Meta-analysis of the psychometric properties of the Pain Catastrophizing Scale and associations with participant characteristics

Claire H B Wheeler¹, Amanda C de C Williams², Stephen J Morley¹⁺

1 Leeds Institute of Health Sciences, Level 10, Worsley Building, Clarendon Way, Leeds, LS2 9NL, UK
2 University College London, London WC1E 6BT, UK
† died April 2017

Pages: 23 Number of figures: 3 [2 in text; 1 supplementary] Number of tables: 6 [4 in text; 2 supplementary]

Corresponding author: Claire Wheeler Mailing address: Programme in Clinical Psychology, Leeds Institute of Health Sciences Level 10, Worsley Building Clarendon Way Leeds, LS2 9NL, UK Email: Claire.wheeler@cantab.net

Abstract

The aims of this study were to review the psychometric properties of the widely used Pain Catastrophizing Scale (PCS) using meta-analytic methods, and to investigate the relationship between PCS scores and participant characteristics. A systematic search from 1995 found 229 experimental, quasi-experimental and correlational studies that report PCS scores. Multivariate regression explored variables related to pain catastrophizing and participant demographics. Across studies, good internal reliability ($\alpha = 0.92, 95\%$ CI 0.91 - 0.93) and test-retest reliability scores (Spearman $\rho = 0.88, 95\%$ CI 0.83 - 0.93) were found for PCS total scores but not for subscales. PCS scores were unrelated to age or gender, but strongly related to participants' pain type, highest in those with generalized pain. Language of the PCS also affected PCS scores, with further research necessary to determine linguistic, cultural or methodological (e.g. sampling strategy) influences. Study type influenced PCS scores with non-randomized controlled trials reporting higher PCS scores than other study types, but results were confounded with pain diagnosis, as controlled trials were more likely than quasi-experimental studies to recruit clinical samples. The meta-analytic results provide insight into demographic influences on pain catastrophizing scores and highlight areas for further research. The advantages of systematic review and meta-analytic methods to achieve greater understanding and precision of psychometric properties - in this case, of the PCS are applicable to other widely used outcome tools.

Keywords

Outcome measure; PROMS; Systematic review; Reliability

1 Introduction

1.1 Pain catastrophizing

Pain catastrophizing is one of a number of concepts describing the psychological experience of pain. Beck first described catastrophizing in general as a cognitive error, or 'an irrationally negative forecast of future events' [20] (p.745). Pain catastrophizing is the forecast of future pain and a person's inability to divert attention away from the pain [13]; also described by Sullivan and colleagues as 'an exaggerated negative mental set brought to bear during actual or anticipated painful experience' [25] (p.53).

1.2 Established psychometric properties of the PCS

The Pain Catastrophizing Scale (PCS) is widely used as the 'reference standard psychometric tool for pain catastrophizing' [13]. Respondents are asked to rate 13 pain-related statements on a 5-point Likert scale. During its development, Sullivan and colleagues investigated the factor structure in a sample of 439 students [23]. Principal components analysis established that the PCS assessed three related dimensions of magnification (evaluation of the pain as a threat), rumination (repeated worry) and helplessness (belief that nothing can help to resolve the pain). Confirmatory factor analysis has since been used in English and Dutch versions to confirm this three-factor structure compared to a unidimensional or two-factor structure in students [18], community and pain outpatient samples [17], and pain-free students, chronic low back pain patients, and fibromyalgia patients [28]. Overall, these studies demonstrate consistency of the three-factor model of

pain catastrophizing across participant groups in English and Dutch versions of the questionnaire.

Existing data on the reliability of the PCS reports adequate to excellent internal validity scores (coefficient alphas: total PCS = 0.87 - 0.93, rumination = 0.87 - 0.91 magnification = 0.66 - 0.75, and helplessness = 0.78 - 0.87; [18; 23]). Pedler reported in a commentary review that 'there are currently little data available regarding the test-retest reliability, sensitivity to change, and clinically meaningful change of the PCS' and that '[f]urther research investigating these dimensions of the PCS would significantly increase the clinical utility of this tool' [19] (p.137). More broadly, there are concerns that many self-report measures used in health care, including pain, tend to be developed and used in an ad hoc way, without thorough validation and reliability testing across wide samples of participants [15] (p.34).

1. 3 Pain catastrophizing scores and personal characteristics

Studies have been conducted to explore potential differences in pain catastrophizing between people of different ages, genders, from different cultural backgrounds, and with different pain diagnoses. Such information helps to explain the extent to which the construct of pain catastrophizing can be viewed as stable across populations. Women tend to score higher than men [4; 12; 23; 26; 27], although one study reported no sex difference [22]. Older adults tend to score lower than younger adults [11; 24] but the effect is reversed in adolescents, where older adolescents score higher than younger [1]. Although a number of studies have reported pain catastrophizing scores for participants with different pain diagnoses (including many studies in this review), no review or commentary has compared or combined these.

There have been no studies of the difference in pain catastrophizing scores of participants using different language versions of the PCS or other measures of pain catastrophizing. Any disparity in PCS scores of participants using different language versions could be due to translations of the outcome measure or to cultural differences in the experience and expression of pain catastrophizing. Existing studies report higher levels of pain catastrophizing in Chinese Canadians compared to European Canadians [9] and in African-Americans compared to white Americans [4] using the same language scale. Therefore some limited evidence from healthy participants suggests the presence of cultural factors in mediating pain catastrophizing scores.

The rather inconsistent findings from studies on specific participant groups leave open the question of whether there are systematic age, sex, or other demographic differences in pain catastrophizing; no comprehensive investigation of such differences in pain catastrophizing has been attempted.

1.4 Aims of this review

The aims of this review were to systematically obtain data on PCS scores from a wide range of studies and first to explore the psychometric properties of the PCS using meta-analytic methods, then to investigate whether there were any clear differences in PCS scores according to personal characteristics of participants. The review also served to test the use of meta-analysis to investigate psychometric properties of self-report instruments widely used in psychological treatment.

1. Methods

1.1 Protocol and registration

The research protocol for the review and meta-analysis was registered on PROSPERO (prospective register of systematic reviews) at the University of York's Centre for Reviews and Dissemination (CRD), registration number CRD42016032863.

1.2 Eligibility criteria

English language studies reporting baseline PCS scores (those collected before any intervention) were included in the meta-analysis. Participants in those studies had to be aged 18 or over, could have any health condition or none, and both randomized and non-randomized studies were included. Included studies were those that reported demographic and clinical information about participants (age, sex, diagnostic category) and psychometric data for PCS scores (mean, standard deviation, sample size).

1.3 Search strategy

The search strategy was adapted for Cochrane Library, Cinahl, Embase, PsycInfo, PubMed, and Web of Science (all 1995-present) by using wildcards and terms relevant to each database (an example search strategy is included in **Suppl. Fig. 1**). The last search was run on 30 November 2015. Requests were sent to authors for data missing from otherwise relevant studies, resulting in eight responses with eligible scores to 81 requests for missing PCS data; and no eligible scores for 21 requests sent for missing demographic data.

1.4 Study selection and data collection

One reviewer (CW) screened the title and abstract of the studies retrieved in the database searches. A random sample (using a random number sequence generator) of 5% of the papers were screened by title and abstract by a second reviewer (SM) and the inter-rater reliability calculated. Discrepancies were discussed and resolved. The data collection form was adjusted following the pilot to allow for pooled data from studies that reported only PCS subscores, or scores from subgroups but personal data from the whole sample. Data items extracted from data including participant characteristics, study data, and study type are presented in **Suppl. Table 1**.

1.5 Risk of bias in individual studies

A component approach was used to assess the risk of bias in each included study [14]. Relevant components from the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies [16] were used in this review and meta-analysis:

- 1. Was the study population clearly specified and defined?
- 2. Was the participation rate of eligible persons at least 50%?

3. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study pre-specified and applied uniformly to all participants?

Sensitivity analysis was conducted to ascertain the impact of bias from the above components on the overall effect sizes found in the meta-analysis. Meta-analysis of effect size was conducted first for all studies, and then repeated only for studies known to be eligible (meeting all three risk of bias criteria), following the Cochrane method [7]. There was unlikely to be a high risk of publication bias in the included data, so no risk of bias analysis across studies was undertaken.

1.6 Meta-analysis to explore the psychometric properties of the PCS

2.6.1 Calculating weighted means, standard deviations and reliability alphas of PCS scores

Weighted scores were computed for the PCS mean, standard deviation, and Cronbach's alpha for each sample in which these data were available. Weights were based on the standard error for each sample. The weighted scores were used to compute the mean, standard deviation, reliability coefficient, confidence intervals, and random effects variance components for PCS scores across studies.

2.6.2 Reliability estimates

The internal consistency reliability for the PCS and its subscales was calculated by finding the weighted mean of the Cronbach's alpha statistics reported in studies using the PCS. The test-retest reliability for the total PCS scale was calculated using the weighted mean test-retest reliabilities reported in studies.

2.6.3 Subgroup analysis

Wilson's macros for SPSS [29] were used to conduct Hedges-Olkin random effects metaanalysis [5] on participants grouped by pain diagnosis. Hedges and Olkin's method of metaregression was chosen for this analysis because of its coherence with the theory of data used throughout: that including all available data and accounting for bias through weighting provides a more comprehensive analysis than excluding data. Hedges and Olkin's method uses a pooled variance estimate to standardize the difference between group means. Biases were corrected based on a sample size statistic using weighted scores.

