
Relation between regional uncertainty spillovers in
the global banking system

Sachapon Tungsong1,2, Fabio Caccioli1,2,3, Tomaso Aste1,2
1 Department of Computer Science, University College London;

2 Systemic Risk Centre, London School of Economics and Political Sciences
3 London Mathematical Laboratory

Abstract

We report on time-varying network connectedness within three banking sys-
tems: North America (NA), the European Union (EU), and Southeast Asia (ASEAN).
The original method by Diebold and Yilmaz is improved by using exponentially
weighted daily returns and ridge regularization on vector autoregression (VAR)
and forecast error variance decomposition (FEVD). We compute the total network
connectedness for each of the three banking systems, which quantifies regional
uncertainty. Results over rolling windows of 300 days during the period from Jan-
uary 2005 to October 2015 reveal changing uncertainty patterns which are similar
across regions, with common peaks associated with identifiable exogenous events.
Lead-lag relationships among changes of total network connectedness of the three
systems, quantified by transfer entropy, reveal that uncertainties in the three re-
gional systems are significantly causally related, with the NA system having the
largest influence on EU and ASEAN.

Keyworkds: Systemic risk; forecast error variance decomposition; connectedness;
spillover effects.

I. Introduction

Financial markets are increasingly becoming more interconnected (Moghadam
and Vinals, 2010), and shocks initially affecting one part of the system can quickly
propagate to the rest of it. Therefore, understanding the patterns of distress prop-
agation within financial markets is important to characterize systemic risk. Af-
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ter the Global Financial Crisis of 2007-2009, significant effort has been devoted
into understanding the mechanics of distress propagation within banking systems.
On one hand, a strand of literature focused on modeling the processes through
which contagion may occur in interbank networks (see for instance Glasserman
and Young (2016); Caccioli et al. (2018) for recent reviews). On the other hand,
another strand of literature focused on the quantification of systemic risk from
market data (see Adrian and Brunnermeier (2016); Brownlees and Engle (2016)).
In particular, Diebold and Yilmaz (2009) proposed a method based on Forecast
Error Variance Decomposition (FEVD) to estimate from market data networks of
interdependencies between firms, and they used the connectedness of the estimated
networks to quantify spillovers of uncertainty between variables.

In this paper, we use the methodology of the aforementioned work by Diebold
and Yilmaz (2009) to estimate the time evolution of connectedness in three re-
gional banking systems: North America (NA), Southeast Asia (ASEAN), and the
European Union (EU). Through VAR and FEVD, we compute the pairwise con-
nectedness between pairs of banks in each region, and we aggregate such pairwise
connectedness to compute a measure of total connectedness for the region.

The time-varying total connectedness computed for each banking system, from
a 300 days rolling window during the period from January 2005 to October 2015,
indicates temporal changes of systemic risk, with peaks during major crisis events
and troughs during normal periods. Analogous results have been observed in other
financial systems and different regions (Diebold and Yilmaz, 2009, 2012, 2014;
Chau and Deesomsak, 2014; Alter and Beyer, 2014; Fengler and Gisler, 2015;
Demirer et al., 2015). It has to be stressed that, unlike Diebold and Yilmaz (2009)
who view all financial institutions as belonging to one global system, here we group
banks into three regional banking systems. In this way we can perform a compara-
tive analysis between the different regions, which allows us to highlight similarities
and differences between them. Furthermore, this allow us to quantify the existence
of causal relations between different regions. We must note that combining all
the banks together could be somehow misleading because the banks’ equities in
the three banking systems trade in different stock markets which have significantly
different trading hours.

The main results of our analysis are as follows: First, we notice that the struc-
ture of the peaks in the three regional banking systems is very similar with large
peaks associated to significant, identifiable major events. Although the overall pat-
terns are similar, we observe two important differences between the systems. The
first is the fact that the overall scale of connectedness is different, with the North-
American banking system being more interconnected than the EU, and this being
in turn more interconnected than the Southeast Asian system. Second, we uncover
the existence of lead-lagged relations between the different time series. To quantify
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this effect, we compute the transfer entropy between the time series associated with
changes of connectedness in the different regions, and we uncover the existence
of significant net information flows from North America to the EU, from North-
America to Southeast Asia, and from the EU to Southeast Asia. The robustness of
our finding is tested by using different measures for transfer entropy. In particular
we find consistent results for the net information flow both with a linear measure
of transfer entropy (which corresponds to a Granger causality analysis) as well as
with non-linear measures with different parameters. We also retrieve similar causal
relation for both one day and five days returns. To the best of our knowledge, this
causality study between regional uncertainties is the first of its kind.

The rest of this paper is organized as follows. In Section II we present a lit-
erature review and place our paper within the context of previous works. In Sec-
tion III we describe the used data, while Section IV provides a brief description of
our methodology. Section V illustrates and discusses the main results of the paper,
and finally we present our conclusions in Section VI.

