
 

Models of lightlike charges with nongeodesic worldlines

C. G. Böhmer*

Department of Mathematics, University College London,
Gower Street, London WC1E 6BT, United Kingdom

P. A. Hogan†

School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

(Received 13 June 2019; published 12 August 2019)

Massless particles in general relativity move with the speed of light, and their trajectories in spacetime
are described by null geodesics. This is independent of the electrical charge of the particle being
considered; however, the charged lightlike case is less understood. Starting with the Maxwell field of a
charged particle having a lightlike geodesic worldline in Minkowskian spacetime, we construct the
Maxwell field of such a particle having a nongeodesic, lightlike worldline. The necessary geometry in
the neighborhood of an arbitrary null worldline in Minkowskian spacetime is described and properties of
the resulting electromagnetic field are discussed. The electromagnetic field obtained represents a lightlike
analogue of the Liénard-Wiechert field, which generalizes the Coulomb field of a charge having a timelike
geodesic worldline to the field of a charge having an accelerated worldline.
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I. INTRODUCTION

It is an interesting and noteworthy fact that a charged
particle traveling with the speed of light has yet to be
observed in nature. There are no field theoretical consid-
erations which would in principle contradict the existence
of such a particle. Nevertheless, in exploring the limits of
classical electrodynamics it is intriguing to seek models of
such particles. This paper demonstrates explicitly that more
than one model exists, and it will require further knowledge
of the properties of such particles, if and when they are
observed, to distinguish between them.
A particle with electrical charge e having a timelike

geodesic worldline in Minkowskian spacetime has a
Maxwell field described by the Coulomb solution of
the vacuum Maxwell field equations. If the worldline is
not a geodesic, i.e. if the particle has nonvanishing
4-acceleration, then its Maxwell field is described by the
Liénard-Wiechert solution of the vacuum Maxwell field
equations. The Liénard-Wiechert electromagnetic field has
the property that near the worldline of the charged particle it
resembles the Coulomb field and far from the worldline it
describes the electromagnetic radiation produced by the
acceleration of the charge.
The Liénard-Wiechert 4-potential, when written in rec-

tangular Cartesian coordinates and time, has the property of
being proportional to the 4-velocity of the particle, modulo a

gauge transformation. Many years ago Synge [1] looked for
a Maxwell field of an accelerated lightlike charge by
choosing a 4-potential proportional to the null tangent to
the worldline of the charge. This resulted in an electromag-
netic fieldwhich did not contain an analogue of theCoulomb
part of the Liénard-Wiechert field but described electro-
magnetic radiation produced by the accelerated charge. If
the charge has a null geodesic worldline, then the electro-
magnetic field vanishes. Chargedgyratonswhich aremodels
of massless charged particles with spin have been studied
in [2]. This result suggests that it might also be possible to
study charged lightlike particles using a mainly geometrical
approach. This is the aim of the present paper. We seek to
construct a model of an accelerated lightlike charge which
incorporates an analogue of the Coulomb part of the
Liénard-Wiechert field and an analogue of the radiation
part of theLiénard-Wiechert field. Properties of hypothetical
charged particles moving with the speed of light were
already studied as early as the 1940s and were based on
an entirely classical treatment; see in particular [3,4].
We begin in Sec. II by describing the electromagnetic

field of a charged particle having a null geodesic worldline.
This is a lightlike analogue of the Coulomb field. The result
is a spin-off from the Robinson-Trautman [5,6] solutions of
the vacuum Einstein-Maxwell field equations. It exploits
the idea of using null geodesics to set up a coordinate
system which is ideally suited to the description of a
lightlike particle. In Sec. III we develop the geometry
associated with a nongeodesic, lightlike worldline in
Minkowskian spacetime. A by-product of this study is to
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establish the existence of a parameter along the worldline
which is unique up to a linear transformation and which
specializes to an affine parameter if the worldline is a null
geodesic. This is important because, in contradistinction to
the timelike case, we do not have the arc length available to
us as a parameter along the worldline in the lightlike case.
The existence of such a parameter is one of the key
ingredients of the final construction. Consequently, a model
of the electromagnetic field of a lightlike charge, in the
form of a solution of Maxwell’s vacuum field equations on
Minkowskian spacetime, is derived in Sec. IV, and some
properties of the model are discussed in Sec. V. We
conclude our work with discussions in the final section.