A Q statistic was calculated to obtain a test of the homogeneity of the effect size (the extent to which individual effect sizes vary around the mean effect size); it is the standardized sum of squared differences between each effect size and the mean effect size:

$$Q = \sum_{i=1}^{k} \frac{(d_i - d_+)^2}{\hat{\sigma}_{d_i}^2}$$

where k is the number of studies or samples included, d_+ is the mean effect size, and σ^2_d is the weighted average based on the variance of the unbiased effect sizes

2.6.4 Exploration of the heterogeneity of the mean PCS score across studies

The I² measure of heterogeneity was calculated for the grand mean PCS score and for the mean PCS score of diagnostic subgroups. It was necessary to transform the Q value reported in the original meta-analysis to an I² value owing to Q having 'too much power as a test of heterogeneity if the number of studies is large' [7] (9.5.2).

The I² value was calculated from Q as follows:

$$\mathbf{I}^2 = \frac{(Q - df)}{Q}$$

 I^2 is reported as a percentage, where over 75% indicates substantial heterogeneity between trials [8].

2.6.5 Use of multiple regression to explore heterogeneity of PCS scores

SPSS version 23 [10] was used to conduct random-effects meta-analysis and metaregressions. Multivariate meta-regression was conducted to explore the heterogeneity of mean PCS scores across participant groups by testing their association with variables and other study features.

Wilson's macro for SPSS was used to employ Hedges and Olkin's psychometric metaanalysis method, with results transformed from Fisher's z scores back to r scores after the analysis. This method of meta-regression uses a weighted least squares (WLS) procedure and scores from each study that are weighted by the inverse of the study's sampling error bias. Variables entered into the first meta-regression were: pain category (type of pain diagnosis), mean age of participants, proportion of female participants, year of study (studies were categorized into ranges of three years), study type, and language of PCS used. A further meta-regression was then run using pain category as the only variable. Re-running the meta-regression with this clinically relevant variable meant that more studies were included, because some studies were excluded on the grounds of missing data — including those with no data on the gender of participants — in the first meta-regression.

2. Results

3.1 Study selection

220 studies were identified for inclusion in the review and meta-analysis (see **Fig. 1** for searching and screening process). **Suppl. Table 2** provides details of reasons for the exclusion of studies.

[Insert Fig. 1 here] Flow diagram showing the searching and screening stages of papers to be included in the review and meta-analysis.

Inter-rater reliability was calculated for the screening of papers that was completed by the two independent raters (CW and SM). There was 90.3% agreement, with a Cohen's kappa of 0.87 (accounting for agreement due to chance), meeting criteria for reliable inter-rater agreement [3] (p.56). Discrepancies were discussed and resolved between the raters, with a conservative approach followed in order to allow for further screening at a later stage.

3.2 Data cleaning and preparation

Data cleaning was conducted to remove double-counted data and data with errors (two papers in total). Seven further papers contained surprisingly low PCS scores but no evidence of the source of error; these papers were not removed from the analysis. Instead, meta-analytic methods were applied to correct for artifacts and error.

3.3 Study characteristics

Data from 220 studies published between 1997 and 2015 was included in the initial analyses. Included studies were cross sectional, psychometric, case series, randomized controlled and non-randomized controlled trials, case controlled, and cohort studies. Sample sizes ranged from 3 to 1,786, and many studies reported PCS scores and related data for two or more groups of participants so data were collected for 329 groups altogether. The PCS was represented by 21 languages translated from English.

Mean ages of participants in studies ranged from 19 to 76, with a grand mean age of 45 years, sd = 12 (for both weighted by sample size and unweighted). The grand total number of participants across included studies was 42,976. The gender ratio was 55:32:13 for male, female, and participants whose gender was not reported.

Mean PCS scores across all participant groups ranged from 3.2 to 43.8, with a grand weighted mean of 20.22 using a random effects model (weighted SD = 10.26, 95% CIs of mean = 19.30 - 21.14). Unless otherwise stated, 'PCS score' refers to the total scale score. Subscale scores are reported where available. Results of individual studies are presented in **Suppl. Table 1** due to the large number of studies (220) and larger number of participant groups in the studies (k = 339).

3.4 Risk of bias analysis

Three screening questions were used to assess the risk of bias within studies:

- Q1 = Was the study population clearly specified and defined?
- Q2 = Was the participation rate of eligible persons at least 50%?

Q3 = Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study pre-specified and applied uniformly to all participants?

70 studies fulfilled criteria for all three screening questions. The weighted PCS scores for all studies included in the review and for just those studies meeting all the risk of bias criteria were calculated. Subgroup analysis determined the difference in PCS scores between studies that did and did not meet all of the risk of bias criteria; results are presented in **Table 1**.

[Insert Table 1 here]

Regression analysis showed the PCS score to be significantly related to whether or not a study met all risk of bias criteria, B = 16.64, SE = 0.49, 95% CI = 15.68 - 16.60, p < 0.001. Analysis of variance showed a significant correlation between the type of study conducted and whether or not the study met all risk of bias criteria, B = 5.62, SE = 0.12, 95% CI = 5.38-5.85, p < .05.

3.5 Meta-analysis to explore the psychometric properties of the PCS

3.5.1 Heterogeneity of the grand mean PCS score

The I² value of the grand mean PCS score is 98.96%, representing very substantial heterogeneity between studies. The high I² value might also suggest that the overall mean ES is misleading because there are subpopulations of studies represented that have different ES values; this supports the need to conduct subgroup analysis to further determine the origins of heterogeneity of mean PCS scores across participant groups (see section 3.5.4).

3.5.2 Reliability

Estimates of the internal consistency of the PCS full scale and subscales were based on Cronbach's coefficient alpha[2]. After weighting and averaging reports from 40 studies, the full scale alpha = 0.92 (95% CI 0.91 - 0.93). PCS subscale data was reported in 21 studies, with average internal consistency of alpha = 0.89 (95% CI = 0.87 - 0.91) for the rumination subscale; alpha = 0.77 (95% CI = 0.73 - 0.82) for the magnification subscale; and alpha = 0.88 (95% CI = 0.86 - 0.9) for the helplessness subscale.

Six studies provided eight samples (n = 317) that, when weighted and combined, produced a mean test-retest reliability of 0.88 (95% CI 0.83 - 0.93, range 0.73 - 0.97), representing good reliability. The time lapse between the test and retest in included samples ranged from 7 to 135 days. It was not possible to test reliability of scores by time lapse as a number of studies had a range of intervals between tests rather than a standardized interval (including one study in which the time lapse ranged between 14-135 days).

3.5.3 Analysis of heterogeneity of PCS scores across participant groups

Participants from studies included in this meta-analysis were categorized based on their pain diagnosis. The 'other' group consisted of diagnoses that did not fit into one of the specified categories, including participants with mixed pain diagnoses; these were excluded from analysis of heterogeneity. The wide spread between branches in the plot of weighted mean PCS scores suggests substantial heterogeneity in the PCS scores across participant groups (**Fig. 2**). Notably, participants with lower limb pain experienced, on average, lower pain catastrophizing than healthy participants by two points out of a possible score of 52 on the PCS, and the mean PCS scores of participants with upper limb or upper and lower limb pain were equivalent to those of healthy participants.

[Insert Fig. 2 here] Forest plot showing the weighted mean ES and confidence intervals of PCS scores for groups of participants based on pain diagnosis.

3.5.4 Subgroup analysis

Owing to the extent of heterogeneity between PCS scores of participants with different pain diagnoses, subgroup analysis was conducted to establish the heterogeneity of scores within diagnoses, to distinguish it from sampling error [6] (**Table 2**). I² values ranged from 92.27% to 99.04%, indicating high levels of heterogeneity *within* diagnostic groups; 193 groups (24,546 participants) fell into 'other'/healthy/groups with mixed or unclear diagnoses and were excluded from this analysis.

Subgroup analysis between study types showed considerable overlap and homogeneity in mean PCS scores, with the exception of non-randomized controlled trials which had a higher mean PCS score than the grand total PCS score (27.55, 95% CI 24.15 - 30.95 compared to 20.22, 95% CI 19.44 - 21). This may be an artifact of data coming from two groups within one study which recruited participants only if they 'reported high levels of pain catastrophizing' [21] (p.859),

[insert Table 2 here]

3.5.5 Meta-regression of PCS scores

Multivariate meta-regression analysis was conducted to establish the association between PCS scores and characteristics of study participants (age, sex, diagnostic category) and study design (language of PCS, type of study, year of study publication). After exclusion because of missing data 277 groups were included in the analysis. Diagnostic category of participants, language, and type of study were all significantly associated with the mean PCS score obtained (**Table 3**). In a further meta-regression conducted with the variable of diagnostic category, this variable was again significantly associated with the mean PCS score (all 329 participant groups were included in this analysis; **see Table 4**).

[insert Tables 3 and 4 here]

Significantly higher or lower mean scores occurred for some non-English language versions of the PCS, notably for the Cantonese version of the PCS (weighted mean score for Cantonese was 36.3, compared to a mean of 18.48 for English versions, β 15.31, p = .002). The Cantonese scores were based on one study using the Cantonese language version.

3. Discussion

4.1 Psychometric properties of the PCS

The review included 220 studies of a total of 329 participant groups (42,976 clinical and non-clinical participants) with a mixture of pain diagnoses, age, and gender distributions, with a range of study types. Systematic review and meta-analytic methods were used to synthesize existing data by establishing and refining the known psychometric properties of the PCS using a far larger data set than previous studies. Internal consistency and test-retest reliability of the overall score and of the rumination subscale (but not of magnification or helplessness subscales), were all >0.85, encouraging confidence in use (see also Sullivan and colleagues [23]). The higher test-retest reliability found in this meta-analysis than previously [23] could be explained by shorter intervals between testing, or the inclusion in the current meta-analysis of stabler non-clinical samples alongside clinical samples. The psychometric findings on the PCS from a much larger evidence base may in part allay concerns over the 'ad-hoc' creation of psychometric self-report scales in health and psychology [15].

