Streets as 'Ecosystems'

Peter Jones, Centre for Transport Studies, UCL

Scientific Co-Ordinator, MORE

UDL: The changing role of the London Street 09/07/19

Introduction

A siloed approach to urban street planning & design

- The busy urban street is impacted by a very wide range of actors:
 - Providers and users of various transport modes
 - Providers of basic highway infrastructure
 - Frontage developers, owners and users
 - Above ground and sub-surface utility providers
 - Regulators and legislators
- Each group has its own objectives and priorities
- Very little pro-active planning & management even within transport
- 'MORE' seeks to address these issues head-on: now and for future conditions

<u>Multimodal Optimisation for Roadspace in Europe</u>

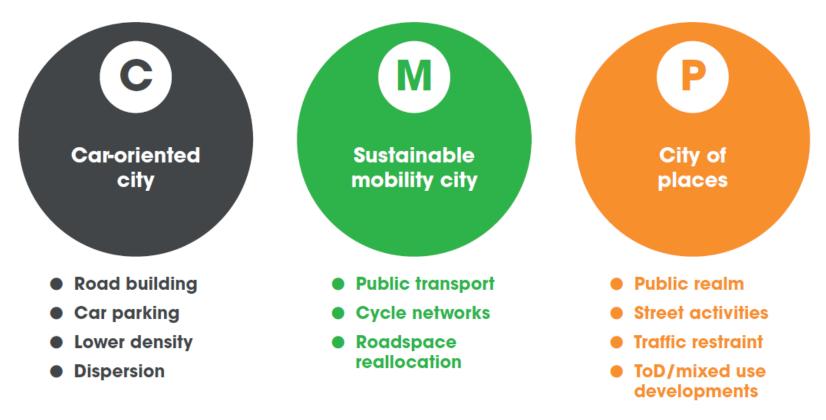
• MORE is a very ambitious project, which sets out to:

Identify existing and future pressures (demographic change, technological advances...) on the main roads in cities that connect urban areas – and their major attractors (city centre, port, etc.) - with the national/TEN-T: Trans-European Road Network

Develop design tools and processes that will enable these key routes to be planned, designed, managed and operated in a way that make them responsive to future pressures, in a holistic and flexible manner

>By exploiting possibilities for dynamic space management and operation

Including the interfaces between urban and inter-urban/national networks



Basic concepts

Drawing on CREATE

Designing to Meet Different Urban Policy Objectives

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 769458

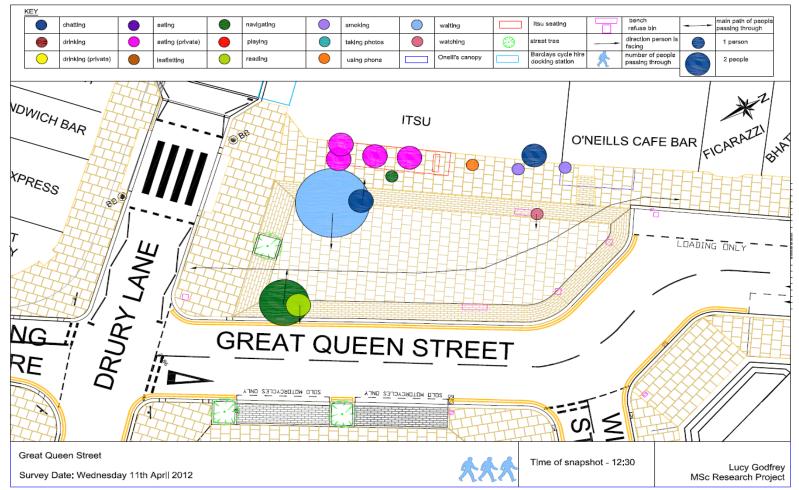
Source: EU 'CREATE' Project

Adopting a two-dimensional street classification

Street

P7 **P**3 Taking explicit account of Place: M3 P3 M3 Street classification applied eg High eg City eg Core Road by TfL as recommended by Hub the Roads Task Force. M2 M2 P2 P3 M2 With three levels of eg High eg City 'Movement' (of people) and eg Connector Street Street three levels of 'Place'. MI MI P3 M eg Town eg Local eg City Square

