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Abstract

Full duplex (FD) communication is widely recognized as one of the key technolo-

gies for the fifth generation (5G) of wireless communication systems. By allow-

ing simultaneous transmission and reception, FD has the potential to drastically

improve the spectral efficiency of the half-duplex (HD) communication networks.

Moreover, the 5G communication network holds the promise of supporting a wide

range of services with different strict communication requirements such as latency,

reliability and data rate, that aim at improving capacity, reliability, and energy ef-

ficiency, while reducing latency and massively increasing connection density. For

this reason, in this thesis we study novel designs for different promising 5G tech-

nologies in multi-user FD communication scenarios.

This thesis firstly extends the concept of interference exploitation to multi-user

FD systems, where existing works have focused on suppressing interference. In

this regard, we propose a multi-objective optimization problem (MOOP) to study

the tradeoff between the total downlink and uplink transmit powers. The MOOP

approach allows for the power saved to be traded off for both uplink and downlink

power savings, leading to an overall energy efficiency improvement in the wireless

link. In addition, this thesis explore robust designs in a multiuser FD system with

simultaneous wireless information and power transfer (SWIPT). In particular, we

propose MOOP designs to jointly minimize the total uplink and downlink trans-

mit power, and maximize the total harvested energy in a FD system with imperfect

channel state information for both interference suppression and constructive inter-

ference. Furthermore, we investigate the offloading energy and latency trade-off

in a multiuser FD mobile-edge-computing (MEC) system that performs both data
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transmission and MEC through MOOP designs. Subsequently, we study the optimal

beamforming and resource allocation problem in a multiuser FD system, where we

design a power efficient algorithm to minimize the long-term sum transmit power

under delay constraints.

Comprehensive simulation results and analysis show the improved perfor-

mance of the introduced techniques compared to the state-of-the-art techniques,

which validates the effectiveness of these techniques.



Impact Statement

The incessant evolution and growth of the wireless communication system has

brought the need for constant development and design of new enhanced, efficient

and cost effective algorithms to address the ever-increasing challenges faced in

wireless communication networks. For this reason and motivated by the ongoing

research for the materialisation of the 5G network, this thesis presents new and

efficient design strategies in the design of the wireless communication networks.

These state-of-the-art design strategies address some of the main issues and chal-

lenges encountered by the wireless communication systems both inside and outside

academia.

This thesis addresses the issue of the limited radio spectrum by employing FD

in efficient and practical communication system scenarios. Another important is-

sue addressed by this thesis is the battery life of wireless devices. Replacing and

charging the battery of devices has always been a problem and in some instances

impossible, hence, by wirelessly transmitting power to devices through energy har-

vesting, devices can charge their batteries conveniently. Also, with the popularity

of smart phones and devices increasing everyday caused by the advancement of the

Internet of Things, the use of computational intensive applications has increased

drastically. The FD MEC, in this thesis, presents a solution to enable devices offload

their intensive and latency-critical computation tasks to nearby server for execution.

Furthermore, the issue of packet drop and delay in transmission is also addressed in

the thesis. Overall, the findings presented in this thesis provides insights and solu-

tions to the main challenges in the wireless communication network, bringing us a

step closer to the realisation of the 5G networks and even beyond.
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Chapter 1

Introduction

The rapid growth of wireless communication network has caused the need for more

power efficient and reliable high data rate communication systems. This has sparked

considerable research interests in recent years. Multi-input multi-output (MIMO)

system is one of the breakthrough techniques to tackle these needs, as it provides

more degree of freedom for efficient resource allocation. However, the efficient re-

source utilization for MIMO systems come at the cost of high computational com-

plexity at the receivers. Multi-user (MU)-MIMO experiences a reduced complexity

at the receivers by employing beamforming at the base station (BS) for the downlink

transmission. Even with the MU-MIMO, higher spectral efficient resource alloca-

tion can be gained by switching from the conventional half-duplex (HD) mode i.e

when only reception or transmission is performed at a time, to a full-duplex (FD)

mode where simultaneous reception and transmission is performed at the same time

and frequency.

FD communications is widely recognized as one of the key technologies for

5G wireless communication systems [2]. FD has the potential to drastically improve

or even double the spectral efficiency of HD systems since it allows the downlink

and uplink transmission to function at the same frequency and time. Although, the

benefits of FD systems are somewhat intuitive, the practical implementation of such

systems have proven to be very challenging which poses a lot of technical problems.

As a result, for a long time, there was a general assumption that it is not possible for

a radio to simultaneously transmit and receive at the same frequency [3]. One major
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challenge of the implementation of FD systems is the self-interference (SI) signal

from the transmit antenna to the receive antenna of the wireless transceiver. Specif-

ically, the transmitted signal by the transceiver in the downlink channel interferes

with its receive signal from the uplink channel. This interference raises the noise

floor and becomes the dominant factor in the performance of the FD system. There-

fore, the performance of the FD system depends on the ability of the transceiver to

sufficiently suppress or cancel the SI signal.

Fortunately, major breakthroughs have been recorded in practical FD system

setups [4,5] that show that the SI can be partially cancelled to within a few dB of the

noise floor. Over the years, several self-interference cancellation techniques have

been proposed in the literature [4–8]. [9] presented an experiment-based characteri-

zation of passive suppression and active SI cancellation mechanisms in FD systems.

The authors characterization of total and individual cancellation mechanisms, based

on extensive experimentation shows that a total average cancellation of 74dB can

be achieved. In [10], a digital SI cancellation technique was proposed that could

mitigate the SI to about 3dB higher than the receiver noise floor, which results in up

to 76% rate improvement compared to conventional half-duplex systems at 20dBm

transmit power values. Overall, with the above mentioned literature, we can ob-

serve that the SI cannot be completely cancelled in FD systems but reduced to a

negligible level [6, 10].

Following the breakthroughs with regards to SI suppression and cancellation,

recent studies have focused on other FD implementation issues, such as protocol and

resource allocation algorithm design, in variety of contexts. Accordingly, with the

aim of accelerating the further development and implementation of FD applications

in practical wireless systems, this thesis focuses on designs of different schemes

and strategies for the realisation of FD in MU-MIMO scenarios.

1.1 Aim and Motivation

Due to the rapid growth of high data rate services, it has become important to de-

sign power efficient wireless communication systems in order to reduce the amount
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of greenhouse gases emission and operational expenses of communication systems.

Thanks to the development of various SI cancellation and suppression techniques,

FD is now closer to reality than ever. In the design of the traditional power efficient

HD system, the main goal is to minimize the system power consumption while sat-

isfying some quality of service (QoS) constraints [11–13]. Although, many of the

FD beamforming and resource allocation solutions build upon the existing HD solu-

tions in the literature, however, the obtained HD results cannot be applicable to FD

systems. This is because FD brings a number unique challenges and opportunities

to explore with respect to HD systems:

• The simultaneous transmission in the uplink and downlink results in the de-

pendency of optimization variables. In particular, the uplink and downlink

transmit powers, in that, increasing the downlink transmit power to satisfy the

QoS constraints increases the SI power, which hinders the reception of uplink

signals. At the same time, if the uplink transmit power is increased in order

to satisfy the QoS constraints, co-channel interference (CCI) is increased at

the downlink.

• The existence of SI introduces new constraints in the optimization problem,

that change the uplink and downlink power trade-offs involved.

• The coexistence of uplink and downlink users in MU scenarios is further com-

plicated by CCI caused by the uplink transmission to the downlink transmis-

sion.

These challenges do not exist in HD systems since the downlink and uplink trans-

mission are separated either in the time domain or in the frequency domain. While

FD systems have been widely studied in the literature, there still exist numbers of

unresolved areas and applications that require further investigations, especially with

regards to the trade-off involved introduced by the dependency and coexistence of

the uplink and downlink variables in MU-MIMO scenarios, where existing meth-

ods either suffers from performance loss or deviation of the assumptions and mod-

els employed from practical scenarios or computational expensive and inefficient
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algorithms. Thus, this calls for new and innovative methods to further improve the

performance and efficiency of existing techniques.

1.2 Main Contributions
In this thesis, we consider MU-MIMO FD wireless communication systems. In

particular, we exploit the dependency of the optimization variables i.e., the uplink

transmit power and downlink beamforming vectors, to study the trade-offs between

conflicting but important objectives with respect to both the system operators and

users. It is these trade-offs that necessitate the study of different multi-objective

optimization problems (MOOPs), where intricate trade-off designs have not been

sufficiently studied in the literature in FD communication systems. Against the

state-of-the-art, the main contributions of this thesis are summarised below:

• Extension of the concept of MU interference (MUI) exploitation in FD com-

munication systems (Chapter 4). By exploiting the useful signal power from

interference, in the downlink channel for both phase-shift keying (PSK) and

quadrature amplitude modulation (QAM), a power efficient resource alloca-

tion is provided for FD MU-MIMO systems. Through the proposed MOOPs,

it is shown that FD offers the unique opportunity to trade-off the interference

power saved for both uplink and downlink power savings.

• Exploration of robust designs to jointly minimise the total uplink and down-

link transmit power and maximise the total harvested energy with imperfect

channel state information (CSI) in a FD communication system (Chapter

5). By exploring some convex relaxations to tackle the highly non-convex

MOOPs, simulation results show the effectiveness of interference exploitation

compared with interference suppression in terms of both power consumption

and energy transfer as well as the superiority of FD transmission with respect

to HD.

• Design of a low-complexity and efficient algorithm to investigate the offload-

ing energy and offloading latency trade-off in a MU FD communication sys-

tem with mobile edge computing (Chapter 6). The proposed MOOPs, for
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both perfect and imperfect CSI designs, allow for a scalable tradeoff between

the two important objectives via the Lagrangian method. Simulation results

show greatly improved performance of the proposed FD schemes, for both

interference suppression and interference exploitation, compared with the ex-

isting baseline HD schemes.

• Design of an optimal beamforming and resource allocation algorithm for

power efficient MU FD communication systems based on stochastic optimi-

sation that takes into account the system delays with respect to data queues

(Chapter 7). Due to the stochastic nature of the problem, the classic drift-

plus-penalty function is exploited and subsequently, the proposed MOOP was

simplified into a difference of convex functions. Simulation results show the

significant gains achieved by the proposed FD schemes compared with the

baseline HD schemes.

1.3 Thesis Organization
Subsequent to this introductory Chapter, this thesis is organised as described below:

Chapter 2 gives a review of different 5G and beyond technologies. Specifically,

this chapter presents an overview of full duplex systems, which constitutes the basis

of this thesis, with emphasis on existing SI cancellation techniques. Also, the energy

harvesting technology, mobile edge computing (MEC), and delay and reliability for

the 5G wireless networks are discussed.

Chapter 3 provides a review of MIMO systems. Specifically, this chapter

discusses the different precoding techniques in wireless communication systems.

In addition, this chapter gives an overview of optimization based beamforming

in terms of conventional schemes and constructive interference based beamform-

ing schemes. This chapter also gives detailed review of the existing precoding

schemes including simulation results comparing them and showing their advantages

and disadvantages. Furthermore, the chapter discusses multi-objective optimisation

(MOO) including the 3 categories of the different MOO methods based on the de-

cision maker’s preference of the objectives.
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Chapter 4 introduces the proposed power efficient FD communication system.

In particular, this chapter presents the proposed multi-objective optimisation prob-

lem (MOOP) designs in FD systems with interference exploitation for both generic

phase shift keying (PSK) modulated signals and quadrature amplitude modulated

(QAM) signals. The proposed MOOP designs offer the opportunity to trade the

saved downlink interference power for both uplink and downlink power savings.

The chapter also presents robust designs for the proposed MOOP designs with im-

perfect channel state information (CSI). In extension, an iterative algorithm is fur-

ther proposed to jointly optimise the uplink transmit power, the downlink and uplink

beamforming vectors, respectively.

Chapter 5 extends the proposed multi-objective optimisation (MOO) designs

in FD systems to energy harvesting scenario. The proposed approach explore robust

designs to jointly minimize the total uplink and downlink transmit power and max-

imize the total harvested energy in a full duplex system with imperfect CSI. First, a

formulation, where multiuser interference (MUI) is suppressed is proposed. Then,

a second formulation, where the MUI is rather exploited, is proposed, both as use-

ful energy and information power, for guaranteeing quality of service and energy

harvesting constraints.

Chapter 6 investigates the offloading energy and latency trade-off in a MU

FD mobile edge computing (MEC) system. Specifically, the FD system consists

of a FD base station (BS), equipped with a MEC server, which carries out data

transmission in the downlink, while at the same time receiving computational tasks

from mobile devices in the uplink. Two weighted MOOPs are proposed, one, where

the multi-user interference (MUI) is suppressed and the other, where MUI is rather

exploited. As a result, the proposed MOOPs allow for a scalable tradeoff between

the offloading energy and latency. The robust designs for imperfect CSI are also

included.

Chapter 7 studies the beamforming and resource allocation problem in a MU

FD system. The chapter presents the design of a power efficient algorithm that

minimizes the average long-term sum transmit power under long-term stability con-
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straints on the queue buffers for the downlink and uplink users. The proposed design

exploits the classic drift-plus-penalty function and subsequently simplify the prob-

lem into a difference of convex functions. Building upon the proposed algorithm,

an optimisation problem based on delay fairness is also presented.

Chapter 8 concludes the thesis by summarising the entire thesis and then, pre-

senting the possible extensions for future research within the frame of this thesis.

1.4 Publications
The above contributions in this thesis have led to the following peer-reviewed pub-

lications:
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[J1] M. T. Kabir and C. Masouros, “Delay-Constrained Beamforming and Re-
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Technology, revised (major), July 2019.

[J2] M. T. Kabir and C. Masouros, “A Scalable Energy vs Latency Trade-off in

Full Duplex Mobile Edge Computing Systems,” IEEE Transactions on Com-

munications, accepted, March 2019.

[J3] M. T. Kabir, M. R. Khandaker, and C. Masouros, “Interference exploitation in

full-duplex communications: Trading interference power for both uplink and

downlink power savings,” IEEE Transactions on Wireless Communications,

vol. 17, no. 12, pp. 8314-8329, 2018.

[J4] M. T. Kabir, M. R. Khandaker, and C. Masouros, “Robust energy harvesting

FD transmission: Interference suppression vs exploitation,” IEEE Communi-

cations Letters, vol. 22, no. 9, pp. 1866-1869, 2018.

Conference Papers:

[C1] M. T. Kabir, M. R. A. Khandaker, and C. Masouros, “Minimizing Energy and

Latency in FD MEC Through Multi-objective Optimization,” IEEE Wireless

Communications and Networking Conference (WCNC), pp. 1-6, March 2019.
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Performance-Complexity Trade-off for Full Duplex Beamforming,” IEEE
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Chapter 2

5G Technologies and Beyond

2.1 Introduction

Over the past few years, the wireless communication network has continuously

evolved in order to meet the unprecedented demands and growth for wireless com-

munication systems. Moving from the first generation (1G) of cellular communi-

cation, which was analog and mainly used for voice calls only, to the recent long

term evolution LTE/4G network that provides high data transmission rate, increased

capacity and provides multimedia support. Despite the unprecedented high trans-

mission rates, high QoS and other benefits provided by these networks, the ever-

growing user demands is beginning to exceed their capabilities. For example, the

rapid growth of smartphones and devices have caused an increase mobile data traf-

fic. It has been reported that compared to 2010, the current estimates of mobile

data traffic in the years to come foresee a 1,000 times increase by 2020 [14]. The

existing networks are not designed to sustain this increase in number of connected

devices. Also, the development of new applications such as tactile Internet, high

resolution video streaming, tele-medicine, tele-surgery, vehicular communications,

and real-time control have set new requirements for throughput, latency, reliabil-

ity and robustness of the network. As such, researchers and standards develop-

ment organisations have set out to develop the next generation 5G network in order

to continue to tackle these emerging challenges. Some of the expected require-

ments of the next generation 5G networks are listed in Table 2.1. Therefore, in the
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Table 2.1: Requirements for 5G communication systems [2]

Figure of merit 5G requirement compared with 4G
Peak data rate 10 Gbps 100 times higher

Guranteed data rate 50 Mbps -
End-to-end latency less than 1ms 25 times lower
Number of devices 1 M/km2 1000 times higher

Reliability 99.9999% 99.9999%
Energy consumption - 90% less

Peak mobility support ≥500 kmph -

quest to meet these challenging requirements, variety of new technologies such as

full-duplex (FD), energy harvesting (EH), massive-MIMO, mobile-edge comput-

ing (MEC), millimeter wave (mmWave) communications, non-orthogonal multiple

access (NOMA), device-to-device (D2D) communications and visible light com-

munication have emerged as promising techniques and are considered as the key

technologies for the next generation 5G network.

In this chapter, we provide an overview of some new promising technologies

that are expected to be employed in 5G systems and even beyond, which are con-

sidered in this thesis in subsequent chapters.

2.2 Full Duplex Communication System
FD is basically when the transmission and reception of signals is performed at

the same time and frequency. The ever-increasing need for improved spectrum-

efficiency in wireless communication links has brought FD at the forefront of re-

search attention. To appreciate the gains from the application of FD, we consider

a simple multiuser communication system as shown in Fig. 2.1. The system con-

sists of a BS serving a downlink (DL) user and an uplink (UL) user. Therefore, if

the BS operates in HD, then the BS can only communicate with either the down-

link user or the uplink user in one time slot. However, if the BS operates in FD,

then the BS can simultaneously communicate with both downlink and uplink users

thereby doubling the spectral efficiency relative to HD operation [15]. Thus, Full

duplex communications is widely recognized as one of the key technologies for 5G

wireless communication systems [2].
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Figure 2.1: A simple communication system

In theory, since FD allows simultaneous transmission and reception of signals,

then, it has the potential to double the spectral efficiency of the HD communication

systems [4, 5]. However, for many years the implementation of FD systems has

been considered impractical due to one major hurdle known as self-interference

(SI). The SI is the leakage signal from the transmit antennas to the receive antennas

of the FD system that raises the noise floor and becomes a dominant factor in the

system making it very difficult to extract the desired received signal. Therefore, to

achieve FD the SI, which can be up to 100 dB stronger than the desired received

signal, must be completely or partially cancelled. Thus, over the years, major efforts

and breakthroughs have been made in order the reduce the effect of SI, even though

the SI cannot be completely cancelled in FD systems due to limited dynamic range

at the receiver [6].

2.3 Self-interference Cancellation Techniques
Considerable efforts have been made to mitigate the SI signal, this has led to the de-

velopment of several SI cancellation techniques in the literature. These techniques

are classified into: passive suppression and active cancellation.

2.3.1 Passive suppression techniques

In passive suppression techniques, the suppression usually takes place as the signal

propagates from the transmit antenna to the receive antenna and majority of the can-

cellation is due to the isolation between the antennas [5, 16–18]. In [5], an antenna
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cancellation technique was proposed in practical FD setup comprising of a single

channel FD transceiver. To achieve FD in this scenario, which uses 0dBm of trans-

mit power, the power of the signal from the transmit antenna at the receive antenna

placed 6 inches away is approximately -40dBm and with approximately -100dBm

of noise floor, then at least 60dB of SI power must be cancelled. Therefore, it was

shown that by combining the antenna cancellation technique, which provides up to

30dB cancellation, with digital interference cancellation, up to 60dB interference

cancellation could be achieved to enable FD communication in the system. The

main principle of antenna cancellation is to use two transmit antennas and one re-

ceive antenna, where the two antennas are placed half a wavelength apart thereby

causing their signals to add destructively and cancel one another. In [16], the au-

thors used directional antennas to achieve passive suppression in a FD scenario that

can exploit directional diversity. The performance analysis shows that gains as high

as 90% at a distance of 10m can be achieved compared to HD operation.

2.3.2 Active cancellation techniques

Active cancellation techniques [4,7,9,10,19–21] are techniques that involve any ad-

ditional signal processing carried out on the received signal to mitigate the SI signal

like subtracting a processed copy of the transmitted signal from the received signal.

Active cancellation techniques can be divided into analogue and digital techniques:

analogue techniques achieve cancellation by sending a cancelling signal through

another radio chain and then adding it to the signal at the receiving antenna, while

digital techniques use the knowledge of the transmit signal to perform cancellation.

The first practical in-band FD WiFi radios was designed and implemented in [4]

where the system uses a single antenna for both transmission and reception. To

achieve FD, the system makes use of a dynamic algorithm to estimate the amount

of SI experienced by the received signal, then cancels it to within few dB of the noise

floor of the receiver using analogue and digital cancellation techniques. In [10], a

digital SI cancellation technique was proposed that could mitigate the SI to 3dB

higher than the receiver noise floor by using an auxiliary receiver chain to obtain a

digital copy of the transmitted SI signal. With the copy of the SI signal, the SI signal
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and the associated transmitter impairments can be cancelled out, which results in up

to 76% rate improvement compared to conventional half-duplex systems at 20dBm

transmit power values.

Typically, FD systems employ both passive and active cancellation techniques

to help mitigate the SI signal significantly because no single technique is sufficient

to bring down the SI signal to the noise floor [10, 19].

2.4 Energy Harvesting

The battery life of wireless devices has always been a very important part to con-

sider in the design of wireless communication networks. Constantly replacing bat-

teries is often costly, inconvenient, hazardous and sometimes even impossible. En-

ergy harvesting (EH) is a promising technique that provides solution for prolonging

the lifetime of wireless communications networks such as sensor networks [22–25].

Energy can be harvested from a number of sources like sunlight, wind, vibrations,

hydroelectric, and wireless radio frequency (RF) signals, as such, EH has gained a

lot of attention from both academia and industry. In the literature, EH systems can

be divided into three main transmit schemes; The wireless power transfer (WPT)

scheme, where a power bank transfers energy to EH receivers to charge their bat-

teries [26, 27]. The wireless powered communication network (WPCN) scheme,

where the energy harvester uses the energy received to transmit information to

other receivers [28–31]. The simultaneous wireless information and power trans-

fer (SWIPT) scheme, where the transmitter transfers both information and power

signals using the same waveform to various EH and information detectors [32–36].

In addition, the receiver architecture of EH networks is usually of two types, ei-

ther collocated receivers or separated receivers. In collocated receivers, the receiver

can do both EH and information decoding (ID). In this case, the receiver coordinates

how the two processes occur: The receiver could employ power splitting (PS) [32],

where the received signal power is divided between EH and ID by a specified ratio;

Time switching (TS) could be adopted [32], where the receiver shares the receiving

time by a factor for both EH and ID; Another method is through antenna switch-
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ing, where the receiver employs multiple antennas and dedicates some for EH and

others for ID, respectively. While in separated receiver architecture, which is less

challenging than the collocated receivers, the receivers can only do either EH or ID.

