to 

reflect what local people perceive as a medium-distance (mid-dist) trip and a long-distance 

(long-dist) trip for moving around in the city. In fact, such a split has also helped us identify if the 

mode choice behavior and modal substitution pattern would differ by distance, and hence yield 

more targeted insights for policy take-away (see the mode choice analysis later on in this work). 

As explained earlier, this research uses data from mid- and long-dist trips to study 

car-sharing choice. Thus, for these two distance cases, we included six alternatives in the choice 

set: 1. car-sharing, 2. car, 3. taxi, 4. bus, 5. electric bike and 6. bike-sharing, which represent all the 

urban transport modes that are frequently used by Taiyuan citizens (except car-sharing3). In 

particular, walking is excluded as per our discussion above on trip distance; while private bike is 

also excluded due to its continuously decreasing usage as a result of the continuous expansion of 

the city’s bike-sharing program. 

The SP experimental design for mid- and long-dist trips is shown in Table 1. Each of the 

aforementioned alternatives possesses several mode-specific attributes, with trip purpose, 

temperature, weather and air pollution as the external conditions. Apart from doing a literature 

review, the selection of these attributes was also based on findings from the pilot survey. For 

instance, the “Walking time to/from station” was included after observing some potential 

connections (though we did not test the correlation) between respondents’ stated walking times 

to/from bus or bike-sharing stations and whether any bus or bike-sharing trips were made in the RP 

diary; similarly, “Mobile app availability” was captured by seeing in the socio-economic part of 

the survey, that quite a few individuals stated they would use smartphone to call taxi and check 

real-time bike-sharing information. Besides, the pilot survey results also helped derive the 

levels/values for some of the attributes. For example, to generate the possible travel time and travel 

cost values for each alternative mode, we adopted the observed average values from the trip diary 

part of the pilot survey and multiplied by ±10%, ±20% etc. Although, due to the lack of official trip 

                                                      
3 As per the pilot survey feedback there was imperfect knowledge among Taiyuan citizens about what car-sharing really represents. 

Thus, the concept and key features of a free-floating car-sharing scheme were described in the survey to reduce the bias in their 

understanding. 
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diary data we are not able to make a comparison for our observed travel times and costs, we still 

expect the values can be trusted given the sample size we had for the pilot survey. In addition, we 

discussed with experts from the local transport authorities to make sure the attribute values were 

generated on reasonable scales. Appendix A gives an example of a mid-dist scenario and a 

long-dist scenario as seen by survey participants. 

 

TABLE 1 SP Survey Design, Mid- and Long- distance Trips 
Mid-dist 

Trip purpose: work/education, leisure, shopping. 

Weather: sunny (-10°, -5°, 0°, 5°, 10°, 20°, 25°, 30°), snow (-10°, -5°, 0°), rain (5°, 10°, 20°, 25°, 30°). 

Air pollution level: excellent, good, light pollution, medium pollution, heavy pollution, terrible pollution. 

 Car-sharing Car Taxi Bus Electric bike Bike-sharing 

Travel time 5, 10, 15, 20, 

25min. 

5, 10, 15, 20, 

25min. 

5, 10, 15, 

20, 25min. 

10, 12, 15, 20, 

25, 30min. 

8, 10, 12, 15, 

20 min. 

12, 15, 20, 25, 

30 min. 

Travel cost* ￥3, 5, 8, 10, 

15, 20 

￥1.8, 2, 2.5, 

3, 3.5, 4, 5 

￥10, 12, 

15, 18, 20, 

25, 30 

￥0.5, 1, 1.5, 

2, 2.5 

 ￥0, 0.5, 1, 1.5 

Parking 

space 

 Easy/hard to 

find parking 

    

Parking cost*  Free, ￥2/h, 

￥5/h, ￥8/h. 

    

Walking time 

to/from 

station 

5min, 10min, 

15min. 

  5min, 10min, 

15min. 

 2, 5, 10 min. 

Bus 

Frequency 

   Every 2min, 

5min, 10min, 

15min. 

  

Mobile app 

availability 

Yes, no.  Yes, no. Yes, no.  Yes, no. 

Long-dist 

Trip purpose: work/education, leisure, shopping. 

Weather: sunny (-10°, -5°, 0°, 5°, 10°, 20°, 25°, 30°), snow (-10°, -5°, 0°), rain (5°, 10°, 20°, 25°, 30°). 

Air pollution level: excellent, good, light pollution, medium pollution, heavy pollution, terrible pollution. 

 Car-sharing Car Taxi Bus Electric bike Bike-sharing 

Travel time 15, 20, 25, 30, 

40min. 

15, 20, 25, 30, 

40min. 

15, 20, 25, 

30, 40min. 

15, 20, 30, 40, 

50, 60min. 

20, 30, 40, 50, 

60min. 

30, 45, 60, 75, 

90, 120min. 

Travel cost* ￥10, 15, 20, 

25, 30, 40 

￥5, 8, 10, 12, 

15, 18, 20 

￥15, 20, 

25, 30, 40, 

50 

￥0.5, 1, 1.5, 

2, 2.5 

 ￥0, 1, 1.5, 2, 

3 

Parking 

space 

 Easy/hard to 

find parking 

    

Parking cost*  Free, ￥2/h, 

￥5/h, ￥8/h. 

    

Walking time 

to/from 

station 

5min, 10min, 

15min. 

  5min, 10min, 

15min. 

 2, 5, 10 min. 

Bus 

Frequency 

   Every 2min, 

5min, 10min, 

15min. 

  

Mobile app 

availability 

Yes, no.  Yes, no. Yes, no.  Yes, no. 

* ￥1 ≈ $0.15 

 

In light of the attributes and attribute levels that have been obtained, theoretically, SP 
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scenarios could then be generated following a full factorial design (Hensher et al., 2005). 

However, in many cases (ours as well), it would produce an endless number of scenarios which 

result in a need to embrace a fractional factorial design by extracting only a group of scenarios 

from the full set. The practice we followed to extract the scenarios for this survey was commonly 

known as orthogonal design4 which could help reduce the correlation between the attribute levels. 

More specifically, we adopted an “orthogonal main effects” design by assuming no interaction 

effects exist across the attributes, though it is an assumption that can hardly be tested in reality 

(Hensher et al., 2005; chapter 5.2.3). In order to preserve orthogonality, the key task is to identify 

the required degree of freedom (DoF), or in other words, the minimum number of scenarios that 

needs to be extracted (Caussade et al., 2005). By assuming main effects only, we calculated the 

required DoF for each of the distance cases by following the procedure explained in Louviere et al. 

(2003) and Hensher et al. (2005). As a result, we had a DoF of 56 for the short-dist scenarios and 

58 for the mid- and long-dist scenarios.5 Thus, for each of the three distance cases, we chose to 

generate 60 different scenarios and the software we used is SPSS, which can ensure the process of 

scenario generation preserves orthogonality (Hensher et al., 2005). Next, to further reduce the 

number of scenarios presented to a respondent, the 60 scenarios in each case were assigned to 30 

blocks, and hence, a group of 2 scenarios would be presented in one questionnaire making in total 

6 of them by presenting all three distance cases, i.e. two for short-dist trips, two for mid-dist trips, 

and two for long-dist trips.6 Eventually, one out of every 30 respondents would be given the same 

set of SP scenarios in our survey. 

Eventually, the survey was launched in summer 2015 with the support from Shanxi 

Transportation Research Institute, which provided 15 researchers assisting with the questionnaire 

distribution, questionnaire collection and incorporation of the data into electronic datasets. 2-stage 

stratified sampling was used by first considering the population distribution in Taiyuan’s six 

districts and second considering the gender distribution within each district. In total, 15,000 

Taiyuan citizens were asked to participate in the survey. 

The collected data was cleaned by first removing missing and invalid responses. 9,499 out 

of the 15,000 individuals still remained in the sample after this step. Then, the SP choice data used 

for this paper was further refined by keeping only observations that were rigorously consistent 

with the participants’ RP mode choice information, which was collected in our trip diary survey. 

For instance, if someone made choices in the mid-dist SP scenarios but did not reveal any 

2km~5km trips in his/her trip diary, these SP choices would be excluded from the analysis. The 

same rule applies to long-dist trips. As a result, we have 3,698 individuals with 6,848 valid SP 

observations left for mid-dist trips and 6,317 individuals with 11,925 valid SP observations left for 

long-dist trips. 

Table 2 displays the key statistics of the 3,698 and 6,317 individuals, alongside their SP 

mode choice patterns. The corresponding RP mode choices under the two distance cases are 

followed in Table 3 by having a slightly different set of alternatives (i.e. with private bike and no 

car-sharing, as explained above). For socio-economic characteristics, the statistics of age and 

occupational status demonstrate that adults with fixed jobs constitute the main group in the sample, 

indicating that the sample has successfully captured regular commuters whose mode choice 

                                                      
4 Although an orthogonal design is not as advanced as several later proposed designs, such as the various forms of D-efficient 

design (Bliemer et al., 2009; Rose and Bliemer, 2009; Bliemer and Rose, 2010), we still employed this technique given the 

constraints we had on project cost (i.e. more advanced software such as Ngene is usually needed to handle an efficient design). 
5 The difference is due to there are different number of attributes between short-dist scenarios and mid- & long-dist scenarios as a 

result of the different choice sets involved. 
6 We also tested how many choice tasks being presented in the SP experiment were acceptable to respondents. In the pilot survey we 

included 10 for each individual to answer, and we found most respondents were averse to a number of scenarios larger than 8. 
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behaviors are highly important to urban planning and policy making. 