4.2 The relationship between PCS scores and participant characteristics

Subgroup analysis showed that PCS scores did not differ systematically with age or gender, again encouraging confidence in use,,particularly in the light of contradictory results of previous studies [1; 4; 11; 12; 22; 23; 24; 26; 27]. However, different pain diagnoses were associated with differences in PCS scores, and while this could be mediated by the association of pain catastrophizing scores with pain intensity reports [20], it is more likely that different pain problems are associated with different specific worries, and those with diagnoses that are difficult to establish or contested (such as fibromyalgia [31]) may more consistently generate catastrophic thinking. This requires further investigation.

The findings of this review reveal differences in PCS scores across populations and languages, but given the complexity of cultural and linguistic translation, it would be premature to try to interpret these findings. They do, however, serve as a reminder that simply translating a questionnaire does not guarantee that its psychometric properties remain the same as in the original language.

4.3 Strengths and limitations of the review

Strengths and limitations of this review are considered within a broader synthesis of the use of meta-analysis to establish psychometric properties of a self-report scale. Studies were included in this review if PCS use was reported in the study abstract, so it is likely that some studies were missed that only identified PCS use in their Methods. A replication could search all papers likely to be potentially eligible; this would likely be over 3000 papers. However, for this review, maximum use of included studies was made by including all data available per analysis. Additionally, the principle of assessing rather than selecting against methodological deficiency allowed the inclusion of all studies regardless of risk of bias, examined instead by sensitivity analysis and by weighting scores using a random effects model in the meta-analysis.

In this review, participants were categorized according to a single pain diagnosis, but many people with chronic pain have more than one pain condition, and could not be fitted into a pain diagnosis category. Studies used different ways of categorizing pain or describing pain diagnoses, meaning that data were matched to 'best fit' for this meta-analysis, for example 'low back pain', 'acute low back pain', 'chronic low back pain', and 'persistent non-specific low back pain' were classified as 'lumbar pain' although there may have been differences in diagnosis and threshold for classification in the different studies. The high proportion of 'healthy' participants in included studies who were students limits the generalizability of the

results to the general population of 'healthy' people without a pain diagnosis but with a wider age range. This is not unique to this review.

It is possible that the decision to include other language versions of the PCS introduced biases and inaccuracies owing to different psychometric properties of these versions. The decision was justified by the widespread international use of the PCS, highlighting the need for further validation studies of the translated versions of the questionnaire.

The risk of bias screening was completed by one author (CW). Optimally, a second author would duplicate the screening and results would be compared. Otherwise, established protocols for systematic review and meta-analysis were followed [14]. Meta-analytic methods were used to correct for measurement artifacts within included studies by weighting scores to obtain more accurate estimated effect sizes.

Samples used in the regression analysis were not fully independent in that, frequently, more than one participant group was included from a single study. This increased the number of groups available to analyze, but the results should be treated with caution due to this non-independence of samples.

Even excellent reliability does not imply validity of the concepts, and there are theoretical concerns about notions such as 'magnification' that imply contrast with a 'correct' amount of pain experience that are inconsistent with current understanding of pain psychology. Conclusions drawn in this review about psychometric properties of the PCS cannot be used as proof of validity of the concept of pain catastrophizing.

Overall, this review demonstrates a comprehensive attempt to identify relevant papers and a systematic method of discussing and deciding on inclusion and exclusion of studies. The use of meta-analysis across a large sample of studies allowed for exploration of narrow variance of PCS scores. The findings provide greater support for evidence from previous individual studies on the reliability and validity of the PCS.

4.4 Implications for clinical practice and research

Studies in this meta-analysis highlighted that the PCS is widely used for research and clinical practice. Current normative values and clinical cut-off scores are based on a sample of 851 injured workers, 75% of whom had a soft tissue back injury [23] (p. 6). This meta-analysis demonstrated that percentile scores as used to establish this clinical-cut-off vary between clinical groups based on pain diagnoses. This brings into question the concept of a clinically relevant score: should the clinical cut-off for pain catastrophizing be based on percentiles across pain diagnoses, or is it more pertinent to establish a cut-off using comparisons with others who have a similar pain condition? Either of these options is likely to be preferable to using the current clinical cut-off based on one study of a sample of injured workers. Further research is necessary to establish percentile PCS scores either across or within pain conditions using raw scores from multiple studies.

Changes from baseline PCS scores following treatment such as surgery or psychological therapy were not considered in the scope of this review. However, the more precise estimates provided here for internal consistency and test-retest reliability allows calculation of reliable change beyond that attributable to random variation across time. Meta-regression following systematic review helped to refine participant variables that did (language; pain diagnosis) and did not (age; gender) relate to PCS scores over a wide population. This helps to define variables of interest for future studies of the PCS and pain catastrophizing.

Finally, the methods used in this meta-analysis could be applied to any self-report scale (PROM) used in clinical psychology or other fields. The use of meta-analysis to establish a

stronger evidence base for the psychometric properties of questionnaires is encouraged in order better to understand sources of variance. This would strengthen the use of those selfreport scales, as well as encouraging discarding those that fail standards of reliability and validity. Such research could help to introduce greater precision and theoretical justification to the ever-increasing aggregation of concepts and scales.

4. Conclusion

This is the first psychometric meta-analysis of the PCS, and the first investigation of the PCS on such a large scale. Meta-analytic methods in this review confirmed the reliability of the overall scale and refined psychometric and normative properties. The PCS as a full scale is concluded to be a reliable measure. Caution is urged in the clinical interpretation of scores due to differences in scores between people with different pain diagnoses, and potential linguistic or cultural influences on PCS scores should be considered when using different language versions of the scale. It is hoped that results from this review will encourage the use of meta-analytic methods to establish more accurate psychometric properties of other psychological and self-report scales.

Acknowledgements

Professor Robert West, Dr Gary Latchford and Dr Andrew Prestwich are acknowledged for their technical help with statistical analysis and interpretation.

Conflicts of interest

The authors have nothing to disclose.

References

[1] Bedard GBV, Reid GJ, McGrath PJ, Chambers CT. Coping and self-medication in a community sample of junior high school students. Pain Res Manag 1997;2(3):151-156.

[2] Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika 1951;16(3):297-334.

[3] Field A. Discovering statistics using IBM SPSS statistics. Sage, 2013.

[4] Forsythe LP, Thorn B, Day M, Shelby G. Race and sex differences in primary appraisals, catastrophizing, and experimental pain outcomes. J Pain 2011;12(5):563-572.

[5] Hedges LV, Olkin I. Statistical methods for meta-analysis. Orlando, FL: Academic Press, 1985.

[6] Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11):1539-1558.

[7] Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions, Vol. 4. John Wiley & Sons, 2011.

[8] Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. BMJ 2003;327(7414):557. [9] Hsieh AY, Tripp DA, Ji L-J, Sullivan MJ. Comparisons of catastrophizing, pain attitudes, and cold-pressor pain experience between Chinese and European Canadian young adults. J Pain 2010;11(11):1187-1194.

[10] IBM Corp. SPSS Statistics for Windows. Armonk, NY: IBM Corp, 2015.

[11] Jacobsen PB, Butler RW. Relation of cognitive coping and catastrophizing to acute pain and analgesic use following breast cancer surgery. J Behav Med 1996;19(1):17-29.

[12] Keefe FJ, Lefebvre JC, Egert JR, Affleck G, Sullivan MJ, Caldwell DS. The relationship of gender to pain, pain behavior, and disability in osteoarthritis patients: the role of catastrophizing. Pain 2000;87(3):325-334.

[13] Leung L. Pain catastrophizing: an updated review. Indian J Psychol Med 2012;34(3):204.

[14] Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097.

[15] Morley S. Single-Case Methods in Clinical Psychology: A Practical Guide. London: Routledge, 2017.

[16] National Heart L, and Blood Institute. Quality assessment tool for observational cohort and cross-sectional studies. Bethesda: National Institutes of Health, Department of Health and Human Services 2014. Available: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 30 Jul 2018.

[17] Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L. The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med 2000;23(4):351-365.

[18] Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O'neill E. Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med 1997;20(6):589-605.

[19] Pedler A. The Pain Catastrophising Scale. J Physiother 2010;56(2):137.

[20] Quartana PJ, Campbell CM, Edwards RR. Pain catastrophizing: a critical review. Expert Rev Neurother 2009;9(5):745-758.

[21] Riddle DL, Keefe FJ, Nay WT, McKee D, Attarian DE, Jensen MP. Pain coping skills training for patients with elevated pain catastrophizing who are scheduled for knee arthroplasty: a quasi-experimental study. Arch Phys Med Rehabil 2011;92(6):859-865.

[22] Rivest K, Côté JN, Dumas J-P, Sterling M, De Serres SJ. Relationships between pain thresholds, catastrophizing and gender in acute whiplash injury. Man Ther 2010;15(2):154-159.

[23] Sullivan MJ, Bishop SR, Pivik J. The pain catastrophizing scale: development and validation. Psychol Assess 1995;7(4):524.

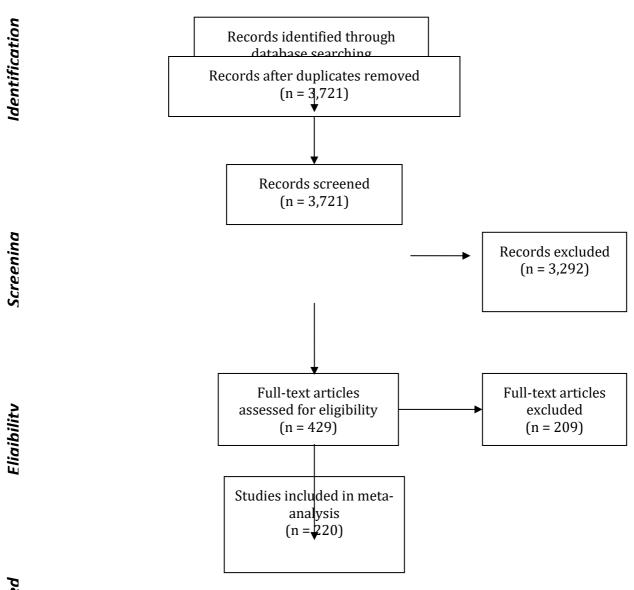
[24] Sullivan MJ, Neish NR. Catastrophizing, anxiety and pain during dental hygiene treatment. Community Dent Oral Epidemiol 1998;26(5):344-349.