II. Literature review

The literature on systemic risk and contagion in the banking network can be
broadly classified into two categories. The first category comprises network mod-
els which aim to describe various causal mechanics of financial contagion, which
can be calibrated with balance-sheet data (Furfine, 2003; Degryse and Nguyen,
2007; Upper and Worms, 2004; Müller, 2006; Cont et al., 2010; Upper, 2011; Birch
and Aste, 2014). The second category comprises econometric models, which aim
at identifying spillover effects exclusively from market data, without making as-
sumptions about the dynamics of distress propagation between banks (Adrian and
Brunnermeier, 2016; Brownlees and Engle, 2016). Our paper is close to the second
strand of literature, as we try to understand whether market data carry information
about the level of interconnectedness between banks, and how exogenous shocks
can be amplified by the endogenous dynamics of financial markets.

Network models of contagion go back to the seminal work of Allen and Gale
(2000), who showed how the stability of banking system is affected at equilibrium
by the pattern of interconnections between banks, and to the work of Eisenberg
and Noe (2001), who showed how to consistently compute a clearing vector of
payments in a network of interbank claims. The relation between the structure of
an interbank network and its stability has been extensively explored also within the
context of non-equilibrium network models (see for instance Furfine (2003), Iori
et al. (2006), Nier et al. (2007), Gai and Kapadia (2010), Cont et al. (2010), Up-
per (2011), Battiston et al. (2012), Fricke and Lux (2015), Bardoscia et al. (2015),
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Bardoscia et al. (2017), Kobayashi and Hasui (2014), Lenzu and Tedeschi (2012),
Tedeschi et al. (2012)), showing in particular the existence of a tension between
individual risk and systemic risk—what makes a bank individually less risky might
in fact increase the risk of a systemic failure (Beale et al., 2011). More recently,
these analysis have been extended beyond interbank lending networks to the study
of networks of overlapping portfolios (Huang et al., 2013; Caccioli et al., 2014;
Corsi et al., 2016). Although these models have been insightful to understand the
dynamics of financial contagion, and in some cases they have been applied to real
data (see Upper (2011) for a review of existing literature), there are clear chal-
lenges to their applicability. First, there is a lack of reliable data on banks’ balance
sheets, which makes it hard to calibrate models1. Second, to obtain a reliable as-
sessment of systemic risk one has to capture all relevant types of interconnections
between banks as the interaction between different contagion channels can signifi-
cantly change the stability of the system (Caccioli et al., 2015).

Here we take the complementary approach of inferring interdependencies be-
tween banks from market data, which belongs to the second strand of literature
mentioned above. The advantage of the approach with respect to network model-
ing is that market data are readily available, and that different types of interconnec-
tions between banks have already been aggregated by the market. The drawback
is that this approach does not provide an explanation of how stress propagates be-
tween banks, and that it relies on the underlying assumption of market efficiency,
which is not realistic (Shiller, 2003). Nevertheless, one can assume that, although
markets are not efficient, prices do reflect to some extent the aggregate information
(or expectations) about the underlying assets. There have been several contribu-
tions to this strand of the literature. In particular, Dungey et al. (2005) provide
a summary of empirical models of contagion up to 2005. More recent empirical
work includes Diebold and Yilmaz (2009, 2012, 2014), Caceres et al. (2010), Bil-
lio et al. (2012), Claeys and Vasicek (2014), Lucas et al. (2014), Musmeci et al.
(2015) and Brownlees and Engle (2016). Of particular relevance for our paper is
the work of Diebold and Yilmaz (2009, 2012, 2014) which influenced subsequent
studies such as McMillan and Speight (2010), Bubák et al. (2011), Fujiwara and
Takahashi (2012), Klößner and Wagner (2014), Alter and Beyer (2014), Chau and
Deesomsak (2014), Demirer et al. (2015), and Fengler and Gisler (2015). This
strand of contributions uses vector autoregression (VAR) and forecast error vari-
ance decomposition (FEVD) to quantify unpredictability of each of the variables
in the network. By using the VAR and FEVD methods it is possible to disentangle

1Admati et al. (2013) report that banks tend to find ways to get around regulations in order to
invest in mortgage-backed securities and derivatives via structured-investment vehicles which are off
balance sheet items. Such leeway allowed by regulations creates regulatory boundaries, making it
difficult for outsiders to know what banks actually report.
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the contribution to unpredictability due to endogenous interdependencies from that
due to exogenous shocks. Following Diebold and Yilmaz, we will refer to this en-
dogenous component in this paper as total network connectedness, which therefore
quantifies the transmission of shocks from banks within the system.

III. Data

We collect daily stock prices from January 2005 to October 2015 of banks
headquartered in North America (including US and Canada), the EU, and ASEAN
from Compustat database. We select only the financial institutions in the sub-
industry “Banks,” i.e., those large banks operating at the national level and having
GICS code 40101010, and compute log returns from the daily closing prices for
each bank. With the aforementioned criteria, our sample includes 10 publicly listed
banks in North America (NA), 66 banks in the European Union (EU), and 39 banks
in Southeast Asia (ASEAN) which survived through the period from January 2005
to October 2015.