 

TABLE 2 Sample Statistics and SP Modal Splits 
  Mid-dist 

(N=3,698) 

Long-dist 

(N=6,317) 

Gender Male 51% 52% 

Female 49% 48% 

Age under 18 7% 5% 

18-25 31% 25% 

26-35 27% 32% 

36-45 22% 26% 

46-59 11% 11% 

60 or above 2% 1% 

Marital status Single 45% 37% 

Married 55% 63% 

Educational level High school or below 27% 25% 

College 35% 33% 

Undergraduate 33% 36% 

Graduate and above 5% 6% 

Occupational status Fixed job 68% 76% 

Student 24% 16% 

Retired 2% 1% 

Self-employed or unemployed 6% 7% 

Public transport card  Percentage of possession 74% 79% 

Cycling capability Health enough to cycle 95% 94% 

Household monthly income 

(after tax) 

Under ￥3000 34% 28% 

￥3000 -￥6000 38% 40% 

￥6000 -￥9000 15% 18% 

￥9000 -￥15000 8% 9% 

￥15000 -￥30000 3% 3% 

Over ￥30000 2% 1% 

Household car  Percentage of possession 45% 55% 

Household electric bike  Percentage of possession 46% 46% 

SP Modal splits in mid- and long-dist trips 

Car-sharing Car Taxi Bus Electric bike Bike-sharing 

Mid-dist: 6,848 obs. 

19% 13% 8% 36% 12% 12% 

Long-dist: 11,925 obs. 

19% 24% 9% 32% 9% 7% 

 

TABLE 3 RP Modal Splits in Mid- and Long-dist Trips 
Mid-dist 

(4,807 obs.) 

Long-dist 

(9,899 obs.) 

Car* 16% Car* 28% 

Taxi 5% Taxi 7% 

Bus 46% Bus 40% 

Electric bike 17% Electric bike 14% 

Bike-sharing 11% Bike-sharing 9% 

Bike 5% Bike 2% 

* It is also revealed by the trip diary survey that the mid-dist 

car trips consist of 11% car driver trips and 5% car passenger 

trips; the long-dist car trips consist of 20% car driver trips and 

8% car passenger trips. 
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3. MODELING FRAMEWORK 
Mixed nested logit (mixed NL) models are used to separately study mid- and long-dist 

mode choice data. There are two dimensions that such a complex modeling structure is found 

superior to a standard multinomial logit (MNL) model: accommodating inter-alternative 

correlation and panel effect. Inter-alternative correlation means several alternatives could possibly 

share common but unobserved attributes. Panel effect would normally occur in an SP survey when 

an individual was presented with more than one choice task (as in our case). Both issues, if not 

being addressed properly, would bias the model estimation results. Traditionally, a closed-form 

nested logit (NL) model could address inter-alternative correlation while a more flexible mixed 

MNL model could address both issues (McFadden and Train, 2000; Hensher and Greene, 2003). 

Nevertheless, researchers also discovered that confounding effect could arise when more than one 

type of such error component was involved in a mixed MNL model (Hess et al., 2004). Hence 

arguments have come forward preferring a mixed NL structure in order to use the nested part to 

represent inter-alternative correlation and the integration over mixture distributions to capture the 

other error component (Ortúzar and Willumsen, 2011). The mathematical formulation of a mixed 

NL structure is described below: 

 

The utility function for an alternative i  ( ni C ) chosen by an individual n  ( 1,...,n N ) at the t th 

( 1,...,t T ) number of SP scenario is given by: 

1

K

int k intk i in int

k

U X   


     (1) 

while the part that can be explained by the model is: 

1

K

int k intk i in

k

V X  


    (2) 

where nC  is the choice set, U  is the utility associated with a mode choice, X  is the vector of 

explanatory variables and the normally distributed error component   with zero mean captures 

the panel effect. The estimated parameters are k  and  . V  is the measurable utility and   is the 

unobserved term i.i.d. Extreme Value and independent from  . 

 

The choice probability functions are: 

 

Choice of a nest (upper level): 

1

s snt

s

z znt

IV

M nt Z
IV

z

e
P

e










  (3) 

 

Choice of an alternative inside a nest (lower level): 
/

| /
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V

int M V

j M

e
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e










  (4) 
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General choice of an alternative: 

|s sint M nt int MP P P   (5) 

where P

 

is choice probability, sM
 

represents the nest s ( 1,...,s z ), IV
 

is the expected 

maximum utility for the choice of alternatives inside a nest, 
 

is the scale parameter measuring 

the different variances across nests. 

 

The general choice probability function is integrated over  , gives (now intP
 

is fully denoted as 

the conditional probability ( | , , , )nt t int k in nP i X C  ): 

1

( | , , , ) ( | , , , ) ( )
T

n in k i n nt t int k in n in in

t

L i X C P i X C f d     


    (6) 

 

Log-likelihood function that needs to be maximized: 

1

( , ) ( | , , , )
n

N

in n in k i n

n i C

LL y InL i X C   
 

   (7) 

where iny  takes the value of 1 if an individual n  chooses an alternative i  and 0 otherwise. 

 

The variables that were included in the final models are listed in Table 4. Each explanatory 

variable was tested by its effect on all mode choice utilities and the one which showed minimum 

effect (in terms of absolute value) was normalized to zero. Highly insignificant variables were 

removed from the utility functions to avoid type I error7. Several issues are worth mentioning: Air 

pollution was presented in categorical measures to survey participants; however, the categories 

were defined based on the air quality index (AQI) scheme as shown in Table 4. Thus, we modeled 

air pollution as a continuous variable, a preferred way of measurement in choice modeling 

(Ben-Akiva and Lerman, 1985; Moudon et al., 2005). Temperature was tested by a linear 

(continuous variable) and a curvilinear (dummy variable 1 for extreme temperature and 0 

otherwise) relationship respectively for its effect on mode choice utilities; the former type of 

correlation was adopted due to higher t-statistics. Generic parameters on travel time and cost were 

tested against alternative specific parameters. The use of generic parameters reduced model fitness 

in terms of likelihood ratio test and adjusted rho-bar squared, and thus alternative specific 

parameters for travel time and cost were eventually applied. Systematic taste heterogeneity (i.e. 

how different socio-economic groups think of different attributes) has been a popular way to study 

socio-economic impacts (Amador et al., 2005; Cherchi and Ortúzar, 2002; Cherchi and Ortúzar, 

2011). Our final models adopted such a form also due to the resulted higher values on model 

fitness comparing to directly adding the socio-economic variables in utility functions. Moreover, 

after testing with the socio-economic variables in their original sub-grouping formats, we merged 

the sub-groups of each variable into two general groups (i.e. low and high) to more clearly 

manifest the impacts. In the end, availability conditions were considered in the mode choice 

models: 1. Car is available to households that own a car8, 2. Electric bike is available to households 

that own an electric bike, and 3. Cycling is available to those who are able to cycle given their state 

of health. These conditions increased model validity by helping to explain the circumstances 

                                                      
7 However, insignificant “policy variables” (or, level of service variables, such as travel times, travel costs, access times and app 

availability) are still included in light of the discussions in Ortúzar and Willumsen (2011). 
8 Possession of a driving license is not an availability condition in this case since we allow the choices of car and car-sharing to 

come from both drivers and passengers. 
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within which someone did not choose a particular mode due to the fact that the mode was not an 

available option. 

The above analysis was first applied on the mid- and long-dist SP datasets. Then we formed 

up a pooled dataset for each distance case by bringing in the respondents’ RP trips conducted in the 

same distance range. The critical limitation of SP data is it only captures hypothetical choice 

behavior which may be inconsistent with choices that would be made in real life (Louviere et al., 

2003). The joint analysis of the two types of data could reduce the behavioral bias and many works 

have followed such a practice (Hensher and Bradley, 1993; Ben-Akiva et al., 1994; Bradley and 

Daly, 1997; Bhat and Sardesai, 2006; Cherchi and Ortúzar, 2011; Lavasani et al., 2017). In our 

case, although the RP data did not capture car-sharing choice as well as a few other variables (air 

pollution, temperature, parking cost and space, access time and app availability due to paper-based 

survey) it could still help with the rest parameter estimation and improve the overall model fitness. 

Thus, in each of the two distance cases, we conducted the mixed NL analysis on the pooled dataset 

in order to have a comparison to the model performance based on SP data. Different scaling factors 

were applied in the joint SP/RP model estimation to address the difference in the variances of the 

unobserved error terms across the two datasets. Since SP data is the primary source in this study, 

the RP utilities were scaled relative to it. 