Most state-of-the-art works on EH networks combine the above transmitter

and receiver architectures. In [28], a “harvest then transmit” protocol for WCPN

was proposed where an access point (AP) supplies power to all users through

their downlink and the users transmit information in the uplink by time-division-

multiple-access (TDMA). The authors studied the sum-throughput maximization

by optimizing the time allocation downlink EH and uplink information transfer.

Likewise, [30] employed space-division multiple-access techniques to maximize

the sum rate while jointly optimizing the downlink energy precoding matrices, the

uplink information precoding matrices, and time allocation between the downlink

and the uplink phases. SWIPT was studied in [32], where one receiver harvests

energy and another receiver decodes information separately from the signals sent

by a common transmitter. The authors exploited scenarios where the EH receiver

and ID receiver are separated and collocated. In the case of collocated receivers,

PS and TS were both examined. Also, [36] considered SWIPT in an orthogonal

frequency-division multiplexing (OFDM) relaying system, where a PS relay proto-

col is proposed for a source that transfer information and a fraction of power to a

relay nodes which uses the harvested power to transmit information to a destination

node. While WCPN was considered in [31] to maximize the energy efficiency (EE)

of the network via joint time allocation and power control protocols.

2.5 Mobile Edge Computing

The popularity of mobile devices and other wearable devices, and the unprecedented

growth of mobile data traffic have caused tremendous advancement in wireless com-

munication and Internet of Things (IoT). It is estimated that around 50 billion de-

vices will be connected to the IoT by 2020. This calls for a significant increase in

the wireless network capacity. Furthermore, the data traffic growth, which is often

from our everyday lifestyle of running variety of applications on mobile devices,
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smartphones, laptops, e.t.c., for entertainment, healthcare, businesses, networking

and so on, is not matched by improvement on devices in terms of battery life, ef-

ficiency and data storage capabilities. This widens the gap between the capabili-

ties required to run these applications and capabilities available on the devices. A

promising solution to these problems is to enable devices offload their intensive and

latency-critical computation tasks to nearby servers for execution through mobile

edge computing (MEC). In this way, the battery life, data storage capabilities, la-

tency, efficiency and reliability of the devices are relaxed [14, 37], tackling the key

challenges for materializing the 5G vision. In particular, MEC pushes mobile com-

puting, network control and storage to the network edges such as base stations and

access points.

In MEC, computation task offloading does not necessarily mean offloading

all the tasks for execution at the servers. Whether or not the entire computation

task is to be offloaded depends on the system parameters such as the computational

intensity of each task, the size of the task to be offloaded, the battery life of the

device, the delay constraints and the channel state. Usually, a computation task is

often divided into parts, where some are run by the devices while other parts are to

be offloaded and executed by the servers. As such, offloading can either be static

of dynamic. Static offloading is when the partitioning is done before execution

and the decision on what part to be executed locally is taken at the beginning of

execution [38–41]. While dynamic offloading is when the decision on whether and

what to offload is taken at the run time based on the system current situation [42,43].

Increasing number of applications now benefit from MEC by offloading all or

part its tasks to the MEC server for execution. A simple example is the face recogni-

tion application on our mobile phones, which can be subdivided into five computa-

tion tasks: image acquisition, face detection, pre-processing, feature extraction, and

classification [44]. The image acquisition task needs to be locally executed at the

mobile phone while the other fours tasks could be offloaded to the MEC server for

execution since they involve complex signal processing and machine learning (ML)

algorithms. Many of such applications exist and are already part of our day-to-day
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life. One of the main MEC research motives is to merge the wireless communica-

tion and wireless computing disciplines. This has resulted in a wide range of new

design ideas, from different computational offloading techniques/policies to differ-

ent network architecture.

In the literature, many of the MEC research focus on resource management for

both single and multi-user MEC systems. There are three commonly used task mod-

els: the deterministic task model with binary offloading, deterministic task model

with partial offloading, and stochastic task model. Binary offloading model involves

tasks that are relatively small or highly integrated that can only be executed as a

whole either locally or offloaded to the server [45, 46]. [45] proposed a local policy

that optimizes local computing and offloading by controlling the central processing

unit (CPU) frequency and transmission rate for energy minimization. Similarly, [46]

proposed a framework to optimize local computing and offloading. The partial of-

floading task model involves sophisticated tasks that can be subdivided into several

tasks that could be executed individually locally or offloaded to the server [47, 48].

In [47], the concept of wireless aware joint scheduling and computation offloading

was introduced where the authors jointly optimize the offloading ratio, transmis-

sion power and CPU cycle frequency using a variable substitution technique. [48]

proposed a joint scheduling and computation offloading algorithm by parallel pro-

cessing of appropriate modules in the device and server. Stochastic task models are

task models that are characterized by random task arrivals, where the arrived but not

yet executed tasks join the queues in task buffers. In such models, the long-term av-

erage energy consumption or long-term average latency is considered for the system

design [49, 50].

2.6 Delay and Reliability

One of the main aims of the next generation 5G network is to support ultra-reliable

and low-latency communications (URLLC). Latency is the time it takes to success-

fully deliver a message or packet from the application layer to the protocol layer

through the radio interface in both uplink and downlink without any disruption in
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the reception from either the device or BS. The URLLC requirement for latency is

set at 1 ms [51]. Reliability is defined as the probability of successfully transmit-

ting a given packet (in bytes) within a given latency/delay given a certain channel

quality. For 5G communication networks, the requirement for reliability of trans-

mission of a 32 byte packet is at least 99.999% [51]. This strict level of latency and

reliability have given way to various new application such as the following [51]:

• Self-driving [52]: cars that can automatically drive itself by detecting its sur-

roundings without being operated by anyone.

• Tactile internet [53]: internet network that ensures tactile connectivity with

the support of short transmit, low latency, high reliability and availability,

and high security communications.

• Vehicle-to-vehicle (V2V) [54, 55]: a wireless network that supports commu-

nications between vehicles or vehicles-to-everything (V2X).

• Industrial and Process automation [56]: automated industry and processes

with unmanned machines that automatically monitor all processes, control

the systems and make decision for industrial components such as mixing,

heating and pumping.

• E-health [57, 58]: a health care system with the support of information and

communication technology (ICT).

These have sparked a lot of research interests in the industry and academia. For

example, [59] considered a two-hop FD relay system and proposed three buffer-

aided relaying schemes with adaptive reception transmission at the FD relay for

the cases when the source and the relay both perform continuous rate transmis-

sion with adaptive-power allocation, continuous rate transmission with fixed-power

allocation, and discrete-rate transmission, respectively. The buffer aided relaying

enables the FD relay to selectively choose either to receive, transmit or simultane-

ously do both at a given time slot. In [60], the problem of uplink and downlink

resource optimization, mode selection and power allocation is studied with stability
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constraints in FD systems operating with non-orthogonal multiple access (NOMA).

The authors formulated the problem as a network utility maximization for which the

Lyapunov framework was employed to solve the problem. In [61], studied a device-

to-device (D2D) communication network, where energy efficiency (EE) and delay

trade-off was investigated. The authors formulated a stochastic optimization prob-

lem that maximizes the EE with average power, interference control, and network

stability constraints. While [62] addressed EE-guaranteed throughput-delay trade-

off in an interference-free wireless network. The authors formulated two stochastic

optimization problems aiming at throughput maximization and rate minimization

subject to EE, stability, admission control, and transmit power constraints.

Accordingly, motivated by the ongoing research for URLLC for the realization

of the 5G networks, in Chapter 7 we propose a delay-constrained beamforming and

resource allocation algorithms in FD systems.

2.7 Summary
This chapter has provided an overview of some of the new and promising tech-

nologies that are being considered for the next generation wireless communication

systems. These include FD, which allows simultaneous transmission and reception,

then, the EH technology that involves transmitting and receiving energy signals in

order to prolong the battery life of wireless devices. In addition, this chapter also

reviews the MEC technology that allows devices to offload their latency-critical

and intensive tasks to MEC servers for execution. Finally, the chapter presents an

overview of the technologies that support and provide URLLC.
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MIMO Communication System

3.1 Introduction
Multiple-input multiple-output (MIMO) refers to the method of employing multiple

antennas at both the transmitter and receiver of wireless communication systems.

Over the years, the use of MIMO has become an essential part of the standards of

most wireless communication systems. It is well known that MIMO communication

systems provide a number of benefits over the traditional single-input single-output

(SISO) communication systems, these include [63]:

• Array gain: This is simply the average power gain of the transmitted sig-

nals. By the application of multiple antenna at the transmitter or/and receiver,

the average received signal-to-noise (SNR) ratio is increased due to coherent

combining effect. The array gain depends on the number of antennas at the

transmitter or/and receiver and requires the knowledge of the channel.

• Diversity gain: This is the increase in reliability of the transmission link. As

the signal power randomly fluctuates in the wireless channel (channel fading),

multiple antenna systems provide a means to diversify the transmitted signal

path. Therefore, if the link between the transmitter and receiver fade inde-

pendently, the receiver can reconstruct the transmitted signal by combining

the arriving signals from the multiple antennas, such that the resultant signal

is an improved version of the signal from a SISO link.

• Spatial multiplexing gain: With MIMO, there is extra spatial dimension for
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communication that is created which can be exploited by simultaneously

transmitting independent signals from the individual antennas. This offers

a linear increase in capacity and this gain is referred to as spatial multiplexing

gain.

• Interference Management: The use of multiple antenna system gives rise to

MUI due to simultaneous communication between the users since the same

time and frequency resources are being used. The differentiation between

the spatial dimension of the desired signal and co-channel can be exploited

to reduce the interference by precoding at the transmitter or equalization at

the receiver. By reducing the interference energy sent to the co-channel users

when transmitting to the desired user, the multi-cell capacity is increased.

We note that, since it is difficult to simultaneously exploit all the advantages

of MIMO systems, this thesis focus on exploiting the spatial multiplexing gain by

employing multiple antenna multiuser systems, and interference management via

precoding techniques.

3.2 Precoding
Over the years, with the deployment of multiple antenna systems, the power con-

sumption and the computational complexity of the receiver based techniques that

have been traditionally applied to tackle the impediments of MIMO systems has

become a very challenging problem in the design of user equipment (UE) in down-

link communications [64–67]. This brought the need to shift the complicated and

power consuming signal processing at the UE to the base station in order to main-

tain a simple and cost-effective UE. As a result, various precoding techniques have

been proposed in the literature for downlink transmission, moving from the sophis-

ticated but high performance achieving non-linear precoding techniques [68–75] to

the less complex linear precoding techniques [1,76–78]. Several optimization based

precoder have also been proposed [13, 79–81] as will be shown in the following.

For notational convenience, here, we assume a forward link multiuser system

scenario with a half-duplex base station (BS) having N transmit antennas serving K
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Figure 3.1: Simple broadcast system model

single-antenna users, as shown in Fig. 3.1. We note that, the K receive antennas can

also belong to one user without any impact on the processing introduced. The solid

lines and dotted lines in Fig. 3.1 represent the desired signals and MUI signal for

each user, respectively. The transmitted signal for the k-th user can be expressed as

xk = tkdk, (3.1)

where, tk and dk denote the precoding vector and the unit data symbol for the k-th

user, respectively. The received signal at the k-th user is expressed as

yk = hH
k xk︸ ︷︷ ︸

desired signal

+
K

∑
i 6=k

hH
k xi︸ ︷︷ ︸

multi-user interference

+nk, (3.2)

where nk represents the additive white Gaussian noise AWGN at the k-th user and

hk is the channel vector between the BS and the k-th user. The first term in (3.2)

represents the desired signal while the second term is the multi-user interference

(MUI) signal from other users.
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Figure 3.2: Complexity versus performance for linear and non-linear precoding

3.2.1 Linear Precoding

Linear precoding techniques offer less complexity but at the expense of low per-

formance compared to their non-linear counterparts as shown in Fig. 3.2. Chan-

nel inversion (also known as zero-forcing (ZF)) which was proposed in [82] offers

the least complexity. This technique basically multiplies the vector signal to be

transmitted with the inverse of the channel matrix, as a result MUI is completely

eliminated. The transmitted signal is expressed as

xZF = f ZF ·HH (HHH)−1 ·d, (3.3)

where H is the K×N channel matrix between the BS and the users with the (k,n)-th

element hk,n being the complex-Gaussian channel between the n-th transmit antenna

and the k-th receive antenna, d ∈ CN×1 is the data symbol vector and f ZF is the

scaling factor that ensures the average normalization of the transmitted signal power

and is given as

f ZF =

√√√√ 1

tr
[
(HHH)−1

] , (3.4)

and the received signal can be written as

yZF = f ZF ·HHH (HHH)−1 ·d+n = f ZF ·d+n, (3.5)
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Figure 3.3: Sum rate comparison for channel inversion (ZF) and regularized channel inver-
sion (RCI) where N = K and SNR=10dB [1]

where n ∈CN×1 is the additive white Gaussian noise vector of the K receive anten-

nas.

However, it was shown in [1] that channel inversion in its plain form is poor,

the sum rate for K = N users is constant as a function of K and does not improve

with the increase in the number of antennas i.e. as K→∞, as can be seen in Fig. 3.3.

This poor capacity was explained by looking at the distribution of the eigenvalues

of
(
HHH)−1. Therefore, in [1] a regularized form of channel inversion was devel-

oped that improves the performance especially at low SNRs. They proposed to use

a regularization parameter to maximize the signal-to-interference-plus-noise ratio

(SINR) at each receiver. To regularize the inverse, they simply added a multiple of

identity matrix before inverting as in

xRZF = f RZF ·HH (HHH +αI
)−1 ·d, (3.6)

where (I) is the identity matrix and the corresponding scaling factor is given as

f ZF =

√
1

tr
[

Λ

Λ+αI ·QHddHQ
] , (3.7)

where Λ is the eigenvalue matrix and Q is the unitary eigenvector matrix of the

decomposition HHH = Q ·Λ ·QH . As a result, the received signal (3.8) is no longer
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simply a scaled version of d but also contains a certain amount of interference from

the other users.

yRZF = f RZF ·HHH (HHH +αI
)−1 ·d+n. (3.8)

It was shown in [1] that the amount of interference is determined by the regular-

ization factor α > 0 and the amount of interference increases with α . So, the best

metric to choose the value of α is to maximize the SINR of (3.8), which is when

α = Nσ2, where σ2 is the noise variance at the receiver. Furthermore, it was shown

that with the regularized inversion symbol-error rate (SER) performance improves

slightly with K unlike with the channel inversion where SER worsens with K and

also the sum rate has a linear growth with K. Even though simulation results show

a big improvement over the plain inversion technique, there is still a big gap to

capacity that still remains to be exploited.

In quest to develop improved performance precoders, in [76], it was shown

that unlike the common practise where the knowledge of the interference is used

to eliminate it, this knowledge can be used to acquire benefits from the interfer-

ence. In some instances where the instantaneous data is such that the interference

is constructive, then eliminating it becomes inefficient. Interference is said to be

constructive if it pushes the symbol further into the detection region of the constel-

lation. Therefore, by exploiting this constructive part of inter-channel interference

(ICI) and eliminating the destructive part, the overall performance is enhanced. This

is achieved by selectively applying channel inversion such that the ICI that is bene-

ficial to the instantaneous desired symbols is preserved. It should be noted that this

idea is based on the concept of PSK modulation and it is performed on symbol-by-

symbol basis. As a result, the average received SINR is improved without increasing

the transmitted power per symbol.

The concept of exploiting the interference was taken further in [77], where

correlation rotation (CR) precoding was proposed. With CR precoding, on an in-

stantaneous basis, the phase of the symbol of the interfering signal is aligned to the

phase of the symbol of the signal of interest at each receive antenna. As a result,
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the MUI is always constructive and therefore, the SINR at the receiver is enhanced

without increasing the power per transmitted symbol at the BS. To facilitate the

alignment of the resulting symbol to the signal of interest after precoding, the phase

of the transmitted symbols is corrected and the angle of correlation between them

is rotated by constructing a phase-corrected correlation matrix as expressed below

Rφ = R◦Φ, (3.9)

where R = HHH is the cross-correlation matrix, (◦) denotes element-wise matrix

multiplication and Φ is the phase rotation matrix with each of its element expressed

as

Φk,n = dn ·
conj

(
dk ·Rk,n

)∣∣Rk,n
∣∣ . (3.10)

Therefore, the transmitted signal is expressed as

xCR = fCR ·HH (HHH)−1 ·Rφ ·d, (3.11)
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where

fCR =

√√√√ 1

tr
[
RH

φ
(HHH)−1 Rφ

] , (3.12)

and the received signal is given as

yCR = fCR ·Rφ ·d+n. (3.13)

It is clear from (3.13) that the transmit signal power of CR is enhanced by the

correlation matrix Rφ and therefore improves the performance of the system. We

show in Fig. 3.4 the symbol error rate (SER) performance comparison between the

linear precoding techniques discussed. It can be seen that the least SER is achieved

by exploiting interference with CR precoding followed by RCI and the channel

inversion (ZF), respectively.

3.2.2 Non-linear Precoding

Even with the performance offered by the linear precoding techniques, the gap to

reaching the theoretical capacity still exist. In order to further decrease this gap,

several non-linear precoding techniques have been proposed. Following the initial

theoretical analysis in [68], dirty paper coding (DPC) techniques have been pro-

posed [69, 70, 72, 83]. Although, these techniques achieve significant performance

benefits compared to linear precoding techniques, however, they involve sophisti-

cated signal processing at the transmitter for example the sphere-encoder algorithm

used in [71]. In [71], a vector-perturbation (VP) technique was proposed that is

used in conjunction with the regularized channel inversion precoding to achieve

better performance. It was shown in [1] that the problem with ZF is due to the

large singular values associated with the inverse of the channel matrix (H−1). The

VP technique uses a complex sphere encoder to perturb the data so that the resul-

tant data vector is somewhat orthogonal to the singular vectors associated with the

large singular values, thereby reducing the energy of the transmitted signal, hence,

achieving improved performance especially at high SNRs. This was basically done

by forming a vector d̃ from the data vector d such that the norm of H−1d̃ is much
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smaller than H−1d. Therefore, the transmitted signal is expressed as

x =
1
√

γ
H−1d̃ =

1
√

γ
H−1(d+ τl), (3.14)

where, γ =
∥∥∥H−1d̃

∥∥∥2
, τ = 2(|c|max +∆/2) (where |c|max is the absolute value of

the constellation symbol with largest magnitude and ∆ is the spacing between the

constellation points) and l is the complex perturbation vector which is chosen at the

transmitter to minimize γ

l = argmin
l∗

(d+ τl∗)H (HHH)−1
(d+ τl∗) . (3.15)

Simulation results in Fig. 3.4 show the effectiveness of the VP precoding, where, the

average SER performance is shown compared to other linear precoding techniques.

3.3 Optimization Based Techniques
In recent years, more focus has been given to optimization based techniques, where

different strategies and algorithms are designed in order to achieve optimum solu-

tions. The main strategy here is based on the system operator’s perspective, which

is to provide to all users an acceptable quality of service (QoS) as cheaply as pos-

sible and at the same time serving as many users as possible. The QoS is usually

expressed in terms of the received signal to interference plus noise ratio (SINR).

In the following, we use the terms beamforming and precoding interchangeably,

in-line with the most relevant literature.

To facilitate beamforming optimization designs, it has been demonstrated that

convex optimization [84] provides a variety of tools that allow for rigorous formu-

lations and solutions to ever-existing and emerging beamforming design problems.

The main advantage of convex optimization theory is that it allows for complex

design formulations to be recast into convex forms which can be solved efficiently

using interior point methods or other appropriate numerical techniques.

As a result, several optimization based beamforming schemes have been pro-

posed in the literature which we categorize into two: Conventional optimization
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based beamforming and Constructive interference optimization based beamform-

ing.

3.3.1 Conventional Optimization based Techniques

This category of optimization based beamforming is based on the traditional ap-

proach, that treats interference as a detrimental phenomenon. Several beamforming

schemes that follow this concept have been proposed in the literature, for both per-

fect channel state information (CSI) cases [79, 80, 85–87] where full knowledge of

the channel is known and imperfect CSI cases [88–91]. These schemes adopt differ-

ent beamforming design strategies based on the desired system performance metric.

We summarize the most common beamforming design strategies in the following

based on the system model in Fig. 3.1.

• Power minimization problem: This optimization problem is formulated to

directly minimize the total transmit power subject to QoS constraints of the

users which is typically expressed as [79]

minimize
tk

K

∑
k=1
‖tk‖2

subject to.
hH

k tk

∑
K
i6=k hH

k ti +σ2
k
≥minimum required QoS(γk),∀k.

(3.16)

This formulation is based on the conventional precoders that treat all inter-

ference as harmful signals. In particular, it gives the precoding vectors that

generates the minimum transmit power for the minimum required QoS.

• SINR-balancing problem: This optimization problem aims to maximize the

minimum required QoS (γt) subject to the total transmit power as shown be-
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low [92]

maximize
tk,γt

γt

subject to.
hH

k tk

∑
K
i 6=k hH

k ti +σ2
k
≥ γt ,∀k,

K

∑
k=1
‖tk‖2 ≤ Ptotal,

(3.17)

where Ptotal is the total transmit power budget. Here, the minimum QoS is

maximized which in essence minimizes the interference within the power

budget.

• Sum-rate maximization: this optimization problem aims to maximize the sum

rate of the considered system. The solution to this problem is the precoding

vectors that give the maximum sum rate of the system. The sum-rate maxi-

mization problem is typically expressed as [93, 94]

maximize
tk

K

∑
k=1

log

(
1+

hH
k tk

∑
K
i 6=k hH

k ti +σ2
k

)

subject to.
K

∑
k=1
‖tk‖2 ≤ Ptotal.

(3.18)

Many other optimization problems with different objectives have also been pro-

posed like the minimization of the weighted mean-square error (MSE) in [95], the

minimization of signal and interference leakage in [96, 97], e.t.c.

3.3.2 Constructive Interference Optimization based Techniques

This category of optimization based beamforming is based on the beamforming

schemes that exploit interference rather than suppress it.

In [98] and [13], a symbol-level data-aided transmit beamforming optimiza-

tion scheme was proposed, based on the initial closed-form precoding in [76, 77]

that the interference can contribute constructively in the detection of the desired

signal. It was shown that with the knowledge of both the data symbols and the CSI

at the transmitter, the SINR constraints in (3.16) and (3.17) can be modified to ac-
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commodate for constructive interference for generic PSK modulated signals. This

concept is illustrated in Fig. 3.5, which shows the constructive interference area for

8PSK constellation points. The shaded area is the constructive interference region

of the constellation points, where γ is the decision threshold i.e. the distance to the

decision variable of the constellation point, αI and αR are the imaginary and real

components ỹk = hk ∑
K
k=1 tke j(φi−φk) ignoring the noise, which is phase shifted by

the phase of the desired symbol (φk), respectively. The angle θ = ± π

M determines

the maximum angle shift of the constructive interference area for a modulation or-

der M. Accordingly, if the received signal falls within this area, then interference

is said to be exploited constructively. Therefore, by applying basic geometry, from

Fig. 3.5 it can be seen that for the received signal to fall in the constructive region

of the constellation, we need to have αI ≤ (αR−γ)tanθ . Hence, by adopting this as

the QoS constraint, constructive interference is guaranteed for each user. Therefore,

the optimization problem in (3.16) and (3.17) based on CI are given by [13]

• Power minimization problem

minimize
tk

K

∑
k=1
‖tkdk‖2

subject to. αI ≤ (αR− γ)tanθ ,∀k.
(3.19)
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Figure 3.6: Average total transmit power versus the minimum required QoS for conven-
tional (ZF), QPSK and 8QAM when N = K = 4

• SINR-balancing problem

maximize
tk,γt

γt

subject to. αI ≤ (αR− γt)tanθ ,∀k,
K

∑
k=1
‖tkdk‖2 ≤ Ptotal.

