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Abstract—In this paper, we focus on constant-modulus wave-
form design for the dual use of radar target detection and
cellular transmission. As the MIMO radar typically transmits
orthogonal waveforms to search potential targets, we aim at
jointly minimizing the downlink multi-user interference and the
non-orthogonality of the transmitted waveform. Given the non-
convexity in both orthogonal and CM constraints, we decompose
the formulated optimization problem as two sub-problems, where
we solve one of the sub-problems by singular value decomposition
and the other one by the Riemannian conjugate gradient algo-
rithm. We then propose an alternating minimization approach
to obtain a near-optimal solution to the original problem by
iteratively solve the two sub-problems. Finally, we assess the
effectiveness of the proposed approach via numerical simulations.

I. INTRODUCTION

In the coming generation of wireless communication and

radar systems, there will be an ever increasing competition

over the scarce spectrum resources [1]. Hence, it is favorable to

have both functionalities deployed on a single hardware plat-

form with the shared use of the same frequency band. As an

emerging research topic, dual-functional radar-communication

(DFRC) not only ensures the efficient usage of the spectrum,

but also presents novel system designs that can benefit from the

cooperation of sensing and communication [2]. It is expected

that such a technique could contribute towards novel military

applications such as the multifunction RF systems [3].

A critical challenge in DFRC is to design dual-functional

waveforms that can detect radar targets and transmit useful

information simultaneously. Early contributions on this topic

mainly focus on temporal and spectral processing, where a

typically used waveform is the chirp signal. In [4], the quasi-

orthogonality of the up and down chirp waveforms has been

exploited to differentiate 0 and 1 in the data sequence. By

contrast, the authors of [5] have proposed a simpler approach

based on the time-division (TD) framework, in which the chirp

signals are employed for radar target detection, while allowing

arbitrary modulation formats to be used for communication.

In addition to designing a novel waveform from ground-up,

an alternative approach would be to adopt existing communi-

cation signals for radar detection, e.g. Orthogonal Frequency

Division Multiplexing (OFDM) waveform [6].

As a step further, recent researches propose to exploit

the high degrees-of-freedom (DoFs) of the multi-input-multi-

output (MIMO) systems for designing the DFRC waveform,

where the spatial-domain processing is further taken into con-

sideration. In [7], MIMO radar waveforms have been designed

such that the communication bits can be embedded into the

sidelobes of the transmit beampattern. A similar approach has

been taken in [8], where the useful information is transmitted

by shuffling the radar waveforms across the transmit antenna

array. Note that the above waveform designs rely on the

assumption of a line-of-sight (LoS) channel between the

MIMO radar and the communication users, which are unable

to address the more commonly-seen Non-LoS (NLoS) cases.

In view of this, the work in [9] further assumes an NLoS

communication channel in the DFRC scenario, where convex

optimization techniques are employed for joint beamforming.

While the above methodologies provide basic dual-

functional capabilities, little efforts have been done towards

the more practical constraints such as constant-modulus (CM)

waveforms. In order to fully exploit the transmit power, the

RF amplifiers equipped on the radar systems are typically

required to operate at the saturation region [10], which may

cause serious distortion to signals with high peak-to-average

power ratio (PAPR), such as the OFDM mentioned above.

To address this issue, the work in [11] proposes a DFRC

waveform design by imposing the non-convex CM constraint,

which is then solved via a branch-and-bound (BnB) algorithm.

Nevertheless, the worst-case complexity of such a method is

known to be at the exponential order of the size of the antenna

array [12], which may prevent its implementation in realistic

systems.