In the end, many hypotheses have been proposed prior to the modeling analysis including a 

few relevant to car-sharing: longer travel time and higher travel cost could both decrease the 

probability to choose car-sharing, longer walking time to car-sharing spots would also decrease the 

utility of using car-sharing service, whereas a smartphone based application would make 

car-sharing more appealing and more likely to be chosen. 

 

TABLE 4 Explanatory Variables and Measurements 
Variable Measurement 

Air pollution air quality index (AQI) by taking the average value of each level (25 

for excellent level ‘0-50’, 75 for good level ‘51-100’, 125 for light 

pollution ‘101-150’, 175 for medium pollution ‘151-200’, 250 for 

heavy pollution ‘201-300’, 400 for terrible pollution ‘above 300’) 

Rain 1 if weather is rainy, 0 if otherwise 

Temperature temperature in °C 

Commute 1 if trip purpose is commute (i.e. work/education), 0 if otherwise 

Travel cost in RMB (￥) 

Parking cost in RMB (￥)/hour 

Parking space 1 if available, 0 otherwise 

Travel time in min 

Access time in min, walking time to stations/parking spots 

Waiting time in min, waiting time at bus stop 

App availability 1 if a smart phone application is available, 0 otherwise 

Male 1 if gender is male, 0 if female 

Lower age 1 if age is “under 18” or “18-25” or “26-35”, 0 if “36-45” or “46-59” or 

“60 or above” 

Lower income 1 if household monthly income is “under ￥3000” or “￥3000-

￥6000” or “￥6000-￥9000”, 0 if “￥9000-￥15000” or “￥15000-

￥30000” or “over ￥30000” 

Lower education 1 if educational level is “high school or below” or “college”, 0 if 

“undergraduate” or “graduate and above” 

 

 

4. RESULTS 
Table 5 and 6 present the mixed NL results which were generated using PythonBiogeme 
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(Bierlaire, 2016). More information is available in Appendix B showing the results of the 

corresponding NL models before we applied the mixed structure. 

In both mid- and long-dist trips, the joint SP/RP model offers improved values in likelihood 

ratio test and adjusted rho-bar squared comparing to the model using only SP data. The choice 

behavior as being revealed by SP and SP/RP datasets are very much consistent in terms of the 

observed signs of impact9. We, therefore, base our discussion only on the results of the joint SP/RP 

model for both distance cases. In particular, factors affecting car-sharing choice and private car 

choice are discussed in detail. Their coefficients are inspected first, followed by an exploration of 

willingness to pay for travel time savings and an elasticity analysis with respect to a number of key 

variables. 

In Table 5 and Table 6, the impacting factors are classified into three types: natural 

environmental conditions, trip and mode attributes and systematic taste heterogeneity. As far as 

natural environmental conditions, car-sharing and private car are the significantly preferred 

choices when air pollution level increases. This is possibly due to the sealed space and more 

protected environment they could offer to users who want to stay away from pollution. As a 

comparison, weather conditions are not that strongly associated with the choice of car or 

car-sharing. In mid-dist trips, neither of them is significantly affected by rain or temperature 

(results not presented due to high insignificance); however, in long-dist trips, car is preferred when 

there is rain and car-sharing is more likely to be chosen in colder temperature. The results 

potentially imply a correlation between weathers’ effects and trip distance, such that when a trip 

becomes longer, travellers may start to care more about the weather conditions. 

 With regard to trip and mode attributes, travel time and cost both negatively affect the 

probabilities to choose car-sharing and car in mid- and long-dist trips. Both findings are consistent 

with microeconomic theory. However, not all parameter values appear to be significant, i.e. travel 

time’s impact on both car and car-sharing in mid-dist trips and travel cost’s impact on car-sharing 

in long-dist trips. More insights on significance level are discussed later alongside the estimation 

of willingness to pay for travel time savings. Next, the four mode-related attributes that were only 

captured by the SP survey [car parking cost (negative), car parking space (positive), car-sharing 

access time (negative) and car-sharing app availability (positive)] all have the expected impact 

signs to our hypothesis, although parking space is much less significant in affecting car choice in 

both distances. The results could bring some direct implications for policy making; specifically, 

reducing the walking time to car-sharing spot and introducing smartphone application to 

car-sharing service could both help improve the usage of car-sharing, while raising the parking 

cost would be useful in suppressing private car demand. At last, in mid-dist trips, car-sharing is 

revealed as a preferred mode for non-commute purposes; meanwhile, in long-dist trips, the service 

is preferred for commute use. Private car choice is not found with significant correlation with any 

of the trip purposes. 

Systematic taste heterogeneity offers more in-depth insight on socio-economic impact. For 

a car-sharing alternative, a number of interaction terms are detected with significance. The lower 

education group is not keen on using car-sharing service even when air pollution levels are high, 

which could make the service more attractive. The lower age group seems to prefer car-sharing 

even when car-sharing becomes less appealing in warmer weather. The former discovery is 

statistically significant in the mid-dist case and the latter is in the long-dist case. Moreover, despite 

car-sharing is generally preferred for commute in long-dist trips and not preferred in mid-dist trips, 

the lower education group is, in particular, less likely to use the service for commute in both cases. 

                                                      
9 The only exception is observed on the impact of trip purpose. When RP data is involved, bike-sharing is no longer a preferred 

mode for mid-dist commute trips while taxi and bus are no longer among the preferred modes for long-dist commute trips. 
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Additionally, in the long-dist case, the interaction between temperature and gender group is also 

captured but presented with statistical insignificance. This is due to the effect was initially found 

significant in the NL structure; however, it became insignificant after the mixed NL structure 

incorporates panel effect which could better explain the model. As for private car alternative, no 

significant taste heterogeneity is discovered in mid-dist trips; in long-dist trips, the lower income 

and lower education groups would value less the increased utility of car resulted from increased air 

pollution level, which looks similar to what we found for car-sharing. As a summary, less wealthy 

and less educated people may be less likely to use car-sharing and private car; younger group 

seems to prefer car-sharing, however, this is only indicated by one significant interaction term; 

gender effect is negligible. 

Factors affecting other mode choices are not discussed in detail given the scope of this 

work and readers are invited to see them directly from Table 5 and 6. Overall, all factors have the 

expected signs of impact, though a few of them appear statistically insignificant. 

At last, inter-alternative correlation and panel effect are captured by the mixed NL 

structure of our models. Different nests are identified for mid- and long-dist trips. In the former 

case, the nest ‘self-driven automobile’ including car-sharing and car is found significant while in 

the latter case, car-sharing and bike-sharing are found to have significant correlation under the nest 

‘sharing economy’. Both nests come from the SP part of the data. Other possibilities have also 

been tested such as car-sharing, car and taxi under ‘comfortable automobile’, car-sharing, taxi and 

bus under ‘shared automobile’, electric bike and bike-sharing under ‘two-wheeled vehicle’ as well 

as bike-sharing and bike under ‘active transport’ when RP data is also involved. However, none of 

these nests was found with significance10. It should also be noted that the nesting parameter   is 

larger than 1 in all the models. Such a value range satisfies the specification requirement of nested 

logit (Hess et al., 2004; Ortúzar and Willumsen, 2011) where 1/  11. For panel effect, it is 

estimated simultaneously by the SP part and the RP part in the pooled datasets, since both of which 

contain repeated choice observations from a single individual. The effect on all alternatives 

appears to be significant (note that taxi is normalized) except for the one on private bike in the 

long-dist case. 

 

TABLE 5 Mixed NL Results for Mid-dist Case 

 SP data SP & RP data 

 Coef. t-stat Coef. t-stat 

carshare (SP) - 1.76 - 4.70 - 1.88 - 6.51 

car (SP) - 0.60 - 1.24 - 0.03 - 0.13 

taxi (SP) - 1.75 - 4.06 - 1.40 - 4.15 

bus (SP) - 0.18 - 0.43 0.12 0.45 

bikeshare (SP)   4.18 9.62 3.41   11.19 

cardriver (RP) - - 0.90   7.16 

carpassenger (RP) - -   0.35   2.76 

taxi (RP) - -   0.87   5.48 

                                                      
10 In fact, we found another nest (between car driver and car passenger) using only the RP data, where the t-statistic also shows 

significance; however, the nesting parameter 
 
has a value of 1.03 which is almost equivalent to an MNL specification. Thus, we 

discarded this nest by following the practice of Ortúzar and Willumsen (2011), in order to retain efficiency in model estimation. 