While we could analyze rolling windows in which the number of banks that
were in operation varies from one window to the next, we find that being able to see
the evolution of the systems’ total connectedness given a constant number of banks
provides some baseline insight into how the same set of banks reacted to different
economic and financial episodes over time. That being said, further research where
all surviving banks were accounted for in respective rolling windows are analyzed
is an interesting avenue to explore. In such case, the dimension of the rolling
windows are likely to be much larger and estimation techniques such as sparsity
modeling are needed.

All banks in the North American banking system have their stocks traded in the
New York Stock Exchange (NYSE), while the EU and ASEAN bank stocks mostly
trade in their own national stock markets. Appendix A provides lists of banks in
all three regions as well as their summary statistics.

The data were analyzed over rolling windows of 300 days and over the full
period. Harris (1985) recommends using a sample size where n ≥ 50 + k where k

is the number of predictors. For our study, the minimum number of observations
for each rolling window is thus 50 + 63 = 113. We experimented with window
sizes of 250, 500, and 750 days and obtained similar results in terms of the overall
shape, including peaks and troughs, of total connectedness. We chose the win-
dow size of 300 days because it is a good compromise between obtaining results
with reasonable margin of error which cover the period of interest (March 2006
to November 2015). The window size of 500 would provide results with a lower
margin of error but cover the period from January 2007 onwards while the window
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size of 250 would provide results with a higher margin of error but cover the period
from January 2006 onwards.

IV. Methodology

A. Total Connectedness

Following the approach introduced by Diebold and Yilmaz (2009, 2012, 2014)
we use a variance decomposition where the forecast error variance of a variable
is decomposed into contributions attributed to each variable in the system. The
approach is based on the vector autoregression (VAR) model, introduced by Sims
(1980) (see Stock and Watson (2001); Cochrane (2005); Lutkepohl (2006); Tsay
(2010) for discussions, reviews and applications).

VAR estimates the value of a sets of N variables yt,1, ...yt,N at time t from a
linear combination of their values in the past by performing a multi-dimensional
regression. By using the vectorial representation Yt = (yt,1, ...yt,N)T and consid-
ering the t−1 lag only, the regression can be written as: Yt =AYt−1+✏t with A an
N ×N matrix of coefficients. By iterating this formula and expressing it in terms
of an orthonormal basis of residuals wi,t (with var(wi,twj,t) = �i,j) (Cochrane,
2005), one can write:

yi,t = ∞�
s=0

N�
j=1 ✓ij,swj,t−s . (1)

The one-step ahead forecast is Ŷt+1 = AYt. The forecast error is the difference
yi,t+1 − ŷi,t+1 = ✓ij,0wj,t+1 and its variance is therefore:

var(yi,t+1 − ŷi,t+1) = N�
j,k=1

✓ij,0✓ik,0var(wj,t+1,wk,t+1) = N�
j=1 ✓

2
ij,0 . (2)

Each term ✓
2
ij,0 in the sum is interpreted as the contribution to the one-step fore-

cast error variance of variable i due to shocks in variable j. Its normalized value,
cij = ✓2ij,0�∑N

k=1 ✓2ik,0, is called connectedness by Diebold and Yilmaz (2009, 2012,
2014) and it is associated with the relative uncertainty spillover from variable j to
variable i. In this paper we will report about the ‘total connectedness’, which is

total connectedness = 1

N

N�
i,j=1
i�=j

cij (3)

and measures the average effect that the variables have on the one-step forecast
error variance. It is a measure of spillover uncertainty within the entire system.
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Larger values of total connectedness correspond to unstable periods with strong
influences of the variables uncertainties on each other.

We refine the original Diebold and Yilmaz (2009, 2012, 2014) methodology
by introducing two technical improvements. The first improvement consists in the
use of ridge regularized VAR (Tikhonov, 1963; Hoerl and Kennard, 1970), which
is used to make estimations less sensitive to noise and uncertainty associated with
the finite length of time series. Ridge regression introduces a penalty on the square
sum of regression coefficients, thus favoring models with smaller coefficients. This
improves regression performances especially for systems with a large number of
variables where the covariance matrix is nearly singular (see Gruber (1998) ). In
practice, ridge regression consists in adding a diagonal term in the expression for
the regression coefficients: B = (XX

′ + �I)−1XY
′ with I the identity matrix

and � a coefficient that makes the inversion less sensitive to uncertainty over small
eigenvalues (Tikhonov, 1963). The parameter � must be chosen with respect to
regression performances, it depends on the length of the time series and on their
statistical properties. In our case, we used � = 100 which we verified being a good
compromise value for this dataset and window length 300 points 2. We verified that
results are little sensitive to variations of � in a wide range [100−1000]. The second
technical improvement consists in the use of exponential smoothing to mitigate
the effects associated with sensitiveness to large variations in remote observations,
Pozzi et al. (2012). Exponential smoothing computes weighted averages over the
observation window with exponentially decreasing weights, exp(−s�✓), assigned
to more remote observations (here s counts the number of points from the present).
In this paper we use rolling windows of size 300 days with exponential weights
with characteristic length ✓ = 100. The choice of characteristic length equal to a
third of windows length was suggested as optimal by Pozzi et al. (2012).