II. LIGHTLIKE ANALOGUE
OF THE COULOMB FIELD

All topics under consideration in this paper are in the
context of Minkowskian spacetime. The Minkowskian
line element in rectangular Cartesian coordinates Xi ¼
ðT; X; Y; ZÞ reads

ds2¼ ηijdXidXj ¼ðdTÞ2− ðdXÞ2− ðdYÞ2− ðdZÞ2: ð2:1Þ

We are working with signature ðþ;−;−;−Þ. The worldline
in Minkowski space of a point charge giving rise to the
Coulomb field is a timelike geodesic. For the lightlike
analogue of the Coulomb field the worldline of the charge
will be a null geodesic. We take this null geodesic to have
parametric equations

XiðuÞ ¼ uvi with vi ¼ ð1; 0; 0; 1Þ; ð2:2Þ

where vi is a null vector because of ηijvivj ¼ vivi ¼ 0. The
quantity u is an affine parameter along the null geodesic
with tangent vi and we can take u ∈ R.
We will now introduce a new set of coordinates of the

position 4-vector of a point in Minkowski space relative to
this null geodesic as follows:

Xi ¼ uvi þ rki; ð2:3Þ

and we choose ki to satisfy

kiki ¼ 0 and kivi ¼ þ1: ð2:4Þ

Hence, the worldline (2.2) corresponds to r ¼ 0, and we
shall take 0 ≤ r < þ∞. This particular construction will
prove very useful in the following as it is intimately tied to
the geometry of a particle moving at the speed of light.
The vector ki is null and normalized relative to vi which

means it can be parametrized by two real parameters ξ ∈ R
and η ∈ R. They determine the direction of ki in spacetime,
and we can write this vector as

ki ¼
�
1

2
ðξ2 þ η2 þ 1Þ; ξ; η; 1

2
ðξ2 þ η2 − 1Þ

�
: ð2:5Þ

For sufficiently large values of ξ and η we write ζ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

p
and only keep terms in the highest power in ζ.

This gives

ki →
ζ2

2
ð1; 0; 0; 1Þ ¼ ζ2

2
vi; ð2:6Þ

for large ζ. This means that ki points in the direction of vi in
(2.2) for large ξ and η.
Let us now consider (2.3) as a coordinate transformation

between the original Cartesian coordinates and the new
coordinates xi ¼ ðu; ξ; η; rÞ. Writing this transformation
out explicitly gives

T ¼ uþ r
2
ðξ2 þ η2 þ 1Þ; ð2:7Þ

Z ¼ uþ r
2
ðξ2 þ η2 − 1Þ; ð2:8Þ

X ¼ rξ; Y ¼ rη: ð2:9Þ

Substituting (2.7)–(2.9) into the Minkowski line element
(2.1) results in

ds2 ¼ 2dudr − r2ðdξ2 þ dη2Þ
¼ 2ϑ0ϑ3 − ðϑ1Þ2 − ðϑ2Þ2; ð2:10Þ

with the basis 1-forms ϑ0, ϑ1, ϑ2, ϑ3 given by

ϑ0 ¼ du; ϑ1 ¼ rdξ; ϑ2 ¼ rdη; ϑ3 ¼ dr: ð2:11Þ

As the potential 1-form due to a particle of charge e
(which we assume to be constant) with worldline r ¼ 0, the
lightlike analogue of the Coulomb potential, we take

A ¼ e
r
ϑ0 ¼ e

r
du; ð2:12Þ

where we emphasize that u was the affine parameter along
the null geodesic. The corresponding candidate for the
Maxwell field due to this charged particle is the exterior
derivative of A resulting in the 2-form

F ¼ dA ¼ e
r2

du ∧ dr ¼ e
r2
ϑ0 ∧ ϑ3: ð2:13Þ

The Hodge dual of F is the 2-form �F given by

�F ¼ e
r2
ϑ1 ∧ ϑ2 ¼ edξ ∧ dη; ð2:14Þ

from which it immediately follows that Maxwell’s vacuum
field equations,
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d � F ¼ 0; ð2:15Þ

are satisfied. Therefore, the potential 1-form (2.12)
describes the Maxwell field of a lightlike particle and
can be seen as the analogue of the Coulomb field of a
timelike particle. The Maxwell field of such a lightlike
particle is a spin-off of the charged Robinson-Trautman
fields [5,6] which are solutions of the vacuum Einstein-
Maxwell field equations. It is worth pointing out that the
entire construction of this solution was based on exploiting
the inherent geometry of Minkowski space in the presence
of particles moving at the speed of light.