(3.20)

Note that the formulations in (3.16) and (3.17) are data dependent, hence, the opti-

mization is performed on a symbol-by-symbol basis.

As a result, it can be seen in Fig. 3.6 that the same QoS is achieved with lower

transmit power as compared to the conventional approaches (3.16) where interfer-

ence is rather suppressed. Also, in Fig. 3.4 we show the SER of the SINR-balancing

problem for both conventional (ZF) approach (3.17) and the CI based approach

(3.20). It can be seen that significant error rate savings is achieved with the opti-

mization based approaches compared to the closed-form precoders and in addition,

CI provides even better performance compared to the conventional approach.

Similar findings were shown in [81], where the same concept of CI was applied

to quadrature amplitude modulated (QAM) signals. To illustrate the concept of con-

structive interference for QAM modulation we provide a schematic representation
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Figure 3.7: Constructive interference region for 8QAM constellation points

of 8QAM constellation points in Fig. 3.7. Based on [81], to guarantee constructive

interference for the constellation points, we modify the QoS constraints for each

user to exploit the specific detection regions for each group of constellation points

separately as detailed below:

• For the group of constellation points labelled ”1” and ”2” in 3.7, the con-

straints should guarantee that the received symbol ỹk = hk ∑
K
k=1 tkdk ignoring

noise, fall in the detection region away from the decision boundaries (dotted

lines), which is the real axis. The constraints are

ℜ(ỹk) = γ ·ℜ(dk),

ℑ(ỹk)R γ ·ℑ(dk),

where ℜ and ℑ are the real and imaginary parts.

• For the group of constellation points labelled ”3” in 3.7, the constraints should

guarantee that the received symbol (ỹk) fall in the detection region away from

the decision boundaries (dotted lines). Here, the constellation points are not

surrounded by the decision boundaries and therefore have a larger detection
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region that extend infinitely. The constraints are

ℜ(ỹk)R γ ·ℜ(dk),

ℑ(ỹk)R γ ·ℑ(dk).

Fig. 3.6 shows the average transmit power versus the QoS requirement for conven-

tional, CI-QPSK and CI-8QAM. It can be seen that for the conventional approach

more power is required to achieve the same QoS compared to the CI approaches,

which is as a result of exploiting the interference rather that suppressing it.

Further findings in [99–107] show that tremendous gains can be achieved by

exploiting interference based on symbol level optimization for both PSK and QAM

modulated signals. However, all these findings are based on HD systems. In the

following chapters, the concept of interference exploitation will be extended and

investigated in FD communication systems which provides us with other unique

opportunities to explore against the state-of-the-art approaches.

For completeness, we would like to briefly compare the CI technique with

another interference suppression technique known as interference alignment (IA)

technique in the literature. IA technique proposed in [108] is also a linear pre-

coding technique that has received a lot of attention over the past decade which is

fundamentally different to CI and in fact, CI could potentially be applied onto IA.

The main idea of IA is to use the spatial dimension offered by the use of MIMO

systems to align the interference signals in time, frequency or space such that the

users coordinate their transmission, using linear precoding, so the interference lies

in a reduced subspace at the receiver. As a result, each user can receive half of

the system capacity which effectively increases the sum throughput as compared to

when the each interference signal occupy a portion of the subspace. On the other

hand, the key idea of CI technique follows a different direction to suppress interfer-

ence by exploiting the interfering signals. CI precoding as discussed above, aims at

aligning the phase of the interfering signals to that of the desired signal by using the

knowledge of the transmit symbols at the transmitter. As a result, the received sig-
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nal at each receiver is pushed further into the correct detection region of the desired

symbol.

3.4 Beamforming in Full Duplex Systems

With the success in most of the proposed SI mitigation techniques over the years,

other issues such as, protocol and resource allocation designs need to be re-

investigated with respect to FD transmission [109–114]. Many of the FD solu-

tions build upon the existing beamforming solutions discussed in Sections 3.2 and

3.3, where different beamforming design strategies are adopted based on the de-

sired performance metrics. For example, in [109], a MU-MIMO FD system was

considered with multiple HD uplink and downlink users, where ZF beamformer

was adopted for the downlink transmission while minimum mean squared error

(MMSE) was adopted for the uplink transmission. These beamformers were de-

signed to maximize the gains in the FD system in terms of spectral efficiency (SE)

and the energy efficiency (EE). These result in two optimization problem formu-

lations: Spectral efficiency also known as sum rate maximization, which aims to

maximize the data rate per bandwidth, and Energy efficiency, which aims to maxi-

mize the number of bits transmitted per energy unit, in essence, this optimizes the

overall energy consumption of the system, which includes the uplink and downlink

circuitry power. Similary, in [110], the authors investigated the spectral efficiency of

FD small cell wireless systems by considering a joint beamformer design to max-

imize the spectral efficiency subject to power constraints. In [111], the authors

discussed the resource allocation problems in FD-MIMO, FD-Relay, FD-OFDMA

and FD-HetNet systems including power control, interference-aware beamforming,

e.t.c. Also, resource allocation and scheduling in FD-MIMO-OFDMA relaying sys-

tems was studied in [113]. In [114], the authors used massive arrays at the FD relay

station to cancel out loop interference and as a result increase the sum spectral effi-

ciency of the system.

Others focused on beamforming design strategies to increase power efficiency

[115–117], where the total transmit power of the FD system is minimized subject
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to the SINR constraints of the uplink and downlink users. The authors in [115]

investigated the power efficient resource allocation for a MU-MIMO FD system.

They proposed a multi-objective optimization problem (MOOP) to study the total

uplink and downlink transmit power minimization problems jointly via the weighed

Tchebycheff method. They extended their work to a robust and secure FD systems

model in the presence of roaming users (eavesdroppers) in [116]. Similarly, in

[117] the authors used a similar model to investigate the resource allocation for FD

simultaneous wireless information and power transfer (SWIPT) systems. Moreover,

these works are all based on the traditional approach, where interference is treated

as detrimental phenomena, resource allocation in the considered systems are not

fully explored. By exploiting interference constructively, a power efficient resource

allocation can be provided.

3.5 Multi-objective Optimization
Multi-objective optimization (MOO) is the process of optimizing a number of dif-

ferent objectives simultaneously. The general form of MOO problem (MOOP) is

given by

minimize
a

Y(a) = [Y1(a),Y2(a), . . . ,YN(a)]

subject to gk(a)≤ 0, k = 1,2,3, . . . ,K,

f j(a) = 0, j = 1,2,3, . . . ,J,

(3.21)

where a is the optimization variable, N is the number of objective functions, K is

the number of inequality constraints, and J is the number of equality constraints.

Here, Y(a) represents the vector of objective functions, respectively.

Different from single-objective optimization problems (SOOPs), there is no

single optimal solution to a MOOP, so, it is often necessary to obtain a set of points

or solutions that all satisfy a predetermined definition of the optimum solution. The

most common way to determine the optimal solution of MOOPs is via the concept

of Pareto optimality. A point is said to be Pareto optimal if there is no other point

that improves any of the objectives without decreasing the others [118]. In [118], a
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survey of several multi-objective optimization methods and concepts in engineering

was presented. Based on the primary goal of MOO, which is to model the relative

decision maker’s preference of the objectives, these methods were categorized into

three:

• Category 1: the methods that involve specifying the preference of each ob-

jective, which could be attributed with regards to the importance or goals of

the objectives. These methods attach weights that can either be used as the

decision-maker preferences or can continuously be altered in an effort to rep-

resent the complete Pareto optimal set. Some of the methods include: global

criterion method, weighted sum method, weighted min-max method or the

weighted Tchebycheff method and weighted product method.

• Category 2: the methods that involve selecting a solution out of a set math-

ematically equivalent solutions. These methods are usually used when it is

difficult for the decision maker to set preference for the objectives, thus, it be-

comes necessary for the decision-maker to choose from a range of available

solutions. These methods include: physical programming method, normal

boundary intersection (NBI) method and normal constraint (NC) method.

• Category 3: the methods that do not require any articulation of preference.

This happens when the decision-maker cannot properly or adequately define

the preferences of the objectives. Thus, most of the methods here are simpli-

fications of those in Category 1 above.

Accordingly, in the following Chapters, we design different MOOPs by employing

methods with a priori articulation of preferences as in Category 1, which can achieve

the complete Pareto optimal set with lower computational complexity.

3.6 Summary
This chapter has provided detailed overview of MIMO wireless communication sys-

tems. The various existing linear and non-linear precoding schemes in the literature

were discussed, subsequently, showing their performance through simulation results
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which highlight their advantages and disadvantages, respectively. In addition, this

chapter reviewed optimization based precoding techniques in the literature, which

were categorised into conventional and constructive interference based techniques.

In was shown that with constructive interference based techniques significant power

can be saved by exploiting the MUI rather than suppressing it as compared to the

conventional based techniques.



Chapter 4

Interference Exploitation in

Full-Duplex Communications

This chapter is based on our publications in [C2], [C3], [J3].

4.1 Introduction
In this chapter, we extend the concept of interference exploitation introduced in Sec-

tion 3.3.2 of Chapter 3 to FD communication systems, where a FD radio BS serves

multiple single-antenna HD uplink and downlink users simultaneously. Unlike con-

ventional interference mitigation approaches, we propose to use the knowledge of

the data symbols and the CSI at the FD radio BS to exploit the multi-user interfer-

ence constructively rather than to suppress it. We propose a MOOP via the weighted

Tchebycheff method to study the trade-off between the two desirable system design

objectives namely the total downlink transmit power and the total uplink transmit

power at the same time ensuring the required QoS for all users. In the proposed

MOOP, we adapt the QoS constraints for the downlink users to accommodate CI

for both generic PSK modulated signals as well as for QAM signals. We also ex-

tended our work to a robust design to study the system with imperfect uplink and

downlink CSI.

In particular, this chapter extends the interference exploitation concept to the

FD transmission by employing multi-objective optimization, as most recently stud-

ied for FD in [115–117]. The authors in [115] investigated the power efficient re-
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source allocation for a MU-MIMO FD system. They proposed a MOOP to study

the total uplink and downlink transmit power minimization problems jointly. They

extended their work to a robust and secure FD systems model in the presence of

roaming users (eavesdroppers) in [116]. Similarly, in [117] the authors used a sim-

ilar model to investigate the resource allocation for FD simultaneous wireless in-

formation and power transfer (SWIPT) systems. Accordingly, in this chapter we

aim to further reduce the power consumption in FD MU-MIMO wireless commu-

nication systems by adopting the concept of CI in the literature to the downlink

channel for both PSK and QAM modulation. By exploiting the useful signal power

from interference, we can provide a truly power efficient resource allocation for a

FD MU-MIMO system. The interference exploitation concept is yet to be explored

in the realm of FD transmission, where FD offers the unique opportunity to trade-

off the harvested interference power for both uplink and downlink power savings

through the MOOP designs.

We note that with regards to existing works in [13,81,102,105–107,119–126]

on interference exploitation (IE), none of them consider FD transmission, and these

works therefore are inapplicable to the scenario of interest. In fact, this is the first

time in the area of FD transmission to consider the exploitation of interference,

where FD scenario brings unique challenges and opportunities to explore with re-

spect to previous works on IE:

• The existence of SI introduces new constraints to the optimization problems,

that change the power trade-offs involved.

• The trade-off between uplink and downlink power necessitates the study of

MOOP, which is done for the first time here for IE, where previous works

focused on single objective power minimization, SINR maximization etc.

• It is this joint optimization that brings, for the first time in the IE works,

the opportunity to utilize constructive interference for uplink power savings.

All existing works [13, 81, 102, 105–107, 119–126] exploit interference for

downlink power savings only.
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• The introduction of the SI and receive beamforming vectors in the optimiza-

tion problems bring particular challenges to the robust optimization problems

as will be shown later, which have resulted in new solutions with respect to

both [115–117] and to existing robust solutions for IE [13].

However, with respect to the MOOPs shown in [115, 116], they focus on tradi-

tional interference rejection. In contrast, our work provides a step change in the

MOOP considered, by introducing the concept of interference exploitation. As will

be shown later, there is a clear distinction and particular performance gains with

respect to the work in [115, 116].

Against the state-of-the-art, we summarize the contributions of this Chapter

below:

1. We first introduce the two FD system design objectives namely the total

downlink transmit power and the total uplink transmit power. Then we formu-

late a MOOP to minimize the two objectives jointly via the weighted Tcheby-

cheff method while exploiting the downlink interference for both uplink and

downlink power savings.

2. By use of an auxiliary variable, we transform the proposed MOOP into a

convex form, which can be efficiently solved using standard solvers.

3. We further derive robust MOOP for both the conventional and the proposed

interference exploitation approach for erroneous uplink, downlink and SI

channel CSI, where we consider the worst-case performance based on a de-

terministic model. We do this by recasting the MOOP into a virtual multicast

problem and transforming it into a semidefinite program using slack variables.

4.2 System Model
We consider a FD multiuser communication system as shown in Fig. 4.1. The

system consists of a FD radio BS with N antennas serving K HD downlink users

and J HD uplink users. Each user is equipped with a single antenna to reduce

hardware complexity. Let hi ∈ CN×1 be the channel vector between the FD radio
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Figure 4.1: System model with a FD radio BS with N antennas, K HD downlink users and
J HD uplink users.

BS and the i-th downlink user, and f j ∈CN×1 be the channel vector between the FD

radio BS and the j-th uplink user. We denote the transmit signal vector from the FD

radio BS to the i-th downlink user as

ti = widi, (4.1)

where wi ∈ CN×1 and di denote the beamforming vector and the unit data symbol

for the i-th downlink user. The received signal at the i-th downlink user is:

yi = hH
i ti︸︷︷︸

desired signal

+
K

∑
k 6=i

hH
i tk +ni︸ ︷︷ ︸

interference plus noise

, (4.2)

where ni ∼ C N
(
0,σ2

i
)

represents the additive white Gaussian noise AWGN at the

i-th downlink user. For each time slot the FD radio BS transmits K independent unit

data symbols simultaneously at the same frequency to the K downlink users. The

first term in (4.2) represents the desired signal while the second term is the multiuser

interference signal. For ease of exposition and since the uplink interference cannot

be exploited in the style of interference exploitation that we present in this chapter

due to the absence of the knowledge of the uplink data at the FD BS, we neglect

the uplink-to-downlink interference in our system model. In practice, this may be

due to the weak uplink-to-downlink user channels due to physical obstructions and

shadowing effects, or due to a dedicated overlaid interference avoidance scheme
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such as the one in [127–130]. Accordingly, the explicit interference terms can be

avoided for simplicity, or assumed incorporated in the downlink users’ noise term.

We further note, however, that including the above interference in (4.2), would not

change the proposed strategy in which we aim at exploiting the downlink interfer-

ence power.

The received signal from the J uplink users at the FD radio BS is:

yBS =
J

∑
j=1

√
P jf jx j + G

K

∑
k=1

tk︸ ︷︷ ︸
residual self-interference

+ z, (4.3)

where Pj and x j denotes the uplink transmit power and the data symbol from the j-th

uplink user respectively. The vector z ∼ C N (0,σ2
N) represents the additive white

Gaussian noise AWGN at the FD radio BS. The matrix G ∈ CN×N denotes the SI

channel. In the literature, different SI mitigation techniques have been proposed

[6, 7] to reduce the effect of self-interference. In order to isolate our proposed

scheme from the specific implementation of a SI mitigation technique, since the

SI cannot be cancelled perfectly in FD systems due to limited dynamic range at the

receiver even if the SI channel is known perfectly [6, 116], we consider the worst-

case performance based on deterministic model to model the residual-SI channel

after cancellation. In essence, we assume the residual-SI channel G to lie in the

neighbourhood of the estimated channel. Hence, the actual channel due to imperfect

SI channel estimate is given as

G = Ǧ+∆G, (4.4)

where Ǧ denotes the SI channel estimate known to the FD BS and ∆G represents

the SI channel uncertainties, which are assumed to be bounded such that ‖∆G‖2 ≤

ε2
G, for someεG ≥ 0. We assume the FD BS has no knowledge of ∆G only the error

bound εG.

Accordingly, the first term of (4.3) represents the desired signal from the j-

th uplink user and the second term represents the residual SI signal. Before we
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formulate the problem, we first define the SINR at the i-th downlink user and at the

FD radio BS respectively as

SINRDL
i =

| hH
i wi |

2

∑
K
k 6=i | hH

i wk |2 +σ2
i
, (4.5)

SINRUL
j =

Pj | fH
j u j |

2

∑
J
n6= j Pn | fH

n u j |2 +∑
K
k=1 | uH

j (Ǧ+∆G)wk |2 +σ2
N‖u j‖2 , (4.6)

where u j ∈N×1 is the receive beamforming vector for detecting the received sym-

bol from the j-th uplink user. In this chapter, to reduce complexity, we adopt ZF

beamforming at the FD BS for the detection of uplink signals. In this context, ZF

beamforming is adopted since it provides a good trade-off between complexity and

performance [131]. Hence, the receive beamforming vector for the j-th uplink user

is given as

u j = (r jF†)H , (4.7)

where r j = [0, . . . ,0,︸ ︷︷ ︸
j−1

1,0, . . . ,0︸ ︷︷ ︸
J− j

], F† = (FHF)−1FH ,† denotes the pseudo-inverse op-

eration and F = [f1, . . . , fJ].

4.3 Conventional Power Minimization Problem
In this section, we introduce the conventional power minimization (PM) problem

where all the interference are treated as undesired signals. We first introduce the

two system design objectives, then we formulate a MOOP that aims to minimize

the two objectives jointly.

In this section, we assume perfect channel state information (CSI) for the up-

link and downlink channels. We focus on slow fading channel scenario, where the

channels change at the beginning of each frame. Thus, to facilitate the channel real-
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ization in practice, handshaking is performed between the FD BS and all users. As

the channel changes slowly, pilot signals are usually embedded in the data packets,

which allows the FD BS to constantly update the CSI estimation of the transmis-

sion links of all users. Later in Section 4.5, we explicitly treat imperfect CSI for

designing a robust technique.

The two FD system design objectives are the total downlink transmit power

K

∑
i=1
‖wi‖2,∀i, (4.8)

and the total uplink transmit power

J

∑
j=1

Pj,∀ j. (4.9)

These two objectives are very important to both the user and the system operator. In

order to study these two objectives jointly, we formulate a MOOP. Multi-objective

optimization is employed when there is a need to study jointly the trade-off between

two desirable objectives via the concept of Pareto optimality. By using the weighted

Tchebycheff method [118], which can achieve the complete Pareto optimal set with

lower computational complexity, the MOOP that aims to minimize the total down-

link and uplink transmit power jointly for the considered FD system is typically

formulated as [115, 116],

P4.1 : min
wi,Pj

max
a=1,2

{λa (R∗a−Ra)}

s.t. A1 :
| hH

i wi |
2

∑
K
k 6=i | hH

i wk |2 +σ2
i
≥ Γ

DL
i ,∀i,

A2 : min
∆G

Pj | fH
j u j |

2

I j +σ2
N‖u j‖2 ≥ Γ

UL
j ,∀ j,

(4.10)

where, I j = ∑
J
n6= j Pn | fH

n u j |2 +∑
K
k=1 | uH

j (Ǧ+∆G)wk |2. We define ΓDL
i and ΓUL

j

as the minimum required SINRs for the i-th downlink user and the j-th uplink user,

respectively. We denote R1 =∑
K
i=1 ‖wi‖2 and R2 =∑

J
j=1 Pj as the two system design
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objectives, respectively, R∗1 and R∗2 are the optimal values of the two system design

objectives in the downlink and uplink, respectively. The variable λa ≥ 0, ∑λa = 1,

specifies the priority given to the a-th objective i.e. for a given λ1 = 0.8 means 80%

priority is given to R1 and 20% priority to R2, respectively. By varying λa we can

obtain the complete Pareto optimal set. Problem P4.1 is a non-convex problem

due to the SINR constraints A1 and A2, and it is commonly solved via semidefinite

relaxation as in [115, 116].

4.4 Proposed MOOP based on Constructive Interfer-

ence

In this section, we study the PM problem based on constructive interference. With

prior knowledge of the CSI and users’ data symbols for the downlink users, the

instantaneous interference can be exploited rather than suppressed [13]. Motivated

by this idea, here, we apply this concept to the PM problem in Section 4.3 for both

PSK and QAM modulated symbols. We note that constructive interference is only

applied to the downlink users and not the uplink users following that only the prior

knowledge of the CSI and users’ data symbols for the downlink users are available at

the BS. Nevertheless, we show in the following that power savings can be obtained

for both uplink and downlink transmission, by means of the MOOP design.

4.4.1 Constructive Interference for PSK modulation

To illustrate this concept, we provide a geometric illustration of the constructive

interference regions for a QPSK constellation in Fig. 4.2. First, we can define the

total downlink transmit signal vector as

K

∑
k=1

wkdk =
K

∑
k=1

wke j(φk−φi)di, (4.11)
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Figure 4.2: Constructive interference region for a QPSK constellation point

where di = deφi is the desired symbol for the i-th downlink user. Therefore, the

received signal (4.2) without noise at the i-th downlink user can be defined as

ỹi = hH
i

K

∑
k=1

wkdk, (4.12)

= hH
i

K

∑
k=1

wke j(φk−φi)di, (4.13)

Accordingly, since the interference contributes constructively to the received

signal, it has been shown in [77] that the downlink SNR at the i-th downlink user

(4.5) can be rewritten as

SNRDL
i =

∣∣hH
i ∑

K
k=1 wkdk

∣∣2
σ2

i
. (4.14)

Without loss of generality, by taking user 1 as reference the instantaneous

downlink transmit power for a unit symbol is

Ptotal =

∥∥∥∥∥ K

∑
k=1

wke j(φk−φ1)

∥∥∥∥∥
2

. (4.15)

As detailed in [13], the shaded area in Fig. 4.2 is the region of constructive
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interference. If the received signal ỹi falls within this region, then interference has

been exploited constructively. The angle θ = ± π

M determines the maximum angle

shift of the constructive interference region for a modulation order M, aI and aR are

the imaginary and real parts of the received signal ỹi without the noise, respectively.