B. Transfer entropy and Granger causality

We investigate how uncertainty in one region affects uncertainty in another
region by quantifying lead-lag relationships among uncertainty spillovers. To this
purpose we compute the transfer entropy associated with the daily and weekly
changes in the total connectedness of the three systems.

In this paper we estimate the transfer entropy by using both linear and non-
linear approaches. The transfer entropy TY→X quantifies the reduction of uncer-
tainty on the variable X that is provided by the knowledge of the past of the vari-
able Y taking in consideration the information from the past of X . In terms of

2We multiplied returns by a factor 100 in our analysis. Therefore the value � = 100 is reasonable
compared to the norm of the matrix XX ′, which is of order 104.
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conditional entropies it can be written as:

TY→X =H(Xt�Xt−lag) −H(Xt�Xt−lag, Yt−lag) (4)

where Xt represents the present of variable X and Xt−lag its lagged past. In this
paper we report results for one-day lag. The conditional entropies are defined as
H(A�B) = H(A,B) −H(B) with H(A,B) the joint entropy of variables A and
B and H(B) the entropy of variable B.

For what concerns the computation of these entropies, the linear approach is
the standard procedure. It quantifies the additional reduction in the variance of a
variable Y provided by the past of variable X and it is directly related with Granger
causality (Granger (1988); Barnett et al. (2009)). In this linear case, the entropy
associated with a set of variables Z is proportional to the log determinant of the
covariance: H(Z) = 1

2 log det(2e⇡⌃(Z)), where ⌃(Z) is the covariance matrix
of the variables in Z. By using Eq.4 it results that TY→X is simply given by half
the logarithm of the ratio between the regression error of variable X regressed with
respect to Xt−lag and the regression error of variable X regressed with respect to
both Xt−lag and Yt−lag. The non-linear approach estimates instead entropies by first
discretizing the signal into three states, associated with a central band of values
within � standard deviations from the mean and two external bands respectively
with values smaller or larger than the central band. By calling p

0
A, p−A and p

+
A the

relative frequencies of the observations in the three bands, entropy is estimated as
H(A) = −p−A log p−A − p0A log p0A − p+A log p+A. The joint entropies are equivalently
defined by the joint combination of values of the variables in the 3 bands and the
transfer entropy is retrieved by applying Eq.4.

The information flow can be measured by comparing transfer entropies in the
two directions. If TY→X > TX→Y , then one can say that the direction of the in-
formation goes prevalently from Y to X; conversely, if TX→Y > TY→X , then the
direction of the information goes prevalently from X to Y . The net information
flow between X and Y can be quantified as TX→Y − TY→X .

We validated the statistical significance of transfer entropy by comparing our
results with the null hypothesis generated by computing 10,000 values of the trans-
fer entropy obtained by randomizing the order of the lagged variables. This pro-
vides a non-parametric null hypothesis from which p-values can be computed. We
also compared this non-parametric p-value estimates with the one from F-statistics
in the linear case and found comparable results.
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V. Results

A. Total connectedness

Using data from January 2005 to October 2015, we compute the total connect-
edness of the three banking systems—North America, EU and ASEAN—over a
rolling window of 300 days for the ten years period from March 2006 to November
2015. Figures 1, 2, and 3 report the results for each of the three systems com-
paring the original approach of Diebold and Yilmaz (2009) (in dashed red line)
with the improved approach proposed in this paper (solid blue line). Let us first
observe that the total connectedness from the two approaches have similar values
and comparable behavior. We can observe that the use of ridge regularized VAR
eliminates some outlying spurious peaks observed with the original method. The
effect is present in all samples across the three regions and periods but is partic-
ularly evident in Fig.2 for the peak after January 2011 and January 2012. When
dimensionality is high as in the case of the EU banking system, OLS estimates tend
to have high variance as a result of overfitting. Ridge regression provide parameter
estimates that have low variance across rolling windows, which is a manifesta-
tion of the model’s ability to better generalize across different samples. This is
why we observe no sudden jumps in the total connectedness when we estimate our
VAR coefficients using ridge regression. More evident is the effect of exponential
smoothing, which makes peaks sharper and eliminates the plateau effect due to the
persistence of the influence of a peak during the whole length of the rolling win-
dow. For instance, this is especially evident in Fig.1 where in the standard VAR
method the peak in total connectedness observed just after January 2009 persists
creating a plateau that drops abruptly after 300 days in January 2010. Conversely
the exponential weighted ridge regularized method reveal a clear peak reaching
maximum around January 2009 followed by a sharp decrease. We observe that the
plateau effects in standard VAR-equal-weights method sometimes hide completely
peaks that are instead detected with the exponentially weighted ridge regularized
method; this is for instance the case for the late 2010 North-America spillover peak
visible in Fig.3 only in the exponentially weighted ridge regularized method.