In this paper, we propose a low-complexity constant-

modulus waveform design for the MIMO DFRC system,

which detects targets while communicating with multiple

downlink users. As the MIMO radar typically transmits spa-

tially orthogonal waveforms for searching potential targets in

the whole angle domain, we firstly minimize the downlink

multi-user interference (MUI) under waveform orthogonality

constraint, where the optimal waveform can be obtained in

closed-form. To attain a flexible trade-off between radar and

communication, we further consider a weighted optimization

problem by imposing CM constraints, in which the MUI

energy and the degrees of non-orthogonality of the waveform

are jointly minimized. While the formulated problem is non-

convex and generally NP-hard, we propose an alternating
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minimization (AltMin) algorithm based on manifold opti-

mization techniques. By doing so, a near-optimal solution

can be efficiently obtained. Numerical results show that the

proposed AltMin approach outperforms the communication-

only zero-forcing (ZF) precoding while achieving a favorable

performance trade-off between radar and communication.

...

Fig. 1. MIMO dual-functional radar-communication system.

II. SYSTEM MODEL

We consider a MIMO DFRC system equipped with an N-

antenna uniform linear array (ULA) as shown in Fig. 1, which

serves K single-antenna users while detecting radar targets in

the same time. Below we briefly introduce the system models

for both communication and radar functionalities.

A. Communication Model

The received signal matrix at the downlink users can be

obtained as

Y = HX+ Z, (1)

where X = [x1,x2, ...,xL] ∈ CN×L represents the transmit-

ted signal matrix, with L being the length of the communi-

cation frame/radar pulse, H = [h1,h2, ...,hK ]T ∈ CK×N

denotes the channel matrix which is assumed to be perfectly

estimated by the DFRC, and Z = [z1, z2, ..., zL] ∈ CK×L is

the noise matrix, with zl ∼ CN (0, N0IN ) , l = 1, 2, ..., L.

For a given constellation symbol matrix S ∈ CK×L that is

desired by downlink users, the received signals can be recast

in the form

Y = S+ (HX− S)
︸ ︷︷ ︸

MUI

+Z. (2)

It is assumed that each entry of S is drawn from the same

alphabet, e.g. a QPSK constellation. Note that the second term

in (2) represents the MUI signals that interfere the symbol

demodulation, with its total energy being measured as

PMUI = ‖HX− S‖2F . (3)

Particularly, the communication channel degenerates to a

simple additive white Gaussian noise (AWGN) channel if

PMUI = 0. Following [13], the average signal-to-interference-

plus-noise ratio (SINR) for downlink users can be maximized

by minimizing the MUI energy above. We therefore employ

(3) as the communication performance metric in the rest of

the paper.

B. MIMO Radar Model

In contrast to the conventional phased-array radar that

transmits phase-shifted versions of a benchmark signal on each

element of the antenna array, MIMO radar transmits individual

waveforms on each antenna, which offers the advantage of

waveform diversity, allowing more DoFs to be exploited for

the system design [14]. Conventionally, MIMO radar firstly

transmits spatially orthogonal waveforms that formulate an

omni-directional beampattern, which is typically used for

searching the potential targets among the whole angle domain

[8], [14]. After that, a directional beampattern is formulated

to point to the directions of interest, and thus obtaining more

accurate observations. Without loss of generality, we focus on

the omni-directional transmission for the radar, in which case

the spatial covariance matrix of the transmitted waveforms is

RX =
1

L
XX

H =
PT

N
IN , (4)

where IN denotes the N-dimensional identity matrix, and PT

is the total transmit power.

In what follows, we design DFRC waveforms based on the

aforementioned communication and radar models.

III. PROBLEM FORMULATION

A. A Simple Closed-form Design

We firstly consider the following optimization problem

min
X

‖HX− S‖2F s.t.
1

L
XX

H =
PT

N
IN , (5)

in which we minimize the communication MUI while for-

mulating a spatially orthogonal covariance matrix for radar

target detection. Due to the orthogonal constraint involved,

problem (5) is non-convex. Fortunately, it can be classified

as an orthogonal Procrustes problem (OPP), which has the

following globally optimal solution [15]

X =
√

LPT /NŨIN×LṼ, (6)

where ŨΣṼ = H
H
S denotes the singular value decomposi-

tion (SVD) of H
H
S, with Ũ and Ṽ being the matrices that

contain the left and right singular vectors respectively, and

IN×L is composed by an N-dimensional identity matrix and

an N × (L−N) zero matrix.