11   was defined earlier in Eq. 3 and Eq. 4. 
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bus (RP) - -   1.17   7.62 

ebike (RP) - -   0.68   4.07 

bike (RP) - -   0.04   0.16 

Natural environmental conditions     

Air pollution-carshare (SP)   0.0109   6.98   0.0089   7.42 

Air pollution-car (SP) 0.0041   2.54 0.0026   2.64 

Air pollution-taxi (SP)   0.0032   1.86*   0.0005   0.43** 

Air pollution-bus (SP)   0.0009   0.59**   0.0008   0.76** 

Air pollution-bikeshare (SP) - 0.0243 - 11.12 - 0.0202 - 12.88 

Rain-ebike (SP & RP) - 1.02 - 3.49 - 0.45 - 4.31 

Temperature-taxi (SP) - 0.02 - 3.02 - 0.01 - 2.21 

Temperature-ebike (SP) 0.05   4.58   0.03   4.07 

Trip and mode attributes     

Commute-carshare (SP) - 0.78 - 3.77 - 0.54 - 3.16 

Commute-taxi (SP & RP) - 1.39 - 5.92 - 0.28 - 4.82 

Commute-ebike (SP & RP) 0.92 5.28   0.18   3.86 

Commute-bikeshare (SP & RP)   0.61   3.25 - 0.06 - 1.40** 

Travel cost-carshare (SP) - 0.03 - 1.95* - 0.04 - 2.86 

Travel cost-car (SP & RP) - 0.15 - 0.82** - 0.07 - 2.33 

Travel cost-taxi (SP & RP) - 0.08 - 4.66 - 0.04 - 3.34 

Travel cost-bus (SP & RP) - 0.02 - 0.15** - 0.02 - 2.21 

Travel cost-bikeshare (SP & RP) - 0.41 - 3.18 - 0.55 - 5.59 

Parking cost-car (SP) - 0.14 - 4.93 - 0.05 - 3.50 

Parking space-car (SP) 0.17   0.91** 0.07 0.69** 

Travel time-carshare (SP) - 0.03 - 2.59 - 0.01 - 1.32** 

Travel time-car (SP & RP) - 0.02 - 0.76** - 0.01 - 1.11** 

Travel time-taxi (SP & RP) - 0.01 - 0.07** - 0.01 - 1.44** 

Travel time-bus (SP & RP) - 0.04 - 3.36 - 0.01 - 0.52** 

Travel time-ebike (SP & RP) - 0.05 - 3.09 - 0.02 - 1.62** 

Travel time-bikeshare (SP & RP) - 0.18 - 9.85 - 0.19 - 13.81 

Travel time-bike (RP) - - - 0.01 - 0.06** 

Waiting time-bus (SP) - 0.03 - 2.07 - 0.03 - 2.88 

Access time-carshare (SP) - 0.02 - 1.08** - 0.04 - 2.49 

Access time-bikeshare (SP) - 0.37 - 10.45 - 0.24 - 10.91 

App availability-carshare (SP) 0.35 3.23   0.36   3.79 

App availability-taxi (SP)   0.36   2.18 0.28 2.04 

App availability-bus (SP)   0.11   0.93** 0.14 1.77* 

App availability-bikeshare (SP)   3.79   10.69 3.63 12.09 



Li, Kamargianni  16 

 

Systematic taste heterogeneity     

Air pollution * Male-bus (SP) - 0.0028 - 4.15 - 0.0017 - 3.43 

Air pollution * Lower age-taxi (SP) 0.0027   3.08   0.0032   3.83 

Air pollution * Lower age-bus (SP) 0.0042 5.33 0.0029   5.20 

Air pollution * Lower education-carshare (SP) - 0.0040 - 4.03 - 0.0025 - 2.85 

Air pollution * Lower education-taxi (SP) - 0.0036 - 3.34 - 0.0008 - 1.13** 

Commute * Lower education-carshare (SP) - 0.54 - 2.47 - 0.38 - 1.98 

Commute * Lower education-taxi (SP & RP) - 0.53 - 2.02 - 0.09 - 1.08** 

Inter-alternative correlation & Panel effect   

selfdriven (SP) 1.93   8.17#   1.44   7.26# 

carshare  (SP & RP)   1.20   8.84   1.66   15.92 

car  (SP & RP)   2.92   11.41   0.63   7.41 

bus  (SP & RP)   1.95   18.13   0.89   13.40 

ebike  (SP & RP)   2.53   12.61   1.35   12.50 

bikeshare  (SP & RP) 1.24   6.10   0.89   9.95 

bike (RP)
 

- -   1.04 5.56 

Scaling factor (RP) - - 7.65 10.03# 

Number of observations   6848 11655 

Initial log-likelihood - 10738.4 - 15408.3 

Final log-likelihood - 8523.9 - 11342.9 

Likelihood ratio test   4428.9 8130.7 

Adjusted rho-bar squared   0.20 0.26 

The brackets of (SP), (RP) and (SP & RP) should only be referred to when checking the 

results based on the pooled SP/RP data. 

Note also: * parameter values not meeting the 95% significance level 

               ** parameter values not meeting the 90% significance level 

               # t-test against base value of 1 

 

TABLE 6 Mixed NL Results for Long-dist Case 

 SP data SP & RP data 

 Coef. t-stat Coef. t-stat 

carshare (SP) - 3.45 - 5.46 - 3.36 - 10.52 

car (SP) - 1.12 - 1.95 - 1.29 - 5.61 

taxi (SP) - 1.00 - 1.86 - 0.68 - 3.48 

bus (SP) 3.97   7.19 2.40 10.09 

ebike (SP)   0.01 0.01 - 1.34 - 5.20 

cardriver (RP) - - - 2.75 - 16.97 
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carpassenger (RP) - - - 3.10 - 18.64 

taxi (RP) - - - 1.73 - 14.36 

bus (RP) - - - 0.69 - 6.06 

ebike (RP) - - - 2.44 - 12.38 

bike (RP) - - - 1.17 - 8.10 

Natural environmental conditions     

Air pollution-carshare (SP)   0.0102   15.90   0.0077   14.52 

Air pollution-car (SP) 0.0102   9.39 0.0073   9.72 

Air pollution-taxi (SP)   0.0067   13.25   0.0071   15.77 

Air pollution-bikeshare (SP) - 0.0254 - 6.25 - 0.0070 - 5.62 

Rain-car (SP & RP)   0.36   1.54**   0.33   3.46 

Rain-taxi (SP & RP)   0.33   2.06   0.30   4.50 

Rain-bus (SP & RP) 0.24 1.91* 0.04   0.51** 

Rain-ebike (SP & RP) - 0.89 - 5.11 - 0.61 - 4.69 

Rain-bikeshare (SP & RP) - 1.03 - 3.67 - 0.15 - 1.90* 

Temperature-carshare (SP) - 0.06 - 6.26 - 0.04 - 5.10 

Temperature-taxi (SP) - 0.04 - 6.08 - 0.03 - 4.98 

Temperature-bus (SP) - 0.07 - 9.60 - 0.06 - 9.42 

Temperature-bikeshare (SP) 0.05   3.83   0.01   0.24** 

Trip and mode attributes     

Commute-carshare (SP)   1.84   9.63 0.98   7.01 

Commute-taxi (SP & RP)   0.27   1.79* - 0.63 - 11.78 

Commute-bus (SP & RP) 0.03 0.18** - 0.58 - 6.49 

Commute-bikeshare (SP & RP) - 2.94 - 5.76 - 0.96 - 13.35 

Travel cost-carshare (SP) - 0.03 - 3.26 - 0.02 - 1.36** 

Travel cost-car (SP & RP) - 0.02 - 0.34** - 0.06 - 9.04 

Travel cost-taxi (SP & RP) - 0.05 - 5.53 - 0.04 - 12.95 

Travel cost-bus (SP & RP) - 0.96 - 12.59 - 0.32 - 7.00 

Travel cost-bikeshare (SP & RP) - 1.35 - 5.63 - 0.67 - 8.83 

Parking cost-car (SP) - 0.10 - 3.04 - 0.09 - 3.83 

Parking space-car (SP) 0.69   2.88 0.19   1.35** 

Travel time-carshare (SP) - 0.08 - 7.06 - 0.03 - 3.53 

Travel time-car (SP & RP) - 0.05 - 1.88* - 0.04 - 11.04 

Travel time-taxi (SP & RP) - 0.04 - 3.02 - 0.05 - 15.70 

Travel time-bus (SP & RP) - 0.01 - 1.91* - 0.09 - 5.69 

Travel time-ebike (SP & RP) - 0.06 - 9.68 - 0.04 - 10.88 

Travel time-bikeshare (SP & RP) - 0.07 - 8.51 - 0.38 - 16.44 
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Travel time-bike (RP) - - - 0.02 - 5.17 