III. GEOMETRY ASSOCIATED WITH AN
ACCELERATED LIGHTLIKE WORLDLINE

We generalize the choice of coordinates (2.3) to a
position 4-vector in Minkowskian spacetime relative to
an arbitrary lightlike worldline with parametrization
Xi ¼ wiðuÞ. The functions wiðuÞ were introduced to make
the notation clearer and to distinguish from the previous
case. The tangent vector to this curve is given by viðuÞ ¼
dwi=du and satisfies vivi ¼ 0, as before. Moreover, we
introduce the acceleration aiðuÞ ¼ dvi=du which satisfies
aivi ¼ 0. This follows from differentiating vivi ¼ 0 with
respect to the parameter u. In general ai ≠ 0 and so the
lightlike worldline is not necessarily a geodesic and the
particle having this worldline as its history will be said to be
accelerated. The parameter u along the worldline, for which
u ∈ R, is unspecified, and we will exploit this fact later. We
replace (2.3) by the more general

Xi ¼ wiðuÞ þ rki; ð3:1Þ

with kiki ¼ 0 and kivi ¼ þ1. Hence the lightlike worldline
corresponds to r ¼ 0. This setup is visualized in Fig. 1.
As in the previous discussion, we parametrize the

direction of ki with the two real parameters x ∈ R and
y ∈ R and write

−P0ki ¼
�
−1−

1

4
ðx2þy2Þ;x;y;1−1

4
ðx2þy2Þ

�
; ð3:2Þ

for some function P0ðx; y; uÞ. This function P0 is deter-
mined by the normalization of the vector ki to be viki ¼ þ1
which means we have

P0 ¼
�
1þ 1

4
ðx2 þ y2Þ

�
v0ðuÞ þ xv1ðuÞ þ yv2ðuÞ

þ
�
1 −

1

4
ðx2 þ y2Þ

�
v3ðuÞ: ð3:3Þ

One should note that the components of the velocity are
functions of the parameter u only, and the spatial

dependence of P0 enters entirely through the components
of the vector ki. A direct calculation shows that P0 satisfies

P2
0

� ∂2

∂x2 þ
∂2

∂y2
�
logP0 ¼ Δ logP0 ¼ vivi ¼ 0; ð3:4Þ

whereΔ stands for the covariant Laplacian on the 2-surface
with line element P−2

0 ðdx2 þ dy2Þ.
Contracting (3.2) with the acceleration vector yields the

relation

P0aiki ¼
�
1þ 1

4
ðx2 þ y2Þ

�
a0ðuÞ þ xa1ðuÞ þ ya2ðuÞ

þ
�
1 −

1

4
ðx2 þ y2Þ

�
a3ðuÞ; ð3:5Þ

and thus one can deduce that P0 satisfies

∂
∂u logP0 ¼ aiki ≕ h0; ð3:6Þ

which defines the new function h0.
At this point we shall assume that v0 − v3 ≠ 0. If v0¼v3,

then, since vi is a null vector, we have v1 ¼ 0 ¼ v2 and also
ai must be in the same direction [the ðT; ZÞ-plane] as vi;
and so r ¼ 0 is a null geodesic, and we are led back to the
situation discussed in Sec. II. So assuming from now on
that v0 − v3 ≠ 0, we can rewrite (3.3) in the useful form

P0¼
ðv0−v3Þ

4

��
xþ 2v1

v0−v3

�
2

þ
�
yþ 2v2

v0−v3

�
2
�
: ð3:7Þ

FIG. 1. The lightlike worldline (curve) is denoted by C, and its
tangent vector is vi. ki denotes the null vector and r is the
“distance” to the worldline. Xi is the position vector of a point P
relative to the origin 0.
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Note that this form of P0 again shows directly that
Δ logP0 ¼ 0. Following on from the previous construction,
we introduce ðu; x; y; rÞ as coordinates, instead of Xi which
are related to the former by (3.1). The Minkowski line
element (2.1) now takes the form

ds2 ¼ 2dudr − 2h0rdu2 − P−2
0 ðdx2 þ dy2Þ: ð3:8Þ

The form of P0 given in (3.7) suggests a coordinate
transformation from x, y to ξ, η given by

ξ ¼ 1

P0

�
xþ 2v1

v0 − v3

�
; ð3:9Þ

η ¼ 1

P0

�
yþ 2v2

v0 − v3

�
: ð3:10Þ

When these new coordinates are substituted into (3.8), the
result is the line element

ds2¼ 2dudr−2h0rdu2

− r2
��

dξþ∂q
∂ηdu

�
2

þ
�
dηþ∂q

∂ξdu
�

2
�
; ð3:11Þ

with the function qðξ; η; uÞ given by

qðξ; η; uÞ ¼ −
1

6
ðη3A1 þ ξ3A2Þ

þ ξη

�
1

2
ðξA1 þ ηA2Þ þ a0 − a3

v0 − v3

�
ð3:12Þ

and

A1¼a1−
�
a0−a3

v0−v3

�
v1; A2¼a2−

�
a0−a3

v0−v3

�
v2: ð3:13Þ

The null vector field ki in (3.2) written in terms of the
parameters ξ, η instead of x, y can now be written in the
form

ki ¼ ζi −
1

2
ðζkζkÞvi with

ζi ¼
�
1 − ξv1 − ηv2

v0 − v3
;−ξ;−η;