[25] Sullivan MJ, Thorn B, Haythornthwaite JA, Keefe F, Martin M, Bradley LA, Lefebvre JC. Theoretical perspectives on the relation between catastrophizing and pain. Clin J Pain 2001;17(1):52-64.

[26] Sullivan MJ, Tripp DA, Rodgers WM, Stanish W. Catastrophizing and pain perception in sport participants. J Appl Sport Psychol 2000;12(2):151-167.

[27] Sullivan MJ, Tripp DA, Santor D. Gender differences in pain and pain behavior: the role of catastrophizing. Cognit Ther Research 2000;24(1):121-134.

[28] Van Damme S, Crombez G, Bijttebier P, Goubert L, Van Houdenhove B. A confirmatory factor analysis of the Pain Catastrophizing Scale: invariant factor structure across clinical and non-clinical populations. Pain 2002;96(3):319-324.


[29] Wilson DB. Meta-analysis macros for SAS, SPSS, and Stata, 2006. Available: http://mason.gmu.edu/~dwilsonb/ma.html. Accessed 30 Jul 2018.

[30] Wilson DB, Lipsey MW. Practical meta-analysis. Sage Publications Inc. 2001.

[31] Wolfe F. Criteria for fibromyalgia? What is fibromyalgia? Limitations to current concepts of fibromyalgia and fibromyalgia criteria. Clin Exp Rheumatol. 2017; 35(Suppl 105):S10-12.

Fig 1

PsycINFO: 1171	EMBASE: 1584	PubMed: 953	CINAHL: 658	Cochrane Library: 334	Web of Science: 2914
-------------------	-----------------	----------------	----------------	-----------------------------	----------------------------

Included

Table 1. Weighted mean PCS scores and confidence intervals for all studies included in the meta-analysis, for studies meeting all risk of bias criteria, and for studies that did not meet all risk of bias criteria.

Included studies	Ν	Weighted	95% CI	Weighted sd of	95% CI of	
		mean PCS	of mean	PCS score	sd	
		score				
All studies	220	20.2	19.3-21.1	10.3	10.0-10.5	
Studies meeting all risk of bias criteria	70	22.8	20.9-24.6	10.8	10.4-11.2	
Studies not meeting all risk of bias criteria	150	19.1	18.2-20.1	10.0	9.7-10.3	

Variable	Туре	Degrees	Mean	F	Significance	Amount
	III sum	of	square		level	of
	of	freedom				variance
	squares					accounted
						for (eta
						squared)
Mean age of	118.00	1	118.00	3.15	.077	0.01
participants						
Percentage of female	31.52	1	31.52	0.84	.360	0.00
participants						
Diagnostic category	5644.69	8	705.59	18.83	<.001	0.39
of participants						
Language of PCS	3870.13	19	203.69	5.44	<.001	0.30
administered						
Type of study	1586.30	7	226.61	6.05	<.001	0.15
Year range of	299.21	4	74.80	2.00	.096	0.03
publication*						

Table 3. Association between covariates in meta-regression and the grand mean PCS score.

* Year of publication was categorized into groups of 3-year duration

	Univariate model	Weighted	least squares	s meta-regre	ssion model	
			95% co	onfidence		
			inte	erval		
Variable	р	β	Lower	Upper	t	р
			bound	bound		
Diagnostic	<.001					
category of						
participants						
Healthy		Index				
Generalised pain		17.24	14.41	20.07	11.99	<.001
Head and neck pain		6.70	2.61	10.80	3.22	.001
Cervical and		6.16	0.56	11.76	2.16	.031
thoracic pain						
Upper limbs or		-3.40	-6.23	-0.57	-3.36	.019
upper and lower						
limb pain						
Trunk pain		11.26	6.42	16.10	4.58	<.001
Lumbar pain		6.96	4.74	9.17	6.18	<.001
Lower limbs		-2.16	-6.33	2.01	-1.01	.309

Table 4. Regression of variable 'diagnostic category of participants' onto the grand meanPCS score.

Other or mixed 8.	.25 6.44	10.07 8.94	<.001
-------------------	----------	------------	-------

diagnosis

Supplementary files

- 1. pain catastrophi* scale*
- 2. pain catastrophi* measure*
- 3. pain catastrophi* questionnaire*
- 4. catastrophization [MeSH terms]
- 5. pain measurement [MeSH terms]
- 6. pain NEAR/3 catastrophi*
- 7. #4 AND #5
- 8. #1 OR #2 OR #3 OR #6 OR #7

Suppl. Figure 1. Search strategy used to identify potentially relevant studies from the

Cochrane Library.

		Year									
		of							M:F	Mean	
Study	First	public				Sample	Mean		participa	PCS	Sd PCS
ID	author	ation	Study type	Language	Participant group	size	age	Sd age	nts	score	score
3	Barke	2015	Psychometric	German	Chronic back pain	182	51	10.5	54:128	19.7	12.1
6	Iwaki	2012	Cross	Japanese	Chronic pain	160	51	16.4	48:112	33.9	10.2
7	Karstens	2015	Psychometric	German	Lower back pain	228	42	11	120:128	16.7	10.5
					Whiplash neck injury						
					pain and/or low back						
8	Kikuchi	2015	Cross	Japanese	pain	956	45	10.4	679:277	24	11.8
					Degenerative spinal						
9	Kim	2013	Psychometric	Korean	disease	72	66	8.1	27:45	24.1	12.2
10	Kjogx	2014	Cross	Danish	Chronic headache	57	49	15.1	57:0	16.9	10.4
10	Kjogx	2014	Cross	Danish	Chronic headache	161	45	15.2	0:161	22.5	12
10	Kjogx	2014	Cross	Danish	Healthy participants	118	22	7.2	118:0	10.3	6.7

Suppl. Table 1. Characteristics of studies included in the review and meta-analysis.

10	Kjogx	2014	Cross	Danish	Healthy participants	129		22	5.2	0:129	12.3	8.7
11	Koo	2015	Psychometric	Korean	Chronic pain	64		41	14.5	23:41	18.8	11.9
12	Kraljevic	2012	Cross	Croatian	Chronic pain	100		55	10	36:64	31	12.6
					Healthy participants							
12	Kraljevic	2012	Cross	Croatian	(adult children)	100		30	10	50:50	21.8	12.2
					Healthy participants							
12	Kraljevic	2012	Cross	Croatian	(spouse)	85		60	10	51:34	25.6	13.4
16	Lim	2006	Psychometric	Chinese	Chronic pain	120	/	/		50:70	31.9	11.1
				Brazilian								
17	Lopes	2015	Psychometric	Portuguese	Acute low back pain	131		67	7.1	10:121	29.2	13.1
18	Man	2007	Case	Chinese	Chronic pain	45	/	/		15:30	33.7	12.1
					Healthy participants							
					6th yr medical							
19	Maric	2011	Cross	Croatian	students	53		24	1.8	10:43	16.8	9.9
					Healthy participants							
					1st yr medical							
19	Maric	2011	Cross	Croatian	students	137		19	1.7	47:90	19.2	7.9

Healthy participants

1st yr economics

19	Maric	2011	Cross	Croatian	students	245	19)	1.7	86:159	19.7	9.1
					Healthy participants							
					5th yr economics							
19	Maric	2011	Cross	Croatian	students	86	23	5	1.7	22:64	19.8	10.1
20	Matsudaira	2014	Psychometric	Japanese	Low back pain	1786	49) /		900:886	24.6	10.9
					Burning mouth							
21	Matsuoka	2010	Case	Japanese	syndrome	46	60)	9.6	2:44	28.2	9.7
23	Meyer	2008	Psychometric	German	Low back pain	111	49)	16	36:75	17.6	10.5
					Healthy participants							
25	Mohd Din	2015	Psychometric	Malay	military	303	21		1.8	258:45	19.2	10.2
					Fibromyalgia,							
29	Morris	2012	Psychometric	Africaans	Africaans speaker	41	/	/		/	37	11.4
				English								
				South	Fibromyalgia,							
29	Morris	2012	Psychometric	African	English speaker	33	/	/		/	38.2	11.5

Fibromyalgia, Xhosa

29	Morris	2012	Psychometric	Xhosa	speaker	19	/		/	/	34.2	8.5
30	Ning	2008	Psychometric	Cantonese	Chronic pain	224		42	10.3	120:104	36.3	10.9
35	Penhoat	2014	Cross	French	Rheumatoid arthritis	86		59	13.7	27:59	17	13.6
35	Penhoat	2014	Cross	French	Spondyloarthritis	54		43	10.1	37:17	20.8	12.1
37	Rodero	2010	Psychometric	Spanish	Fibromyalgia	205		50	9.7	19:186	32.4	12.8
38	Rodero	2012	Psychometric	Spanish	Fibromyalgia	250		52	8.5	11:239	24.3	13.6
40	Roelofs	2003	Psychometric	Dutch	Fibromyalgia	401		48	10.1	22:379	20.3	11.5
					Healthy participants							
41	Roelofs	2002	Psychometric	Spanish	students	271		19	1.4	54:226	14.3	7.9
					Burning mouth							
42	Rogulj	2014	Cross	Croatian	syndrome	30		66	9.2	5:25	28.4	15
				Brazilian	Chronic							
43	Sehn	2012	Psychometric	Portuguese	musculoskeletal pain	384		50	17.1	67:317	30.6	11.7
44	Severijns	2002	Cross	Dutch	Hip/knee pain	582	/		/	/	12.1	10.4
44	Severijns	2002	Cross	Dutch	Low back pain	754	/		/	/	12.2	10.4