The detection threshold is determined by γ =
√

ΓDL
i σi.

Therefore, by applying these definitions and basic geometry from Fig. 4.2 it

can be seen that for the received signal to fall in the constructive region of the con-

stellation we need to have aI ≤ (aR−γ) tanθ . Accordingly, we can define the down-

link SINR constraint that guarantees constructive interference at the i-th downlink

user by∣∣∣∣∣Im
(

hH
i

K

∑
k=1

wke j(φk−φi)

)∣∣∣∣∣≤
(

Re

(
hH

i

K

∑
k=1

wke j(φk−φi)

)
−
√

ΓDL
i σ2

i

)
tanθ .

(4.16)

Based on the analysis above, we can modify the SINR constraints for the down-

link users in the conventional MOOP to accommodate for CI. Thus, the CI-based

MOOP for MPSK modulated symbols is expressed as

P4.2 : min
wi,Pj,t

t

s.t. B1 :

∣∣∣∣∣Im
(

hH
i

K

∑
k=1

wke j(φk−φi)

)∣∣∣∣∣
≤

(
Re

(
hH

i

K

∑
k=1

wke j(φk−φi)

)
−
√

ΓDL
i σ2

i

)
tanθ ,∀i,

B2 : min
∆G

Pj

∣∣∣fH
j u j

∣∣∣2
IPSK

j +
∣∣∣∑K

k=1 uH
j (Ǧ+∆G)wke j(φk−φ1)

∣∣∣2 ≥ Γ
UL
j ,∀ j,

B3 : λa (R∗a−Ra)≤ t,∀a ∈ {1,2} ,

(4.17)

where, t is an auxiliary variable and IPSK
j = ∑

J
n6= j Pn

∣∣fH
n u j
∣∣2 +σ2

N‖u j‖2.

Here R1 =
∥∥∥∑

K
k=1 wke j(φk−φ1)

∥∥∥2
and R2 = ∑

J
j=1 Pj. Unlike its conventional

counterpart, constraint A1, it can be seen that constraint B1 is convex. However,

constraint B2 is not convex due to channel uncertainties in the SI term. To transform
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B2 into a convex constraint, we rewrite B2 as the following two constraints by

introducing a slack variable SSI
j > 0,∀ j, respectively,

Pj
∣∣fH

j u j
∣∣2−Γ

UL
j

(
J

∑
n 6= j

Pn
∣∣fH

n u j
∣∣2 +SSI

j +σ
2
N‖u j‖2

)
≥ 0,∀ j, (4.18)

∣∣∣∣∣ K

∑
k=1

uH
j (Ǧ+∆G)wke j(φk−φ1)

∣∣∣∣∣
2

−SSI
j ≤ 0,∀‖∆G‖2 ≤ ε

2
G,∀ j. (4.19)

Notice that (4.19) can be guaranteed by the following modified constraint

max
‖∆G‖2≤ε2

G

∣∣∣∣∣ K

∑
k=1

uH
j (Ǧ+∆G)wke j(φk−φ1)

∣∣∣∣∣
2

−SSI
j ≤ 0,∀ j. (4.20)

By using the fact that ‖x+y‖2 ≤ (‖x‖+‖y‖)2, (4.20) can always be guaranteed by

the following constraint

max
‖∆G‖2≤ε2

G

(∣∣∣∣∣ K

∑
k=1

uH
j Ǧwke j(φk−φ1)

∣∣∣∣∣+
∣∣∣∣∣ K

∑
k=1

uH
j ∆Gwke j(φk−φ1)

∣∣∣∣∣
)2

−SSI
j ≤ 0,∀ j,

(4.21)

whose worst-case formulation is given by

(∣∣∣∣∣ K

∑
k=1

uH
j Ǧwke j(φk−φ1)

∣∣∣∣∣+ εG

∣∣∣∣∣ K

∑
k=1

uH
j wke j(φk−φ1)

∣∣∣∣∣
)2

−SSI
j ≤ 0,∀ j. (4.22)
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Therefore, the transformed problem P4.2 is given by

P̃4.2 : min
wi,Pj,t

t

s.t. B1 :

∣∣∣∣∣Im
(

hH
i

K

∑
k=1

wke j(φk−φi)

)∣∣∣∣∣
≤

(
Re

(
hH

i

K

∑
k=1

wke j(φk−φi)

)
−
√

ΓDL
i σ2

i

)
tanθ ,∀i,

B̃2a : Pj
∣∣fH

j u j
∣∣2−Γ

UL
j

(
J

∑
n6= j

Pn
∣∣fH

n u j
∣∣2 +SSI

j +σ
2
N‖u j‖2

)
≥ 0,∀ j,

B̃2b :

(∣∣∣∣∣ K

∑
k=1

uH
j Ǧwke j(φk−φ1)

∣∣∣∣∣+ εG

∣∣∣∣∣ K

∑
k=1

uH
j wke j(φk−φ1)

∣∣∣∣∣
)2

≤ SSI
j ,∀ j,

B3 : λa (R∗a−Ra)≤ t,∀a ∈ {1,2} .

(4.23)

The problem P̃4.2 is now jointly convex with respect to the optimization variables,

since constraint B1 is a standard second-order cone constraint, B̃2a is a linear con-

straint and B̃2b is a quadratic constraint. Hence, P̃4.2 can be efficiently solved

using standard solvers like CVX [132].

Now we highlight the main advantage of the proposed optimization problem

over the conventional optimization problem in Section 4.3. In the optimization

problem in Section 4.3, the constraints suppress the interference each user expe-

rience, which is equivalent to constraining the interference such that the signal

received is just within the nominal constellation point. While in the case of pro-

posed optimization problem P̃4.2, constraint B1 relaxes the optimization and al-

lows for a larger detection region as shown in Fig. 4.2. Hence, this translates to a

larger feasible solution set thereby leading to reduction in the total transmit power

as compared to the conventional optimization problem in Section 4.3, which will be

demonstrated later through simulation results.



4.4. Proposed MOOP based on Constructive Interference 72

Figure 4.3: Schematic representation of 16QAM constellation points

4.4.2 Constructive Interference for QAM modulation

To illustrate the concept of constructive interference for QAM modulation we pro-

vide a schematic representation for 16QAM constellation points in Fig. 4.3. Based

on [101], to guarantee constructive interference for the constellation points, we

rewrite the SINR constraints for the downlink users to exploit the specific detection

regions for each group of constellation points separately as detailed below. First, we

redefine the received signal without noise at the i-th downlink user as in (4.12) and

the instantaneous downlink transmit power (4.15) in terms of amplitude not phase

as

Ptotal =

∥∥∥∥∥ K

∑
k=1

wkdk

∥∥∥∥∥
2

. (4.24)

From Fig. 4.3, to ensure constructive interference is achieved and the constellation

points are received in the correct detection region for the downlink users, the fol-

lowing constraints are adopted. Note that the dotted lines in Fig. 4.3 represent the

decision boundaries.

• For the group of constellation points in the box labelled “1” in Fig. 4.3, since

they are all surrounded by the decision boundaries, the constraints should

guarantee that the received signals achieve the exact constellation point so as
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not to exceed the decision boundaries. The constraints are

C1 : Re(ỹi) =
√

ΓDL
i σiRe(di),

C2 : Im(ỹi) =
√

ΓDL
i σiIm(di).

• For the group of constellation points labelled “2” in Fig. 4.3, the constraints

should guarantee that the received signals fall in the detection region away

from the decision boundaries, which is the real axis. The constraints are

C1 : Re(ỹi) =
√

ΓDL
i σiRe(di),

C2 : Im(ỹi)R
√

ΓDL
i σiIm(di).

• For the group of constellation points labelled “3” in Fig. 4.3, the constraints

should guarantee that the received signals fall in the detection region away

from the decision boundaries, which is the imaginary axis. The constraints

are

C1 : Re(ỹi)R
√

ΓDL
i σiRe(di),

C2 : Im(ỹi) =
√

ΓDL
i σiIm(di).

• For the group of constellation points labelled “4” in Fig. 4.3, the constraints

should guarantee that the received signals fall in the detection region away

from the decision boundaries. Here, the constellation points are not sur-

rounded by the decision boundaries and therefore have a larger detection re-

gion that extend infinitely. The constraints are

C1 : Re(ỹi)R
√

ΓDL
i σiRe(di),

C2 : Im(ỹi)R
√

ΓDL
i σiIm(di).

By adopting the required downlink SINR constraints C1 and C2 for the cor-
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responding group constellation points, the conventional MOOP can be modified to

accommodate for CI. Therefore, the CI-based MOOP for 16QAM modulation can

be expressed as

P4.3 : min
wi,Pj,t

t

s.t. Constraints C1 and C2,∀i,

C3a : Pj
∣∣fH

j u j
∣∣2−Γ

UL
j

(
J

∑
n 6= j

Pn
∣∣fH

n u j
∣∣2 +SSI

j +σ
2
N‖u j‖2

)
≥ 0,∀ j,

C3b :

(∣∣∣∣∣ K

∑
k=1

uH
j Ǧwkdk

∣∣∣∣∣+ εG

∣∣∣∣∣ K

∑
k=1

uH
j wkdk

∣∣∣∣∣
)2

≤ SSI
j ,∀ j,

C4 : λa (R∗a−Ra)≤ t,∀a ∈ {1,2} .

(4.25)

where, R1 =
∥∥∑

K
k=1 wkdk

∥∥2 and R2 = ∑
J
j=1 Pj.

Again, it can be observed that unlike their conventional counterparts, P4.3

above is jointly convex with respect to the optimization variables and can be opti-

mally solved using standard convex solvers like CVX [132].

4.5 Proposed Multi-objective Optimization with Im-

perfect CSI

4.5.1 Conventional Robust MOOP

In this section we study the robustness of the system when the downlink and the

uplink CSI are not perfectly known. There are two approaches frequently used to

model or characterize imperfect CSI: the probabilistic approach and the determinis-

tic approach. In probabilistic approach, the error in the CSI knowledge is assumed

to have a certain statistical characteristic like the mean or covariance of the chan-

nel. In deterministic approach, which is adopted in this Section, the error in the

CSI is assumed to belong to a given uncertainty set. The size of the set determines

the amount of uncertainty on the channel and the system optimizes the worst-case

performance which achieves a guaranteed performance level for any channel real-

ization in the set. Therefore, for convenience and to avoid any statistical assump-
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tions on the channel, we adopt the deterministic approach which corresponds well

to quantization errors and is also suitable for handling slow-fading channels [89].

Thus, for each user, their actual channel is modeled as

hi = ȟi +∆hi,∀i, (4.26)

f j = f̌ j +∆f j,∀ j, (4.27)

where ȟi and f̌ j denote the downlink and the uplink CSI estimates known to the

FD BS, respectively. ∆hi,∀i and ∆f j,∀ j represent the downlink and the uplink CSI

uncertainties, respectively, which are assumed to be bounded such that

‖∆hi‖2 ≤ ε
2
h,i, for someεh,i ≥ 0, (4.28)∥∥∆f j

∥∥2 ≤ ε
2
f , j, for someε f , j ≥ 0. (4.29)

We assume that the FD BS has no knowledge of 9 except for their error bounds,

hence, we take the worst-case approach for our problem design. Thus, the MOOP

formulation of P4.1 with imperfect CSI is

P4.4 : min
wi,Pj,t

t

s.t. D1 : min
∆hi

∣∣∣(ȟi +∆hi
)H wi

∣∣∣2
∑

K
k 6=i

∣∣∣(ȟi +∆hi
)H wk

∣∣∣2 +σ2
i

≥ Γ
DL
i ,∀i,

D2 : min
∆f j,∆G

Pj

∣∣∣(f̌ j +∆f j
)H u j

∣∣∣2
∑

J
n6= j Pn

∣∣∣(f̌n +∆fn
)H u j

∣∣∣2 +C j

≥ Γ
UL
j ,∀ j,

D3 : λa (R∗a−Ra)≤ t,∀a ∈ {1,2} .

(4.30)

where C j = ∑
K
k=1

∣∣∣uH
j
(
Ǧ+∆G

)
wk

∣∣∣2 +σ2
N‖u j‖2

In the downlink and uplink SINR constraints, there are infinitely many in-

equalities which make the worst-case design particularly challenging. To make

P4.4 more tractable, we formulate the problem as a semidefinite program (SDP)
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then transform the constraints into linear matrix inequalities (LMI), which can be

efficiently solved by existing solvers like CVX [132]. The SDP transformation of

problem P4.4 is given by

min
Wi,Pj,t

t

s.t. D̃1 : min
∆hi

(
ȟi +∆hi

)H Wi
(
ȟi +∆hi

)
∑

K
k 6=i
(
(ȟi +∆hi)HWk(ȟi +∆hi)

)
+σ2

i
≥ Γ

DL
i ,∀i,

D̃2 : min
∆f j,∆G

Pj
(
f̌ j +∆f j

)H U j
(
f̌ j +∆f j

)
∑

J
n6= j Pn

(
f̌n +∆fn

)H U j
(
f̌n +∆fn

)
+C̃ j

≥ Γ
UL
j ,∀ j,

D̃3 : λa (R∗a−Ra)≤ t,∀a ∈ {1,2} .

D̃4 : Wi � 0,∀i.

(4.31)

where, C̃ j = Tr
{(

Ǧ+∆G
)

∑
K
k=1 Wk

(
Ǧ+∆G

)H U j

}
+σ2

NTr
{

U j
}

and we define

Wi = wiwH
i and U j = u juH

j . Next, we can rearrange constraint D̃1 into

min
∆hi

(
ȟi +∆hi

)H Qi
(
ȟi +∆hi

)
−Γ

DL
i σ

2
i ≥ 0,∀i. (4.32)

where, we introduce

Qi , Wi−Γ
DL
i

K

∑
k 6=i

Wk,∀i

and then for constraint D̃2, let’s define two vectors f̃ and ∆̃f as

f̃ =


f̌ j
...

f̌J

 ∈ CNJ×1, ∆̃f =


∆f j

...

∆fJ

 ∈ CNJ×1. (4.33)

Hence, we can define any f̌ j = B j̃f and ∆f j = B j∆̃f, for j = 1, . . . ,J, with B j ∈

RN×NJ defined as B j =
[
B j,1, . . . ,B j,J

]
, where B j, j = IN and B j,n = 0N , for n =

1, . . . ,J,n 6= j. We have IN and 0N to be an N×N identity matrix and zero matrix,
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respectively. Now constraint D̃2 can be rewritten as

min
∆f j,∆G

Pj

(
(B j̃f+B j∆̃f)HU j(B j̃f+B j∆̃f)

)
∑

J
n6= j Pn

(
(Bñf+Bn∆̃f)HU j(Bñf+Bn∆̃f)

)
+C̃ j

≥ Γ
UL
j ,∀ j, (4.34)

and can be simplified to give

min
∆f j,∆G

(̃
f+ ∆̃f

)H
Z j

(̃
f+ ∆̃f

)
Tr
{(

Ǧ+∆G
)

∑
K
k=1 Wk

(
Ǧ+∆G

)H U j

}
+σ2

NTr
{

U j
} ≥ Γ

UL
j ,∀ j, (4.35)

where we introduce

Z j , PjBT
j U jB j−Γ

UL
j

J

∑
n6= j

PnBT
n U jBn,∀ j.

We further simplify (4.35) by introducing slack variables s j > 0,∀ j [84], such that

(4.35) can be written as the following two constraints

min
∆f j

(̃
f+ ∆̃f

)H
Z j

(̃
f+ ∆̃f

)
≥ s jΓ

UL
j ,∀ j, (4.36)

max
∆G

Tr

{(
Ǧ+∆G

) K

∑
k=1

Wk
(
Ǧ+∆G

)H U j

}
+σ

2
NTr

{
U j
}
≤ s j,∀ j. (4.37)

Next, we review the definitions of the S-procedure for completeness.

Lemma 1. (S-procedure [84]): Let gl(x), l = 1,2, be defined as

gl(x) = xHAlx+2Re
{

bH
l x
}
+ cl,

where Al ∈Cn×n,bl ∈Cn and cl ∈R. Then, the implication of g1(x)≥ 0⇒ g2(x)≥

0 holds if and only if there exists a λ ≥ 0 such that

λ

A1 b1

bH
1 c1

−
A2 b2

bH
2 c2

� 0,

provided there exists a point x̂ with g1(x̂)> 0.
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Following Lemma 1 and using the fact that Tr{ABCD}= vec
(
AH)H (DH⊗B

)
vec(C),

constraints (4.32), (4.36) and (4.37) can be expanded as

∆hH
i Qi∆hi +2Re

{
ȟH

i Qi∆hi
}
+ ȟH

i Qiȟi−Γ
DL
i σ

2
i ≥ 0,∀i, (4.38a)

∆hH
i I∆hi− ε

2
h,i ≤ 0,∀i, (4.38b)

∆̃f
H

Z j∆̃f+2Re
{̃

fHZ j∆̃f
}
+ f̃HZ j̃f− s jΓ

UL
j ≥ 0,∀ j, (4.39a)

∆̃f
H

I∆̃f− ε
2
f ≤ 0, (4.39b)

∆gH

(
U j⊗

K

∑
k=1

Wk

)
∆g+2Re

{
ǧH

(
U j⊗

K

∑
k=1

Wk

)
∆g

}

+ ǧH

(
U j⊗

K

∑
k=1

Wk

)
ǧ+σ

2
NTr

{
U j
}
− s j ≤ 0,∀ j, (4.40a)

∆gHI∆g− ε
2
G ≤ 0. (4.40b)

We define ǧ = vec
(
ǦH) and ∆g = vec

(
∆GH) where, vec(·) stacks the columns of

a matrix into a vector and ⊗ stands for Kronecker product.

Hence, according to Lemma 1, (4.38a) and (4.38b) hold if and only if there

exist a δi ≥ 0 such thatδiI+Qi Qiȟi

ȟH
i Qi ȟH

i Qiȟi−ΓDL
i σ2

i −δiε
2
h,i

� 0,∀i.

Similar procedure can be applied to constraints (4.39) and (4.40), respectively.

Thus, the conventional robust optimization problem P4.4 can be reformulated as
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shown in (4.41).

P4.5 : min
Wi,Pj,t

t

s.t.

δiI+Qi Qiȟi

ȟH
i Qi ȟH

i Qiȟi−ΓDL
i σ2

i −δiε
2
h,i

� 0,∀i,

µ jI+Z j Z j̃f

f̃HZ j f̃HZ j̃f− s jΓ
UL
j −µ jε

2
f

� 0,∀ j,

ρI−
(
U j⊗∑

K
k=1 Wk

)
−
(
U j⊗∑

K
k=1 Wk

)
ǧ

−ǧH (U j⊗∑
K
k=1 Wk

)
s j− ǧH (U j⊗∑

K
k=1 Wk

)
ǧ−σ2

NTr
{

U j
}
−ρε2

G

� 0,∀ j,

λa (R∗a−Ra)≤ t,∀a ∈ {1,2} ,

Wi � 0,δi ≥ 0,µ j ≥ 0,ρ ≥ 0,s j > 0,∀i, j.

(4.41)

The problem P4.5 is convex, and can be efficiently solved using CVX [132].

The resulting optimal values obtained from P4.5 provide a lower bound for the

conventional power minimization problem.

Note that the problem P4.5 is a relaxed form of P4. While it is difficult

to prove the rank-one solution of problem P4.5, we have observed over 1000 it-

erations, problem P4.5 always return rank-one solution (Wi,∀i). Although, one

could derive a rank-one solution for FD beamforming problem in a similar fashion

as in [133]. Still, in the unlikely case of a non rank-one solution the optimal so-

lutions can always be obtained by randomization technique as in [134], such that

Wi = wiwH
i ,∀i.

4.5.2 Constructive Interference MOOP

To study the robustness of the proposed system based on constructive interference,

for notational simplicity, we formulate P̃4.2 as a virtual multicast problem. The

motivation for recasting P̃4.2 into a virtual multicast problem is for the ease of

transforming the robust CI based MOOP into convex form. As the constraint B1 in

the problem P̃4.2 involves dealing with real and imaginary parts of the received
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signal (ỹi) separately, analysis will be easier with real valued numbers, hence, the

need for virtual multicast formulation. To facilitate this, we simply incorporate

each user’s channel with its respective data symbol i.e. h̃i = hie j(φ1−φi) and let

w = ∑
K
k=1 wke j(φk−φ1). Following this the multicast formulation of problem P̃4.2

can be written as

P4.6 : min
w,Pj,t

t

s.t.
∣∣∣ℑ(h̃H

i w
)∣∣∣≤ (ℜ

(
h̃H

i w
)
−
√

ΓDL
i σ2

i

)
tanθ ,∀i,

Pj

∣∣∣fH
j u j

∣∣∣2
∑

J
n6= j Pn

∣∣fH
n u j
∣∣2 + ∣∣∣uH

j Gw
∣∣∣2 +σ2

N‖u j‖2
≥ Γ

UL
j ,∀ j,

λa (R∗a−Ra)≤ t,∀a ∈ {1,2} .

(4.42)

Based on the multicast formulation P4.6, for the worst-case design we model the

imperfect CSI as

h̃i = ȟi +∆h̃i,∀i, (4.43)

where ȟi denotes the downlink CSI estimate known to the FD BS and ∆h̃i is the

downlink CSI uncertainty which is bounded such that
∥∥∥∆h̃i

∥∥∥2
≤ ε2

h,i. Similarly, we

model the uplink CSI as in Section 4.5.1. The robust formulation of problem P4.6

is

P4.7 : min
w,Pj,t

t

s.t. max
∆hi

∣∣∣ℑ((ȟi +∆h̃i)
Hw
)∣∣∣≤ (ℜ

(
(ȟi +∆h̃i)

Hw
)
−
√

ΓDL
i σ2

i

)
tanθ ,∀i,

min
∆f j,∆G

Pj

∣∣∣(f̌ j +∆f j
)H u j

∣∣∣2
∑

J
n 6= j Pn

∣∣∣(f̌n +∆fn
)H u j

∣∣∣2 + I j

≥ Γ
UL
j ,∀ j,

λa (R∗a−Ra)≤ t,∀a ∈ {1,2} .

(4.44)
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where I j =
∣∣∣uH

j
(
Ǧ+∆G

)
w
∣∣∣2 +σ2

N‖u j‖2.

First, let’s consider the downlink SINR constraint. For convenience we sepa-

rate the real and imaginary part of the complex notations and represent them as real

valued numbers. Let

w ,

ℜ(w)

ℑ(w)

, (4.45)

ȟi ,
[
ℑ(ȟi)

H ℜ(ȟi)
H
]
, (4.46)

∆h̃i ,
[
ℑ(∆h̃i)

H ℜ(∆h̃i)
H
]
, (4.47)

Π ,

0N −IN

IN 0N

. (4.48)

where, 0N and IN denote N x N all-zero matrix and identity matrix, respectively.