1 − ξv1 − ηv2

v0 − v3

�
: ð3:14Þ

Since ζiζ
i ¼ −ðξ2 þ η2Þ ¼ −ζ2, we see that for large

values of ξ and η the null vector ki points in the direction
of the tangent vi to the worldline r ¼ 0, similar to the
previous result (2.6). We also note that q is a harmonic
function and thus

Δq ¼ ∂2q
∂ξ2 þ

∂2q
∂η2 ¼ 0; ð3:15Þ

and from (3.14) we have

h0 ¼ aiki ¼ ξA1 þ ηA2 þ
�
a0 − a3

v0 − v3

�
¼ ∂2q

∂ξ∂η : ð3:16Þ

At this point the parameter u along the lightlike world-
line r ¼ 0 is unspecified. It is useful to specify it up to a
linear transformation as follows: Start with the coordinate
transformation

ξ̄ ¼ μξ; η̄ ¼ μη; r̄ ¼ μ−1r; ū ¼ ūðuÞ; ð3:17Þ

with

μ−1
dμ
du

¼ a0 − a3

v0 − v3
and

dū
du

¼ μ: ð3:18Þ

We note from (3.18) that if we take

ū ¼
Z

ðv0 − v3Þdu; ð3:19Þ

then ū is unique up to a linear transformation ū → c1ūþ c2
where c1 and c2 are two real constants. If we let

Ai ¼ ai −
�
a0 − a3

v0 − v3

�
vi; ð3:20Þ

then the cases i ¼ 1 and i ¼ 2 are given in (3.13). If the
worldline r ¼ 0 is a null geodesic, then, in general, ai ¼
λðuÞvi for some function λðuÞ and Ai ¼ 0. The change of
parameter u along the worldline r ¼ 0 described by (3.18)
results in

vi ¼ v̄iμ and ai ¼ v̄iμ

�
a0 − a3

v0 − v3

�
þ āiμ2; ð3:21Þ

where v̄i ¼ dwi=dū and āi ¼ dv̄i=dū. When this is sub-
stituted into (3.20) we find that

Ai ¼ μ2āi; ð3:22Þ

and so we have the result that

ai ¼ λðuÞvi ⇒ āi ¼ 0: ð3:23Þ

Hence we see an important property of the parameter ū,
namely, if r ¼ 0 is a geodesic, then ū is an affine parameter
along it; see [7] for a similar discussion.
Now when the coordinate transformation (3.17) with

(3.18) is applied to the line element (3.11) the result is

ds2 ¼ 2dūdr̄− 2h̄0r̄dū2

− r̄2
��

dξ̄þ ∂q̄
∂η̄dū

�
2

þ
�
dη̄þ ∂q̄

∂ξ̄ dū
�

2
�
; ð3:24Þ
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with

q̄ðξ̄; η̄; ūÞ ¼ −
1

6
ðη̄3ā1 þ ξ̄3ā2Þ þ 1

2
ξηðξ̄ā1 þ η̄ā2Þ ð3:25Þ

and

h̄0 ¼
∂2q̄

∂ξ̄∂η̄ : ð3:26Þ

Finally we note that since (3.20) implies that A0 ¼ A3,
we have from (3.22) that ā0 ¼ ā3 because μ ≠ 0. These
statements rely on our assumptions that v0 − v3 ≠ 0. This,
together with the orthogonality of v̄i and āi, allows us to
conclude that

ā0 ¼ ā3 ¼ v̄1

v̄0 − v̄3
ā1 þ v̄2

v̄0 − v̄3
ā2: ð3:27Þ

We are now able to apply these results to the study of an
accelerated lightlike charge by following the exact same
geometrical setup.