Neck/shoulder/high

44	Severijns	2002	Cross	Dutch	back pain	880	/		/	/	12.3	10.3
					Elbow/wrist/hand							
44	Severijns	2002	Cross	Dutch	pain	480	/		/	/	13	10.8
44	Severijns	2002	Cross	Dutch	Ankle/foot pain	284	/		/	/	13.5	11
					Healthy participants,							
44	Severijns	2002	Cross	Dutch	no pain	1164	/		/	/	8.2	8
46	Suren	2014	Cross	Turkish	Preoperative patients	165		39	13.9	91:74	16.1	11.5
	Van											
48	Damme	2002	Psychometric	Dutch	Low back pain	162		42	11.6	63:99	22	9.3
	Van											
48	Damme	2002	Psychometric	Dutch	Fibromyalgia	100		45	9.1	20:80	24.8	12.2
	Van				Healthy participants							
48	Damme	2002	Psychometric	Dutch	students	550		19	1.4	147:403	16.6	7.8
				Brazilian	Chronic myofascial							
49	Volz	2013	Series	Portuguese	pain syndrome	24		48	12.6	0:24	34.2	9.2
50	Wong	2015	Series	Chinese	Chronic pain	226		45	9.2	77:149	26.7	14.7

14.3
5.5
12.6
12.2
10.7
10
11.4
12.4
9.7
12

Chronic neuropathic

			Retrospective		pain of upper or						
71	Al-Kaisy	2015	cohort stud	English	lower limbs	11	46	12	5:6	33	11
					Lower extremity						
75	Archer	2015	Cohort	English	trauma	134	45	15	70:64	14	13
					Anterior cruciate						
					ligament						
77	Baranoff	2015	Cohort	English	reconstruction	44	27	9.4	27:17	11.3	9.8
			RCT		Complex Regional						
			secondary data		Pain Syndrome type						
78	Barnhoorn	2015	analysis	Dutch	1	35	43	16.9	6:29	22.8	11.7
			RCT		Complex Regional						
			secondary data		Pain Syndrome type						
78	Barnhoorn	2015	analysis	Dutch	1	21	46	16.5	5:16	24.9	14.8
					Orthodontic						
					elastomeric						
81	Beck	2014	Series	English	separators	20	24	3.4	9:11	14.6	7.6

86	Beneciuk	2013	Series	English	Low back pain	146	41	13.5	57:89	16.8	12.1
			Secondary		Acute and subacute						
87	Beneciuk	2012	analysis	English	low back pain	108	37	14.5	39:69	16.3	11.2
					Pain-free participants						
					with a history of						
	Bhaskarac				chronic trigeminal						
90	harya	2015	Cross	English	neuropathic pain	12	64	9.5	0:12	15.9	13.3
	Bhaskarac				Healthy participants						
90	harya	2015	Cross	English	control group	15	62	6.9	4:11	7.1	11.7
					Non-specific low						
91	Billis	2013	Cross	English	back pain	106	36	15.9	43:63	19.4	7.9
92	Block	2008	Cross	English	Chronic pain	43	44	12.7	17:26	23.9	11.8
94	Bond	2015	Series	English	Migraine and obesity	105	38	8	0:105	22.7	10.8
96	Borg	2012	Cross	Dutch	Dyspareunia	33	27	6.8	0:33	15.3	7.3
96	Borg	2012	Cross	Dutch	Vaginismus	35	28	5.8	0:35	22	9.3

Healthy participants

without sexual

96	Borg	2012	Cross	Dutch	complaints	54	27	6.7	0:54	17.4	9.1
					Whiplash associated						
98	Bostick	2013	Series	English	disorder	72	39	14	15:57	24.7	9.4
					Upper extremity						
99	Bot	2014	Psychometric	English	diagnoses	164	51	15	75:89	5.3	6.9
					Post patients hand						
					surgery						
					nonresponders to						
101	Bot	2013	Series	English	later survey	69	48	16	37:32	3.2	4.9
					Post patients hand						
					surgery responders to						
101	Bot	2013	Series	English	later survey	35	56	17	10:25	5.6	7.2
					Painful conditions of						
102	Bot	2014	Cross	English	the upper extremity	130	52	16	62:68	8.7	9.4

Arm, shoulder and

103	Bot	2013	Cohort	English	hand disability	1204	53	16	511:693	6.8	8.4
					Temperomandibular						
108	Brandini	2011	Case	English	disorder	15	31	10.7	0:15	12.7	10.6
108	Brandini	2011	Case	English	Healthy participants	14	29	5	0:14	11	8.4
					Chronic pain and						
114	Bryson	2014	Cross	English	insomnia	111	44	10.9	35:76	30.6	14.7
					Postwhiplash						
116	Buitenhuis	2008	Series	English	syndrome	140	36	12	45:95	12.9	11.3
119	Calley	2010	Cross	English	Low back pain	80	47	11.5	34:46	13.9	10.1
					Temperomandibular						
120	Campbell	2010	Case	English	joint disorder	48	34	12	7:41	14.3	9.2
120	Campbell	2010	Case	English	Arthritis	43	55	9.7	16:27	15.4	12
120	Campbell	2010	Case	English	Healthy participants	84	34	14.6	51:33	9.5	9
					Palliative care						
					patients on opioid						
123	Carroll	2011	Case	English	treatment	20	58	10	9:11	19.8	13.3

Labour and

successful vaginal

125	Carvalho	2014	Series	English	delivery	39		34	5	0:39	16	9
128	Casey	2015	Cohort	English	Whiplash injury	246		43	14.6	54:192	16.1	13.2
130	Cebolla	2013	Psychometric	Spanish	Fibromyalgia	251		52	8.4	10:241	24.3	13.6
					Muskuloskeletal							
135	Chatkoff	2015	Cross	English	pain, adaptive copers	26	/		/	/	20.3	13.9
					Muskuloskeletal							
135	Chatkoff	2015	Cross	English	pain, dysfunctional	15	/		/	/	27.8	12.8
					Muskuloskeletal							
135	Chatkoff	2015	Cross	English	pain, dysfunctional	28	/		/	/	32.5	10.1
					Low back injury,							
					compensation							
138	Chibnall	2005	Psychometric	English	claimants	1475	/		/	919:556	25.4	12.1
	Choobmasj				Healthy volunteers							
140	edi	2012	Cross	Arabic	pregnant	300		28	5.9	0:300	29.3	11.8

Major depressive

142	Chung	2012	Series	Chinese	disorder	91	48	9.5	18:73	23.7	13.1
					Major depressive						
143	Chung	2015	Other	Chinese	disorder	137	50	9.6	28:109	24.6	11.3
149	Cosic	2013	Cohort	Croatian	Parous	69	30	/	0:69	16.1	13.2
149	Cosic	2013	Cohort	Croatian	Nulliparous	80	24	/	0:80	23.9	12.6
					Provoked						
151	Curran	2010	Series	English	vestibuladynia	8	30	10.6	0:8	24.8	7.9
					Non-cancer pain,						
					geriatric patients,						
153	Darchuk	2010	Series	English	older	78	67	5.6	28:50	25.6	13.7
					Non-cancer pain,						
					geriatric patients,						
153	Darchuk	2010	Series	English	middle aged	230	48	5.3	43:187	26.2	12.1
					Non-cancer pain,						
					geriatric patients,						
153	Darchuk	2010	Series	English	younger	141	30	6.2	25:116	27.3	12.6

						Chrome pani,						
1	54	Darnall	2012	Cross	English	incarcerated women	159	39	11.5	0:159	27.1	11.8
						Chronic pain						
1	55	Darnall	2014	Series	English	outpatients	57	50	12.2	16:41	26.1	10.8
1	59	Davidson	2008	Psychometric	English	Chronic pain	126	50	14.2	40:86	22.4	13.2
						Provoked						
1	61	Davis	2015	Series	English	vestibulodynia	222	31	10.9	0:222	28.2	10.8
						Chronic pain,						
1	65	de Boer	2014	Cross	Dutch	outpatients	89	51	15.5	34:55	22.4	13
						Chronic low back						
1	72	Demoulin	2010	Psychometric	Dutch	pain	99	42	9.4	60:39	22.2	10.3
						Healthy participants,						
1	73	D'Eon	2004	Psychometric	English	students, men	229	21	3.7	229:0	20.6	9.6
						Healthy participants,						
1	73	D'Eon	2004	Psychometric	English	students, women	276	20	4.1	0:276	26.4	9.4
1	76	Dimitriadis	2014	Psychometric	Greek	Chronic neck pain	45	36	14.5	13:32	21.4	12

Chronic pain,

			Other		Healthy participants,								
179	Dixon	2004	experimental	English	college students, men	91	/		/		91:0	16.6	7.9
					Healthy participants,								
			Other		college students,								
179	Dixon	2004	experimental	English	women	112	/		/		0:112	19.2	9.7
185	Durosaro	2008	Series	English	Erythromelalgia	8		43		16.8	1:7	29.9	6.8
					Healthy participants,								
191	Fabian	2011	Cross	English	college students, men	24	/		/		24:0	13.8	7.8
					Healthy participants,								
191	Fabian	2011	Cross	English	college students	62	/		/		24:38	15.9	8.2
					Patients undergoing								
					total knee								
193	Feldman	2015	Cross	English	arthroplasty	316		66		8.7	130:186	12	10.7
					Non-specific low								
195	Fernandes	2002	Psychometric	Norwegian	back pain	90		48		11.7	38:52	13.6	9.2
197	Fitzcharles	2014	Cross	English	Fibromyalgia	246		48		10.4	22:224	29.3	12.2
199	Flink	2009	Series	Swedish	Prepartum	82	/		/		0:82	19.6	9.5