With the new notations we can express the real and imaginary terms of down-

link SINR constraint in P4.7 as:

ℑ(h̃H
i w) = (ȟi +∆h̃i)w, ℜ(h̃H

i w) = (ȟi +∆h̃i)Πw. (4.49)

From the definition of the error bound, we have
∥∥∥∆h̃i

∥∥∥2
≤ ε2

h,i, the downlink SINR

constraint can be guaranteed by the following constraint

max
‖∆h̃i‖2≤ε2

h,i

∣∣∣(ȟi +∆h̃i

)
w
∣∣∣−((ȟi +∆h̃i

)
Πw−

√
ΓDL

i σ2
i

)
tanθ ≤ 0,∀i. (4.50)

Hence, by considering the absolute value term, (4.50) is equivalent to the following

two constraints

max
‖∆h̃i‖2≤ε2

h,i

ȟiw+∆h̃iw−
(

ȟi +∆h̃i

)
Πw tanθ +

√
ΓDL

i σ2
i tanθ ≤ 0,∀i, (4.51)

max
‖∆h̃i‖2≤ε2

h,i

− ȟiw−∆h̃iw−
(

ȟi +∆h̃i

)
Πw tanθ +

√
ΓDL

i σ2
i tanθ ≤ 0,∀i, (4.52)
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whose robust formulations are given by

ȟiw− ȟiΠw tanθ + εh,i ‖w−Πw tanθ‖+
√

ΓDL
i σ2

i tanθ ≤ 0,∀i, (4.53)

− ȟiw− ȟiΠw tanθ + εh,i ‖−w−Πw tanθ‖+
√

ΓDL
i σ2

i tanθ ≤ 0,∀i. (4.54)

Next, we consider the uplink SINR constraint in problem P4.7. Following equa-

tions (4.33) and (4.34) in Section 4.5.1, the uplink SINR constraint can be rewritten

as

min
∆f j,∆G

(̃
f+ ∆̃f

)H
Z j

(̃
f+ ∆̃f

)
∣∣∣uH

j Ǧw+uH
j ∆Gw

∣∣∣2 +σ2
N‖u j‖2

≥ Γ
UL
j ,∀ j. (4.55)

We note that (4.55) can be simplified to the following constraints

min
∆f j

(̃
f+ ∆̃f

)H
Z j

(̃
f+ ∆̃f

)
−Γ

UL
j

(
c j +σ

2
N‖u j‖2

)
≥ 0,∀ j, (4.56)

max
∆G

∣∣uH
j Ǧw+uH

j ∆Gw
∣∣2− c j ≤ 0,∀ j, (4.57)

where c j > 0,∀ j, are introduced as slack variables [84].

Similar procedure as in Section 4.5.1 can be applied to (4.56). By exploiting

the S-procedure in Lemma 1, (4.56) can be expanded and converted into a LMI as

shown belowµ jIN +Z j Z j̃f

f̃HZ j f̃HZ j̃f−ΓUL
j c j−ΓUL

j σ2
NTr(U j)−µ jε

2
f

� 0,∀ j. (4.58)

We note that by using the fact that ‖x+y‖2 ≤ (‖x‖+‖y‖)2, (4.57) can always be

guaranteed by the following constraint

max
‖∆G‖2≤ε2

G

(∣∣uH
j Ǧw

∣∣+ ∣∣uH
j ∆Gw

∣∣)2− c j ≤ 0,∀ j, (4.59)

whose robust formulation is given by

(∣∣uH
j Ǧw

∣∣+ εG
∣∣uH

j w
∣∣)2− c j ≤ 0,∀ j. (4.60)
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Futhermore, we define Y j ,

Re(uH
j Ǧ) −Im(uH

j Ǧ)

Im(uH
j Ǧ) Re(uH

j Ǧ)

 and U j ,

Re(uH
j ) −Im(uH

j )

Im(uH
j ) Re(uH

j )

,

thus, the constraint (4.60) can be written in terms of real valued numbers as

(∣∣Y jw
∣∣+ εG

∣∣U jw
∣∣)2 ≤ c j,∀ j. (4.61)

Therefore, the robust optimization problem based on CI is

P4.8 : min
w,Pj,t

t

s.t. h̃iw− h̃iΠw tanθ + εh,i ‖w−Πw tanθ‖ ≤
√

ΓDL
i σ2

i tanθ ,∀i

− h̃iw− h̃iΠw tanθ + εh,i ‖−w−Πw tanθ‖ ≤
√

ΓDL
i σ2

i tanθ ,∀i,µ jIN +Z j Z j̃f

f̃HZ j f̃HZ j̃f−ΓUL
j c j−ΓUL

j σ2
NTr(U j)−µ jε

2
f

� 0,∀ j,

(∣∣Y jw
∣∣+ εG

∣∣U jw
∣∣)2 ≤ c j,∀ j,

λa (R∗a−Ra)≤ t,∀a ∈ {1,2} ,

µ j ≥ 0, c j > 0,∀ j.

(4.62)

Note that problem P4.8 is jointly convex with respect to the optimization variables,

thus can be optimally solved using standard convex solvers like CVX [132]. After

we obtain the optimal w∗ and P∗j , the complex solution w∗ can be obtained from the

relation in (4.45).

4.6 Computational Complexity Analysis
In this Section, we mathematically characterize the computational complexity of

the conventional and proposed schemes based on MOOP formulations.

4.6.1 Transmit Complexity

We note that the convex MOOP formulations P4.1,P̃4.2,P4.5 and P4.8 involve

only LMI and second-order cone (SOC) constraints. As such, the problems can be

sovled by a standard interior-point method (IPM) [135]. Therefore we can use the
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Table 4.1: Complexity Analysis of the MOOP Formulations

MOOP Complexity Order
P4.1(SDP) O((KN2 + J)[K(2+N3)+2J+(KN2 + J)(K(2+N2)

+2J)+KN2 +(KN2 + J)2])

P̃4.2 O((KN + J)[3J(1+(KN + J))+2KN2 +(KN + J)2])

P4.5 O((KN2 + J)[K(N +1)2 + J(NJ+1)3 + J(N2 +1)3

+J+KN3 +(KN2 + J)(K(N +1)2 + J(NJ+1)2

+J(N2 +1)2 + J+KN2)+(KN2 + J)(KN2)
+(KN2 + J)2])

P4.8 O((2N + J)[J(NJ+1)3 + J(N +1)3 + J
+(2N + J)(J(NJ+1)2 + J+12N2)+(2N + J)2)])

worst-case runtime to analyse the complexity of the conventional and the proposed

CI schemes.

Following [136], the complexity of a generic IPM for solving problems like

P4.1,P̃4.2,P4.5 and P4.8 involve the computation of a per-optimization cost.

In each iteration, the computation cost is dominated by (i) the formation of the

coefficient matrix of the linear system, and (ii) the factorization of the coefficient

matrix. The cost of formation of the coefficient (C f orm) matrix is on the order of

C f orm = n
A

∑
a=1

k3
a +n2

A

∑
a=1

k2
a︸ ︷︷ ︸

due to the LMI

+ n
B

∑
a=A+1

k2
a︸ ︷︷ ︸

due to the SOC

,

while the cost of factorizing (C f act) is on the order of C f act = n3 (n = number of

decision variables). Hence, the total computation cost per optimization is on the

order of C f orm +C f act [136]. We assume for the sake of simplicity that the decision

variables in P4.1,P̃4.2,P4.5 and P4.8 are real-valued.

Hence, using these concepts, we now analyse the comutational complexity of

P4.1,P̃4.2,P4.5 and P4.8. First we consider SDP formulation of P4.1, which

has K LMI (trace) constraints of size 1, three J LMI (trace) constraints of size 1,

K SOC constraints of size N and K LMI (trace) constraints of size N. Therefore,
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the complexity of the SDP formulation of P4.1 is on the order shown in the first

row of Table I. Similarly, we can determine the complexity order of the formula-

tions P̃4.2,P4.5 and P4.8 as shown in Table I, respectively. From Table I, we

can show that the proposed MOOP formulation P̃4.2 has lower complexity than

the SDP formulation of P4.1 since it has lower order of variables to compute i.e

lower cost of factorization (C f act). Also, we can straightforwardly show that for

the robust MOOP, the proposed formulation P4.8 has a lower complexity than

the conventional formulation P4.5 since P4.5 involves a more complicated set of

constraints (5 LMI constraints and 1 SOC constraint). This is also consistent with

our simulation results in the following Section.

At this point, we emphasize that as the MOOP formulations in P4.1 and P4.5

are data independent, they only need to be applied once during each channel coher-

ence time. While as the proposed MOOP formulations in P̃4.2 and P4.8 are data

dependent, they need to be run on a symbol by symbol basis. In the following sec-

tion we compare the resulting transmit complexity of conventional and proposed

MOOP approaches for both slow and fast fading scenarios, and show that the aver-

age execution time per downlink frames is comparable for both techniques.

4.6.2 Receiver Complexity

At the receiver side, for the case of the conventional beamforming, the downlink

users in our FD system scenario need to equalize the composite channel hH
i wi

∗

to recover their data symbols, where {wi
∗}K

i=1 is the optimal solution of P4.1.

For the case of the proposed CI scheme, since the received symbols already lie

in the constructive region of the constellation as shown in Fig. 4.2 and Fig. 4.3,

equalization is not required by the downlink users. This automatically translates

to reduced complexity at the receiver. Accordingly, this implies that CSI is not

required for detection at the downlink users for the proposed CI scheme. Thus,

depending on the signaling and pilots already involved for the SINR estimation,

the proposed CI scheme may lead to further savings in training time and overhead.

Most importantly, this makes the proposed scheme resistant to any quantization

errors from the CSI acquisition at the receiver.
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Figure 4.4: Weighted optimization plot for the proposed scheme versus the conventional
scheme N = 9, K = 6, J = 3.

4.7 Simulation Results
In this section, we investigate the performance of our proposed system through sim-

ulations. We model all channels as independent and identically distributed Rayleigh

fading for both the perfect and imperfect CSI cases. Systems with QPSK and

16QAM modulation are considered while it is clear that the benefit extends to any

lower or higher order modulation. For comparison in every scenario, we compare

the proposed technique, constructive interference (CI) with the conventional case

i.e. when all interference is treated as harmful signal [115, 116]. We use N×K× J

to denote an FD radio BS with N antennas, K downlink users and J uplink users,

respectively.

4.7.1 Uplink-Downlink Power Weighted Optimization

In Fig. 4.4, we investigate the weighted optimization between the downlink and

uplink total transmit power for the case of N = 9,K = 6,J = 3 antennas. The plot

is obtained by solving problem P4.1,P̃4.2 and P4.3 for the conventional and CI

cases, respectively, for 0 ≤ λa ≤ 1,a ∈ (1,2) with a step size of 0.1. Note that λa

determines the priority of the a-th objective. We assume the same required SINR for

all downlink users to be ΓDL
i = 15dB, ΓUL

i = 15dB for all uplink users, where εG =
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0.1. It can be seen from the plot that there is a trade-off between the two objectives

(uplink and downlink) by varying the priority weight λa. We note that, although,

the downlink transmit power is not directly dependent on the uplink transmit power,

this trade-off is as a result of the link between the downlink and uplink transmit

power through the SI term. In addition, we would like to emphasize the usefulness

of the uplink and downlink SINR constraints in the optimizations to ensure the

required QoS is achieved even in critical scenarios such as when the uplink power

is low or the SI is high. Thus, for comparison, making reference to the point when

λa = 0.5 as indicated by the dotted lines, we can observe that the CI scheme has

power savings of 4dB and 2.8dB for uplink and downlink users, respectively, for

QPSK modulation. Accordingly, for 16QAM modulation, we can observe power

savings of 3.5dB and 2.5dB for uplink and downlink users, respectively. Note that

the proposed schemes are only outperformed by the conventional beamforming for

the case λ1 = 0,λ2 = 1, where all priority is given to the uplink PM problem, where

interference exploitation does not apply. The figure also depicts the performance of

a HD system as a reference. Here the total uplink and downlink data rate of HD is

set equal to the one for FD, which requires that the individual uplink and downlink

data rate requirements are double the ones for the FD case, due to the slotted HD

transmission. It can be seen that the HD operation results in increased uplink and

downlink power to achieve the same total rate, which highlights the effectiveness of

the FD approach.

In Fig. 4.5, we plot the case when we have N = 8,K = 6,J = 3. The same

trend can be seen with Fig. 4.4, where we have when λa = 0.5, as indicated by the

dotted lines, for QPSK modulation power savings of about 9dB and 2.1dB for the

uplink and downlink users, respectively. For 16QAM modulation, we have power

savings of about 7.5dB and 1.6dB for the uplink and downlink users, respectively.

Again, it can be seen that the FD transmission outperforms the HD benchmark. Fig.

4.4 shows the scenario when the number of antennas at the FD BS is equal to the

total number of uplink and downlink users, while Fig. 4.5 shows the scenario when

there is one less antenna at the FD BS to serve the uplink and downlink users. This
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Figure 4.5: Weighted optimization plot for the proposed scheme versus the conventional
scheme N = 8, K = 6, J = 3.

implies a lower degree of freedom compared to the scenario in Fig. 4.4, and is

in fact a critical scenario where conventional approaches break down and lead to

highly inefficient solutions. Thus, leading to increased uplink and dowlink power

consumption compared to the CI scheme.

In Fig. 4.6, we show a scenario where we have equal number of antennas at

the FD radio BS and at the users N = K = J = 6. With this setup, when λa =

0.5, we can see for QPSK modulation uplink and downlink user power savings of

about 17dB and 2.4dB, respectively, and about 12.1dB and 0.8dB, respectively, for

16QAM modulation. The reason is because for N = K = J = 6 the problem is more

restricted in the optimization variable dimensions and the conventional scheme in

this scenario leads to greatly increased uplink and downlink powers while for the CI

scheme this scenario can be accommodated and has higher feasibility so consumes

lower power. Again, it can be observed that the FD transmission outperforms the

HD benchmark. These results highlight a key advantage of the proposed scheme

over the conventional approaches.
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Figure 4.6: Weighted optimization plot for the proposed scheme versus the conventional
scheme N = 6, K = 6, J = 6.
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Figure 4.8: Average power consumption versus minimum required downlink SINR when
λ1 = 0.1,λ2 = 0.9,εG = 0.1 and ΓUL = 0dB for QPSK modulation

4.7.2 Average Transmit Power versus Minimum Required SINR

In Fig. 4.7 and Fig. 4.8, we investigate the power consumption of the downlink

and uplink users for different minimum required downlink SINR (ΓDL
i ). For both

plots we assume a minimum required uplink SINR ΓUL
j = 0dB for all uplink users.

In Fig. 4.7, we select λ1 = 0.9 and λ2 = 0.1, which gives higher priority to the

total downlink transmit power minimization problem. It can be observed that both

the uplink and downlink power consumption increases with increase in ΓDL
i . This

is because an increase in the downlink SINR requirement translates to increase in

downlink transmit power and hence increase in the SI power. Therefore, the uplink

users have to transmit with a higher power to meet their QoS requirement (ΓUL
j ).

However, we can still see power savings of up to 12dB and 4dB for the uplink

and downlink users, respectively, for the CI scheme compared to the conventional

scheme. Also, we note that while CI is applied to only the downlink users, more

power is saved for the uplink users than the downlink users. This is because with CI

the total downlink transmit power is reduced and this directly reduces the residual

SI power at the FD BS. Accordingly, the constructive interference power has been

traded off for both uplink and downlink power savings. The same trend can be seen

in the Fig. 4.8, where λ1 = 0.1 and λ2 = 0.9. It can be observed that in this scenario
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Figure 4.10: Average power consumption versus error bounds when λ1 = 0.9,λ2 =
0.1,ΓUL = 0dB and ΓDL = 10dB for QPSK modulation

since we give higher priority to the uplink power minimization problem, we have

higher power savings for the uplink users and lower power savings for the downlink

users compared to the Fig. 4.7.
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Figure 4.11: Average execution time per optimization versus number of downlink users
with N = J = 6 when λ1 = 0.9,λ2 = 0.1,ΓUL = 0dB, ΓDL = 5dB and εh =
ε f = εG = 0.01

4.7.3 MOOP with Imperfect CSI

In Fig. 4.9 and 4.10, we investigate the performance of the proposed CSI-robust CI

scheme for N = K = J = 6, we select λ1 = 0.9 and λ2 = 0.1. Fig. 4.9 shows the Av-

erage power consumption for the uplink and downlink users when the error bounds

εh = ε f = εG = 0.1. It can be seen that the CI scheme shows better performance

than the conventional scheme with power savings of 8dB and 3dB for the uplink and

downlink users, respectively. This is also shown in Fig. 4.10, which shows the av-

erage power consumption with increasing error bounds. It can be seen that feasible

solutions can only be found for εh = ε f = εG ≤ 0.2. Besides, even if feasible results

could be found, significant amount of power will be consumed as can be seen for

error bound values between 0.15 and 0.2 for both uplink and downlink users.

4.7.4 Complexity

In Fig. 4.11, we compare the Average execution time per optimization of the con-

ventional scheme and the proposed CI scheme for different number of downlink

users (K) with N = J = 6. We fixed λ1 = 0.9,λ2 = 0.1,ΓUL = 0dB, ΓDL = 5dB and

εh = ε f = εG = 0.01. This plot shows the complexity comparison of the proposed
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Figure 4.12: Average execution time versus number of downlink users for slow/fast fading
channels with N = J = 6 when λ1 = 0.9,λ2 = 0.1,ΓUL = 0dB, ΓDL = 5dB and
εh = ε f = εG = 0.01.

and conventional schemes in terms of average execution time. This is computed

by generating K random QPSK symbols for 100,000 channel realizations. Thus,

taking into consideration 100,000 random symbol combinations over 100,000 itera-

tions. We kindly want to emphasize that the execution time is not only dependent on

the symbol combinations, but also on the channel realization and the problem for-

mulation, i.e. the geometry and number of constraints, stemming from the number

of users, antennas, e.t.c. It can be seen that for the perfect CSI case, the proposed

CI scheme takes 83% of time taken by the conventional scheme. While for the im-

perfect CSI case, the proposed CI scheme takes about 28% of the time taken by the

conventional scheme. This is because the conventional approach involves a more

complicated set of constraints, hence, more computational cost as shown in Section

4.6.1 above. Besides, the proposed MOOP (P4.8) formulation involves a multicast

approach which reduces the number variables to compute.

As we have noted above however, the proposed data dependent optimization

needs to be run on a symbol-by-symbol basis. To obtain a fairer comparison, we

plot in Fig. 4.12 the average execution time per frame versus the number of down-

link users for slow and fast fading channels. Here, we assume the LTE Type 2 TDD

frame structure [137], where each frame is subdivided to 10 subframes each with
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a duration 1ms and containing 14 symbol-time slots. Accordingly, we assume that

for fast fading the channel is constant for the duration of a subframe with a number

of symbols per coherence time Ncoh = 14, while for slow fading we assume a co-

herence time equal to 5 subframes with Ncoh = 70 [137]. The results for both slow

and fast fading channels show the end complexity of the proposed CI approaches

are comparable to those with the conventional approaches. Accordingly, and in

conjunction with the performance improvements shown in the previous results, it

can be seen that the proposed schemes provide a much more favorable performance

complexity trade-off w.r.t. conventional interference mitigation.

4.8 Joint Iterative Optimization Schemes in FD Sys-

tems

In this Section, we design an iterative optimization algorithm to improve the pro-

posed approach in Section 4.4. Sections 4.3 and 4.4 limit the MOOs to the downlink

beamforming vectors and the uplink power allocation, employing a closed form ZF

detector for the uplink. In this Section we aim to further increase the power sav-

ings in multiuser FD communication systems via an iterative algorithm that jointly

optimizes the receive beamformer, transmit beamformer and the uplink power, re-

spectively, which increases the degrees of freedom in the optimization, and allows

a scalable performance-complexity trade-off. We provide simulation results and

discussions to show the effectiveness of the proposed algorithm compared to the

approach in Section 4.3 and 4.4.

4.8.1 Proposed Joint MOOP for Interference Cancellation

First, we study the conventional MOOP in Section 4.3 (P4.1) where all interfer-

ence are treated as harmful signals, by jointly optimizing all the transmit beamform-

ing vectors wi, the receive beamfoming vectors u j and the uplink transmit power Pj,

respectively. Following the conventional MOOP formulation in P4.1, the proposed
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joint MOOP is written as

P4.9 : min
wi,Pj,u j

max
a=1,2

{λa (R∗a−Ra)}

s.t. E1 :
| hH

i wi |
2

∑
K
k 6=i | hH

i wk |2 +σ2
i
≥ Γ

DL
i ,∀i,

E2 : min
∆G

Pj | fH
j u j |

2

I j +σ2
N‖u j‖2 ≥ Γ

UL
j ,∀ j,

(4.63)

where, I j = ∑
J
n6= j Pn | fH

n u j |2 +∑
K
k=1 | uH

j (Ǧ + ∆G)wk |2. Problem P4.9 is a

non-convex problem due to the SINR constraints E1 and E2. To tackle the non-

convexity, we transform P4.9 as a semi-definite program (SDP) problem given by

P̃4.9 : min
Wi,Pj,U j

max
a=1,2

{λa (R∗a−Ra)}

s.t.

Ẽ1 :
Tr
{

HH
i Wi

}
Tr
{

HH
i Wk

}
+σ2

i
≥ Γ

DL
i ,∀i,

Ẽ2a :
PjTr

{
FH

j U j

}
∑

J
n6= j PnTr

{
FH

n U j
}
+ sSI

j +σ2
NTr

{
U j
} ≥ Γ

UL
j ,∀ j

Ẽ2b : max
∆G

Tr

{(
Ǧ+∆G

) K

∑
k=1

Wk
(
Ǧ+∆G

)H U j

}
− sSI

j ≤ 0,∀ j,

(4.64)

where, Wk = wkwH
k ,F j = f jfH

j and U j = u juH
j . Here, we rewrite constraint E2 into

two constraints by introducing slack variables sSI
j > 0,∀ j, respectively. Following

Lemma 1, the constraint Ẽ2b can be expanded, simplified and converted to LMI in
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a similar fashion as in Section 4.5.1. Hence, the transformed P4.9 is given as

P4.10 : min
Wi,Pj,U j,t,ρ,sSI

j

t

s.t. Ã1 : Tr
{

HH
i Wi

}
−Γ

DL
i Tr

{
HH

i Wk
}
≥ Γ

DL
i σ

2
i ,∀i,

Ã2a : PjTr
{

FH
j U j

}
−Γ

UL
j

(
J

∑
n 6= j

PnTr
{

FH
n U j

}
+ sSI

j

)
≥ Γ

UL
j σ

2
NTr

{
U j
}
,∀ j,

Ã2b :

ρI−
(
U j⊗∑

K
k=1 Wk

)
−
(
U j⊗∑

K
k=1 Wk

)
ǧ

−ǧH (U j⊗∑
K
k=1 Wk

)
sSI

j − ǧH (U j⊗∑
K
k=1 Wk

)
ǧ−ρε2

G

� 0,∀ j,

A3 : λa (R∗a−Ra)≤ t,∀a ∈ {1,2} ,

A4 : Wi � 0,∀i, A5 : U j � 0,∀ j.