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 769458



Place

Patterns of Street 'Place' Activities

Contrast in Policy Measures: C -> P

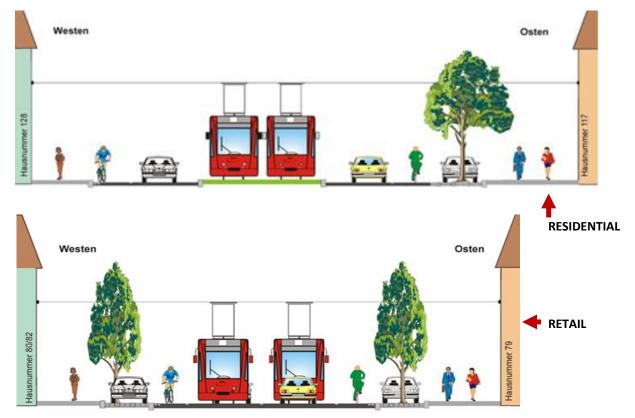
The pictures show how this area of London has been transformed from a large traffic roundabout into a vibrant public space at the heart of the community, due to a shift in policy perspectives and corresponding priorities

London, Aldgate Square:

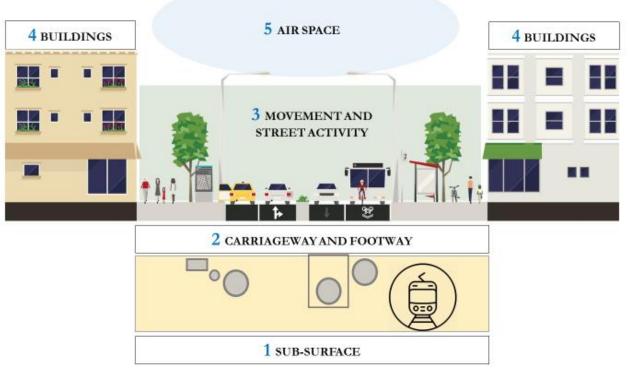
Put in gyratory to increase road capacity (1960s)

Before

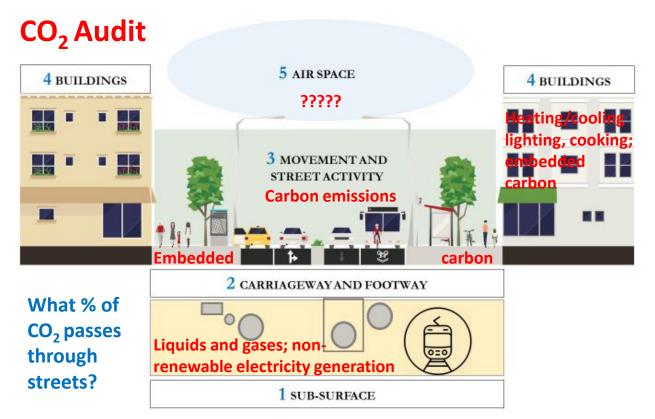
Remove, to enhance place and provide new community heartland (2018)



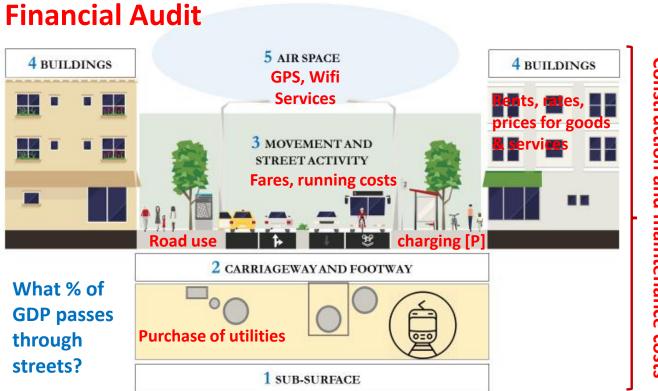
Urban Feeder Routes: Mix of 'Roads' and 'Streets'