IV. ACCELERATED LIGHTLIKE CHARGE

Guided by the analogue of the Coulomb solution of
Maxwell’s equations described in Sec. II, the work of
Robinson and Trautman [5,6] on solutions of the vacuum
Einstein-Maxwell field equations, and requiring the sol-
ution of Maxwell’s equations for the electromagnetic field
of an accelerating lightlike charge to specialize to the case
of an unaccelerated lightlike charge (2.12), we look for a
potential 1-form to describe the Maxwell field of an
accelerated lightlike charge of the form

A ¼ e

�
1

r̄
þGðξ̄; η̄; ūÞ

�
dū: ð4:1Þ

The aim is to specify the function Gðξ̄; η̄; ūÞ so that the
Einstein-Maxwell equations are satisfied. Following on
from the previously introduced basis 1-forms of the line
element (3.24), we set

ϑ̄0 ¼ dū; ϑ̄3 ¼ dr̄ − h̄0r̄dū; ð4:2Þ

ϑ̄1 ¼ r̄

�
dξ̄þ ∂q̄

∂η̄ dū
�
; ϑ̄2 ¼ r̄

�
dη̄þ ∂q̄

∂ξ̄ dū
�
: ð4:3Þ

The candidate for the Maxwell 2-form is the exterior
derivative of (4.1) which reads

F ¼ dA ¼ −
e
r̄2
dr̄ ∧ dūþ e

∂G
∂ξ̄ dξ̄ ∧ dūþ e

∂G
∂η̄ dη̄ ∧ dū

¼ −
e
r̄

�
1

r̄
ϑ̄3 −

∂G
∂ξ̄ ϑ̄1 −

∂G
∂η̄ ϑ̄2

�
∧ ϑ̄0: ð4:4Þ

The Hodge dual of this 2-form becomes

�F ¼ e
r̄

�
1

r̄
ϑ̄1 ∧ ϑ̄2 þ ∂G

∂ξ̄ ϑ̄2 ∧ ϑ̄0 −
∂G
∂η̄ ϑ̄1 ∧ ϑ̄0

�

¼ edξ̄ ∧ dη̄þ e

�∂q̄
∂ξ̄ −

∂G
∂η̄

�
dξ̄ ∧ dū

− e

�∂q̄
∂η̄ −

∂G
∂ξ̄

�
dη̄ ∧ dū; ð4:5Þ

from which one immediately arrives at

d � F ¼ e

�
−2

∂2q̄

∂ξ̄∂η̄þ
∂2G

∂ξ̄2 þ ∂2G
∂η̄2

�
dξ̄ ∧ dη̄ ∧ dū: ð4:6Þ

Therefore Maxwell’s vacuum field equations d � F ¼ 0
imply that G must satisfy

ΔG ¼ ∂2G

∂ξ̄2 þ ∂2G
∂η̄2 ¼ 2

∂2q̄

∂ξ̄∂η̄ ¼ 2h̄0: ð4:7Þ

Since q̄, given by (3.25), is also a harmonic function
satisfying Δh̄0 ¼ 0, it follows that G satisfies the bihar-
monic equation

ΔΔG ¼ 0: ð4:8Þ

It is well known that the general solution of this equation
is (a proof due to Schild is given in [8])

Gðξ̄; η̄; ūÞ¼Reffðξ̄þ iη̄; ūÞþðξ̄− iη̄ÞFðξ̄þ iη̄; ūÞg; ð4:9Þ

where f and F are arbitrary analytic functions of ξ̄þ iη̄.
This means

fðξ̄þ iη̄; ūÞ ¼ Uðξ̄; η̄; ūÞ þ iVðξ̄; η̄; ūÞ with

∂U
∂ξ̄ ¼ ∂V

∂η̄ ;
∂U
∂η̄ ¼ −

∂V
∂ξ̄ ; ð4:10Þ

and

Fðξ̄þ iη̄; ūÞ ¼ Wðξ̄; η̄; ūÞ þ iSðξ̄; η̄; ūÞ with

∂W
∂ξ̄ ¼ ∂S

∂η̄ ;
∂W
∂η̄ ¼ −

∂S
∂ξ̄ : ð4:11Þ

Hence (4.9) reads

Gðξ̄; η̄; ūÞ ¼ U þ ξ̄W þ η̄S: ð4:12Þ

We note in passing that we could equally well have used the
imaginary part of f þ ðξ̄þ iη̄ÞF for G in (4.9). Clearly not
all solutions of (4.8) are solutions of (4.7), and so
substituting (4.12) into (4.7) yields
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ΔG ¼ 2

�∂W
∂ξ̄ þ ∂S

∂η̄
�

¼ 4
∂W
∂ξ̄ ¼ 4

∂S
∂η̄ ¼ 2

∂2q̄

∂ξ̄∂η̄ : ð4:13Þ

From this we have

W ¼ 1

2

∂q̄
∂η̄ þ αðη̄Þ and S ¼ 1

2

∂q̄
∂ξ̄ þ βðξ̄Þ; ð4:14Þ

where α and β are functions of integration. But

0 ¼ ∂W
∂η̄ þ ∂S

∂ξ̄ ¼ 1

2
Δq̄þ dα

dη̄
þ dβ

dξ̄
¼ dα

dη̄
þ dβ

dξ̄
; ð4:15Þ

since q̄ is a harmonic function, and hence we must have

dα
dη̄

¼C1¼−
dβ
dξ̄

⇒ αðη̄Þ¼C1η̄þC2; βðξ̄Þ¼−C1ξ̄þC3;