Waiting time-bus (SP) - 0.08 - 6.10 - 0.15 - 12.68 

Access time-carshare (SP) - 0.06 - 4.34 - 0.04 - 3.81 

Access time-bus (SP) - 0.29 - 17.68 - 0.25 - 17.36 

Access time-bikeshare (SP) - 0.11 - 2.27 - 0.01 - 0.29** 

App availability-carshare (SP) 1.79 8.33   1.49   10.73 

App availability-taxi (SP)   0.20   1.95* 0.29 3.34 

Systematic taste heterogeneity     

Air pollution * Male-bikeshare (SP)   0.0053   2.45 0.0019   2.12 

Air pollution * Lower income-car (SP) - 0.0024 - 2.94 - 0.0021 - 3.38 

Air pollution * Lower education-car (SP) - 0.0017 - 2.34 - 0.0009 - 1.69* 

Temperature * Male-carshare (SP) - 0.01 - 1.36** - 0.01 - 0.90** 

Temperature * Male-bus (SP) - 0.01 - 3.18 - 0.01 - 3.32 

Temperature * Lower age-carshare (SP) 0.03 5.30 0.02 4.81 

Temperature * Lower age-taxi (SP)   0.03   5.89   0.02   5.29 

Commute * Lower income-bus (SP & RP)   0.53   3.63   0.53   5.90 

Commute * Lower education-carshare (SP) - 0.22 - 2.33 - 0.18 - 2.50 

Inter-alternative correlation & Panel effect   

sharingeconomy (SP) 2.55   6.26#   1.75   5.31# 

carshare  (SP & RP)   1.44   12.53   0.97   7.67 

car  (SP & RP)   4.10   21.15   2.52   21.11 

bus  (SP & RP)   1.66   18.40   1.97   24.57 

ebike  (SP & RP)   2.84   16.06   3.76   18.88 

bikeshare  (SP & RP)   3.74   9.19   1.16   10.55 

bike (RP)
 

- -   0.02   0.27** 

Scaling factor (RP) - - 2.68 19.37# 

Number of observations   11925 21824 

Initial log-likelihood - 18938.3 - 35361.5 

Final log-likelihood - 14322.4 - 23925.7 

Likelihood ratio test   9231.9 22871.5 

Adjusted rho-bar squared   0.24 0.32 

The brackets of (SP), (RP) and (SP & RP) should only be referred to when checking the 

results based on the pooled SP/RP data. 

Note also: * parameter values not meeting the 95% significance level 

               ** parameter values not meeting the 90% significance level 

               # t-test against base value of 1 
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By having the results of mode choice models, theoretically, a value of time indicator can be 

derived to demonstrate how much people are willing to pay for enjoying a reduction of travel time, 

i.e. often known as the value of travel time savings (VTTS). Such an indicator is often used in 

transport project appraisals as a measure of the expected monetary benefits to society. The 

standard way to calculate VTTS would need the measurement of marginal utility of income, and 

one could use its ‘minus’ instead, i.e. the coefficient of travel cost in the context of mode choice 

analysis. Specifically, for linear-in-parameters utility specifications as we have in this research, 

VTTS is normally derived as the ratio of travel time on travel cost coefficients. 

However, a key difference in our case is that alternative-specific travel cost coefficients 

offered better model performance and were therefore adopted rather than a generic travel cost 

coefficient, which is the one that could give a consistent measurement of marginal utility of 

income. As a result, the ratio derived in this research should be viewed differently compared to the 

standard VTTS. On the one hand, it captures individuals’ differentiated tastes on travel costs 

associated with different modes, and hence can more accurately reflect the trade-off behaviors 

between time and cost when using different mobility services. In other words, the measure can 

work better in supporting the policy designs of transport operators, who are interested in 

understanding how much individuals would be willing to afford a travel cost increase for each unit 

of their travel time saved (i.e. the substitution pattern between the two factors), and hence making 

adjustments on prices and levels of service offered. On the other hand, the measure is no longer 

suitable for project appraisals as a unitary marginal utility of income would be needed in order to 

quantify the resulted user benefits. Below we present this value for each of the different modes; 

including car-sharing, private car, taxi, bus and bike-sharing12 (Table 7). 

 

TABLE 7 Values of Willingness to Pay for Travel Time Savings by Different Mode Users 
 Mid-dist Long-dist 

Car-sharing ￥22.0 ($3.3)/h ￥81.1 ($12.2)/h 

Car ￥6.4 ($1.0)/h ￥43.0 ($6.4)/h 

Taxi ￥20.7 ($3.1)/h ￥75.4 ($11.3)/h 

Bus ￥21.0 ($3.2)/h ￥51.5 ($7.7)/h 

Bike-sharing ￥20.5 ($3.1)/h ￥33.6 ($5.0)/h 

 

Although, strictly speaking, the values in Table 7 should be interpreted differently to the 

standard VTTS, they are still comparable in between, especially when a number of phenomena are 

detected and need to get crosschecked in the literature. The key impression from the table is that 

the values for all modes are higher in long-dist trips than in mid-dist trips. Many studies have 

found VTTS increasing with trip length and such a finding is supported by microeconomic theory 

(Wardman, 1998; Axhausen et al., 2008; Shires and De Jong, 2009). In brief, marginal disutility 

increases as the journey becomes longer so that a travel time reduction in a longer trip is worth 

more. This also explains the observed increases in t-statistics of travel time’s impact on all mode 

choices from the mid-dist case (Table 5) to the long-dist case (Table 6). 

The comparison across modes offers additional insights. Firstly, for mid-dist trips, all the 

modes share similar values except for car which value is lower than the rest. There are two possible 

effects that could jointly determine the estimated VTTS for a specific mode (Wardman, 1998; 

                                                      
12 Electric bike does not involve a perceived travel cost. 
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Mackie et al., 2003; Shires and De Jong, 2009). One is “user type effect” which means the users of 

some mode may have different socio-economic characteristics than the users of another mode; for 

example, car users normally come from higher income groups which often have relatively high 

VTTS. The other is “mode specific effect” such that the utility of time spent on a mode could affect 

VTTS; for example, car normally gives more pleasant travel experience in terms of the comfort, 

cleanliness and privacy it offers, so that the willingness to pay extra in order to save journey time is 

often weaker than travelling with other modes. Thus, in our case, the lower willingness to pay for 

car travel time savings could potentially imply the mode-specific effect overwhelms the user type 

effect. 

Next, the results also show that by moving from mid- to long-dist trips, the willingness to 

pay values for car-sharing, car and taxi increase much more aggressively compared to bus and 

bike-sharing (recall the value normally increases with trip length). Such a difference is possibly a 

result of the aforementioned user type effect. As compared to bus and bike-sharing users, the users 

of car-sharing, car or taxi are found coming from higher education and income groups as per the 

results shown in Table 5 and 6. Evidence has widely been discovered that people having higher 

income or being more educated tend to have higher VTTS (Wardman, 1998; Jara-Diaz, 2003; 

Mackie et al., 2003; Axhausen et al., 2008; Trottenberg and Belenky, 2011). Thus, when the trip 

length increases as moving from the mid distance to long distance in this case, it might not be 

surprising to see the surge of willingness to pay with respect to car-sharing, car and taxi which user 

groups would have stronger incentives to pay extra in order to save travel time. 

Finally, as a comparison, Wang and MacKenzie (2017) derived a VTTS value of $9.06/h 

for the car-sharing service in Seattle though different countries are likely to have different VTTS 

values (Shires and De Jong, 2009). 

In addition, direct and cross point elasticity are calculated with respect to several key 

attributes of car-sharing and private car. They are car-sharing’s travel cost and access time in the 

mid-dist case; car-sharing’s travel time and access time in the long-dist case; private car’s travel 

cost and parking cost in both distances, given their significant impacts as being revealed by the 

models. “Direct” and “cross” refer to the impact of a change of an alternative’s attribute level on 

the choice probability of the same alternative and of the other alternative respectively (Ben-Akiva 

and Lerman, 1985). “Point” means elasticity is measured in terms of an infinitesimal level change 

of an attribute. The estimation procedure is referred to Bierlaire (2017) and the results are given in 

Table 8. 

 

TABLE 8 Direct and Cross Point Elasticity 
 Choice 

probability of 

Direct Cross 

M
id

-d
is

t 

Car-sharing - 0.197 

(TC-carshare) 

- 0.188 

(AT-carshare) 

0.049 

(TC-car) 

0.014 

(PC-car) 

Car - 0.370 

(TC-car) 

- 0.119 

(PC-car) 

0.035 

(TC-carshare) 

0.030 

(AT-carshare) 

L
o

n
g

-d
is

t 

Car-sharing - 0.802 

(TT-carshare) 

- 0.253 

(AT-carshare) 

0.021 

(TC-car) 

0.035 

(PC-car) 

Car - 0.059 

(TC-car) 

- 0.086 

(PC-car) 

0.180 

(TT-carshare) 

0.058 

(AT-carshare) 
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Note: “TC” is travel cost, “TT” is travel time, “AT” is access time, “PC” is parking cost 

 

Some trends are clearly revealed: 

 All elasticity values are smaller than one, which means the probabilities of choosing 

car-sharing and private car are relatively inelastic to the level change of a single attribute. This fits 

our expectation since mode choice utilities are determined by many attributes altogether with 

significance, and thus the effect of a single attribute is expected to be limited. Two recent studies 

(De Luca and Di Pace, 2015; Carteni et al., 2016), which also computed elasticity values for 

car-sharing and private car, revealed exactly the same range of values. 