Context-sensitive Street designs

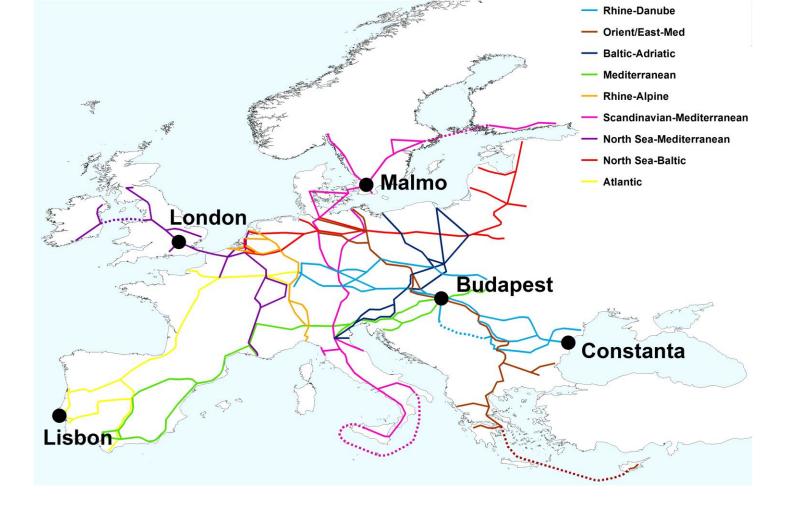
Urban Street as an 'Eco-System': Key components

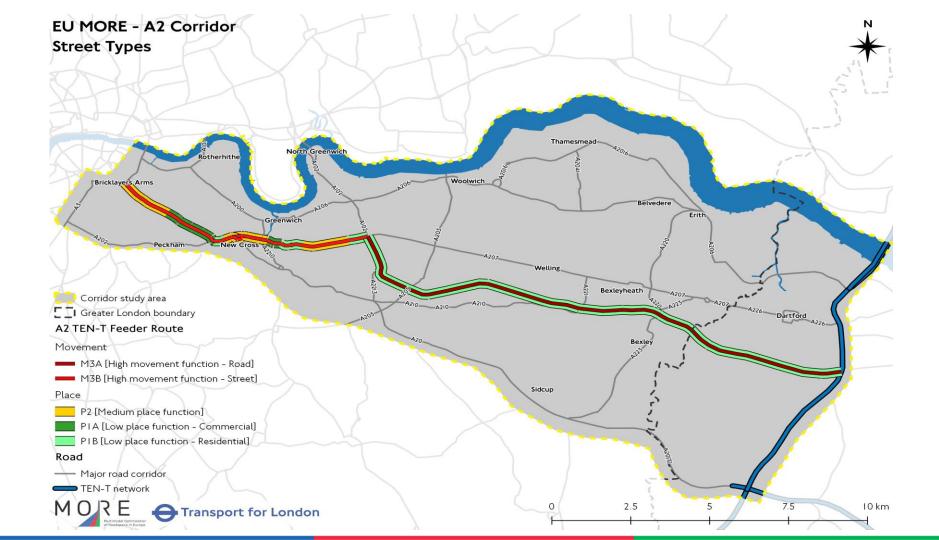

Some service infrastructure elements (Bajaj, 2018)