Let us note that in Diebold and Yilmaz (2009), where total connectedness in
equity index returns and equity index return volatilities were measured, they found
that the return spillovers demonstrate “a gently increasing trend but no bursts,
whereas volatility spillovers display no trend but clear bursts.” Our results in Fig-
ures 1, 2, and 3 indicate that applying exponential weights onto the returns allow
us to observe both trends and bursts in the return uncertainty spillovers.
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Figure 1. ASEAN banking system: Comparison between total connectedness
computed with classical VAR approach (dashed red line) and the proposed ap-
proach (solid blue line) with ridge penalization and exponential smoothing. Com-
putations are over 300-day rolling window.
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Figure 2. EU banking system: Comparison between total connectedness computed
with classical VAR approach (dashed red line) and the proposed approach (solid
blue line) with ridge penalization and exponential smoothing. Computations are
over 300-day rolling window.
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Figure 3. North American banking system: Comparison between total connected-
ness computed with classical VAR approach (dashed red line) and the proposed ap-
proach (solid blue line) with ridge penalization and exponential smoothing. Com-
putations are over 300-day rolling window.

A comparison between ASEAN, EU, and North American total connected-
ness from the ridge regularized VAR models is presented in Figure 4, where major
events are labelled on the graph when they occurred. The general shapes of the
total connectedness of the three banking systems appear to be similar. Over the
approximately 10-year period from March 2006 to November 2015, the values of
the NA total connectedness are generally higher than those of the EU and ASEAN
banking systems with the exceptions from 2006 to mid 2007, early 2011, early
2013 and mid 2014.

The fact that NA, EU and ASEAN banking systems have different levels of
interconnectivity reflects the dissimilarities in the natures of the three banking
systems. Our dataset include large banks operating at the national level (GICS
code 40101010) that survived from the period from January 2005 to October 2015.
Based on the GICS code and survival criteria, our NA system covers 2 countries
(10 banks), the EU covers 17 countries (66 banks), and ASEAN covers 5 countries
(39 banks). The two countries in the NA system (U.S. and Canada) have banking
regulations that are more similar than those of the 17 countries in the EU and those
of the 5 countries in ASEAN. In addition, the equities of the 10 banks in North
America trade on the same stock exchange—the NYSE—while those of the EU
and ASEAN banks trade on different national stock exchanges. Lastly, as banks
tend to form business relationships with other banks that are in close proximity
both geographically and from a regulatory perspective, the interbank business ac-
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tivities in North America are likely to be higher than those in the EU and ASEAN.
These three factors contribute to stronger links and higher possibility of spillovers
among the NA banks than those among the EU banks and those among the ASEAN
banks. For the above reasons, total connectedness in the NA system is generally
higher than those of the EU and ASEAN systems.

The number of banks in a system does not seem to be a factor influencing
the level of total connectedness as there is no relationship between the number of
banks and total connectedness in a system. Note that the total connectedness metric
is computed on a per bank basis; it is the average of all pairwise connectedness in
a system.

From visual inspection of Figure 4, we notice that variations in total connected-
ness of the NA banking system seems to lead those of the EU and ASEAN systems
and total connectedness of the EU system seems to lead that of the ASEAN system.
This prompts us to perform causality tests on the total connectedness time series of
the three banking systems in order to investigate how systemic uncertainty in each
region influences the others and the lead-lag relationships among them.

12



Ja
n
-0

6
Ja

n
-0

7
Ja

n
-0

8
Ja

n
-0

9
Ja

n
-1

0
Ja

n
-1

1
Ja

n
-1

2
Ja

n
-1

3
Ja

n
-1

4
Ja

n
-1

5
Ja

n
-1

6

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

Subprim
e m

ortg
age cris

is Securiti
zatio

n m
arket c

lose down

Global stock m
arket s

harp fa
ll

US near-re
cord deficit $

410 billio
n

Natio
nalizatio

n of N
orth

ern Rock

Fannie M
ae/Freddie M

ac re
scue

Lehman Brothers file
d fo

r b
ankruptcy

Rescue of R
BS, L

loyds, a
nd HBOS

IM
F approved $2.1 bn lo

an fo
r Ic

eland

US govt g
ave Bank of A

meric
a $20 bn aid

RBS re
porte

d £2.1 bn lo
ss

12.5% economic contra
ctio

n in
 Japan

US credit d
owngrade fro

m A+ to
 A LIBOR scandal

City of D
etro

it b
ankruptcy Ukranian/Syria

n/Egypt u
nrest

Ebola epidemic

E
U

 s
o

ve
re

ig
n

 d
e

b
t 

cr
is

is
S

u
b

p
ri
m

e
 c

ri
si

s
G

lo
b

a
l F

in
a

n
ci

a
l C

ri
si

s
A

S
E

A
N

 s
p

ill
o

ve
r

E
U

 s
p

ill
o

ve
r

N
o

rt
h

 A
m

e
ri
ca

n
 s

p
ill

o
ve

r

G
lo

b
a
l F

in
a
n
ci

a
l C

ri
si

s
E

u
ro

p
e
a
n
 s

o
ve

re
ig

n
 d

e
b
t 
cr

is
is

S
u
b
p
ri
m

e
cr

is
is

Figure 4. Total connectedness in the three banking systems (as in Figs.1, 2 and
3, solid lines). Major events associated with peaks are indicated in the figure.
Computations are over 300-day rolling window.
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B. Causality tests on regional total connectedness