 Most of the cross elasticity values (except for changing car-sharing’s travel time on the 

probability to choose private car in the long-dist case) are close to zero, implying that the 

probability to choose a mode would depend more on its own attribute level changes rather than the 

attribute level changes of an alternative mode. 

More specifically on direct elasticity, 

 For car-sharing, first recall that studying the elasticity on travel cost in the mid-dist case 

and travel time in the long-dist case is due to their significant impacts as being revealed by the 

models. It is found that these two attributes are more effective than access time in affecting 

car-sharing choice probability in both distances. 

 For private car, the choice probability is more elastic to attribute level changes in mid-dist 

trips than in long-dist trips. This is very much consistent with common perception as car is 

normally less willing to be substituted when trip distance gets longer. To take a further look, in the 

mid-dist case, the choice probability is more elastic to a change in travel cost whereas in the 

long-dist case, it is more elastic to a change in parking cost. 

 

 

5. POLICY IMPACT ANALYSIS 
So far, the results have indicated how individuals’ choices would respond to the changes in 

attribute levels. Nevertheless, an elasticity analysis is still inadequate to help identify the effective 

ways for promoting car-sharing usage in real practice, especially when the possible degrees of 

policy intervention could be different across attributes given practical constraints. For instance, it 

is found in the mid-dist case that the probability of choosing private car is more elastic to a change 

in travel cost than parking cost. However, the degree that policies are able to adjust car travel cost 

would usually be smaller than adjusting parking cost. It is because car travel cost (i.e. fuel cost) 

heavily depends on market oil price whereas parking cost is often a rather local issue and less 

constrained for adjustment. Thus, which of these two attributes should be the policy focus remains 

unclear. Our scenario analysis in this section can help to answer such a type of question while 

revealing other critical insights for policy making. Specifically, we simulate in the SP 

environment 13  the modal substitution pattern under different policy options that can be 

implemented in reality. The simulation method is sample enumeration, based on the results derived 

from the pooled data using mixed NL models. The policy scenarios and corresponding modal 

splits are displayed in Table 9 for the mid-dist case and Table 10 for the long-dist case. 

 

TABLE 9 Scenarios and Modal Splits for Mid-dist Case 

Scenarios 

                                                      
13 The simulation analysis only aims to reveal how people make trade-offs across the attributes; it does not intend to forecast market 

demand in the real world. 
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“Moderate” A:   car-sharing travel cost (-20%), car-sharing access time (-10%) 

“Intermediate” B1: car-sharing travel cost (-20%), car-sharing access time (-20%) 

“Intermediate” B2: car-sharing travel cost (-50%), car-sharing access time (-10%) 

“Radical” C:   car-sharing travel cost (-50%), car-sharing access time (-20%) 

“Intermediate” 

+ 

Complementary 

Measures 

B2 + [D:   car travel cost (+10%), car parking cost (+20%)] 

B2 + [E1: car travel cost (+10%), car parking cost (+50%)] 

B2 + [E2: car travel cost (+20%), car parking cost (+20%)] 

B2 + [F:   car travel cost (+20%), car parking cost (+50%)] 

Modal splits 

 Car-sharing Car Taxi Bus Electric bike Bike-sharing 

Baseline 18.8% 13.2% 7.9% 36.2% 12.2% 11.7% 

A 20.0% 13.1% 7.7% 35.6% 12.1% 11.5% 

B1 20.4% 13.0% 7.7% 35.4% 12.0% 11.5% 

B2 21.3% 12.9% 7.6% 34.9% 11.9% 11.4% 

C 21.6% 12.9% 7.5% 34.7% 11.9% 11.4% 

B2 + D 21.4% 12.2% 7.6% 35.3% 12.0% 11.5% 

B2 + E1 21.5% 11.7% 7.7% 35.4% 12.1% 11.6% 

B2 + E2 21.5% 11.7% 7.7% 35.4% 12.1% 11.6% 

B2 + F 21.6% 11.3% 7.7% 35.6% 12.2% 11.6% 

 

TABLE 10 Scenarios and Modal Splits for Long-dist Case 

Scenarios 

“Moderate” A:   car-sharing travel time (-10%), car-sharing access time (-10%) 

“Intermediate” B1: car-sharing travel time (-10%), car-sharing access time (-20%) 

“Intermediate” B2: car-sharing travel time (-20%), car-sharing access time (-10%) 

“Radical” C:   car-sharing travel time (-20%), car-sharing access time (-20%) 

“Intermediate” 

+ 

Complementary 

Measures 

B2 + [D:   car travel cost (+10%), car parking cost (+20%)] 

B2 + [E1: car travel cost (+10%), car parking cost (+50%)] 

B2 + [E2: car travel cost (+20%), car parking cost (+20%)] 

B2 + [F:   car travel cost (+20%), car parking cost (+50%)] 

Modal splits 

 Car-sharing Car Taxi Bus Electric bike Bike-sharing 

Baseline 19.0% 23.9% 8.7% 31.0% 9.0% 8.4% 

A 21.1% 23.3% 8.4% 30.0% 8.8% 8.4% 

B1 21.6% 23.1% 8.3% 29.9% 8.7% 8.4% 

B2 22.8% 22.8% 8.1% 29.4% 8.6% 8.3% 

C 23.3% 22.6% 8.1% 29.2% 8.5% 8.3% 



Li, Kamargianni  23 

 

B2 + D 23.0% 22.2% 8.2% 29.6% 8.6% 8.4% 

B2 + E1 23.2% 21.6% 8.3% 29.8% 8.7% 8.4% 

B2 + E2 23.0% 22.1% 8.2% 29.6% 8.7% 8.4% 

B2 + F 23.3% 21.5% 8.3% 29.8% 8.7% 8.4% 

 

We first target on car-sharing demand promotion by setting up a moderate scenario, two 

intermediate scenarios and a radical scenario (A, B1, B2 and C). The policy options differ across 

distances as car-sharing choice is significantly associated with travel cost in the mid-dist case and 

with travel time in the long-dist case. The impact of access time is significant in both cases. The 

20% and 50% travel cost reduction targets can be achieved by receiving subsidies from the public 

sector; however, a travel time reduction is more difficult to realize. One way to bring down 

car-sharing’s journey time is allowing users to drive on “priority lanes”, such as the driving 

permission for electric cars on bus lanes (BBC, 2016). However, the effect of such a measure 

cannot be easily predicted and thus, more conservative reduction targets for travel time (i.e. 10% 

and 20%) are adopted. Access time reduction also adopts relatively conservative targets since it 

usually requires an increase in the number of parking spots, which is a rather complex task for 

car-sharing operators. 

The modal substitution pattern is different between the two distance cases. In mid-dist 

trips, car-sharing’s market share increases 2.8% (18.8% to 21.6%) from the baseline to the radical 

scenario (C); in the long-dist case, the increase is 4.3% (19.0% to 23.3%). The difference implies 

that more people are willing to switch to car-sharing in long-dist trips and such a finding is in line 

with the discovery that car-sharing becomes more competitive as trips become longer (Martinez et 

al., 2017). With respect to the usage of other modes (compare the baseline still to C), bus shrinks 

1.5% and car shrinks 0.3% in mid-dist trips while bus shrinks 1.8% and car shrinks 1.3% in 

long-dist trips14. The comparison among the figures reveals a challenge for the mid-dist case, i.e. 

private car usage is not reduced when car-sharing becomes more attractive and instead, bus usage 

is sacrificed much more. This is an outcome that government and urban planners may dislike. The 

finding suggests that at least for mid-dist trips, making car-sharing more competitive on its own is 

not sufficient; complementary policies are in absolute need for cutting down private car’s demand. 

Therefore, we develop another four scenarios (D, E1, E2 and F) which include policy 

options for raising private car’s travel and parking costs. As we proposed earlier, adjusting car 

parking cost is possibly more flexible than adjusting car travel cost. Thus, 20% and 50% increase 

targets are applied to parking cost while 10% and 20% are applied to travel cost. These four 

scenarios are expected to join one of the intermediate scenarios B1 or B2 to create more effective 

and more practical policy packages. A and C are not any longer considered since one shows the 

limited effect on modal split changes and the other may be too radical in real practice. Eventually, 

B2 is preferred than B1 in both distances due to the effectiveness it shows on improving 

car-sharing’s market share. 

The combined scenarios can reveal broader insights. First of all, the increases in 

car-sharing’s market share (compare to the baseline) now come more from the falls in private car 

usage than in bus usage. For example, in the radical scenario B2+F, bus shrinks 0.6% and car 

shrinks 1.9% in mid-dist trips while bus shrinks 1.2% and car shrinks 2.4% in long-dist trips. 