B. Constant-modulus Waveform Design

It is worth noting that (6) can only guarantee the orthog-

onality of the waveforms, which is not able to address the

constant-modulus design. Moreover, as the strict equality con-

straint is imposed in problem (5), the resultant communication

MUI might be still high. To overcome these drawbacks, we

formulate the following trade-off optimization problem by

considering the CM constraint

min
X,U

ρ ‖HX− S‖2F + (1− ρ) ‖X−U‖2F

s.t. UU
H =

LPT

N
IN , |xn,l| =

√

PT /N, ∀n, ∀l,
(7)



where ρ ∈ [0, 1] is a given weighting factor that determines

the weights for radar and communication performances in the

DFRC system, U ∈ CN×L is a unitary matrix, and xn,l

denotes the (n, l)-th entry for X. Intuitively, the second term

in the objective function can be viewed as the degrees of non-

orthogonality of X, which can be used to trade-off with the

communication MUI energy. Due to the imposed orthogonal

and CM constraints, problem (7) is highly non-convex and

NP-hard in general, where the globally optimal solution is

not obtainable in polynomial time. To this end, we propose

an AltMin algorithm to find a near-optimal solution to the

problem.

IV. PROPOSED APPROACH

By taking a closer look at problem (7), we observe that the

optimization variables X and U are in fact decoupled with

each other, which indicates that problem (7) can be decom-

posed as two sub-problems that are much easier to tackle.

Accordingly, a sub-optimal solution to (7) can be attained by

iteratively solve the sub-problems, which we discuss in the

following.

A. Sub-problem for U

Let us first solve for U by fixing X, in which case problem

(7) can be rewritten as

min
U

‖U−X‖2F s.t. UU
H =

LPT

N
IN , (8)

which is again an OPP as in (5) by letting H = IN . Hence,

the optimal solution is given by

U =
√

LPT /NŪIN×LV̄, (9)

where ŪΣ̄V̄ = X is the SVD for X.

B. Sub-problem for X

We then fix U and solve for X. Upon letting

A =
[√

ρHT ,
√
1− ρIN

]T ∈ C(K+N)×N and B =
[√

ρST ,
√
1− ρUT

]T ∈ C(K+N)×L, the objective function

in (7) can be denoted as ‖AX−B‖2F , in which case the sub-

problem for X can be obtained in a compact form as

min
X

‖AX−B‖2F s.t. |xn,l| =
√

PT /N, ∀n, ∀l. (10)

Further, let us denote Ã =
√

PT /NIL⊗A, x̃ = vec (X) and

b̃ = vec (B), the above problem can be simplified as

min
x̃

∥
∥
∥Ãx̃− b̃

∥
∥
∥

2

s.t. |x̃i| = 1, ∀i, (11)

where ⊗ is the Kronecker product, and x̃i, i = 1, 2, ..., NL

is the i-th entry of x̃. It can be observed that (11) is a least-

squares (LS) problem defined on the NL-dimensional complex

circle, which is a Riemannian manifold [16]. In what follows,

we propose a Riemannian conjugate gradient (RCG) algorithm

to obtain a sub-optimal solution [17].

Denoting M the feasible region of (11), i.e., the circle

manifold. Let x̃ be an arbitrarily given point on M. A tangent

vector at x̃ is defined as the vector that is tangential to any

smooth curves on M through x̃. The set of all tangent vectors

associated with x̃, denoted as Tx̃M, forms the tangent space,

which is a Euclidean/linear space. Based on [18], the tangent

space for the complex circle manifold can be given as

Tx̃M =
{
w ∈ C

NL×1 |Re (w ◦ x̃∗) = 0
}
, (12)

where (·)∗ denotes the conjugate operation, and ◦ represents

the element-wise multiplication.