Subsurface	Carriageway and f	ootway	Movement and street activity	Buildings	Air space
ipe lines Gas pipe Water main Storm water main	Carriageway Loading zone Bus Goods	Footway Street furniture Benches Lighting	Pedestrians Drivers	Residential Healthcare	Sensor technology Wifi Drones GPS
Sanitary sewer Reclaimed water	Traffic lanes Cycle	Toilets Bus stops	PT passengers	Education	
	Vehicle AV Transit Kerbside Parking bay Loading bay Bus boarding area EV charging	Dustbins Trees/plants Cycle parking Traffic management Security camera Parking meter Signage Traffic lights Cameras (CCTV, traffic) Pedestrian walkway Footpath Metro entrance Man hole Fire hydrant Private area Cafe seating Street vendor	Vehicles Cycles Cars Freight vehicles Public transport Autonomous vehicles	Leisure, shopping, entertainment Religious activities	


System Flows

System Flows

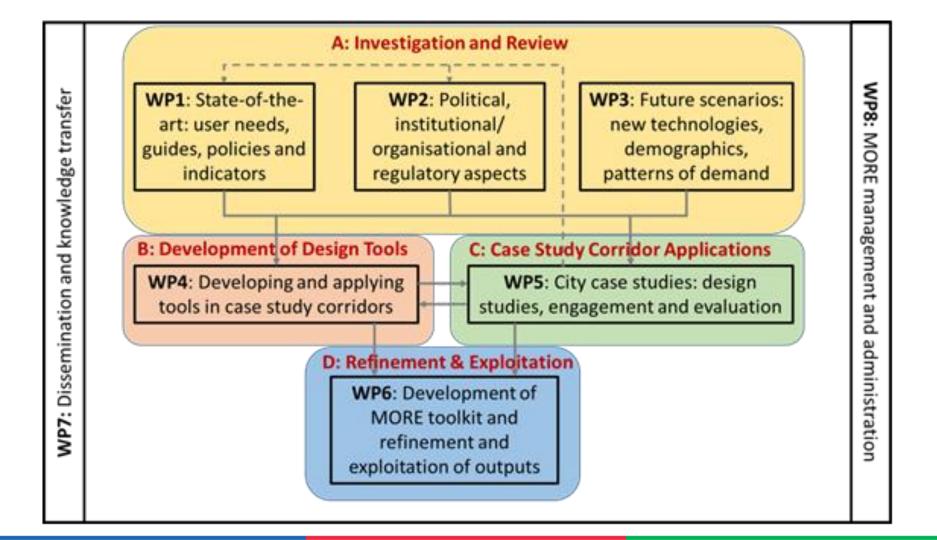

Construction and maintenance costs



 $\langle \bigcirc \rangle$

Partners

MORE has 18 partners



Participant No	Participant organisation name	Short name	Country
1 (Coordinator)	University College London	UCL	UK
2	Technische Universität Dresden	TUD	DE
3	Fondation Nationale des Science Politiques	SciencesPO	FR
4	PTV Group	PTV	DE
5	Dynniq	DYN	NL
6	VECTOS (SOUTH) LIMITED	VECTOS	UK
7	Buchanan Computing	BC	UK
8	European Integrated Projects	EIP	RO
9	Polis	POLIS	BE
10	Union Internationale des Transports Publics	UITP	BE
11	IRU Projects asbl	IRU	BE
12	International Federation of Pedestrians	IFP	СН
13	European Cyclists' Federation	ECF	BE
14	Center for Budapest Transport [City of Budapest]	ВКК	HU
15	Câmara Municipal de Lisboa [City of Lisbon]	CML	PT
16	Transport for London	TfL	UK
17	Traffic Transportation Division [City of Malmo]	MALMO	SE
18	Municipiu Resedinta de Judet Constanta [Constanta municipality]	PMC	RO

Approach

6 Technical Workpackages

WP5: City case studies

- Key component of MORE:
 - > Detailed identification of problems, issues & challenges
 - Test bed for new street design tools
- Each city has identified one major Feeder Route to/from TEN-T network
- Investigations at detailed section level and whole urban feeder route
- Two exercises per city:
 - Current conditions
 - Potential futures (scenarios) 20-30 years ahead

Some potential future technological developments:

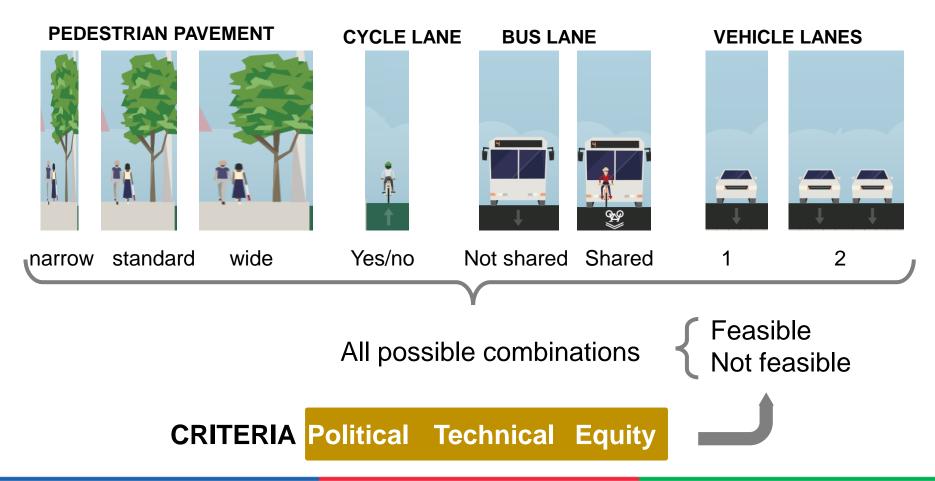
- Electrification of the vehicle fleet
- > Autonomous vehicles: road, rail water, air
- Advances in traffic control systems
- Advances in parking and loading management
- Implications of employing new types of sensors
- Self-healing roads
- Trenchless technologies underground logistics
- Including potential personal and cyber security risks

Dynamic Allocation of Road/Street-space

- To make better use of limited space/capacity, need to change allocation by time of day/week
- But also, to do this dynamically, depending on conditions on the network, at that time => dynamic (LED) signing and lining
- This requires data collection and co-ordination, on a real-time basis

KEY QUESTIONS:

- Are LED traffic signs and road markings effective in all conditions?
- How to safely and intelligibly handle transitions, from one state to another?
- How to improve urban network/TEN-T interfaces?


Outputs

MORE Road/Street Design Tools

Recommended Comprehensive Design Process, offering:

- **1. Road Design Option Generator:** A Web-based tool for searching for street allocation solutions, through an on-line option generation library.
- 2. Road Design Stakeholder Engagement Tool: Web-based tool to assist with stakeholder engagement, both collectively during design workshops and by providing a portal for individuals to comment on design options, building on Buchanan Computing's TraffWeb product
- **3. Road Design Dynamic Simulator:** A simulation tool to assess how all road-based activities perform under particular design options, building on PTV's existing VISSIM software
- **4. Road Design Appraisal Tool:** A web-based tool to assist with the appraisal of design options, using the outputs from the VISSIM simulations.

Option generation – potential combinations

Click on the map to record a comment

or issue...

PD0

Plot a marker to the map to make a suggestion at a location:

Make a general comment about the area:

View point

Make an area wide comment (not location based)

© Crown copyright and database rights 2019 0S 100027293. Use of this data is subject to terms and conditions