ð4:16Þ

where C1 is a separation constant and C2 and C3 are
constants of integration. Substituting (4.14) with (4.16) into
(4.12) gives

G ¼ 1

2

�
ξ̄
∂q̄
∂η̄ þ η̄

∂q̄
∂ξ̄

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

field of particle

þ U þ C2ξ̄þ C3η̄|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
spherical EM waves

¼ Gparticle þ Gspherical: ð4:17Þ

The last three terms Gspherical here constitute an arbitrary
harmonic function, clearly ΔGspherical ¼ 0. When substi-
tuted into the Maxwell field (4.4) this harmonic function
describes spherical electromagnetic waves which are in-
dependent of the accelerated lightlike particle and will
therefore be excluded henceforth. The electromagnetic field
of the lightlike particle is described simply by (4.4) with

Gparticle ¼
1

2

�
ξ̄
∂q̄
∂η̄ þ η̄

∂q̄
∂ξ̄

�

¼ 1

4
ðξ̄2 þ η̄2Þfā1ðuÞξ̄þ ā2ðuÞη̄g: ð4:18Þ

If the worldline of the particle is a null geodesic, then
āiðūÞ ¼ 0 and the Maxwell field of the accelerated lightlike
particle specializes to the case described in Sec. II.

V. PROPERTIES OF THE SOLUTION

To obtain a useful comparison between the Maxwell
field constructed from (4.4) and (4.18) and the Maxwell
field of a point charge with a timelike worldline, we
proceed as follows: Start by substituting the transforma-
tions (3.17) into the position vector (3.1) which becomes

Xi ¼ wiðūÞ þ r̄k̄i; ð5:1Þ

where k̄i is given by

k̄i ¼ q̄i −
1

2
ðq̄kq̄kÞv̄i with

q̄i ¼
�
1 − ξ̄v̄1 − η̄v̄2

v̄0 − v̄3
;−ξ̄;−η̄;

1 − ξ̄v̄1 − η̄v̄2

v̄0 − v̄3

�
: ð5:2Þ

Geometrically, this is the same setup as shown in Fig. 1
with all quantities replaced by their barred counterparts.
From this k̄i we calculate the useful formulas

∂k̄i
∂ξ̄

∂k̄i
∂ξ̄ ¼ ∂k̄i

∂η̄
∂k̄i
∂η̄ ¼ −1;

∂k̄i
∂ξ̄

∂k̄i
∂η̄ ¼ 0; ð5:3Þ

and

∂k̄i
∂ξ̄

∂k̄i
∂ū ¼ −

∂q̄
∂η̄ ;

∂k̄i
∂η̄

∂k̄i
∂ū ¼ −

∂q̄
∂ξ̄ : ð5:4Þ

Consequently we can rearrange to find

∂k̄i
∂ū ¼ −h̄0k̄i þ

∂q̄
∂η̄

∂k̄i
∂ξ̄ þ ∂q̄

∂ξ̄
∂k̄i
∂η̄ : ð5:5Þ

Equation (5.1) implicitly defines ξ̄; η̄; r̄; ū as functions of
Xi. The gradients of these functions are obtained by first
differentiating (5.1) with respect to Xj to find that

δij ¼
�
v̄i þ r̄

∂k̄i
∂ū

�
ū;j þ k̄ir̄;j þ r̄

∂k̄i
∂ξ̄ ξ̄;j þ r̄

∂k̄i
∂η̄ η̄;j: ð5:6Þ

Multiplying this equation successively by k̄i, v̄i, ∂k̄i=∂ξ̄,
∂k̄i=∂η̄ and using (5.3) and (5.4) results in

ū;j ¼ k̄j; r̄;j ¼ v̄j þ r̄h̄0k̄j;

ξ̄;j ¼ −
1

r̄

∂k̄j
∂ξ̄ −

∂q̄
∂η̄ k̄j; η̄;j ¼ −

1

r̄

∂k̄j
∂η̄ −

∂q̄
∂ξ̄ k̄j: ð5:7Þ

Now the potential 1-form (4.1) with (4.18) is equivalent to
the 4-potential in coordinates Xi:

Ai ¼ e
�
1

r̄
þGðξ̄; η̄; ūÞ

�
k̄i: ð5:8Þ

The Maxwell field (4.4) has components Fij ¼ −Fji in
coordinates Xi given by
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Fij ¼ Aj;i −Ai;j

¼ e
r̄2
ðk̄iv̄j − k̄jv̄iÞ

þ e
r̄

�∂G
∂ξ̄

�
k̄i
∂k̄j
∂ξ̄ − k̄j

∂k̄i
∂ξ̄

�
þ ∂G

∂η̄
�
k̄i
∂k̄j
∂η̄ − k̄j

∂k̄i
∂η̄

��
:

ð5:9Þ

The dual of this Maxwell field has components
�Fij ¼ 1

2
ϵijklFkl, with ϵijkl the Levi-Cività permutation

symbol in four dimensions, and these components are
given by

�Fij ¼
e
r̄2

�∂k̄i
∂ξ̄

∂k̄j
∂η̄ −

∂k̄i
∂η̄

∂k̄j
∂ξ̄

�

þe
r̄

�∂G
∂ξ̄

�
k̄i
∂k̄j
∂η̄ − k̄j

∂k̄i
∂η̄

�
−
∂G
∂η̄

�
k̄i
∂k̄j
∂ξ̄ − k̄j

∂k̄i
∂ξ̄

��
;

ð5:10Þ

which is equivalent to (4.5). We note that

Fijk̄j ¼
e
r̄2
k̄i and � Fijk̄j ¼ 0: ð5:11Þ

Hence the field (5.9) is qualitatively similar, from an
algebraic point of view, to the electromagnetic field of an
accelerated point charge traveling with less than the speed
of light. The r̄−2-part of the field is algebraically general
and corresponds to the Coulomb part of the field in the
timelike case. The r̄−1-part of the field is algebraically
special (purely radiative) with degenerate principal null
direction k̄i. It describes the electromagnetic radiation
produced by the accelerated source just as in the timelike
case. Unlike the timelike case the field here is singular at
r̄ ¼ 0 (on the null worldline of the source) and at ξ̄; η̄ → ∞,
on account of (4.18), which by (5.2) corresponds to k̄i

pointing along the direction of the tangent v̄i to the source
worldline.
Finally it is interesting to compare the model of an

accelerated lightlike charge described here with the model
given by Synge [1]. In our formalism Synge’s potential
1-form is

A¼−eh̄0dū with h̄0¼ āik̄i ¼ ā1ðūÞξ̄þ ā2ðūÞη̄: ð5:12Þ

The corresponding Maxwell field and its dual are given by
the 2-forms

F ¼ −
e
r̄
∂h̄0
∂ξ̄ ϑ̄1 ∧ ϑ̄4 −

e
r̄
∂h̄0
∂η̄ ϑ̄2 ∧ ϑ̄4

¼ −
e
r̄
fā1ϑ̄1 ∧ ϑ̄4 þ ā2ϑ̄2 ∧ ϑ̄4g ð5:13Þ

and

�F ¼ e
r̄
f−ā1ϑ̄2 ∧ ϑ̄4 þ ā2ϑ̄1 ∧ ϑ̄4g

¼ ef−ā1dη̄ ∧ dūþ ā2dξ̄ ∧ dūg: ð5:14Þ

From the latter it is clear that Maxwell’s vacuum field
equations d � F ¼ 0 are satisfied. If the worldline r̄ ¼ 0 is a
null geodesic, then Synge’s Maxwell field vanishes and
there is no lightlike analogue of the Coulomb field in his
case. In terms of the coordinates Xi the components Fij of
the Maxwell field (5.13) and the components �Fij of its
dual (5.14) read

Fij¼
e
r̄

��∂h̄0
∂ξ̄

∂k̄i
∂ξ̄ þ

∂h̄0
∂η̄

∂k̄i
∂η̄

�
k̄j−

�∂h̄0
∂ξ̄

∂k̄j
∂ξ̄ þ

∂h̄0
∂η̄

∂k̄j
∂η̄

�
k̄i

�

ð5:15Þ

and

�Fij¼
e
r̄

��∂h̄0
∂ξ̄

∂k̄i
∂η̄ −

∂h̄0
∂η̄

∂k̄i
∂ξ̄

�
k̄j−

�∂h̄0
∂ξ̄

∂k̄j
∂η̄ −

∂h̄0
∂η̄

∂k̄j
∂ξ̄

�
k̄i

�
;

ð5:16Þ

respectively. From these we have

Fijk̄j ¼ 0 ¼ �Fijk̄j; ð5:17Þ

indicating that the Maxwell field is pure electromagnetic
radiation with propagation direction k̄i in Minkowskian
spacetime. When (5.7) are substituted into (5.6) using (5.5)
and raising the covariant index, we have