Another discovery is on the effectiveness of the two car-attributes in reality. In mid-dist, raising car 

travel cost is a more effective measure than raising parking cost in suppressing car usage as per 

                                                      
14 The findings on car correspond to the cross elasticity values. The probability to choose car is much more elastic to the changes in 

car-sharing’s attributes in the long-dist case (0.180 is much higher than the rest). 
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their direct elasticity values (Table 8). However, parking cost increase has higher policy flexibility 

than car travel cost increase (50% vs. 20%). Thus, in real practice, intervention can be radical with 

either of the two options given their equal effects on private car’s market share in B2+E1 and 

B2+E2. As a contrast, in long-dist, a radical parking cost increase of 50% is more effective than a 

radical car travel cost increase of 20% (again, see B2+E1 and B2+E2) due to parking cost has both 

greater elasticity and higher policy flexibility than car travel cost. 

To conclude, we summarize the key takeaways for policy making in bullet points: 

 Our elasticity analysis identifies that people are less easily to switch away from private 

car when trip distance increases (the direct elasticity values on car travel and parking costs are 

greater for mid-dist trips than for long-dist trips). Thus, policy measures on raising car travel cost 

and parking cost should be prioritized for shorter trips to avoid inefficient use of resources (though 

the threshold/criterion for shorter and longer trips warrants more research). 

 The above conclusion leads to two subsequent questions: if such policy measures are truly 

needed for shorter trips, and what the alternative solution could be to suppress private car demand 

for longer trips. Our policy impact analysis reveals the answers. In the mid-dist case, when 

car-sharing service is made more appealing, the increasing demand mainly comes from a shrinking 

demand for bus rather than for private car. Therefore, the policy measures on private car attributes 

are in absolute need and should be implemented alongside any car-sharing promotion policies. In 

the long-dist case, private car users are found much easier to switch to a better car-sharing service. 

Therefore, instead of the inelastic measures of raising the costs of using car, it is more effective to 

improve the attractiveness of car-sharing and make it as a practical substitute to private car. 

 The effectiveness of various car-sharing promotion policies differs across distances. In 

shorter trips, decreasing travel cost is more effective than travel time whereas in longer trips, 

decreasing travel time is more effective than travel cost. The finding fits well into microeconomic 

theory (Wardman, 1998; Axhausen et al., 2008; Shires and De Jong, 2009). Besides, any 

aggressive measures on access time reduction should be avoided especially when resources are 

constrained. It is rather preferred to reduce travel cost more aggressively in mid-dist case and 

travel time more aggressively in long-dist case. 

 Back to the shorter trip case where policy measures on private car attributes are needed, 

we recommend that it is up to the discretion of policy makers to prioritize car travel cost increase 

or parking cost increase when trade-off needs to be made given any practical constraints. The 

former is in itself more effective in suppressing private car demand while the latter is expected to 

have more rooms for policy intervention. 

 

 

6. CONCLUSIONS 
This paper studied the factors that could affect car-sharing choice and identified the 

effective policy options that could promote short-term car-sharing usage while suppressing private 

car demand. We conducted at first a mode choice analysis by using combined SP and RP survey 

data collected in the case study city, Taiyuan, China. Then, based on the choice model results, 

several informative indicators were derived such as willingness to pay for travel time savings, 

direct and cross point elasticity. Finally, we studied the modal substitution pattern in the SP 

environment to evaluate the effectiveness of different policy options. The results and relevant 

insights were generated separately for mid-dist trips (2km to 5km) and long-dist trips (more than 

5km) throughout the paper. 

Key findings are highlighted as follows. The willingness to pay for travel time savings for 

car-sharing is estimated as $3.3/h in mid-dist trips and $12.2/h in long-dist trips. Such a difference 
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is in line with the existing findings which normally show the value increases with trip length 

(Wardman, 1998; Axhausen et al., 2008; Shires and De Jong, 2009). The values of cross elasticity 

are generally smaller than direct elasticity. This means the probabilities to choose car-sharing and 

private car are more sensitive to the level changes of their own attributes rather than the other’s 

attributes. More critical insights are gained from the policy impact analysis. Raising the cost of car 

usage (e.g. via travel cost and parking cost) should be prioritized for shorter trips since car is more 

difficult to be substituted when trip distance increases. In fact, shorter trips also need such direct 

measures to help suppress the demand for private car while promoting the demand for car-sharing; 

otherwise the increasing demand for car-sharing would mainly come from bus users. On the 

contrary, longer trips would need an alternative and more effective solution to bring down private 

car usage and that is discovered as making car-sharing service more appealing so that it can serve 

as a practical substitute to private car. In addition, the effectiveness of car-sharing’s travel time 

reduction is found to increase with trip length whereas the effectiveness of car-sharing’s travel cost 

reduction decreases with trip length. 

Overall, this research offered some direct insights regarding if more people choosing 

car-sharing “reduces the use of private vehicles or if, on the contrary, it reduces the number of 

public transport users” (Jorge and Correia, 2013). The results and the evidence derived from the 

policy impact analysis can be taken away as useful guidance to steer the demand for car-sharing in 

a short run. 

Nevertheless, a short-term focus could also lead to an important limitation of this work. 

Ben-Akiva and Bierlaire (1999) argued that short-term travel decisions can be conditional on 

long-term travel decisions. As we mentioned earlier, Le Vine et al. (2014) also found the decisions 

of choosing car-sharing to conduct a daily trip can be a joint outcome of travellers’ long-term and 

short-term behaviors. In other words, not only could car-sharing choice depend on surrounding 

tactical-level conditions (e.g. the various factors identified in this research), but the choice might 

also be affected by if an individual owns a car or holds a car-sharing membership, i.e. the 

long-term strategic choice. In this research, the mode choice observations come from an SP choice 

experiment, which focused on individuals’ short-term travel behaviors. As for long-term mobility 

choices, most car-sharing services operated in China do not require subscription/membership 

commitment, which could make the membership effect on mode choice trivial; however, in an SP 

scenario, people may give a hypothetical car-sharing choice without fully taking into account the 

fact that if they own a car in real life, and hence yielding overly optimistic results on car-sharing 

demand (Ciari et al., 2016). Further research using SP based data to study car-sharing’s modal 

substitution pattern should aim to limit such a bias by making survey participants aware of the 

effect of their long-term choice behaviors (e.g. car ownership) on short-term mode use decisions. 
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APPENDIX A: An example of a mid-dist scenario and a long-dist scenario as seen in the survey 

(translated from Chinese) 

 

Mid-dist:  Travel within 2-5km, to leisure, sunny day, 20°C, with excellent air quality 
 Car share Car Taxi Bus E-bike Bike share 

Travel 20 min Travel 15 min Travel 10 min Travel 20 min Ride 20 min Ride 30 min 

Cost ￥8 Fuel ￥3 Cost ￥18 Ticket ￥1  Cost ￥0 

 Hard to park 

car 

    

 Parking ￥5/h     

Walk 15 min 

to station 

  Walk 10 min 

to station 

 Walk 2 min 

to station 

   Every 5 min   

With app  With app Without app  With app 

Your choice 

(please tick) 

      

 

Long-dist:  Travel more than 5km, to work/education, rainy day, 30°C, with good air quality 

 Car share Car Taxi Bus E-bike Bike share 

Travel 25 min Travel 20 min Travel 30 min Travel 30 min Ride 20 min Ride 60 min 

Cost ￥20 Fuel ￥5 Cost ￥25 Ticket ￥2  Cost ￥1.5 

 Easy to park 

car 

    

 Parking ￥2/h     

Walk 5 min to 

station 

  Walk 10 min 

to station 

 Walk 2 min 

to station 

   Every 5 min   

With app  Without app With app  With app 

Your choice 

(please tick) 
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APPENDIX B: NL Results for Mid-dist Case and Long-dist Case 

 

Mid-dist: 

 SP data SP & RP data 

 Coef. t-stat Coef. t-stat 

carshare (SP) - 1.91 - 8.38 - 1.68 - 7.18 

car (SP) - 0.63 - 2.28 - 0.52 - 1.98 

taxi (SP) - 2.48 - 7.66 - 2.38 - 7.46 

bus (SP) - 0.53 - 1.96 - 0.27 - 1.03 

bikeshare (SP)   2.45 9.27 2.52   9.60 

cardriver (RP)   2.29   4.86 

carpassenger (RP)   - 0.89 - 3.10 

taxi (RP)     0.19   0.72 

bus (RP)     2.48   5.15 

ebike (RP)     1.88   3.76 

bike (RP)     0.37   0.90 

Natural environmental conditions     

Air pollution-carshare (SP)   0.0094   9.38   0.0096   9.63 

Air pollution-car (SP) 0.0033   3.47 0.0034   3.63 

Air pollution-taxi (SP)   0.0035   2.72   0.0027   2.06 

Air pollution-bus (SP)   0.0015   1.67*   0.0012   1.35* 

Air pollution-bikeshare (SP) - 0.0177 - 13.36 - 0.0175 - 13.21 

Rain-ebike (SP & RP) - 0.94 - 4.74 - 0.64 - 4.18 

Temperature-taxi (SP) - 0.01 - 2.16 - 0.01 - 2.14 

Temperature-ebike (SP) 0.02   4.38   0.02   4.06 

Trip and mode attributes     

Commute-carshare (SP) - 0.62 - 3.94 - 0.66 - 4.32 

Commute-taxi (SP & RP) - 1.20 - 6.14 - 1.02 - 5.45 

Commute-ebike (SP & RP) 0.50 4.64   0.42   4.31 

Commute-bikeshare (SP & RP)   0.32   2.39 0.14 1.27* 

Travel cost-carshare (SP) - 0.03 - 2.69 - 0.03 - 2.76 

Travel cost-car (SP & RP) - 0.06 - 0.56* - 0.19 - 2.47 

Travel cost-taxi (SP & RP) - 0.05 - 3.35 - 0.05 - 3.26 

Travel cost-bus (SP & RP) - 0.10 - 0.90* - 0.08 - 0.82* 

Travel cost-bikeshare (SP & RP) - 0.38 - 3.72 - 0.46 - 4.70 

Parking cost-car (SP) - 0.06 - 4.14 - 0.06 - 3.86 

Parking space-car (SP) 0.14   1.24* 0.04 0.36* 

Travel time-carshare (SP) - 0.01 - 1.49* - 0.03 - 2.92 
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Travel time-car (SP & RP) - 0.01 - 0.34* - 0.01 - 0.24* 