In order to quantify the lead-lag relationships among the North American (NA),
EU, and ASEAN (AS) total connectedness we compute transfer entropy and infor-
mation flow between the daily changes of total connectedness in the three regions
for one-day lag. Results are reported in Tab.I. Transfer entropies are estimated
using both linear and non-linear approaches discussed in section IV.B. We recall
that the linear measure is equivalent to Granger causality, where a significant trans-
fer entropy corresponds to a validated Granger causality relation. The non-linear
measures are computed for fluctuation bands at � = 1,2,3 standard deviations (see
section IV.B). One can observe that there is a significant information transfer be-
tween NA and EU, NA and AS and EU and AS, that for the linear case, implies NA
Granger causes EU, NA Granger causes AS and EU Granger cause AS. We observe
that the non-linear estimation gives consistent results with the linear estimate for
all values of �, demonstrating robustness of the result. We also observe that there
are significant causal relations also in the opposite directions. Given the extended
time-lags between the three regions it is fair to question whether one-day time lag
and one-day time horizon will affect asymmetrically markets depending on their
relative opening hours. We therefore test the flow of information across regions
for time-horizon and lag of 5 days instead of one day. The results for the transfer
entropies and information flow, performed for the entire period on non-overlapping
5-day returns, are reported in Tab. II. We observe that results are consistent with
the ones for one-day time horizon and lag reported in Tab. I with the main dif-
ference being the lower statistical significance. This is expected because the time
series for the 5-day changes are five times shorter than the ones for daily changes.
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Table I. Quantification of transfer entropy between regional total connectedness:
March 28, 2006-November 2, 2015 (full sample). From daily changes in the total
connectivity using one day lag.

method TENA→EU TEEU→NA Net Information Flow

linear 0.004722∗∗ 0.001354∗ 0.003369
non-linear treshold � 0.005251∗∗∗ 0.006711∗∗ -0.001460
non-linear treshold 2� 0.003980∗∗∗ 0.002012∗ 0.001968
non-linear treshold 3� 0.004939∗∗∗ 0.000561 0.004378

method TENA→AS TEAS→NA Net Information Flow

linear 0.017336∗∗∗ 0.008931∗∗∗ 0.008405
non-linear treshold � 0.008789∗∗∗ 0.005837∗∗ 0.002953
non-linear treshold 2� 0.005348∗∗∗ 0.002305∗ 0.003042
non-linear treshold 3� 0.003150∗∗ 0.002803∗∗∗ 0.000348

method TEEU→AS TEAS→EU Net Information Flow

linear 0.005659∗∗ 0.003633∗∗ 0.002026
non-linear treshold � 0.005553∗∗ 0.001262 0.004291
non-linear treshold 2� 00.005960∗∗∗ 0.000228 0.005732
non-linear treshold 3� 0.004238∗∗∗ 0.002118∗∗∗ 0.002120
* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.
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Table II. Quantification of transfer entropy between regional total connectedness:
March 28, 2006-November 2, 2015 (full sample). From weekly changes (5 days)
in the total connectivity using five days lag.

method TENA→EU TEEU→NA Net Information Flow

linear 0.008003∗ 0.001255 0.006747
non-linear treshold � 0.009204 0.009474 -0.000271
non-linear treshold 2� 0.017228∗∗∗ 0.003196 0.014032
non-linear treshold 3� 0.024087∗∗∗ 0.002335∗ 0.021752

method TENA→AS TEAS→NA Net Information Flow

linear 0.017200∗∗ 0.003703 0.013497
non-linear treshold � 0.010598∗ 0.004354 0.006244
non-linear treshold 2� 0.006509 0.006475 0.000034
non-linear treshold 3� 0.002107 0.006805∗∗∗ -0.004698

method TEEU→AS TEAS→EU Net Information Flow

linear 0.022020∗∗ 0.000619 0.021401
non-linear treshold � 0.021641∗∗∗ 0.002374 0.019267
non-linear treshold 2� 0.022964∗∗∗ 0.002900 0.020063
non-linear treshold 3� 0.007488∗∗ 0.000405 0.007083
* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

VI. Conclusion

We investigate regional and inter-regional uncertainty spillovers in the North
American, EU, and ASEAN banking systems during a period characterized by
great regional and global financial stress (2005-2015). Uncertainty and financial
instability is quantified by means of total network connectedness, that we mea-
sure improving the method of Diebold and Yilmaz. We demonstrate that expo-
nential smoothing and ridge regression provide better defined peaks in the tempo-
ral analysis and avoid the occurrence some spurious peaks. We observe that the
North-American system appears to be consistently more interconnected than the
EU, which in turn is more interconnected than the ASEAN network. Similarly to
previous analysis of Diebold an Yilmaz on other systems, our empirical analysis
of the North-American, ASEAN and EU banking networks shows that increased
connectivity corresponds to periods of higher distress in the system. We observe
that all large peaks of total network connectedness are associate with identifiable
major exogenous events. Despite some of these events being related to specific
regions, the effects are seen similarly across the three banking systems, which re-
veal similar patterns of peaks and troughs in the variations of their total network
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connectedness. However, such variations are not perfectly synchronous across the
regions, and causality patterns are discovered by using transfer entropy. The analy-
sis reveals that the North American banking system is the most influential, causing
the largest effects on the other systems. However, feedback effects are measured
with significant causal relations also in the opposite directions. The results are
demonstrated to be robust with respect to changes in the method used to compute
the transfer entropy, changes in the values of parameters, and with respect to the
use of daily or weekly returns in the analysis.