Preoperative patients

before total knee

200	Forsythe	2008	Series	English	arthroplasty	55	69	8.4	20:35	9.8	8.7
					Recent-onset low						
201	Fritz	2015	Rct	English	back pain	112	37	10.2	59:53	13.8	10.1
					Recent-onset low						
201	Fritz	2015	Rct	English	back pain	108	38	10.4	46:62	13.9	11
202	Gagnon	2013	Series	English	Chronic pain	101	44	8.2	64:37	28	15
203	Gandhi	2010	Psychometric	English	Hip osteoarthritis	100	63	10.6	50:50	16.6	13.7
203	Gandhi	2010	Psychometric	English	Knee osteoarthritis	100	67	8.4	31:69	17.3	13.3
	Garcia-										
205	Campayo	2010	Psychometric	Spanish	Fibromyalgia	250	45	7.2	21:229	30.8	11.7
206	Herbst	2010	Series	English	Adiposis dolorosa	10	48	3.6	4:6	28.2	3.5
207	Gautier	2011	Cross	Other	Chronic pain, men	26	41	8	26:0	23.7	9.4
207	Gautier	2011	Cross	Other	Chronic pain, women	24	39	10.6	0:24	27.1	13.1
209	George	2011	Psychometric	English	Low back pain	80	47	11.5	34:46	14.1	10.1

Healthy participants

212	Geva	2013	Case	English	triathletes	19	40	12.1	11:8	16.5	9
					Healthy participants						
212	Geva	2013	Case	English	controls	17	37	11.1	7:10	20.8	12
214	Gilliam	2010	Cross	English	Healthy participants	97	25	2.8	41:56	19.5	8.8
					Healthy participants,						
					college students,						
215	Goodin	2011	Other	English	Caucasian American	86 /		/	/	13.2	8.6
					Healthy participants,						
					college students,						
215	Goodin	2011	Other	English	African American	28 /		/	/	15.4	11.5
					Healthy participants,						
					college students,						
215	Goodin	2011	Other	English	Asian American	35 /		/	/	15.9	9.9
					Pelvic girdle pain in						
					pregnancy and after						
219	Grotle	2012	Psychometric	Norwegian	delivery	87	34	5.3	0:87	13.5	8.7

223	Hayashi	2015	Series	Japanese	Neck-shoulder pain	87	51	16.4	35:52	32.1	10.6
223	Hayashi	2015	Series	Japanese	Headache	62	51	18.3	14:48	33.7	10.3
					Low back/lower limb						
223	Hayashi	2015	Series	Japanese	pain	142	57	15	58:84	33.7	10.1
					Post-enucleation,						
224	Hegarty	2014	Cross	English	persistent pain	8	61	18.1	6:2	3.6	6.8
					Post-enucleation, no						
224	Hegarty	2014	Cross	English	pain	9	61	18.2	3:6	6.8	15.9
					Low back pain,						
					active duty US navy						
228	Hiebert	2012	Series	English	personnel	253	32	7.9	188:65	11.1	9.9
					Patients three weeks						
229	Hirakawa	2014	Series	Japanese	post surgery	90	76	6.3	20:70	13	9.3
					Healthy participants,						
					undergraduate						
230	Hirsch	2008	Psychometric	English	students	100	21	1.7	44:66	18.6	9.2

Chronic pain, never

235	Hooten	2009	Cohort	English	smoked, male	134	47	13.6	134:0	23.1	12.3
					Chronic pain, never						
235	Hooten	2009	Cohort	English	smoked, female	500	46	4.8	0:500	24.8	13
					Chronic pain, former						
235	Hooten	2009	Cohort	English	smoker, female	203	50	12.9	0:203	26	11.9
					Chronic pain, former						
235	Hooten	2009	Cohort	English	smoker, male	91	54	13.5	91:0	26.2	11.1
					Chronic pain,						
235	Hooten	2009	Cohort	English	smoker, female	225	43	10.9	0:225	27.6	13.2
					Chronic pain,						
235	Hooten	2009	Cohort	English	smoker, male	88	42	12	88:0	31.5	11
					Experienced trauma						
238	Horsham	2013	Cross	English	but no PTSD	91	/	/	/	13.6	7.8
					Control (no						
					experience of						
238	Horsham	2013	Cross	English	trauma, no PTSD)	71	/	/	/	8.6	4.3

238	Horsham	2013	Cross	English	Ptsd	87 /		/	/	25.3	8
241	Kadimpati	2015	Cross	English	Chronic pain	595	47	13.7	173:422	26.7	11.2
					Postmenapausal						
242	Kao	2012	Cross	Other	dyspareunia sufferers	182	57	5.4	0:182	16.1	13.2
244	Karayannis	2013	Cross	English	Low back pain	19	43	13.2	6:14	14.4	8.2
246	Karsdorp	2009	Cross	Dutch	Fibromyalgia	409	48	10.2	21:388	20.3	11.4
					Cardiac surgery,						
252	Khan	2012	Series	English	preoperative	64	66	11.1	54:10	11.7	11.1
					Degenerative lumbar						
253	Kim	2015	Psychometric	Korean	spinal stenosis, men	35	64	12.8	35:0	19.9	13.3
					Degenerative lumbar						
					spinal stenosis,						
253	Kim	2015	Psychometric	Korean	women	60	66	9.6	0:60	27.9	11.5
					Lumbar spinal						
254	Kim	2014	Cross	Korean	stenosis	155	65	12.4	57:98	24.9	12.8
					Patients scheduled						
256	Kleiman	2011	Psychometric	English	for major surgery	444	46	10.2	174:270	16.5	10.5

Chronic widespread

257	Koele	2014	Series	Dutch	musculoskeletal pain	165	44	12.9	22:143	17.5	9.4
	Kristjansd				Chronic widespread						
260	ottir	2013	Rct	Norwegian	pain	66	44	11.2	0:66	20.8	9.5
	Kristjansd				Chronic widespread						
260	ottir	2013	Rct	Norwegian	pain	69	45	11.1	0:69	21.2	10.3
					Chronic craniofacial						
263	La Touche	2014	Cross	Spanish	pain	192	46	13.1	60:132	23.9	8.9
264	Lame	2008	Psychometric	Dutch	Chronic pain	50	55	13.1	20:30	30.2	11.7
					Chronic low back						
265	Lariviere	2010	Cohort	English	pain, women	13	35	9	0:13	15	13
					Chronic low back						
265	Lariviere	2010	Cohort	English	pain, men	14	43	10	14:0	26	10
268	Lee	2008	Psychometric	English	Healthy participants	189	27	8	99:90	11.4	7.4
269	Lemieux	2013	Cross	French	Dyspareunia	179	31	10	0:179	28.6	9.7
					Chronic						
270	Leonard	2013	Cross	English	musculoskeletal pain	57	56	15.1	16:41	25.7	14.2

271	Lin	2013	Other	Chinese	Healthy participants	15	26	11.2	6:9	19.2	8.1
					Lateral elbow pain,						
	Lindenhov				placedo, lidocaine						
272	ius	2008	Rct	English	only	30	51	10	12:18	20.8	8.5
	Lindenhov				Lateral elbow pain,						
272	ius	2008	Rct	English	dexamethasone	27	50	8	10:17	21.8	10.5
					Atraumatic hand or						
274	London	2014	Cohort	English	wrist condition	256	56	12.6	75:181	11.8	8.9
					Patients scheduled						
275	Louw	2015	Series	English	for lumbar surgery	10	47	16.2	3:7	25.4	13.5
					Fibromyalgia						
280	Lukkahatai	2013	Cross	English	patients with fatigue	9	41	7.3	0:9	17	9.8
					Preoperative						
282	Theunissen	2014	Psychometric	Dutch	hysterectomy	192	46	7.8	0:192	13.1	8.5
					Patients undergoing						
					day surgery,						
282	Theunissen	2014	Psychometric	Dutch	preoperative	75	53	15.3	31:44	14	8.8

282	Theunissen	2014	Psychometric	Dutch	Mixed inpatient	1490	56	15.5	702:788	16.5	12.7
283	Martel	2013	Series	English	Chronic pain, women	35	50	8.9	0:35	24.3	13.6
283	Martel	2013	Series	English	Chronic pain, men	20	49	10.5	20:0	24.5	10.4
					Chronic pain patients						
284	Martin	2010	Cross	English	pre-surgery	208	47	9.7	83:124	19.3	7.9
285	Martinez	2012	Cross	Spanish	Healthy participants	200	40	11.3	0:200	13.7	10
	Masselin-				Breast cancer						
288	Dubois	2013	Cohort	French	patients pre-surgery	100	55	12.1	0:100	14.6	11.4
					Total knee						
	Masselin-				arthroplasty patients						
288	Dubois	2013	Cohort	French	pre-surgery	89	69	8.9	35:65	19.4	11.2
	McLoughli				Women with						
290	n	2011	Cross	English	fibromyalgia	39	43	12.1	0:39	13.9	7.7
	McLoughli				Women healthy						
290	n	2011	Cross	English	controls	40	41	9.1	0:40	8.5	7
	McWillia				Healthy participants,						
291	ms	2007	Psychometric	English	university students	278	20	4	145:136	15.7	9