Before presenting the RCG algorithm, let us compute the

gradient of the objective function f (x̃) =
∥
∥
∥Ãx̃− b̃

∥
∥
∥

2

, which

can be simply given by

∇f (x̃) = 2ÃH
(

Ãx̃− b̃

)

. (13)

In the RCG framework, (13) is called the Euclidean gradient,

which, however, is not the steepest ascent direction on the

manifold. Instead, the Riemannian gradient is adopted in the

iteration of the algorithm, which is defined as the orthogonal

projection of (13) onto the tangent space (12), and can be

given as [18]

gradf (x̃) = Px̃∇f (x̃) , ∇f (x̃)− Re (∇f (x̃) ◦ x̃∗) ◦ x̃,
(14)

where Px̃ (·) is the projector.

Note that by stepping towards the negative direction of the

Riemannian gradient (14), the resultant point will be on the

tangent space instead of the manifold itself. To obtain the

associated point on the circle manifold, a retraction mapping

is further defined to map a point from Tx̃M to M. This can

be given as the following [18]

Rx̃ (w) =

[
x̃1 + w1

|x̃1 + w1|
, ...,

x̃NL + wNL

|x̃NL + wNL|

]T

, (15)

where w ∈ Tx̃M.

In the conventional conjugate gradient (CG) algorithm,

the descent direction dk at the k-th iteration is the linear

combination of the current gradient ∇f (x̃k) and the previous

descent direction dk−1, where we have [18]

dk = −∇f (x̃k) + αkdk−1, (16)

where αk is a combination coefficient. Nevertheless, such

combination is not possible in the RCG algorithm, as the Rie-

mannian gradient gradf (x̃k) and the descent direction dk−1

belong to different tangent spaces, i.e. Tx̃k
M and Tx̃k−1

M,

respectively. To resolve this issue, the following non-linear

combination is used to compute the descent direction of the

k-th iteration [18]

dk = − gradf (x̃k) + βkPx̃k
dk−1, (17)

where dk−1 is projected to Tx̃k
M, such that its projection can

be linearly combined with gradf (x̃k) located in the same

tangent space. The combination coefficient βk is computed

following the Polak-Ribiére rule [18].

Based on above, we summarize the RCG algorithm for

solving (11) in Algorithm 1.

Remark: As the strict convergence analysis of RCG still



remains open problem, it is rather intractable to derive the

maximum iteration number needed given an accuracy thresh-

old ε [18]. We therefore show the complexity per iteration of

the algorithm. By simple calculation, it can be proven that each

iteration of Algorithm 1 involves O (NKL) complex multi-

plications. The total complexity is therefore O (NiterNKL),
where Niter is the number of iterations.

Algorithm 1 RCG Algorithm for Solving (11)

Input: H,S,U, weighting factor 0 ≤ ρ ≤ 1, PT , tolerable

accuracy ε > 0, maximum iteration number kmax > 2
Output: x̃k

1. Compute A, B. Initialize randomly x̃0 = x̃1 ∈ M, set

d0 = − gradf (x̃0), k = 1.

while k ≤ kmax and ‖grad f (x̃k)‖ ≥ ε do

2. Compute the combination coefficient βk using the

Polak-Ribiére formula [18].

3. Compute the descent direction dk by (17).

4. Compute stepsize µk by the Armijo line search method,

and set x̃k+1 by

x̃k+1 = Rx̃k
(µkdk) .

5. k = k + 1.
end while

C. The Alternating Minimization Procedure

We are now ready to describe the proposed AltMin method.

As shown in Algorithm 2, we repeatedly solve the two

aforementioned sub-problems. The algorithm terminates once

a preset tolerable accuracy threshold is reached. It is worth

highlighting that Algorithm 2 can be viewed as a coordinate

descent method, and hence its convergence can be strictly

guaranteed [19]. In our simulations, we see that Algorithm

2 always converges within tens of iterations within a modest

accuracy.

Algorithm 2 Alternating Minimization Algorithm for (7)

Input: H,S, 0 ≤ ρ ≤ 1, PT , tolerable accuracy η > 0 and

the maximum iteration number nmax

Output: Xn, Un

1. Initialize randomly X0 and U0. Compute the objective

function of (7), denoted as f0. Set n = 1.

while n ≤ nmax and |fn − fn−1| ≥ η do

2. Compute Un by (9).

3. Compute Xn using Algorithm 1.

4. Compute the objective function fn based on the

obtained variables.