ηij ¼ −
∂k̄i
∂ξ̄

∂k̄j
∂ξ̄ −

∂k̄i
∂η̄

∂k̄j
∂η̄ þ v̄ik̄j þ v̄jk̄i: ð5:18Þ

Hence with h̄0 given by (5.12) we can write

∂h̄0
∂ξ̄

∂k̄i
∂ξ̄ þ ∂h̄0

∂η̄
∂k̄i
∂η̄ ¼ āj

�∂k̄j
∂ξ̄

∂k̄i
∂ξ̄ þ ∂k̄j

∂η̄
∂k̄i
∂η̄

�

¼ h̄0v̄i − āi; ð5:19Þ

and so we can simplify (5.15) to the form given originally
by Synge:

Fij ¼
e
r̄
fk̄iāj − k̄jāi þ h̄0ðv̄ik̄j − v̄jk̄iÞg: ð5:20Þ

From the first of (5.7) Synge’s potential 1-form in coor-
dinates Xi reads

A ¼ −eh̄0k̄idXi ¼ AidXi: ð5:21Þ

Using the second of (5.7) we can write the 4-potential
here as

MODELS OF LIGHTLIKE CHARGES WITH NONGEODESIC … PHYS. REV. D 100, 044021 (2019)

044021-7



Ai ¼ e
v̄i
r̄
− eðlog r̄Þ;i; ð5:22Þ

demonstrating that, modulo a gauge term, the 4-potential
has the same algebraic form as the Liénard-Wiechert 4-
potential in the timelike case. In other words it is pointing in
the direction of the tangent to the worldline of the source.
Let us have a closer look at the electric and magnetic

fields encoded in the Faraday tensor (5.20). To do so we
introduce the notation a ¼ aα, α ¼ 1, 2, 3, for the purely
spatial part of the 4-vector ai. It will prove useful to
introduce the rescaled vector K ¼ k̄=k̄0. One can read off
the electric field directly as Eα ¼ F0α so that

E ¼ e
r̄
fk̄0ðā − h̄0v̄Þ − ðā0 − h̄0v̄0Þk̄g

¼ e
r̄
fðā − h̄0v̄Þ − ðā0 − h̄0v̄0ÞKgk̄0: ð5:23Þ

Likewise, we find for the magnetic field the expression

B ¼ e
r̄
fðā − h̄0v̄Þ × kg ¼ e

r̄
fðā − h̄0v̄Þ ×Kgk̄0; ð5:24Þ

which yields the somewhat expected relations

E ·B ¼ 0; jEj ¼ jBj ¼ e
r̄

ffiffiffiffiffiffiffiffiffiffiffiffi
−āiāi

q
k̄0; ð5:25Þ

E ·K ¼ 0; E × K ¼ B ð⇒ B ·K ¼ 0Þ: ð5:26Þ

This means we are dealing with an electromagnetic wave
propagating along the direction defined by the spatial
vector K. Note that this vector is normalized to unity
which follows from the fact that the original 4-vector ki was

null. Hence these waves are traveling at the speed of light.
As mentioned above, the electromagnetic field vanishes
when the acceleration vanishes which corresponds to r̄ ¼ 0
being a geodesic worldline. In [7] a similar observation was
made where āi ¼ d2wi=du2 was interpreted as the curva-
ture of the worldline wiðuÞ.

VI. CONCLUSIONS OR DISCUSSIONS

The model of a lightlike charge with a nongeodesic
worldline given here places a great emphasis on
geometry. The geometry involved utilizes a construction
in the vicinity of an arbitrary lightlike worldline in
Minkowskian spacetime. This geometrical approach allows
us to study charged particles moving with the speed of light
directly. A key ingredient is the choice of parameter along
such a worldline since the natural parameter of arc length in
the timelike case is not available in the lightlike case. We
have demonstrated in Sec. III the existence of a special
parameter ū along the lightlike worldline, unique up to a
linear transformation, having the useful property in the
current context that it becomes an affine parameter when
the worldline is a null geodesic. This appears to be a natural
choice of parameter for the construction given in this paper
which then allows us to construct the electric and magnetic
fields of such a hypothetical particle. Our approach allows
this construction without the need to introduce sources.
Interestingly Synge [9] has pointed out that “not quite

obviously there exists on the curve a canonical parameter u
such that aiai ¼ −1 with u defined to within an additive
constant.” Synge’s choice of parameter is very interesting
and may be the natural choice for scenarios other than that
considered here.
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