To summarize, the contribution of this paper is three folds. First, we improve
technical aspect of the VAR estimation, allowing for better identification of events
concentrated at specific times, which leads to more accurate and insightful interpre-
tation of the results. Second, we focus on connectedness in banking sector, while
previous studies based on the Diebold and Yilmaz methodology analyzed networks
of financial institutions. In particular, we analyze the North American, EU and
ASEAN banking systems individually and show that, despite the regions’ geo-
graphical distances, they are affected in various degrees by major financial crisis
events originated in dominant regions such as the North American and EU banking
systems. Third, we originally perform a causality analysis on the regional con-
nectedness time series generated through the Diebold and Yilmaz’s method. Our
analysis suggests that a regional disaggregated investigation has the advantage of
introducing a predictive component to this methodology. While the network total
connectedness measure identifies increase in regional uncertainty associated with
major events that shake the markets, the causality relation between total connect-
edness in different regions, introduced in this paper, provides a quantitative charac-
terization of the flow of uncertainty form region to region, that could be interpreted
as the result of contagion. To the best of our knowledge, this causality analysis is
the first of its kind.

As future directions we will compare this approach with other information the-
oretic measures with the aim to find a framework that is capable to qualify financial
uncertainty and its causal effects at all levels of aggregation, from a local single-
variable perspective to the global world-market view.
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Appendix A. List and summary statistics of banks in the
sample

Table III. List of banks that are headquartered in North America (Canada and the
U.S.) and have actively traded between 2005-2015

Bank name Country Daily mean return (%) Daily volatility (%)

1. Canadian Imperial Bank (CIBC) CAN 0.01 1.82
2. Bank of Montreal (BMO) CAN 0.01 1.69
3. Royal Bank of Canada (RBC) CAN 0.03 1.73
4. Toronto Dominion Bank (TD) CAN 0.03 1.65
5. Bank of Nova Scotia (BNS) CAN 0.01 1.72
6. Citigroup (CITI) USA -0.08 3.70
7. Bank of America Corp (BAC) USA -0.04 3.51
8. Wells Fargo & Co (WFC) USA 0.02 2.86
9. JP Morgan Chase & Co (JPM) USA 0.02 2.64

10. US Bancorp (USB) USA 0.01 2.32
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Table IV. List of banks that are headquartered in Southeast Asia and have actively
traded between 2005-2015.

Bank Country Market cap
($ billion)

Average
return (%)

Volatility
(%)

1 Bank Rakyat Indonesia IDN 20.43 0.07 2.56
2 Bank Permata IDN 0.54 0.02 1.93
3 Bank Danamon IDN 2.23 0.00 2.73
4 Bank Maybank Indonesia IDN 0.79 0.00 2.67
5 Bank Cimb Niaga IDN 1.07 0.02 2.51
6 Panin Bank IDN 0.17 0.03 2.68
7 Bank Negara Indonesia IDN 6.66 0.04 2.50
8 Bank Central Asia IDN 23.21 0.08 2.06
9 Bank Mandiri IDN 15.75 0.05 2.54
10 Public Bank MYS 16.15 0.04 0.90
11 Malayan Banking MYS 18.70 0.00 1.23
12 RHB Capital MYS 3.73 0.03 1.58
13 AMMB Holdings MYS 3.04 0.01 1.51
14 AFFIN Holdings MYS 0.97 0.01 1.65
15 Alliance Financial Group MYS 1.15 0.01 1.52
16 BIMB Holdings MYS 1.35 0.03 2.13
17 CIMB Group Holdings MYS 7.92 0.02 1.54
18 Hong Leong Bank MYS 6.17 0.03 1.14
19 Philippine National Bank PHL 1.20 0.03 2.39
20 Bank of Philippine Islands PHL 6.97 0.03 1.79
21 China Banking Corp PHL 1.36 0.04 1.39
22 Metropolitan Bank and Trust PHL 4.67 0.05 2.12
23 Security Bank Corp PHL 1.86 0.07 1.87
24 Rizal Commercial Bank Corp PHL 0.94 0.03 2.19
25 Union Bank PHL 1.22 0.05 1.77
26 BDO Unibank PHL 7.33 0.05 2.04
27 United Overseas Bank SGP 19.62 0.01 1.49
28 DBS Group Holdings SGP 25.23 0.01 1.49
29 Oversea-Chinese Banking SGP 22.71 0.02 1.33
30 Krung Thai Bank THA 6.79 0.02 2.11
31 Siam Commercial Bank THA 11.44 0.03 2.02
32 Bangkok Bank THA 8.04 0.02 1.81
33 Bank of Ayudhya THA 6.15 0.03 2.41
34 Kasikornbank THA 10.94 0.04 1.97
35 TMB Bank THA 3.12 -0.01 2.40
36 Kiatnakin Bank THA 0.91 0.00 1.94
37 Tisco Financial Group THA 0.96 0.02 2.11
38 Thanachart Capital THA 14.3 0.03 2.13
39 CIMB Thai Bank THA 0.76 -0.01 2.75
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Table V. List of banks that are headquartered in the EU and have actively traded
between 2005-2015 (1).