(4.65)

where, t is an auxiliary variable.

The problem P4.10 is still non-convex due to the joint optimization of Pj

and U j in constraint Ẽ2a. It is very difficult to obtain a closed-form solution that

jointly optimizes Wi, Pj and U j,∀i, j, hence, to solve P4.10, we propose a two-

step iterative process. In the first step, we initialize a feasible U j to solve problem

P4.10 obtaining the optimal values of Wi and Pj, using CVX [132]. In the second

step, we solve problem P4.11 below using the solution from the first step to obtain

the optimal U∗j . We summarize the overall procedure in Algorithm 4.1.

Algorithm 4.1 Procedure for solving the problem P4.10

1: Input :hi, f j,Ǧ,ΓDL
j ,ΓUL

j ,σi,σN .

2: Initialise: n = 0,U(0)
j = u juH

j ,
repeat,

3: n = n+1,
4: solve the problem P4.10 to obtain Wi and Pj,
5: use the solution from step 4 to solve the problem P4.11 to obtain U(n)

j ,
6: until convergence.
7: Output : W∗i and P∗j ,∀i, j.
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P4.11 : min
U j,τ,ρ,sSI

j

τ

s.t. Ẽ2a, Ẽ2b,

U j � 0,∀ j,

λa (R∗a−Ra)≤ τ,∀a ∈ {1,2} .

(4.66)

In problem P4.11, we ignore constraint Ẽ1 since it is independent of U j. Note that

the problem P4.10 and P4.11 are relaxed form of P4.9. While it is difficult to

prove the rank-one solution, we have observed over multiple simulations, problem

P4.10 and P4.11 always return rank-one solution (Wi,∀i) and (U j,∀ j). Never-

theless, in the unlikely case of a non rank-one solution the optimal solutions can al-

ways be obtained by randomization technique as in [134], such that Wi = wiwH
i ,∀i

and U j = u juH
j ,∀ j, respectively.

4.8.2 Proposed Joint MOOP for Interference Exploitation

Here, we study the CI based MOOP in Section 4.4 where interference is exploited,

by jointly optimizing all the transmit beamforming vectors wi, the receive beam-

foming vectors u j and the uplink transmit power Pj, respectively. Following the

conventional MOOP formulation in P4.2, the proposed joint MOOP is expressed

as

P4.12 : min
wi,Pj,u j,t

t

s.t.F1 :

∣∣∣∣∣ℑ
(

hH
i

K

∑
k=1

wke j(φk−φi)

)∣∣∣∣∣≤
(

ℜ

(
hH

i

K

∑
k=1

wke j(φk−φi)

)
−
√

ΓDL
i σ2

i

)
tanθ ,∀i,

F2 : min
∆G

Pj

∣∣∣fH
j u j

∣∣∣2
IPSK

j +∑
K
k=1

∣∣∣uH
j (Ǧ+∆G)wke j(φk−φ1)

∣∣∣2 ≥ Γ
UL
j ,∀ j,

F3 : λa
(
R∗a−Ra(wi,Pj)

)
≤ t,∀a ∈ {1,2} ,

(4.67)
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where t is an auxiliary variable, and IPSK
j = ∑

J
n6= j Pn

∣∣fH
n u j
∣∣2 +σ2

N‖u j‖2. Following

similar procedure as in Section 4.4, the joint MOOP P4.12 can be transformed to

P4.13 : min
wi,Pj,u j,t,sSI

j

t

s.t.

F1 :

∣∣∣∣∣ℑ
(

hH
i

K

∑
k=1

wke j(φk−φi)

)∣∣∣∣∣≤
(

ℜ

(
hH

i

K

∑
k=1

wke j(φk−φi)

)
−
√

ΓDL
i σ2

i

)
tanθ ,∀i,

F̃2a : Pj
∣∣fH

j u j
∣∣2 ≥ Γ

UL
j

(
J

∑
n6= j

Pn
∣∣fH

n u j
∣∣2 + sSI

j +σ
2
N‖u j‖2

)
,∀ j,

F̃2b :
K

∑
k=1

(∣∣∣uH
j Ǧwke j(φk−φ1)

∣∣∣+ εG

∣∣∣uH
j wke j(φk−φ1)

∣∣∣)2
≤ sSI

j ,∀ j,

F3 : λa (R∗a−Ra)≤ t,∀a ∈ {1,2} .

(4.68)

Problem P4.13 is still non-convex due to the joint optimization of Pj and u j in

constraint F̃2a. Hence, we propose a two-step iterative process to jointly optimize

wi, Pj and u j,∀i, j. In the first step, we initialize a feasible u j,∀ j to solve P4.13

to obtain the optimal values of wi and Pj using CVX [132]. Then we use the values

obtained from the first step to solve P4.14 below to obtain the optimal values of

the U j
∗,∀ j. The iterative process is summarized in Algorithm 4.2.

P4.14 : min
U j,τ,ρ,sSI

j

τ

s.t. PjTr
{

FH
j U j

}
−Γ

UL
j

(
J

∑
n6= j

PnTr
{

FH
n U j

}
+ sSI

j

)
≥ Γ

UL
j σ

2
NTr

{
U j
}
,∀ j,ρI−

(
U j⊗∑

K
k=1 Wk

)
−
(
U j⊗∑

K
k=1 Wk

)
ǧ

−ǧH (U j⊗∑
K
k=1 Wk

)
sSI

j − ǧH (U j⊗∑
K
k=1 Wk

)
ǧ−ρε2

G

� 0,∀ j,

λa (R∗a−Ra)≤ τ,∀a ∈ {1,2} ,U j � 0,∀ j.

(4.69)

Note that the optimal u∗j can be obtained by randomization as in [134].
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Algorithm 4.2 Procedure for solving the problem P4.13

1: Input :hi, f j,Ǧ,ΓDL
j ,ΓUL

j ,σi,σN .
2: Initialize: n = 0,u j,

repeat,
3: n = n+1,
4: solve the problem P4.13 to obtain wi and Pj,
5: use the solution from step 4 to solve the problem P4.14 to obtain U(n)

j ,
6: until convergence.
7: Output : w∗i and P∗j ,∀i, j.

4.8.3 Numerical Results

In this subsection, we investigate the performance of our proposed iterative scheme

through simulations. We model all channels as independent and identically dis-

tributed Rayleigh fading for systems with QPSK modulation are considered while

it is clear that the benefit extends to any higher order modulation. For comparison

in every scenario, we compare the iterative approach with the approach in Sections

4.3 and 4.4 (ZF) for both CI and conventional cases.

In Fig. 4.13a, we show the average power consumption versus the minimum

required downlink SINR for QPSK modulated signals. This clearly shows power

gains of up to 4dB and 2dB for conventional and CI schemes, respectively, of the

proposed iterative approach for uplink users compared to the ZF approach in Sec-

tions 4.3 and 4.4. Similarly, less than 1dB power gains can be seen for the downlink

users. In Fig. 4.13b, we compare the complexity of the two approaches, which

shows that the iterative approach has a much high complexity in terms of running

time until convergence. These two results clearly highlights the trade-off between

the two proposed approaches in terms of performance and complexity, respectively.

4.9 Summary
In this chapter, we studied the application of the interference exploitation concept to

a MU-MIMO system with a FD radio BS. The optimization problem was formulated

as a MOOP via the weighted Tchebycheff method. The MOOP was formulated for

both PSK and QAM modulated signals by adapting the decision thresholds in both

cases to accommodate for constructive interference and by assuming zero-forcing
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Figure 4.13: Average power consumption versus a) downlink SINR for ΓUL = 5dB and b)
runtime of convergence rate for ΓUL = 5dB and ΓDL = 10dB, respectively, for
QPSK modulation.

for the receive beamformer. The CI scheme was also extended to robust designs

for imperfect downlink, uplink and SI CSI with bounded CSI errors. Simulation

results proved the significant power savings of the CI scheme over the conventional

scheme in every scenario. More importantly, we have shown that through the FD

MOOP formulation, constructive interference power can be traded off for both up-

link and downlink power savings. To further improve the power savings, we pro-

posed a two-step iterative algorithm. The algorithm jointly optimizes the transmit

beamformer, receive beamformer and uplink transmit power, providing a step for-

ward from employing ZF receive beamforming. Simulations results show improved

power savings compared to the ZF approaches in both conventional and CI cases at

the expense of a scalable complexity increase.



Chapter 5

Robust Energy Harvesting FD

Transmission

This chapter is based on our publication in [J4].

5.1 Introduction
In this chapter, we investigate the resource allocation algorithm design for simulta-

neous wireless information and power transfer (SWIPT) systems by exploring ro-

bust designs to jointly minimize the total uplink and downlink transmit power, and

maximize the total harvested energy in a full duplex system with imperfect channel

state information.

As mention in Chapter 3, EH is one of the key technologies for the realization

of the next generation 5G systems and beyond. Towards this direction research ef-

forts have involved employing energy and information receivers (EIR) [32] as well

as SWIPT relays [138]. The integration of FD with SWIPT is promising since the

EIR can be simultaneously served thereby improving the spectrum and energy ef-

ficiency of the system [139]. In [140], a power splitting scheme was proposed to

receive information and energy in order to maximize the energy harvested subject

to SINR and maximum power constraints in a FD system. Likewise, [141] stud-

ied a joint transceiver design for FD cloud radio access networks with SWIPT. The

authors proposed a system power minimization problem with uplink and down-

link QoS constraints as well as EH constraints while optimizing the transceiver
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Figure 5.1: A multi-user FD SWIPT system

beamformers, the uplink transmit power, and the receive power splitting ratios, re-

spectively. Most relevant to the focus of the work in this chapter, in [117], the

authors proposed a multi-objective optimization problem (MOOP) via the weighted

Tchebycheff method to investigate the resource allocation for FD-SWIPT systems

with separated EIR. Their MOOP jointly minimizes the uplink and downlink trans-

mit power and maximizes the total energy harvested. However, the authors assumed

perfect CSI including the SI channel, this assumption deviates from practical sce-

narios for FD systems.

Accordingly, in this chapter, we aim to investigate precoding solutions for FD-

SWIPT. Inspired by [117], here we first derive a channel state information (CSI)-

robust MOOP based on suppressing interference. We then go one step further to

reformulate the optimization such that the multi-user interference is exploited as

a useful resource both for energy and information power. While the concept of

interference exploitation has been studied thoroughly for half-duplex (HD) in [13,

102, 122], providing significant downlink power gains, the FD setup investigated

here provides the opportunity to extend these gains to the uplink power budget.

5.2 System Model
We consider a multiuser communication system defined in [117] and shown in Fig.

5.1. A FD base station (BS) with N transmit and N receive antennas simultaneously

serves K single-antenna downlink users, J uplink users and M energy receivers
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(ERs). The transmitted signal by the FD BS is expressed as

t =
K

∑
i=1

widi +q, (5.1)

where, wi ∈ CN×1 and di denote the beamforming vector and the unit data symbol

for the i-th downlink user, respectively. The vector q ∈ CN×1 is the energy signal

sent by the FD BS to facilitate energy transfer [117]. Let hi ∈CN×1, f j ∈CN×1 and

rm ∈ CN×1 be the channels between the FD BS and the i-th downlink user, the j-th

uplink user, the m-th ER, respectively. Therefore, the received signals at the i-th

downlink user, the FD BS and the m-th ER are respectively given by

yDL
i = hH

i

K

∑
k=1

wkdk +hH
i q+

J

∑
j=1

√
p j` j,ix j +ni, (5.2)

yBS =
J

∑
j=1

√
p jf jx j +Gt+n j, (5.3)

yER
m

1 = rH
mt+nm, (5.4)

where, p j and x j denote the uplink transmit power and the data symbol from the

j-th uplink user, respectively. ` j,i is the channel between the j-th uplink user and

the i-th downlink user. We denote ni ∼ C N
(
0,σ2

i
)
, n j ∼ C N (0,σ2

j ) and nm ∼

C N (0,σ2
m) as the additive white Gaussian noise at the i-th user, the FD BS and the

m-th ER, respectively. The matrix G ∈ CN×N denotes the SI channel at the FD BS.

In order to isolate our proposed scheme from the specific implementation of any

passive or active SI mitigation techniques, we consider the deterministic model to

represent the residual-SI channel after cancellation, that is known imperfectly at the

BS. Accordingly, the SI channel, which typically follows Rician distribution [117],

is expressed as G = Ǧ+∆G, where Ǧ, denotes the SI channel estimate known to

the FD BS which can be cancelled, and ∆G represents the SI channel uncertainties,

for which ‖∆G‖2
F ≤ ε2

G, for someεG ≥ 0. We denote ‖·‖F as the Frobenius norm.

1In the adopted system model, the ERs only receive energy from the FD BS, while we ignore the
potential energy received by the uplink users for simplicity.
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We define the signal-to-interference plus noise ratio (SINR) at the i-th downlink

user and at the FD radio BS respectively as

Γ
DL
i =

|hH
i wi|

2

∑
K
k 6=i |hH

i wk|2 + |hH
i q|2 +∑

J
j=1 p j|` j,i|2 +σ2

i
, (5.5)

Γ
UL
j =

p j|fH
j u j|

2

∑
J
n6= j pn|fH

n u j|2 + |u j∆Gt|2 +σ2
j

∥∥u j
∥∥2 , (5.6)

where, u j ∈N×1 is the receive beamforming vector for detecting the received symbol

from the j-th uplink user. Following [117], we adopt zero-forcing (ZF) beamform-

ing at the FD BS for the detection of uplink signals.

The total harvested energy at the m-th ER is modelled as [32] EER
m = ζm‖rH

mt‖2,

where, 0 ≤ ζm ≤ 1 represents the energy conversion efficiency and we assume the

noise power is negligibly small compared to the power of the received signal [117].

In contrast to [117], in this chapter, we focus on the case where imperfect

CSI for the uplink, downlink, CCI and SI channels are available at the FD BS. We

model these additive errors as norm-bounded, in the form hi = ȟi + eh,i,
∥∥eh,i

∥∥2 ≤

ε2
h,i,∀i, f j = f̌ j +e f , j,

∥∥e f , j
∥∥2 ≤ ε2

f , j,∀ j and ` j,i = ˇ̀j,i+e j,i, |e j,i|2 ≤ ε2
j,i,∀ j, i, where

ȟi, f̌ j and ˇ̀j,i denote the downlink, uplink and CCI CSI estimates known to the FD

BS, respectively, and eh,i,e f , j and e j,i represent the downlink, uplink and CCI CSI

uncertainties, respectively. On the other hand, the FD BS need only to know the

channel gain rm of the ERs’ channel to achieve a specified energy harvested target.

5.3 Robust Design with Interference Suppression

The system design objective is to jointly minimize the total downlink and uplink

transmit power while maximizing the total harvested energy subject to QoS con-

straints (5.5) and (5.6), where multi-user interference is treated as harmful signal.

Extending the non-robust design of [117], in this section, we jointly optimize the

transmit beamformer (wi), the energy signal (q) and uplink transmit power (p j),
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respectively. This can be mathematically formulated as

P5.1 : min
wi,q,p j

c1 ·

(
K

∑
k=1
‖wk‖2 +‖q‖2

)
+ c2 ·

J

∑
j=1

p j− c3 ·
M

∑
m=1

EER
m

s.t. A1 : min
eh,i,e j,i

Γ
DL
i ≥ Γi,∀

∥∥eh,i
∥∥2 ≤ ε

2
h,i,∀|e j,i|2 ≤ ε

2
j,i,∀i,

A2 : min
e f , j,∆G

Γ
UL
j ≥ Γ j,∀‖∆G‖2

F ≤ ε
2
G,∀

∥∥e f , j
∥∥2 ≤ ε

2
f , j,∀ j,

A3 : ζmrm

(
K

∑
k=1
‖wk‖2 +‖q‖2

)
≥ Pmin

m ,∀m,

A4 :
K

∑
k=1
‖wk‖2 +‖q‖2 ≤ PDL

max,

A5 : p j ≤ PUL
max,∀ j,

(5.7)

where c1 + c2 + c3 = 1 are the weights given to each of the system’s design ob-

jectives, respectively. Constraints A1 and A2 ensure that the minimum SINR, Γi

and Γ j, is achieved for the i-th downlink user and j-th uplink user, respectively.

Constraint A3 ensures that the minimum harvested energy, Pmin
m , for the m-th ER

is achieved while A4 and A5 denote the maximum downlink and uplink trans-

mit power constraints, respectively. The evidently non-convex problem (5.7) can

be solved by formulating it as a semi-definite program (SDP) which can be trans-

formed into linear matrix inequalities (LMI) by using the S-procedure. Accordingly,

by defining Wi = wiwH
i ,Q = qqH and U j = u juH

j . Constraint A1 can be expressed

as the following two constraints

min
eh,i

(ȟi + eh,i)
HYi(ȟi + eh,i)−Γi(σ

2
i +Li)≥ 0,∀i, (5.8)

max
e j,i

J

∑
j=1

p j( ˇ̀j,i + e j,i)
H( ˇ̀j,i + e j,i)≤ Li,∀i, (5.9)

where we introduce auxiliary variable Li ≥ 0 and

Yi , Wi−Γi

(
K

∑
k 6=i

Wk +Q

)
.
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For constraint A2, we define two vectors f̃ = [f̌H
j , . . . , f̌H

J ]
H ∈ CNJ×1 and ẽ f =

[eH
f , j, . . . ,e

H
f ,J]

H ∈ CNJ×1. Hence, we can define any f̌ j = B j̃f and e f , j = B jẽ f , for

j = 1, . . . ,J, with B j ∈RN×NJ defined as B j = [B j,1, . . . ,B j,J], where B j, j = IN and

B j,n = 0N , for n = 1, . . . ,J,n 6= j. We have IN and 0N to be an N×N identity matrix

and zero matrix, respectively. Hence, A2 can be rewritten as

min
e f , j,∆G

p j

(
(B j̃f+B jẽ f )

HU j(B j̃f+B jẽ f )
)

∑
J
n6= j pn

(
(Bñf+Bnẽ f )HU j(Bñf+Bnẽ f )

)
+S j

≥ Γ j, (5.10)

where

S j = Tr

{
EG

(
K

∑
k=1

Wk +Q

)
EH

GU j

}
+σ

2
NTr

{
U j
}
.

Furthermore, we introduce

Z j , PjBT
j U jB j−Γ j

J

∑
n6= j

PnBT
n U jBn

and auxiliary variable SSI
j , such that (5.10) can be written as the following two

constraints

min
e f , j

(̃
f+ ẽ f

)H
Z j

(̃
f+ ẽ f

)
≥ SSI

j Γ j,∀ j, (5.11)

max
∆G

Tr

{
EG

(
K

∑
k=1

Wk +Q

)
EH

GU j

}
+σ

2
NTr

{
U j
}
≤ SSI

j ,∀ j. (5.12)

Thus, using Tr{ABCD} = vec
(
AH)H (DT ⊗B

)
vec(C), and defining P =

diag(p1, . . . , pJ), ˇ̀i =
[ ˇ̀1,i, . . . , ˇ̀J,i

]
,e`,i = [e1,i, . . . ,eJ,i] and eg = vec(∆GH), where

vec(·) stacks the columns of a matrix into a vector and ⊗ stands for Kronecker

product, constraints (5.8),(5.9), (5.11) and (5.12) can be expanded and transformed

to LMIs using S-procedure as shown in the following, respectively.

Ã1a⇒

δiI+Yi Yiȟi

ȟH
i Yi ȟH

i Yiȟi−Γi
(
σ2

i +Li
)
−δiε

2
h,i

� 0, (5.13)
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Ã1b⇒

λiI−P −P ˇ̀i

− ˇ̀H
i P − ˇ̀H

i P ˇ̀−λiε
2
`,i−Li

� 0, (5.14)

Ã2a⇒

µ jI+Z j Z j̃f

f̃HZ j f̃HZ j̃f−SSI
j Γ j−µ jε

2
f

� 0, (5.15)

Ã2b⇒

ρI−
(

UT
j ⊗ (∑K

k=1 Wk +Q)
)

0

0 SSI
j −σ2

NTr
{

U j
}
−ρε2

G

� 0. (5.16)

Thus, (5.7) can be re-expressed as

P5.2 : min
Wi,Q,p j,

δi,µ j,ρ,SSI
j ,

Tr

{
K

∑
k=1

Wk +Q

}(
c1− c3

M

∑
m=1

ζmrm

)
+ c2 ·

J

∑
j=1

p j

s.t. Ã1a, Ã1b, Ã2a, Ã2b, A4, A5,

Ã3 : ζmrmTr

{
K

∑
k=1

Wk +Q

}
≥ Pmin

m ,∀m,

Wi � 0,∀i,Q� 0,δi ≥ 0,∀i,µ j ≥ 0,∀ j,ρ ≥ 0,

(5.17)

where we have dropped the rank constraints on Wi,∀i. Note that the problem (5.17)

is a relaxed form of (5.7). While it is difficult to prove analytically, our simulations

have shown that problem (5.17) always returns rank-one solutions. Still, in the

unlikely case of a non rank-one solution, valid solutions can always be obtained by

randomization [134].

5.4 Robust Design with Interference Exploitation

In this section, we design our system to exploit interference rather than suppressing

it as in Section 5.3. Constructive interference (CI) is the interference that pushes the

received signal away from the detection thresholds [13]. The concept of CI has been

thoroughly studied in the literature for both PSK and QAM modulation in [13] and

references therein, where analytical criteria are also derived. For notational conve-

nience, we focus on PSK here. To reformulate (5.7) for interference exploitation,
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we first write the received signal at the i-th downlink user as

ỹi =
(
ȟi + eh,i

)H
(

K

∑
k=1

wke j(φk−φi)+qe− jφi

)
=
(
ȟi + eh,i

)H a, (5.18)

where we have omitted the noise term, a = ∑
K
k=1 wke j(φk−φi)+qe− jφi and the unit-

energy PSK symbol for the i-th downlink user is represented as di = deφi .