Travel time-taxi (SP & RP) - 0.01 - 0.26* - 0.03 - 1.88 

Travel time-bus (SP & RP) - 0.02 - 1.88 - 0.03 - 4.21 

Travel time-ebike (SP & RP) - 0.04 - 3.72 - 0.01 - 0.99* 

Travel time-bikeshare (SP & RP) - 0.15 - 11.51 - 0.14 - 11.38 

Travel time-bike (RP) - - - 0.01 - 0.17* 

Waiting time-bus (SP) - 0.03 - 4.02 - 0.03 - 3.84 

Access time-carshare (SP) - 0.04 - 2.78 - 0.04 - 2.69 

Access time-bikeshare (SP) - 0.25 - 12.03 - 0.24 - 11.74 

App availability-carshare (SP) 0.18 2.10   0.18   2.18 

App availability-taxi (SP)   0.32   2.26 0.40 2.88 

App availability-bus (SP)   0.16   2.24 0.16 2.16 

App availability-bikeshare (SP)   3.11   10.98 3.28 11.62 

Systematic taste heterogeneity     

Air pollution * Male-bus (SP) - 0.0022 - 5.77 - 0.0022 - 5.76 

Air pollution * Lower age-taxi (SP) 0.0027   3.45   0.0025   3.20 

Air pollution * Lower age-bus (SP) 0.0028 6.46 0.0028   6.66 

Air pollution * Lower education-carshare (SP) - 0.0034 - 4.67 - 0.0032 - 4.42 

Air pollution * Lower education-taxi (SP) - 0.0030 - 3.35 - 0.0017 - 1.92 

Commute * Lower education-carshare (SP)   0.54   3.24 0.46   2.80 

Commute * Lower education-taxi (SP & RP) 0.48   2.06 0.03 0.14* 

Inter-alternative correlation   

selfdriven (SP) 2.81   14.75#   2.80   17.53# 

Scaling factor (RP) - - 0.76 4.27# 

Number of observations   6848 11655 

Initial log-likelihood - 10738.4 - 15408.3 

Final log-likelihood - 9038.7 - 12705.8 

Likelihood ratio test   3399.3 5405.0 

Adjusted rho-bar squared   0.15 0.17 

Note: * parameter values not meeting the 90% significance level 

          # t-test against base value of 1 

 

Long-dist: 

 SP data SP & RP data 

 Coef. t-stat Coef. t-stat 

carshare (SP) - 2.61 - 5.32 - 1.79 - 6.32 

car (SP) - 1.22 - 3.01   0.10   0.58 

taxi (SP) - 2.26 - 5.33 - 0.50 - 2.67 
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bus (SP) 1.07   2.62 1.58 8.49 

ebike (SP) - 0.81 - 2.05 - 0.12 - 0.74 

cardriver (RP) - - - 0.23 - 7.33 

carpassenger (RP) - - - 0.32 - 7.62 

taxi (RP) - - - 0.21 - 6.35 

bus (RP) - - - 0.16 - 6.96 

ebike (RP) - - - 0.21 - 7.07 

bike (RP) - - - 0.17 - 5.74 

Natural environmental conditions     

Air pollution-carshare (SP)   0.0088   14.49   0.0060   13.02 

Air pollution-car (SP) 0.0062   13.17 0.0044   11.53 

Air pollution-taxi (SP)   0.0050   13.28   0.0042   12.82 

Air pollution-bikeshare (SP) - 0.0217 - 6.58 - 0.0130 - 6.97 

Rain-car (SP & RP)   0.39   3.67   0.07   4.58 

Rain-taxi (SP & RP)   0.59   4.60   0.07   4.09 

Rain-bus (SP & RP) 0.21 2.29 0.08   5.12 

Rain-ebike (SP & RP) - 0.14 - 1.23* - 0.06 - 3.84 

Rain-bikeshare (SP & RP) - 0.54 - 2.56 - 0.06 - 4.09 

Temperature-carshare (SP) - 0.03 - 4.40 - 0.03 - 4.86 

Temperature-taxi (SP) - 0.04 - 7.60 - 0.03 - 6.50 

Temperature-bus (SP) - 0.04 - 11.04 - 0.02 - 8.07 

Temperature-bikeshare (SP) 0.05   4.45   0.01   3.00 

Trip and mode attributes     

Commute-carshare (SP)   1.34   8.85 0.99   8.87 

Commute-taxi (SP & RP)   0.33   2.99 - 0.03 - 2.99 

Commute-bus (SP & RP) 0.22 2.08 - 0.09 - 6.39 

Commute-bikeshare (SP & RP) - 2.33 - 5.47 - 0.07 - 6.37 

Travel cost-carshare (SP) - 0.04 - 4.61 - 0.04 - 5.97 

Travel cost-car (SP & RP) - 0.02 - 1.11* - 0.01 - 7.30 

Travel cost-taxi (SP & RP) - 0.02 - 3.14 - 0.02 - 10.25 

Travel cost-bus (SP & RP) - 0.61 - 13.77 - 0.03 - 4.03 

Travel cost-bikeshare (SP & RP) - 0.78 - 5.04 - 0.04 - 0.59* 

Parking cost-car (SP) - 0.07 - 4.98 - 0.05 - 3.98 

Parking space-car (SP) 0.27   3.14 0.09   1.44* 

Travel time-carshare (SP) - 0.07 - 7.52 - 0.04 - 6.16 

Travel time-car (SP & RP) - 0.03 - 2.87 - 0.01 - 5.88 

Travel time-taxi (SP & RP) - 0.02 - 2.07 - 0.02 - 9.69 
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Travel time-bus (SP & RP) - 0.01 - 0.82* - 0.01 - 5.61 

Travel time-ebike (SP & RP) - 0.02 - 6.54 - 0.01 - 5.72 

Travel time-bikeshare (SP & RP) - 0.04 - 6.19 - 0.01 - 7.17 

Travel time-bike (RP) - - - 0.01 - 4.25 

Waiting time-bus (SP) - 0.02 - 1.90 - 0.05 - 8.26 

Access time-carshare (SP) - 0.04 - 4.10 - 0.04 - 4.32 

Access time-bus (SP) - 0.16 - 15.42 - 0.10 - 11.95 

Access time-bikeshare (SP) - 0.09 - 2.89 - 0.04 - 1.51* 

App availability-carshare (SP) 0.53 3.37   0.97   8.83 

App availability-taxi (SP)   0.24   2.80 0.13 1.86 

Systematic taste heterogeneity     

Air pollution * Male-bikeshare (SP)   0.0041   2.95 0.0030   2.72 

Air pollution * Lower income-car (SP) - 0.0017 - 5.34 - 0.0018 - 6.01 

Air pollution * Lower education-car (SP) - 0.0013 - 4.57 - 0.0008 - 2.98 

Temperature * Male-carshare (SP) - 0.01 - 2.99 - 0.01 - 2.70 

Temperature * Male-bus (SP) - 0.01 - 5.05 - 0.01 - 5.20 

Temperature * Lower age-carshare (SP) 0.01 3.90 0.01 4.41 

Temperature * Lower age-taxi (SP)   0.02   5.48   0.02   4.86 

Commute * Lower income-bus (SP & RP)   0.24   2.88   0.08   6.22 

Commute * Lower education-carshare (SP) - 0.24 - 3.67 - 0.22 - 3.44 

Inter-alternative correlation   

sharingeconomy (SP) 2.71   7.58#   2.49   8.13# 

Scaling factor (RP) - - 1.29 8.10# 

Number of observations   11925 21824 

Initial log-likelihood - 18938.3 - 35361.5 

Final log-likelihood - 15438.8 - 27555.7 

Likelihood ratio test   6999.2 15611.6 

Adjusted rho-bar squared   0.18 0.22 

Note: * parameter values not meeting the 90% significance level 

          # t-test against base value of 1 

 