5. n = n+ 1.
end while

V. NUMERICAL RESULTS

In this section, we validate the effectiveness of the proposed

approach by numerical simulations, where a MIMO DFRC

-2 0 2 4 6 8 10 12 14 16

Transmit SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

S
E

R

Closed-form (9)
CM-RCG, Algorithm 1,  = 0.1
CM-AltMin, Algorithm 2,  = 0.1
CM-ZF

Fig. 2. Symbol error rate for downlink users, N = 16, K = 4.

system equipped with N = 16 antennas serves K = 4
users in the downlink. Without loss of generality, the spacing

between adjacent antennas is set as half-wavelength. The

transmitted symbols in S are drawn from a normalized QPSK

constellation. For convenience, we set the total transmit power

as PT = 1, and assume a Rayleigh flat-fading channel for the

downlink, where each entry of H subjects to standard complex

Gaussian distribution.

We first show in Fig. 2 the communication performance in

terms of the symbol error rate (SER), where the results of

different methods are present for comparison. In particular,

we use ‘Closed-form’ for the orthogonal waveform design

in (9), ‘CM-RCG’ for the RCG method with an arbitrarily

given unitary matrix, ‘CM-AltMin’ for the proposed AltMin

approach by iteratively obtaining the waveform matrix X and

the unitary matrix U, and finally ’CM-ZF’ for the conventional

ZF precoding design. For the sake of fairness, the modulus of

the ZF-precoded waveform is normalized to be constant. While

the proposed AltMin method ensures both CM constraints and

the quasi-orthogonality of the waveform, we see that it still

considerably outperforms both the CM-ZF and the closed-form

design (9) when the target SER is below 10−3, even with a

very small weight ρ = 0.1 at the communication’s side. It is

also reasonable to see that CM-RCG performs worse than the

closed-form and the AltMin designs, as it does not update the

unitary matrix U, which leads to a high MUI energy.

In Fig. 3, we further investigate the detection performance of

the proposed waveform designs by using detection probability

PD as a metric, where the classic constant false-alarm rate

(CFAR) detection is employed with a fixed false-alarm rate

PFA = 10−7. In the considered scenario, a point-like target

is placed at the far-field, with an azimuth angle of θ = 20◦.

The detection probability is computed following [19, eq. (69)].
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Fig. 3. Detection probability under different waveform designs, N =

16, K = 4, PFA = 10−7.

It is not surprising to observe that the closed-form design

(9) yields the best detection performance, as the orthogonal

signal is known to be the optimal searching waveform of the

MIMO radar [20]. By further looking at the performance of

the proposed AltMin method, we see that it shows signifi-

cant gain over the CM-ZF precoding design. Moreover, the

performance-loss of the AltMin approach comparing with the

closed-form design is less than 1dB, which again proves its su-

periority relative to other techniques. Together with Fig. 2, it is

noteworthy that the AltMin algorithm can achieve a favorable

performance trade-off between radar and communication while

guaranteeing the CM constraints for the transmitted waveform.

VI. CONCLUSION

This paper has investigated the constant-modulus (CM)

waveform design for the dual-functional radar-communication

(DFRC) system. To minimize the communication multi-user

interference (MUI) while preserving the orthogonality of the

waveform for radar detection, we have proposed a simple

closed-form design by singular value decomposition (SVD).

To further improve the performance and to avoid signal

distortion in the non-linear power amplifier, we have jointly

minimized the weighted summation of the MUI and the

non-orthogonality for the waveform under non-convex CM

constraints. The proposed optimization problem can be solved

via Riemannian conjugate gradient (RCG) and the alternating

minimization (AltMin) approaches. Simulation results have

been presented to compare the performance of the proposed

method and several benchmark techniques, which indicate that

the AltMin algorithm attains a favorable performance trade-

off between radar and communication functionalities while

guaranteeing the CM constraints.
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