As detailed in [13], for any given PSK constellation point, to guarantee CI,

ỹi must fall within the CI region of the constellation. The size of the region is

determined by θ =±π

B , which is the maximum angle shift within the CI region for

a modulation order B. Accordingly, the downlink SINR constraint that guarantees

CI at the i-th downlink user [13] is

|ℑ(ỹi) | ≤

ℜ(ỹi)−

√√√√Γi

J

∑
j=1

p j| ˇ̀j,i + e j,i|2 +Γiσ
2
i

 tanθ , (5.19)

where ℜ and ℑ are the real and imaginary parts, respectively. In a similar fashion

to Section 5.3, the robust system design for CI can be formulated as

P5.3 : min
a,{p j}

c1 · ‖a‖2 + c2 ·
J

∑
j=1

p j− c3 ·
M

∑
m=1

ζmrm ‖a‖2

s.t. B1 : max
eh,i,e j,i

(5.19), ∀
∥∥eh,i

∥∥2 ≤ ε
2
h,i,∀|e j,i|2 ≤ ε

2
j,i,∀i,

B2 : min
e f , j,∆G

Γ
UL
j ≥ Γ j,∀‖EG‖2

F ≤ ε
2
G,∀

∥∥e f , j
∥∥2 ≤ ε

2
f , j,∀ j,

B3 : ζmrm ‖a‖2 ≥ Pmin
m ,∀m,

B4 : ‖a‖2 ≤ PDL
max,

B5 : p j ≤ PUL
max,∀ j.

(5.20)

Problem (5.20) is a non-convex problem. To solve (5.20), we transform each con-

straint to a convex form separately in the following. Let’s consider the downlink

SINR constraint B1, which for the worst-case scenario can be rewritten as the fol-
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lowing two constraints

max
eh,i

∣∣(ȟi + eh,i)
Ha
∣∣− ((ȟi + eh,i)

H
Πa−

√
ΓiLCI

i ) tanθ ≤ 0,∀i, (5.21)

max
e j,i

√√√√ J

∑
j=1

p j| ˇ̀j,i + e j,i|2 +σ2
i ≤ LCI

i ,∀i. (5.22)

Accordingly, (5.21) can be relaxed to the following two robust formulations

ȟH
i (a−Πa tanθ)+ εh,i‖a−Πa tanθ‖+

√
ΓiLCI

i tanθ ≤ 0,∀i, (5.23)

ȟH
i (−a−Πa tanθ)+ εh,i‖−a−Πa tanθ‖+

√
ΓiLCI

i tanθ ≤ 0,∀i, (5.24)

where a =
[
ℜ(a)H ℑ(aH)

]H
, Π =

0N −IN

IN 0N

, ȟi =
[
ℑ(ȟi)

H ℜ(ȟi)
H
]H

, eh,i =[
ℑ(eh,i)

H ℜ(eh,i)
H
]H

. Furthermore, by using the inequality
√

x2 + y2 ≤ |x|+ |y|,

(5.22) can be relaxed to the following robust formulation∣∣∣∣∣ J

∑
j=1

√
p j
(
| ˇ̀j,i|+ ε j,i

)∣∣∣∣∣+ |σi| ≤ LCI
i ,∀i. (5.25)

Next, we consider the uplink SINR constraint B2, which can be written as

p j

∣∣∣(f̌ j + e f , j
)H u j

∣∣∣2 ≥ Γ j

[
J

∑
n 6= j

pn

∣∣∣(f̌n + e f ,n
)H u j

∣∣∣2 + ∣∣u j∆Ga
∣∣2 +σ

2
j
∥∥u j
∥∥2

]
,

(5.26)

which can be relaxed using the inequality ‖x+y‖2 ≤ (‖x‖+‖y‖)2 to give the fol-

lowing robust formulation

p j
(
|f̌H

j u j|+ ε f , j‖u j‖
)2 ≥ Γ j

[
J

∑
n6= j

pn
(
|f̌H

n u j|+ ε f ,n‖u j‖
)2

+(εG
∥∥u j
∥∥‖a‖)2 +σ

2
j ‖u j‖2] (5.27)
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Accordingly, from (5.23) we have

−
ȟH

i (I−Π tanθ)a+
√

ΓiLCI
i tanθ

εh,i ‖I−Π tanθ‖
≤ ‖a‖ . (5.28)

Hence, an upper bound for the ER constraint in (5.20) is

−
ȟH

i (I−Π tanθ)a+
√

ΓiLCI
i tanθ

εh,i ‖I−Π tanθ‖
≥

√
Pmin

m
ζmrm

,∀i,∀m. (5.29)

Finally, the transformed problem (5.20) can be expressed as

P5.4 : min
a,a,p j,βm,

LCI
i ,SSI-CI

j

c1 · ‖a‖2 + c2 ·
J

∑
j=1

p j− c3 ·
M

∑
m=1

ζmβm

s.t. (5.23), (5.24), (5.27), (5.29), ‖a‖2 ≤ PDL
max, p j ≤ PUL

max,∀ j

−
ȟH

i (I−Π tanθ)a+
√

ΓiLCI
i tanθ

εh,i ‖I−Π tanθ‖
≥ βm√

rm
,∀i,∀m.

(5.30)

P5.4 is jointly convex with respect to the optimization variables, thus can be opti-

mally solved using standard convex solvers.

At this point, we emphasize the flexibility provided by the MOOP P5.2 and

P5.4 with respect to optimization variables. There is a strong interdependency

between the optimization variables, in that, increasing the downlink transmit power

to satisfy the SINR constraints increases the SI power, which hinders the reception

of uplink signals. At the same time, if the uplink transmit power is increased in

order to satisfy the SINR constraints, co-channel interference (CCI) is increased at

the downlink users. Similarly, minimizing the downlink transmit power reduces the

amount of energy transferred to ERs.

5.5 Simulation Results

We consider the system with the FD BS at the center of a cell with N = 6. We as-

sume K = J = 3 downlink and uplink users, are randomly and uniformly distributed
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Figure 5.3: Average harvested energy vs Pmin

between the distance of 10m and 50m and M = 2 ERs are randomly and uniformly

distributed between the distance of 2m and 10m. We model the channels to the

uplink and downlink users as Rayleigh fading. By assuming the same parameters

as in [117], Gt = 10dBi,Gr = 0dBi, f req = 915MHz,d = 5, and using Friis equa-

tion we have an estimate channel gain rm = 0.00027. Furthermore, we consider

εh = ε f = εG = ε` = 0.001,ΓDL = 8dB,ΓUL = 2dB,ζ = 0.4,σi = −60dBm,σ j =

−70dBm and QPSK modulation in all cases.

First, we investigate the performance of our proposed schemes with c1 =

0.1,c2 = 0.1 and c3 = 0.8. In Fig. 5.2, we show the average harvested energy
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Figure 5.5: Uplink-downlink power trade-off

for varying PDL
max. First, it can be seen that for the same overall data rate requirement

the FD systems outperform the corresponding HD transmission. More importantly,

it can be seen that with the proposed CI scheme more energy is harvested as PDL
max

increases. This occurs because less power is required to satisfy the downlink and

uplink QoS constraints for the CI scheme compared to the interference suppression

(IS) scheme, hence, more power is available to be harvested by the ERs. Further-

more, Fig. 5.3 shows the average harvested energy for different minimum harvested

energy thresholds. Clearly, the CI scheme is less sensitive to the Pmin threshold val-

ues since more transmit power is being saved from exploiting interference, while
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for the IS scheme less energy can be harvested. In Fig. 5.4, we show the average

harvested energy with respect to the distance between uplink and downlink users,

that determines the CCI. The CI scheme is less sensitive to CCI compared to the IS

schemes, which further highlights the effectiveness of the interference exploitation

approach.

In Fig. 5.5, we show the uplink and downlink power trade-off by varying c1

and c2 between 0 and 1 with a step of 0.1 while c3 = 0. Thus, it can be seen from

Fig. 5.5 that a trade-off exist between the uplink and downlink transmit power for

both CI and IS schemes. However, power savings can be seen for CI compared

with the IS scheme, since interference is rather exploited as an additional source of

useful power. In addition, we note that while CI is applied only to the downlink

users, power savings can also be seen for the uplink since lower downlink transmit

power translates to lower SI power and hence, lower uplink power consumption.

This is unique for the FD scenario and has never been observed in the CI literature.

5.6 Summary
In this chapter, we studied the CSI-robust transmit power and harvested energy

optimization problem in a multiuser FD SWIPT system. We first formulated an op-

timization where MUI is suppressed. Then, we formulated an optimization where

MUI is rather exploited, both as useful energy and information power for guaran-

teeing QoS and energy harvesting constraints. By exploiting interference both as

a source of energy and information power, the proposed CI scheme show a sig-

nificant performance improvement over the conventional interference cancellation-

based scheme.



Chapter 6

FD Mobile Edge Computing Systems

This chapter is based on our publications in [C1],[J2].

6.1 Introduction
Motivated by the ongoing research for the materialization of the 5G vision, in this

chapter we investigate the offloading energy and latency trade-off in a multiuser FD

MEC system.

The next generation 5G network aims at providing higher data rate and low la-

tency communications. MEC has been identified as a promising solution to enable

mobile devices (MD) offload their intensive and latency-critical computation tasks

to the MEC servers for execution. In this way, the battery life at the MD can be

enhanced while their data storage capabilities and computational resources can be

relaxed [14]. In quest to reap the benefits of the MEC, several resource allocation

designs have been proposed. [142] investigated resource allocation design for MEC

systems based on time-division multiple access (TDMA) and orthogonal frequency

division multiple access (OFDMA) offloading by considering the local computa-

tion capabilities of the users to minimize the mobile energy consumption. While

in [143], an offline heuristic algorithm was designed to minimize the average com-

pletion time of multiple users for partitioning and scheduling the offloading of their

computations. In [144], a wireless powered multiuser MEC system was proposed

where the devices depend on their harvested energy to compute locally or offload

tasks to the MEC server while the energy consumption of the MEC server is mini-



6.1. Introduction 115

mized. [145] formulated an offloading problem to minimize the energy consumption

by jointly optimizing the mobile precoding matrices and the computing frequency

while meeting latency constraints. Similarly, [146] proposed a game theoretic ap-

proach for computation mobile offloading in a multi-user MEC system. However,

in all the above works, the authors focused on half duplex transmission and on a

single-objective i.e., either energy consumption or latency objectives. In [147], the

authors studied the effects of using multiple access points (APs) with computation

capabilities for offloading tasks in order to minimize the energy consumption and

latency for fixed and elastic central processing unit (CPU) frequency. However, the

authors assumed fixed transmitting and receiving power in their analysis, and in

addition, the authors like the authors in [142–146], assumed that the APs have per-

fect channel state information (CSI). These assumptions may deviate from practical

scenarios.

In the area of multi-user FD systems, only limited works have been done on

mobile-edge computing (MEC). [148] studied energy harvesting with MEC, where

a FD relay assists a mobile user to connect to an access point (AP) integrated with

a MEC server. The user uploads part of its computation bits to the AP for execution

and then, uses power splitting to download the results and harvest energy within a

time frame. The paper minimizes the system energy consumption subject to latency

and energy constraints by assuming perfect channel state information (CSI) with

perfect self-interference (SI) cancellation at the FD relay. In [149], a similar system

model is employed where users offload computation bits to a FD AP for execution

and simultaneously the FD AP transmits energy to the users. The authors inves-

tigated the max-min energy efficiency problem to ensure fairness between users.

Also, the authors [150, 151] investigated FD with MEC in wireless network virtu-

alization. [150] studied the virtual resource allocation for heterogeneous services

in FD-enabled small cell networks with MEC and caching while [151] proposed a

MEC framework for a user virtualization scheme in the software-defined network

virtualization cellular network.

Accordingly, in this chapter, we study a multiuser FD MEC-supported sys-
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tem which comprises a FD BS equipped with a MEC server. The FD BS sends

information signals in the downlink and receive intensive and latency-critical com-

putation tasks to be executed by the MEC server through the uplink. Unlike existing

works on MEC [142–147], we employ FD, which brings the need to optimize the

variables for both uplink and downlink transmission i.e., the uplink transmit power

and the downlink beamforming vectors, at the same time. However, when half du-

plex (HD) is employed as in [142–147], only the uplink or downlink variable is

optimized. Also, FD introduces the self-interference (SI) signal, which is an addi-

tional term in the constraints that is non-trivial to handle as will be evident in later

sections. In addition, we formulate an optimisation problem which involves min-

imising two desirable but conflicting system objectives, namely the total offloading

energy and latency. Different to the existing works on FD [12, 116, 117, 152–156]

and MEC [142–151], this calls for a weighted multi-objective formulation in or-

der to study their trade-off which is highly dependent on the optimisation variables.

Thus, existing methods in [142–151], can not be applied to solve the proposed op-

timization problems directly.

Furthermore, as will be shown later, the simulation results show the perfor-

mance gains achieved by the FD proposed schemes compared to the existing HD

schemes. We summarize our contributions below:

1. We first define the two system objectives namely, the total offloading energy

and latency, then we formulate two weighted multi-objective optimization

problems (MOOPs) subject to offloading latency constraints and downlink

QoS constraints. One, based on interference suppression (IS) and the other,

based on constructive interference (CI).

2. To solve the non-convex problems, we employ the Lagrangian method in or-

der to design a tractable iterative algorithm for both the IS scheme and IE

scheme.

3. We further extend our designs to robust formulations of the optimization

problems for both IS and CI schemes by considering the worst-case perfor-
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Figure 6.1: A multiuser FD MEC system

mance model. To tackle the non-convexity of the formulations, we simplify

and relax the constraints using auxiliary variables and then we use the S-

procedure to transmform the constraints into linear matrix inequalities.

6.2 System Model
We consider a multiuser wireless communication system as shown in Fig. 6.1. The

system consists of a FD BS, integrated with a MEC server, with N transmit and

N receive antennas simultaneously serving K single-antenna downlink users and J

single-antenna mobile devices. In this system, the downlink users receive informa-

tion signals from the FD BS, while, the mobile devices leverage the MEC server at

the FD BS to offload its latency-sensitive computation tasks, which can not be lo-

cally executed, to be executed by the MEC server. Please note that for user schedul-

ing in the resource block, we assume that this can be dealt with by existing protocols

like the time-division multiple access or the orthogonal frequency-division multiple

access as in [142, 144].

6.2.1 Downlink Transmission

For the transmission of information signal from the FD BS to the i-th downlink user,

let di,hi ∈CN×1 and wi ∈CN×1 be the unit data symbol, the channel vector and the

beamforming vector between the FD BS and the i-th downlink user, respectively.
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Hence, the received signals at the i-th downlink user is given by

yi = hH
i

K

∑
k=1

wkdk +
J

∑
j=1

√
p j` j,i +ni, (6.1)

where, p j and ni∼C N
(
0,σ2

i
)

denote the transmit power for the j-th mobile device

and the additive white Gaussian noise at the i-th user, respectively. ` j,i is the channel

between the j-th mobile device and the i-th downlink user.

6.2.2 Computation Offloading

We denote the computation task to be offloaded to the MEC server for execution in

bits at the j-th mobile device as q j, which are classified as either energy consuming

or time consuming tasks for the battery-constrained and time-constrained mobile

device [14]. Computation offloading to the MEC server involves the transmission

of the computation tasks to the FD BS by each mobile device and downloading1 of

the results by each user. Hence, we define the transmission rate of the j-th mobile

device with bandwidth B as

r j = B log2
(
1+ γ j

)
, (6.2)

where

γ j =
p j

∣∣∣gH
j u j

∣∣∣2
∑

J
n6= j pn

∣∣gH
n u j
∣∣2 + s j +σ2

j

∥∥u j
∥∥2 . (6.3)

In addition, g j ∈ CN×1 denotes the channel between the FD BS and the j-th mobile

device and σ2
j is the noise power at the FD BS. We denote u j ∈N×1 as the receive

beamforming vector for the j-th mobile device. In this chapter, to reduce complex-

ity, we adopt ZF beamforming at the FD BS for the detection of the offloaded tasks.

ZF is adopted since it provides a good trade-off between complexity and perfor-

mance [131]. Hence, the receive beamforming vector for the j-th mobile device is

1As the computational results are usually small, in our analysis we ignore the downloading time
and the power consumed during transmitting and receiving the results [14,144]. Thus, in this chapter,
our focus is particularly on the offloading of the tasks. We set aside the consideration of the results
downloading from the FD BS to the mobile devices for our future work.
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given as

u j = (c jG†)H , (6.4)

where c j = [0, . . . ,0,︸ ︷︷ ︸
j−1

1,0, . . . ,0︸ ︷︷ ︸
J− j

], G† = (GHG)−1GH ,† denotes the pseudo-inverse

operation and G = [g1, . . . ,gJ]. Furthermore, due to the simultaneous transmis-

sion and reception at the FD BS, there is a strong SI that degrades the reception

of the offloaded computation tasks at the FD BS. In the literature, there are dif-

ferent SI mitigation techniques which could be employed to reduce the effects of

SI. In order to isolate our proposed scheme from the specific implementation of

any passive or active SI mitigation techniques, we model the SI after cancellation

as s j = ∑
K
i=1 Tr

{
wiwH

i HH
SIu juH

j HSI

}
[6, 117], where the matrix HSI ∈ CN×N de-

notes the SI channel at the FD BS. Accordingly, given the computation task q j to

be offloaded by the j-th mobile device, the total offloading latency is defined as the

time taken to offload the task q j to the FD BS plus the time taken for the FD BS to

compute the corresponding result. This can be expressed as [147]

T total
j =

q j

r j︸︷︷︸
to f f , j

+
q jLBS, j

fBS︸ ︷︷ ︸
tBS, j

. (6.5)

We denote to f f , j as the time it takes to offload task q j to the FD BS and tBS, j as the

computation time at the FD BS for task q j, where LBS, j (cycles/bit) is the number of

CPU cycles required to compute 1 input bit of q j at the FD BS and fBS (cycles/s) is

the CPU frequency of the FD BS. Thus, the corresponding total computation energy

consumed in the offloading process by all the mobile devices is [37]

Eo f f =
J

∑
j=1

p jto f f , j. (6.6)

We note here the dependency of the transmit power of the mobile devices and the

downlink beamforming vectors, in that, p j through the SI term (s j) is a function of

wi, which in turn is a function of p j through (6.1).
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6.3 Problem Formulation

Our main objective in this chapter is to study the trade-off between two important

and desirable system objectives, namely, the total offloading energy and the total

offloading latency. In practice, there always exist a trade-off between these two ob-

jectives, in that, on one hand, an increase in the offloading energy implies increase

in transmit power of the mobile devices and in essence, leads to a decrease in the

offloading latency and vice versa. In the literature, multi-objective optimization

(MOO) is often employed to study the trade-off between conflicting objectives via

the concept of Pareto optimality. A point is said to be Pareto optimal if there is no

other point that improves any of the objectives without decreasing the others [118].

It has been shown in [118] that, one way to capture the complete Pareto optimal

set of the MOOP is through the weighted-sum formulation, which can achieve the

complete Pareto optimal set with low computational complexity. Thus, in order

to efficiently analyse and address this trade-off between these objectives, we adopt

the sum- weighted MOO that aims at minimizing the two objectives by jointly op-

timizing the downlink beamforming vectors and the transmit power for each mo-

bile device, while satisfying the total offloading latency requirement constraint and

downlink users QoS constraints as well as the power constraints. In the follow-

ing subsections, we present two strategies for the trade-off design, one based on

classical interference suppression and one based on interference exploitation.

We note that in this section, we assume that the FD BS knows all the channel

state information (CSI) from and to all the users in the system. We focus on slow

fading channel scenario, where the channels change at the beginning of each frame.

Thus, to facilitate the channel realization in practice, handshaking is performed

between the FD BS and all users. As the channel changes slowly, pilot signals are

usually embedded in the data packets, which allows the FD BS to constantly update

the CSI estimation of the transmission links of the users and devices. However, we

explicitly treat the case of imperfect CSI in Section 6.4.
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6.3.1 Trade-off Optimization based on Interference Suppression

First, in this section, we define the signal-to-interference plus noise ratio (SINR)

at the i-th downlink user that promotes interference suppression (IS) transmission

based on (6.1) as

Γ
DL
i =

|hH
i wi|

2

∑
K
k 6=i |hH

i wk|2 +∑
J
j=1 p j|` j,i|2 +σ2

i
. (6.7)

Thus, based on the DL SINR expression in (6.7) the MOOP based on IS can be

mathematically formulated as

P6.1 : min
{wi},{p j}

c1 ·Eo f f + c2 ·
J

∑
j=1

T total
j

s.t. A1 :
q j

r j
+

q jLBS, j

fBS
≤ Tj,∀ j,

A2 : Γ
DL
i ≥ Γi,∀i,

A3 : 0≤ p j ≤ PMD
max ,∀ j,

A4 :
K

∑
i=1
‖wi‖2 ≤ PDL

max,

(6.8)

where c1 and c2 are the weights given to the two objectives, respectively, with c1 +

c2 = 1. Constraints A1 ensures the total offloading latency of each mobile device

does not exceed the required threshold Tj. Constraint A2 ensures a certain QoS for

the downlink user and constraints A3 and A4 are the maximum power constraints

for each mobile device and for downlink transmission, respectively.

At this point, we emphasize the flexibility provided by the MOOP (6.8) with

respect to optimization variables. There is a strong interdependency between the

optimization variables, in that, increasing the transmit power of the mobile devices

in order to satisfy the latency constraints increases the co-channel interference (CCI)

to the downlink users. At the same time, increasing the downlink transmit power to

satisfy the downlink SINR constraints due to the increase in CCI, increases the SI

power, which hinders the reception of the offloaded computation tasks.

The optimization problem (6.8) is non-convex and in general difficult to solve
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partly due to the fractional objective functions. In order to solve (6.8), in the fol-

lowing we develop a tractable approach to obtain the optimal resource allocation in

an iterative manner.

First, given a fixed power p j for each mobile device, the problem reduces to

obtaining the beamforming vectors for the downlink users. Thus, it can be seen

that obtaining the beamforming vectors wi, for i = 1, . . . ,K in (6.8) aims at mini-

mizing the downlink transmit power in order minimize the SI power to satisfy the

constraints. Thus, this can be obtained by solving the following subproblem

P6.1a : min
{wi}

K

∑
i=1
‖wi‖2

s.t. A1, A2, A4.

(6.9)

The optimization problem (6.9) is non-convex but can be easily solved through

semidefinite relaxation (SDR). The SDR formulation of (6.9) is given by

P̃6.1a : min
{Wi�0}

K

∑
i=1

Tr{Wi}

s.t. Ã1 : τ j− γ j ≤ 0,∀ j,

Ã2 :
Tr(HiWi)

Γi
≥

K

∑
k 6=i

Tr(HiWk)+
J

∑
j=1

p j|` j,i|2 +σ
2
i ,∀i,

Ã4 :
K

∑
i=1

Tr(Wi)≤ PDL
max,

(6.10)

where τ j = 2

q j

B
(

Tj−
q jLBS, j

fBS

)
−1.