•

Copyright Buchanan Computing 2019

0B

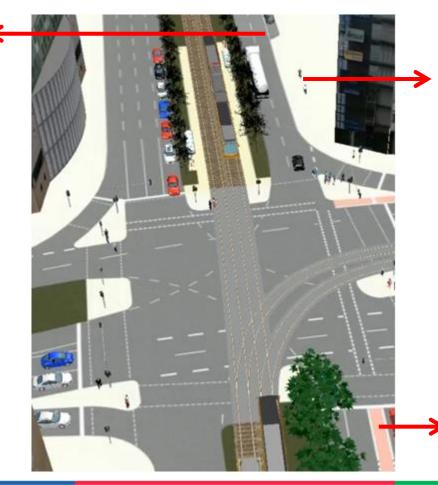
Douglas Way

Frankham

Regina

ERMONISEY

EWISHA

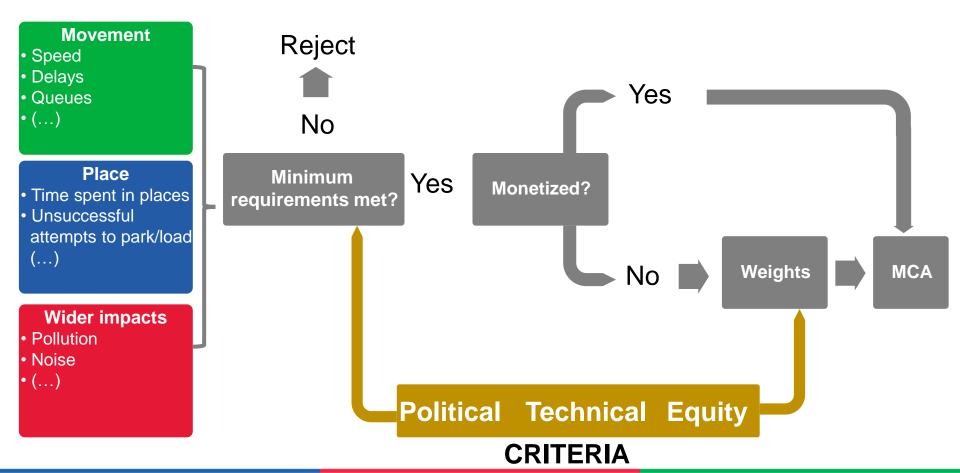

CAMBERWEI

Location: 000000.0, 000000.0

100 m

Modelling – further development

Parking and loading



Pedestrians moving or not moving (place activities)

Dynamic roadspace reallocation

- movement \rightarrow parking
- all \rightarrow bus only

Appraisal – further development

Policy/Practice Issues

Policy/Practice benefits

• Urban transport:

- Better aligning road/street designs with achieving city objectives
- Recommendations for regulation of new mobility produces & services
- Recommendations for prioritisation of road/street space
- Development of guide for planning, design, management and operation of urban road/streets
- Future developments and technologies:
 - > Assisting cities in identifying potential technologies
 - > Assisting cities in developing a scenario approach to futures

Space Allocation Principles

- Unit application:
 - > Type of **person** (e.g. resident)
 - > Type of **activity** (e.g. loading)
 - Mode of transport (e.g. bus)
- Policy levers:
 - Physical restrictions
 - Regulation
 - Pricing

A New Approach to Regulation?

- Current approach: regulate new mode (e.g. electric scooter) as becomes 'established'
- Suggested approach: generic regulation of activities allowed on different parts of the street – e.g.:
 - Footway: non-motorised plus electric modes; maximum speed of 8mph (??), audible warning if wheel-based; no lights or protective gear
 - 'Cycle' lane: Wheeled vehicles (motorised and non-motorised) between 8mph and 20mph (??); night time lighting, protective gear recommended
 - Carriageway: All motor vehicles capable of travelling at over 20mph; night lights and protective gear required, plus license and identification

Some tricky issues

- Allowing for different uses of the same physical space (e.g. kerbside) at undefined times of day – not pre-specified. In some extreme cases, part of a footway might become part of the carriageway at certain times.
- Ensuring that the electronic signs and road markings are correctly operating and are fully visible at all times.
- Determining how to record the traffic regulations in operation at any particular point in time, in a way that is reliable and enforceable.
- Determining how to handle transition periods, from one set of regulations to another; (e.g. for parking switchover period would be set at the maximum allowed parking duration; but for the sudden introduction of a bus lane might find a driver in the 'wrong' lane for a short period of time.

Thank you -

https://www.roadspace.eu

peter.jones@ucl.ac.uk