292	ms	2015	Psychometric	English	Chronic pain	201	47	10.3	74:127	25.8	12
					Chronic fatigue						
					syndrome and						
					chronic widespread						
					pain, experimental						
293	Meeus	2010	Rct	Dutch	group	24	38	10.6	2:22	18.2	6.9
					Chronic fatigue						
					syndrome and						
					chronic widespread						
293	Meeus	2010	Rct	Dutch	pain, control group	24	42	10.2	6:18	21.8	8.9
					Chronic low back						
294	Meyer	2009	Cross	German	pain	78	50	17	26:52	19.2	10.3
295	Michael	2004	Series	English	Chronic pain	86	42	10.4	46:40	27	13.3
					Chronic low back						
298	Monticone	2014	Rct	Italian	pain, control group	10	57	14.4	6:4	23	4

Chronic low back

pain, experimental

298	Monticone	2014	Rct	Italian	group	10	59	16.4	3:7	25	6
					Spondylolisthesis						
					and/or lumbar spinal						
					stenosis,						
300	Monticone	2014	Rct	Italian	experimental group	65	59	11.8	21:44	24.8	9.3
					Spondylolisthesis						
					and/or lumbar spinal						
					stenosis, control						
300	Monticone	2014	Rct	Italian	group	65	56	14.2	30:35	27	8.7
301	Monticone	2015	Psychometric	Italian	Chronic neck pain	118	48	15.9	40:78	18.5	9
					Healthy participants,						
302	Moore	2013	Cross	English	male	70	23	6.6	70:0	18	8.6
					Healthy participants,						
302	Moore	2013	Cross	English	female	119	24	5.9	0:119	20.5	8.3

Chronic low back

303	Moseley	2004	Series	English	pain, group 2	46	35	7	16:30	16	5
					Chronic low back						
303	Moseley	2004	Series	English	pain, group 1	75	36	6	38:37	16	6
					Chronic low back						
					pain, experimental						
304	Moseley	2004	Rct	English	group	31	42	10	13:18	19	6
					Chronic low back						
304	Moseley	2004	Rct	English	pain, control group	27	45	6	12:15	20	6
					Fibromyalgia and						
					C1-2 joint						
307	Moustafa	2015	Rct	English	disfunction	60	51	7	33:27	42.5	3
					Fibromyalgia and						
					C1-2 joint						
307	Moustafa	2015	Rct	English	disfunction	60	54	8	35:25	43.8	3.6
308	Munoz	2005	Cross	Other	Chronic pain	149	59	15	42:107	20.9	16.3

Chronic pain,

receiving folk

309	Nakamura	2014	Cross	Japanese	remedy	108	46	13.8	33:75	23.2	9.9
					Chronic pain, seen at						
309	Nakamura	2014	Cross	Japanese	medical facility	213	55	14.8	84:129	26.5	10.3
					Healthy participants,						
310	Naugle	2014	Other	English	young adults, men	12 /	/		12:0	5.2	4.1
					Healthy participants,						
310	Naugle	2014	Other	English	young adults, women	15 /	/		0:15	9.3	4.1
					Interstitial						
					cystitis/painful						
312	Nickel	2010	Case	English	bladder syndrome	207	50	15.1	0:207	21.3	12.6
					Healthy participants,						
312	Nickel	2010	Case	English	control group	117	48	13.5	0:117	9.9	9.2
					Whiplash associated						
314	Nieto	2011	Cross	Spanish	disorders	147	34	10.4	42:105	17.9	9.9

					Chronic low back						
					pain, shrunken						
					perceived body						
316	Nishigami	2015	Case	Japanese	image	12	62	12.4	4:8	19.6	11.4
					Chronic low back						
					pain, expanded						
					perceived body						
316	Nishigami	2015	Case	Japanese	image	12	57	16.7	4:8	21.4	6.5
					Chronic low back						
					pain, normal						
					perceived body						
316	Nishigami	2015	Case	Japanese	image	18	65	11.2	8:10	21.6	7
					Upper-extremity						
317	Novak	2011	Cross	English	nerve injury	158	41	16	105:53	16	15
					Brachial plexus						
318	Novak	2012	Cross	English	nerve injury	61	40	17	41:20	15	14

Upper extremity

319	Novak	2013	Psychometric	English	nerve injury	157	41	16	104:53	16	15
					Nonspecific low						
321	Ogunlana	2015	Cross	English	back pain	275	52	13.4	110:165	24	10.4
325	Osman	2000	Psychometric	English	Pain outpatients, men	26	31	8.7	26:0	19.6	11.4
					Pain outpatients,						
325	Osman	2000	Psychometric	English	women	34	33	10.7	0:34	24.3	8.8
					Healthy participants,						
325	Osman	2000	Psychometric	English	men	85	36	10.8	85:0	11.1	8
					Healthy participants,						
325	Osman	2000	Psychometric	English	women	130	35	12.2	0:130	15.7	10.9
					Healthy participants,						
					students, study 2,						
326	Osman	1997	Psychometric	English	men	59	20	2.5	59:0	10.9	7.8
					Healthy participants,						
					students, study 3,						
326	Osman	1997	Psychometric	English	women	86 /	/		0:86	11.7	8.4

Healthy participants,

students, study 1,

326	Osman	1997	Psychometric	English	men	93	/	/	/	93:0	11.9	8
					Healthy participants,							
					students, study 1,							
326	Osman	1997	Psychometric	English	women	195	/	/	/	0:195	14.6	9.6
					Healthy participants,							
					students, study 2,							
326	Osman	1997	Psychometric	English	women	161		20	3.7	0:161	15	9.5
					Healthy participants,							
					students, study 3,							
326	Osman	1997	Psychometric	English	men	86	/	/	/	86:0	18.4	9.6
	Papaioann				Degenerative disc							
327	ou	2009	Series	Greek	disease	61		51	14.5	25:36	21.7	13.2
328	Parr	2012	Psychometric	English	Healthy participants	126		24	9.8	51:75	9.8	7.8
					Anterior cruciate							
330	Pavlin	2005	Series	English	ligament injury	48		31	1.2	27:21	14.4	8.3

Whiplash-associated

331	Pearson	2009	Cross	English	disorder	14	37	10.8	8:6	17	14.4
					HIV-associated						
					sensory						
333	Philips	2014	Cross	English	polyneuropathy	28	51	8.4	25:3	23.7	12.6
					HIV-positive but						
					with no HIV-						
					associated sensory						
333	Philips	2014	Cross	English	polyneuropathy	38	48	8.9	32:6	14.1	11.8
					Non-cancer chronic						
334	Pincus	2008	Psychometric	English	pain	243	44	12	110:133	29.3	12.3
335	Plazier	2015	Series	Other	Fibromyalgia	11	42	8.3	0:11	20.6	8.8
					Throwing athletes						
337	Prugh	2012	Series	English	with elbow injuries	3	21	2.5	3:0	5	7
					Vulvar vestibulitis						
338	Pukall	2007	Series	English	syndrome	8	26	5.7	0:8	18.1	6.9

Whiplash associated

339	Raak	2006	Cross	Swedish	disorder	17	51	11.3	1:16	19.9	7.8
339	Raak	2006	Cross	Swedish	Healthy participants	18	45	10.2	1:17	13	5.6
					Chronic peripheral						
340	Radat	2013	Cohort	French	neuropathic pain	182	60	13.8	87:95	28	13
341	Reyahin	2014	Psychometric	English	Knee osteoarthritis	212	65	10.1	49:163	6.6	7
					Patients scheduled						
					for knee arthroplasty,						
342	Riddle	2011	Nrct	English	control group	45	61	9.9	12:33	25.8	11.1
					Patients scheduled						
					for knee arthroplasty,						
342	Riddle	2011	Nrct	English	experimental group	18	64	11.5	6:12	29.3	8.9
					Pain, single discrete						
343	Ring	2005	Cross	English	pain complaint	56	55	15	22:34	14	11.3
					Pain, vague diffuse						
343	Ring	2005	Cross	English	idiopathic arm pain	51	41	15	14:37	20.4	11.7

Whiplash associated

344	Rivest	2010	Cross	English	disorder	37	35	12.2	16:21	16.4	14.2
346	Robles	2012	Series	English	Healthy participants	76	25	5.2	27:49	14.4	9.8
347	Rodero	2008	Series	Spanish	Fibromyalgia	8 /		/	1:7	25.3	10
					Fibromyalgia, under						
348	Rodero	2010	Cross	Spanish	2 years chronicity	46	47	9.8	/	30.9	14.3
					Fibromyalgia, 2-4						
348	Rodero	2010	Cross	Spanish	years chronicity	59	48	11	/	33.1	11.9
					Fibromyalgia, more						
					than 4 years						
348	Rodero	2010	Cross	Spanish	chronicity	223	50	10.5	/	33.1	11.6
					Patients post-surgery						
349	Roh	2014	Series	Korean	distal radius fractures	121	53	14	54:67	22	9
					Patients with						
					surgically treated						
350	Roh	2015	Series	Korean	hand fractures	93	45	12	55:48	23	8