Bank Country Daily return (%) Volatility (%)

1 Oberbank Ag AUT 0.02 0.38
2 Erste Group Bk Ag AUT -0.01 2.95
3 KBC Group Nv BEL 0.00 3.50
4 Dexia Sa BEL -0.21 7.76
5 Hellenic Bank CYP -0.08 3.08
6 Komercni Banka As CZE 0.01 2.10
7 IKB Deutsche Industriebank DEU -0.13 3.90
8 Commerzbank DEU -0.08 3.09
9 DVB Bank Ag DEU 0.03 1.38
10 HSBC Trinkaus & Burkhardt DEU 0.00 1.73
11 Comdirect Bank Ag DEU 0.02 1.83
12 Deutsche Postbank Ag DEU 0.00 2.15
13 Danske Bank As DNK 0.01 2.11
14 Jyske Bank DNK 0.02 1.94
15 Nordea Invest Fjernosten DNK 0.01 1.43
16 Sydbank As DNK 0.03 1.93
17 Banco Santander Sa ESP 0.00 2.16
18 BBVA ESP -0.01 2.12
19 Banco Popular Espanol ESP -0.07 2.30
20 Bankinter ESP 0.01 2.28
21 Banco De Sabadell Sa ESP -0.02 1.89
22 BNP Paribas FRA 0.00 2.56
23 Natixis FRA -0.01 3.12
24 Societe Generale Group FRA -0.02 2.86
25 Credit Agricole Sa FRA -0.02 2.78
26 CIC (Credit Industriel Comm) FRA 0.00 1.41
27 Barclays Plc GBR -0.03 3.23
28 HSBC Hldgs Plc GBR -0.02 1.72
29 Royal Bank of Scotland Group GBR -0.10 3.91
30 Standard Chartered Plc GBR 0.00 2.44
31 Lloyds Banking Group Plc GBR -0.05 3.37
32 Piraeus Bank Sa GRC -0.22 5.04
33 Attica Bank Sa GRC -0.23 5.88
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Table VI. (cont.) List of banks that are headquartered in the EU and have actively
traded between 2005-2015 (2).

Bank Country Daily return (%) Volatility (%)

34 Eurobank Ergasias Sa GRC -0.31 5.52
35 National Bank of Greece GRC -0.20 4.81
36 Alpha Bank Sa GRC -0.15 4.69
37 Zagrebacka Banka HRV 0.00 2.58
38 Privredna Banka Zagreb Dd HRV 0.01 2.37
39 OTP Bank Plc HUN 0.00 2.63
40 Unicredit Spa ITA -0.05 2.90
41 Credito Emiliano Spa ITA 0.00 2.26
42 Intesa Sanpaolo Spa ITA 0.00 2.61
43 Banca Popolare Di Sondrio ITA -0.01 1.83
44 Banca Carige Spa Gen & Imper ITA -0.10 2.39
45 Banco Desio Della Brianza ITA -0.02 1.76
46 Banco Popolare ITA -0.06 2.86
47 Banca Popolare Di Milano ITA -0.03 2.78
48 Banca Monte Dei Paschi Siena ITA -0.12 2.96
49 Bank of Siauliai Ab LTU -0.06 2.97
50 ING Groep Nv NLD -0.01 3.14
51 Van Lanschot Nv NLD -0.03 1.62
52 Mbank Sa POL 0.05 2.34
53 Bank Handlowy W Warzawie Sa POL 0.01 2.05
54 ING Bank Slaski Sa POL 0.04 1.90
55 Bank BPH S.A. POL -0.09 4.48
56 Bank Millennium Sa POL 0.03 2.62
57 Bank Plsk Kasa Opk Grp Pekao POL 0.00 2.26
58 Bank Zachodni Wbk Sa POL 0.04 2.15
59 Getin Holding Sa POL -0.02 3.16
60 Powszechna Kasa Oszczednosci POL 0.00 2.02
61 Banco BPI Sa PRT -0.03 2.46
62 Banco Comercial Portugues Sa PRT -0.09 2.76
63 Svenska Handelsbanken SWE 0.02 1.86
64 Skandinaviska Enskilda Bank SWE 0.01 2.55
65 Nordea Bank Ab SWE 0.02 2.05
66 Swedbank Ab SWE 0.01 2.53
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