					Chronic pain of trunk						
351	Rosenberg	2015	Series	English	and/or limbs	386	56	14.5	156:230	30.2	12.1
					Patients pre-surgery,						
					total knee						
353	Roth	2007	Series	English	arthroplasty	63	70	8.8	29:34	7.1	7.3
					Chronic						
	Ruiz-				musculoskeletal pain,						
355	Parraga	2014	Cross	Spanish	non-trauma-exposed	117	43	11.7	36:81	20.5	6.5
					Chronic						
					musculoskeletal pain,						
					trauma-exposed						
					without post						
	Ruiz-				traumatic stress						
355	Parraga	2014	Cross	Spanish	symptoms	119	44	11.2	36:83	21	6.9
					Chronic						
	Ruiz-				musculoskeletal pain,						
355	Parraga	2014	Cross	Spanish	trauma-exposed with	110	47	12.5	30:80	31.9	10.3

post traumatic stress

symtoms

	Ruschewe				Healthy participants,						
356	yh	2011	Cross	German	younger group	88	27	4.8	29:59	15.5	8.8
	Ruschewe				Healthy participants,						
356	yh	2011	Cross	German	older group	46	60	5.2	20:26	20.2	11.2
357	Sanchez	2011	Cross	Spanish	Fibromyalgia	74	47	8.1	4:70	25.4	11.8
358	Sansone	2014	Cross	English	Primary care patients	239	46	15	88:151	13.2	13.1
					Whiplash injury,						
					occupationally						
366	Scott	2014	Series	English	disabled	148	37	9.2	/	22.3	10.8
367	Selvarajah	2014	Cross	English	Diabetic neuropathy	142	61	11.2	80:62	18.7	9
373	Sterling	2008	Cross	English	Whiplash injury	30	38	11.5	7:23	18.8	12.7
373	Sterling	2008	Cross	English	Healthy participants	30	30	8.8	6:24	12.2	5.1
					Post-herpetic						
376	Sullivan	2005	Cross	English	neuralgia	12	70	/	4:8	20.7	9.2
376	Sullivan	2005	Cross	English	Diabetic neuropathy	19	57	/	15:4	25.5	11.7

376	Sullivan	2005	Cross	English	traumatic pain	49	47	/			22:27	26.2	11.9
380	Sullivan	2002	Cross	English	Whiplash injury	65	35		7.1		25:40	32.2	10.9
					Chronic pain,								
					chronicity less than 2								
381	Sullivan	2002	Cross	English	years	44	36		7.5	/		29.1	11.3
					Chronic pain,								
					chronicity more than								
381	Sullivan	2002	Cross	English	4 years	51	39		8.3	/		31.3	10.7
					Chronic pain,								
381	Sullivan	2002	Cross	English	chronicity 2-4 years	55	34		9.2	/		31.9	11.3
					Healthy participants,								
382	Sullivan	2000	Other	English	college students, men	53 /		/			53:0	16.6	7.7
					Healthy participants,								
					college students,								
382	Sullivan	2000	Other	English	women	55 /		/			0:55	20.5	8.9

Post-surgical/post-

54

					Healthy participants,							
383	Sullivan	2000	Other	English	college students, men	38	/	/		38:0	17.6	10.3
					Healthy participants,							
					college students,							
383	Sullivan	2000	Other	English	women	42	/	/		0:42	26.6	10.4
					Post-herpetic,							
					diabetic, or post-							
384	Sullivan	2008	Rct	English	traumatic neuralgia	22		52	16.3	11:10	24.2	10.8
					Post-herpetic,							
					diabetic, or post-							
384	Sullivan	2008	Rct	English	traumatic neuralgia	24		55	12.6	15:9	25.2	11.4
					Soft-tissue injuries to							
					the neck, shoulders							
					or back following							
					work or motor							
385	Sullivan	1998	Cross	English	vehicle accidents	86		36	7.8	27:59	28	12.8

	Swinkels-				Acute lower back							
388	Meewisse	2006	Series	Dutch	pain	93		45	11.5	45:48	18.8	12
					Intractable chronic							
391	Tetsunaga	2015	Series	Japanese	pain, adaptive group	37		56	14	15:22	33.7	6.6
					Intractable chronic							
391	Tetsunaga	2015	Series	Japanese	pain, dropout group	16		50	15	5:11	37.5	6.8
					After distal radius							
392	Teunis	2015	Series	English	fracture surgery	116		55	14	31:85	17	5.9
					Healthy participants,							
393	Thorn	2004	Other	English	students, men	90	/		/	90:0	15.3	9.8
					Healthy participants,							
393	Thorn	2004	Other	English	students, women	129	/		/	0:129	21.9	10.4
	Tomkins-				Lumbar spinal							
394	Lane	2015	Series pilot	English	stenosis	10		68	6.7	4:6	7.9	5.7
					Fibromyalgia,							
395	Torres	2015	Rct	Spanish	experimental group	24		53	10.3	5:19	23.5	13.5

					Fibromyalgia,						
395	Torres	2015	Rct	Spanish	control group	24	53	7.7	4:20	28.3	12.3
					Headache attributed						
					to						
					temporomandibular						
					disorder, mild neck						
396	Touche	2015	Cohort	Spanish	disability	42	41	12.9	25:17	15.8	4
					Headache attributed						
					to						
					temporomandibular						
					disorder, moderate						
396	Touche	2015	Cohort	Spanish	neck disability	41	44	10.9	15:26	17.1	3.8
396	Touche	2015	Cohort	Spanish	Healthy participants	39	41	10	13:26	5.5	1.8
398	Trompetter	2015	Rct	Dutch	Chronic pain	79	52	11.8	19:60	17.6	10.2
398	Trompetter	2015	Rct	Dutch	Chronic pain	82	53	13.3	19:63	18.6	9.5
398	Trompetter	2015	Rct	Dutch	Chronic pain	77	53	12	19:58	19.1	9.6
399	Turner	2013	Cross	English	Rheumatoid arthritis	32	55	15.7	8:24	21	11

399	Turner	2013	Cross	English	Healthy participants	28	47	11.8	7:21	8	8
400	Vaisy	2015	Cross	German	Low back pain	20	33	9.6	19:11	13.9	8.9
					Persistent non-						
					specific low back						
					pain, good						
					performers on						
	van				muscle endurance						
401	Damme	2014	Cross	English	task	120	42	8.1 /		15.9	9.3
					Persistent non-						
					specific low back						
					pain,						
					underperformers on						
	van				muscle endurance						
401	Damme	2014	Cross	English	task	212	42	8.1 /		18.5	9.8
	van										
404	Ittersum	2011	Series	Dutch	Fibromyalgia	41 /	/		3:38	15.2	11.4

405	Ittersum	2014	Rct	Dutch	Fibromyalgia	52	46	9.8	4:48	23	12.1
	van										
405	Ittersum	2014	Rct	Dutch	Fibromyalgia	53	48	9.1	3:50	24	11.9
					Healthy participants,						
					university local						
407	Vancleef	2006	Cross	Dutch	community	48	22	4.4	12:36	14.2	7.8
					Obese adults with						
					chronic low back						
410	Vincent	2014	Rct	English	pain	17	69	7.3	5:12	11.5	12.6
					Obese adults with						
					chronic low back						
410	Vincent	2014	Rct	English	pain	14	68	6.4	5:9	12.5	11.7
					Obese adults with						
					chronic low back						
410	Vincent	2014	Rct	English	pain	18	69	7.1	6:12	13.2	12.7
413	Vowles	2013	Cross	English	Chronic pain	334	46	11.4	126:208	25.3	17.3

One to two months

after muskuloskeletal

414	Vranceanu	2014	Series	English	trauma surgery	136	48	17.3	63:73	19.1	8.7
					Musculoskeletal						
					trauma within last 1-						
					2 months,						
415	Vranceanu	2015	Rct	English	experimental group	24 /	/	/	/	14.8	9.9
					Musculoskeletal						
					trauma within last 1-						
					2 months, control						
415	Vranceanu	2015	Rct	English	group	10 /	/	/	/	15.7	11.2
418	Walker	2014	Cross	English	Spinal pain	183	55	14.5	116:67	15.1	10.6
					Patients with work-						
					related pain						
420	Walton	2013	Psychometric	English	conditions	235	37	10	88:147	21.7	10.9

Isolated, discrete

upper-extremity

421	Watson	2008	Cross	English	condition	134	50	13	83:51	19.3	7.3
					Preoperative, total						
423	Witvrouw	2009	Series	Dutch	knee arthroplasty	43	61 /		17:26	20.2	9.7
424	Wong	2013	Cross	Chinese	Chronic pain	224	46	9.9	100:124	24.6	14.3
					Healthy participants,						
425	Zhao	2012	Other	English	experimental group	13	30	4.9	6:7	8.2	6
					Healthy participants,						
425	Zhao	2012	Other	English	control group	13	30	3.4	6:7	12.6	13.6

Suppl. Table 2. Reasons for papers not included in the database at title/abstract and full text stages.

Stage of screening	Number of	Reason for exclusion
	papers	
	excluded	
Abstract and title screening (total of		
3,292 papers excluded at this stage)	1079	Not enough info in title/abstract to judge inclusion and exclusion criteria
	639	Not relevant (not a study/no use of PCS. Includes errata)
	437	PCS not used
	401	Conference or meeting abstract, not a paper
	355	Relevant review/meta-analysis/editorial comment/letter/theoretical paper
	210	Use of PCS, but for children/adolescents (under 18yrs); or child study (may or may not use PCS),
		or parent version of PCS
	100	Study protocol or dissertation abstract
	34	Data only (full paper coded separately)
	12	Animal study

- 7 Book chapter or book review
- 3 Uses 4-question version or another modified version of PCS
- 2 Uses spouse version only (PCS-S)
- 2 Uses a modified PCS
- 1 Guidelines (not a study)

Full text screening (total of 209 papers

excluded at this stage)

- 52 PCS scores not reported
- 49 Meeting abstract
- 22 Insufficient data
- 22 Foreign language paper
- 13 All or some participants were under 18 years old
- 11 Duplicates data from another (included) study
- 10 Modified version of PCS used
- 9 Not a study (e.g. correction to a publication; figure; protocol only)

6	No baseline
5	Not peer reviewed
4	Single case study
3	Misuse of PCS (for example changes to instructions)
2	Literature/systematic review
1	Paper not retrieved
Data cleaning 1	Double counting of data (paper reporting data duplicating that of another paper)
1	Implausible data (contains data above or below possible scores)
1	Data double-counted