The SDR formulation (6.10) is convex and can be solved by standard convex

solvers. Please note that, the formulation in (6.10) is a relaxed form of (6.9) where

the rank one constraint on Wi has been dropped. If the resulting solution Wi after

solving (6.10) is rank one, the optimal wi can be obtained by applying eigenvalue-

decomposition (EVD), otherwise, ramdomization technique [134] can be used to

retrieve wi.

Accordingly, for fixed downlink beamforming vectors wi, for i = 1, . . . ,K, the
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transmit power for the mobile devices can be obtained by solving the following

subproblem

P6.1b : min
{p j},{a j},
{b j}

c1 ·

(
J

∑
j=1

q ja j

)
+ c2 ·

(
J

∑
j=1

q jb j

)

s.t. A5 :
p j

r j
≤ a j, A6 :

1
r j
≤ b j,

Ã1 : τ j− γ j ≤ 0,∀ j,

A3 : 0≤ p j ≤ PMD
max ,∀ j.

(6.11)

Here, we introduce auxiliary variables a j and b j for j = 1, . . . ,J. In order to solve

(6.11) we analyse the problem using Lagrangian method. Thus, the Lagrange func-

tion of problem (6.11) is

L
(

p j,a j,b j,λ j,µ j,β j,ν j
)
= c1

J

∑
j=1

q ja j+c2

J

∑
j=1

q jb j+
J

∑
j=1

λ j
(

p j−a jr j
(
wi, p j

))
+

J

∑
j=1

µ j
(
1−b jr j

(
wi, p j

))
+

J

∑
j=1

β j
(
τ j− γ j

(
wi, p j

))
+

J

∑
j=1

ν j
(

p j−PMD
max
)
,

(6.12)

where λ j,µ j,β j,ν j are the Lagrange multipliers for constraints A5, A6, Ã1 and A3,

respectively. Based on the definition of Karush-Kuhn-Tucker (KKT) conditions, we

have

∂L

∂ p j
= λ j−λ ja j

∂ r j

∂ p j
−µ jb j

∂ r j

∂ p j
−β j

∂γ j

∂ p j
+ν j = 0, (6.13)

∂L

∂a j
= c1q j−λ jr j = 0,

∂L

∂b j
= c2q j−µ jr j = 0, (6.14)

λ j
(

p j−a jr j
)
= 0, µ j

(
1−b jr j

)
= 0, (6.15)

β j
(
τ j− γ j

)
= 0, ν j

(
p j−PMD

max
)
= 0. (6.16)

From (6.14) and (6.15) we have λ j =
c1q j
r j

, µ j =
c2q j
r j

, a j =
p j
r j

and b j =
1
r j

, respec-

tively. Furthermore, notice that the optimal solution (p∗j ,a
∗
j ,b
∗
j) of problem (6.11)
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satisfies the KKT conditions of the following J subproblems

min
p j

λ j p j−λ ja jr j
(
wi, p j

)
−µ jb jr j

(
wi, p j

)
s.t. Ã1 : τ j− γ j ≤ 0,

A3 : 0≤ p j ≤ PMD
max .

(6.17)

It is easy to see that the KKT conditions for the subproblem (6.17) are the same as

that of problem (6.11) and are given by

λ j−λ ja j
B

ln2
Ξ j

(1+ γ j)
−µ jb j

B
ln2

Ξ j

(1+ γ j)
−β jΞ j +ν j = 0, (6.18)

β j
(
τ j− γ j

)
= 0, (6.19)

ν j
(

p j−PMD
max
)
= 0. (6.20)

where Ξ j =
|gH

j u j|2

s j+σ2
j ‖u j‖2 . From (6.18), we see that the optimal p∗j is

p∗j =
B

ln2
λ ja j +µ jb j

λ j−β ∗j Ξ j +ν∗j
− 1

Ξ j
, (6.21)

where β ∗j and ν∗j satisfy the KKT conditions (6.19) and (6.20), respectively. In the

following, we examine 3 cases in order to obtain {p∗j ,β
∗
j ,ν
∗
j }:

1. From (6.19) and (6.20) we have p∗j ∈
(

τ j
Ξ j
,PMD

max

)
for β ∗j = ν∗j = 0. In this

case, p∗j = M j where M j =
B

ln2
λ ja j+µ jb j

λ j
− 1

Ξ j
according to (6.21). Thus, we

have p∗j = M j and β ∗j = ν∗j = 0 if M j ∈
[

τ j
Ξ j
,PMD

max

]
.

2. If M j <
τ j
Ξ j

implies that β ∗j > 0 from the constraints (6.21). Therefore, p∗j =
τ j
Ξ j

and ν∗j = 0 according to (6.19) and (6.20). By substituting these in (6.21)

gives β ∗j =
λ j
Ξ j
− B

ln2
λ ja j+µ jb j

τ j+1 .

3. Similarly, if M j > PMD
max implies that ν∗j > 0. In this case, p∗j = PMD

max and

β ∗j = 0 according to (6.20) and (6.19) and putting these into (6.21) gives

ν∗j =
B

ln2
Ξ j(λ ja j+µ jb j)

PMD
maxΞ j+1 −λ j.

Accordingly, from these cases the solution to the subproblem shown in (6.11) is
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Algorithm 6.3 Iterative algorithm for solving problem (6.8)
1: Initialization:

Set p j = PMD
max , for j = 1, . . . ,J,

Obtain wi, for i = 1, . . . ,K, by solving subproblem (6.10)
Repeat
Loop

2: Compute λ j,µ j,a j and b j, for j = 1, . . . ,J,
3: Update p j,β j and ν j, for j = 1, . . . ,J,

until convergence. End Loop
4: Update wi, for i = 1, . . . ,K through solving (6.10)

Until stopping criterion is satisfied.
5: Output: {w∗i } and {p∗j}.

given by

p∗j =



τ j
Ξ j
, for M j <

τ j
Ξ j
,

M j, for τ j
Ξ j
≤M j ≤ PMD

max ,

PMD
max , for M j > PMD

max ,

(6.22)

β
∗
j =


λ j
Ξ j
− B

ln2
λ ja j+µ jb j

τ j+1 , for M j <
τ j
Ξ j
,

0, elsewhere,
(6.23)

ν
∗
j =

0, for M j ≤ PMD
max ,

B
ln2

Ξ j(λ ja j+µ jb j)

PMD
maxΞ j+1 −λ j, elsewhere.

(6.24)

Algorithm 6.3 summarizes the step by step procedure for solving the optimization

(6.8) based on IS.

6.3.2 Trade-off Optimization based on Constructive Interfer-

ence

In this section, we formulate the MOOP based on constructive interference (CI).

The basic idea of CI is that, the knowledge of the downlink data signals at the



6.3. Problem Formulation 126

FD BS can be used to exploit the multiuser interference rather than suppress it as

in the conventional case. The concept of CI has been thoroughly studied in the

literature for both PSK and QAM modulation in [13, 105, 106, 121, 122, 157–161]

and references therein, where analytical criteria are also derived. For notational

convenience, we focus on PSK here. To formulate the MOOP based on CI, we first

write the received symbol at the i-th downlink user as

ỹi = hH
i

(
K

∑
k=1

wke j(φk−φi)

)
= hH

i x, (6.25)

where we have omitted the noise term, x = ∑
K
k=1 wke j(φk−φi) and the unit-energy

PSK symbol for the i-th downlink user is represented as di = deφi .

As detailed in [13], for any given PSK constellation point, to guarantee CI,

ỹi must fall within the CI region of the constellation. The size of the region is

determined by θ =±π

Y , which is the maximum angle shift within the CI region for

a modulation order Y . Accordingly, the downlink SINR constraint that guarantees

CI at the i-th downlink user [13] is

|ℑ(ỹi)| ≤

ℜ(ỹi)−

√√√√Γi

J

∑
j=1

pCI
j |` j,i|2 +Γiσ

2
i

 tanθ , (6.26)

where ℜ and ℑ are the real and imaginary parts, respectively. Therefore, the MOOP

based on CI can be mathematically formulated as

P6.2 : min
x,{pCI

j }
c1 ·ECI

o f f + c2 ·
J

∑
j=1

T total-CI
j

s.t. B1 :
q j

rCI
j
+

q jLBS, j

fBS
≤ Tj,∀ j,

B2 : (6.26),∀i,

B3 : pCI
j ≤ PMD

max ,∀ j, B4 : ‖x‖2 ≤ PDL
max.

(6.27)

Here, T total-CI
j =

q j

rCI
j
+

q jLBS, j
fBS

and ECI
o f f =∑

J
j=1 pCI

j tCI
o f f , j, where rCI

j =B log2

(
1+ γCI

j

)
,γCI

j =
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p j|gH
j u j|2

sCI
j +σ2

j ‖u j‖2 and sCI
j =

∣∣∣uH
j HSIx

∣∣∣2. The MOOP (6.27) is non-convex. We solve

(6.27) in a similar fashion to Section 6.3.1.

For fixed power pCI
j , the variable {x} can be obtained by solving the following

subproblem

P6.2a : min
x

‖x‖2

s.t. B1, B2, B4.
(6.28)

Unlike the conventional scheme, the subproblem (6.28) is convex and can be solved

using standard convex solvers. Accordingly, given the variable {x}, the transmit

power for the mobile devices can be obtained by solving the following subproblem

P6.2b : min
{pCI

j },{aCI
j },

{bCI
j }

c1 ·

(
J

∑
j=1

q jaCI
j

)
+ c2 ·

(
J

∑
j=1

q jbCI
j

)

s.t. B5 :
pCI

j

rCI
j
≤ aCI

j , B6 :
1

rCI
j
≤ bCI

j ,

B̃1 : τ j− γ
CI
j ≤ 0,∀ j,

B3 : pCI
j ≤ PMD

max ,∀ j,

(6.29)

To solve (6.29), we analyse the problem using Lagrangian method in a similar fash-

ion to Section 6.3.1. Accordingly, we obtain the following as the corresponding

solutions to the problem (6.29)

λ
CI
j =

c1q j

rCI
j

, µ
CI
j =

c2q j

rCI
j

, aCI
j =

pCI
j

rCI
j
, bCI

j =
1

rCI
j
,

pCI∗
j =



τ j

ΞCI
j
, for MCI

j <
τ j

ΞCI
j
,

MCI
j , for τ j

ΞCI
j
≤MCI

j ≤ PMD
max ,

PMD
max , for MCI

j > PMD
max ,
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β
CI∗
j =


λ CI

j

ΞCI
j
− B

ln2
λ CI

j aCI
j +µCI

j bCI
j

τ j+1 , for MCI
j <

τ j

ΞCI
j
,

0, elsewhere,

ν
CI∗
j =


0, for MCI

j ≤ PMD
max ,

B
ln2

ΞCI
j (λ CI

j aCI
j +µCI

j bCI
j )

PMD
maxΞCI

j +1
−λ CI

j , elsewhere,

where ΞCI
j =

|gH
j u j|2

sCI
j +σ2

j ‖u j‖2 and MCI
j = B

ln2
λ CI

j aCI
j +µCI

j bCI
j

λ CI
j

− 1
ΞCI

j
. Please note that, a sum-

mary of the Algorithm to solve (6.27) based on CI is omitted, however, (6.27) can

be solved by following the same steps as shown in Algorithm 6.3 with the corre-

sponding CI based solutions shown in Section 6.3.2.

6.4 MOOP Designs based on Imperfect CSI
In the previous section, it is assumed that the FD BS has perfect knowledge of the

CSI for all the channel links. However, in practice this is not always the case. Thus,

in this section in order to investigate the robustness of the considered system, we

extend the MOOP algorithm designs in the previous section to accommodate for the

case where the FD BS does not have perfect CSI knowledge of the channel links.

In the literature, robust designs can generally be categorized into two main

designs: the probabilistic and the deterministic based designs. In probabilistic based

designs, the error in the CSI knowledge is assumed to have a certain statistical

characteristic like the mean or covariance of the channel. In deterministic based

designs, which is adopted in this Section, the error in the CSI is assumed to belong

to a given uncertainty set. The size of the set determines the amount of uncertainty

on the channel and the system optimizes the worst-case performance which achieves

a guaranteed performance level for any channel realization in the set. Therefore,

for convenience and to avoid any statistical assumptions on the channel, we adopt

the worst-case approach which corresponds well to quantization errors and is also

suitable for handling slow-fading channels [89].

Accordingly, to model the imperfect CSI, we assume that the actual chan-
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nels hi, ` j,i,HSI and g j, for i = 1, . . . ,K and j = 1, . . . ,J, respectively, lie in the

neighbourhood of the estimated channels ĥi, ˆ̀j,i,ĤSI and ĝ j, for i = 1, . . . ,K and

j = 1, . . . ,J, respectively. Hence, the actual channels are modelled as

hi = ĥi + eh,i, such that
∥∥eh,i

∥∥≤ εh,i,∀i,

` j,i = ˆ̀j,i + e j,i, such that
∣∣e j,i
∣∣≤ ε j,i,∀ j, i,

g j = ĝ j + eg, j, such that
∥∥eg, j

∥∥≤ εg, j,∀ j,

HSI = ĤSI +ESI such that ‖ESI‖F ≤ εSI,

where eh,i,e j,i,eg, j and ESI represent the channel uncertainties that are assumed to

be bounded. We assume the FD BS has no knowledge of the channel uncertainties

except their bounds, hence, we take the worst case approach for our algorithm de-

signs. In the following subsections, we present the robust solutions for the proposed

interference suppression and interference exploitation designs presented in Section

6.3.

6.4.1 Robust Trade-off Design based on IS

The robust formulation of the MOOP based on IS in (6.8) can be expressed as

P6.3 : min
{wi},{p j}

c1 · Êo f f + c2 ·
J

∑
j=1

T̂ total
j

s.t. C1 : max
eg, j,ESI

q j

r̂ j
+

q jLBS, j

fBS
≤ Tj,∀

∥∥eg, j
∥∥≤ εg, j,‖ESI‖F ≤ εSI,∀ j,

C2 : min
eh,i,e j,i

Γ̂
DL
i ≥ Γi,∀

∥∥eh,i
∥∥≤ εh,i,

∥∥e j,i
∥∥≤ ε j,i,∀i,

C3 : 0≤ p j ≤ PMD
max ,∀ j,

C4 :
K

∑
i=1
‖wi‖2 ≤ PDL

max,

(6.30)

where we have

Γ̂
DL
i =

∣∣∣(ĥi + eh,i
)H wi

∣∣∣2
∑

K
k 6=i

∣∣∣(ĥi + eh,i
)H wk

∣∣∣2 +∑
J
j=1 p j

∣∣ ˆ̀j,i + e j,i
∣∣2 +σ2

i

,
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γ̂ j =
p j

∣∣∣(ĝ j + eg, j
)H u j

∣∣∣2
∑

J
n6= j pn

∣∣∣(ĝn + eg,n)
H u j

∣∣∣2 + ŝ j +σ2
j

∥∥u j
∥∥2

,

ŝ j =
K

∑
i=1

∣∣uH
j
(
ĤSI +ESI

)
wi
∣∣2 ,

r̂ j = B log2
(
1+ γ̂ j

)
,

Êo f f =
J

∑
j=1

p jt̂o f f , j,

J

∑
j=1

T̂ total
j =

q j

r̂ j
+

q jLBS, j

fBS
.

The formulation in (6.30) is evidently a non-convex problem, in addition, it con-

tains many inequalities that makes the worst-case design particularly challenging

to solve. To solve (6.30), we simply follow the algorithm design in Section 6.3.1.

Hence, the SDR formulations of constraint C1 and C2 can be written respectively

as
p j

∣∣∣(ĝ j + eg, j
)H u j

∣∣∣2
∑

J
n6= j pn

∣∣∣(ĝn + eg,n)
H u j

∣∣∣2 + ŝSI
j +σ2

j

∥∥u j
∥∥2
≥ τ j, (6.31)

where ŝSI
j = Tr

{(
ĤSI +ESI

)
∑

K
i=1 Wi

(
ĤSI +ESI

)H U j

}
, and

(
ĥi + eh,i

)H Wi
(
ĥi + eh,i

)
∑

K
k 6=i
(
ĥi + eh,i

)H Wk
(
ĥi + eh,i

)
+∑

J
j=1 p j

∣∣ ˆ̀j,i + e j,i
∣∣2 +σ2

i

≥ Γi. (6.32)

Therefore, the robust formulation of (6.10) becomes

P6.3a : min
{Wi�0}

K

∑
i=1

Tr{Wi}

s.t. C1 : min
eg, j,ESI

(6.31),∀
∥∥eg, j

∥∥≤ εg, j,‖ESI‖F ≤ εSI,∀ j,

C2 : min
eh,i,e j,i

(6.32),∀
∥∥eh,i

∥∥≤ εh,i,
∥∥e j,i

∥∥≤ ε j,i,∀i,

C4 :
K

∑
i=1

Tr(Wi)≤ PDL
max.

(6.33)
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To make (6.33) more tractable to analyze and solve, we first simplify and relax part

of constraints C1 and C2, and then transform them into linear matrix inequalities

(LMIs) using the so-called S-procedure [84]. First, notice that C1 can be simplified

by introducing auxiliary variables such that C1 can be written as the following two

constraints

min
eg, j

p j

∣∣∣(ĝ j + eg, j
)H u j

∣∣∣2 ≥ τ j

(
J

∑
n6= j

pn

∣∣∣(ĝn + eg,n)
H u j

∣∣∣2 + ŜSI
j

)
, (6.34)

max
ESI

Tr

{(
ĤSI +ESI

) K

∑
i=1

Wi
(
ĤSI +ESI

)H U j

}
+σ

2
j
∥∥u j
∥∥2 ≤ ŜSI

j . (6.35)

By using the inequalities
∣∣xHy

∣∣≤ ‖x‖‖y‖ and ‖x+y‖2 ≤ (‖x‖+‖y‖)2, (6.34) can

be relaxed to the following robust formulation

p j
(
|ĝH

j u j|+ εg, j‖u j‖
)2 ≥ τ j

(
J

∑
n6= j

pn
(
|ĝH

n u j|+ εg,n‖u j‖
)2

+ ŜSI
j

)
,∀ j. (6.36)

Also, notice that C2 can be simplified to the following two constraints,

min
eh,i

(
ĥi + eh,i

)H Qi
(
ĥi + eh,i

)
−Γi

(
Li +σ

2
i
)
≥ 0,∀i, (6.37)

max
e j,i

J

∑
j=1

p j
∣∣ ˆ̀j,i + e j,i

∣∣2−Li ≤ 0,∀i, (6.38)

where Qi = Wi−Γi ∑
K
k 6=i Wk. (6.38) can be relaxed to give the following robust

formultion
J

∑
j=1

p j
(∣∣ ˆ̀j,i

∣∣+ ε j,i
)2 ≤ Li,∀i. (6.39)

Next, we transform the constraints (6.35) and (6.37) to LMIs using the S-

procedure [84]. First, we expand constraints (6.35) and (6.37) by using the fact
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that Tr{ABCD}= vec
(
AH)H (DH⊗B

)
vec(C) as follows

eH
SI

(
U j⊗

K

∑
k=1

Wk

)
eSI +2Re

{
ĥH

SI

(
U j⊗

K

∑
k=1

Wk

)
eSI

}

+ ĥH
SI

(
U j⊗

K

∑
k=1

Wk

)
ĥH

SI +σ
2
j Tr
{

U j
}
− ŜSI

j ≤ 0 (6.40)

eH
h,iQieh,i +2Re

{
ĥH

i Qieh,i
}
+ ĥH

i Qiĥi−Γi
(
Li +σ

2
i
)
≥ 0, (6.41)

We denote ĥSI = vec
(
ĤH

SI
)

and eSI = vec
(
EH

SI
)

where, vec(·) stacks the columns of

a matrix into a vector and⊗ stands for Kronecker product. Thus, following Lemma

1, (6.40) and (6.41) can be transform into the following LMIs, respectivelyρI−Z j −Z jĥSI

−ĥH
SIZ j ŜSI

j − ĥH
SIZ jĥSI−σ2

NTr
{

U j
}
−ρε2

SI

� 0,∀ j, (6.42)

where Z j =
(
U j⊗∑

K
i=1 Wi

)
, and

δiI+Qi Qiĥi

ĥH
i Qi ĥH

i Qiĥi−Γi
(
Li +σ2

i
)
−δiε

2
h,i

� 0,∀i. (6.43)

Therefore, (6.33) can be re-expressed as

P̃6.3a : min
{Wi�0}

K

∑
i=1

Tr{Wi}

s.t. (6.36), (6.39), (6.42), (6.43), C4.

(6.44)

The problem (6.44) is convex and can be solved by standard convex solvers. We

note that the formulation in (6.44) is a relaxed form of (6.30). If the resulting solu-

tion Wi after solving (6.44) is rank one, the optimal wi can be obtained by applying

eigenvalue-decomposition (EVD), otherwise, ramdomization technique [134] can

be used to retrieve wi.

Next, for fixed beamforming vectors the transmit power for the mobile devices
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can be obtained by solving the following robust subproblem

P6.3b : min
{p j},{â j},
{b̂ j}

c1 ·

(
J

∑
j=1

q jâ j

)
+ c2 ·

(
J

∑
j=1

q jb̂ j

)

s.t. C5 :
p j

r̂ j
≤ â j, C6 :

1
r̂ j
≤ b̂ j,

C̃1 : τ j− γ̂ j ≤ 0,∀ j,

C3 : 0≤ p j ≤ PMD
max ,∀ j.

(6.45)

The Lagrange function of problem (6.45) is

L
(

p j, â j, b̂ j, λ̂ j, µ̂ j, β̂ j, ν̂ j

)
= c1

J

∑
j=1

q jâ j + c2

J

∑
j=1

q jb̂ j +
J

∑
j=1

λ̂ j
(

p j− â j r̂ j
)

+
J

∑
j=1

µ̂ j
(
1− b̂ j r̂ j

)
+

J

∑
j=1

β̂ j
(
τ j− γ̂ j

)
+

J

∑
j=1

ν̂ j
(

p j−PMD
max
)
, (6.46)

where λ̂ j, µ̂ j, β̂ j, ν̂ j are Lagrange multipliers. The KKT conditions are given by

∂L

∂ p j
= λ̂ j− λ̂ jâ j

∂ r̂ j

∂ p j
− µ̂ jb̂ j

∂ r̂ j

∂ p j
− β̂ j

∂ γ̂ j

∂ p j
−

J

∑
n6= j

λ̂nân
∂ r̂n

∂ p j
−

J

∑
n6= j

µ̂nb̂n
∂ r̂n

∂ p j

−
J

∑
n6= j

β̂n
∂ γ̂n

∂ p j
+ ν̂ j = 0, (6.47)

∂L

∂ â j
= c1q j− λ̂ j r̂ j = 0,

∂L

∂ b̂ j
= c2q j− µ̂ j r̂ j = 0, (6.48)

λ̂ j
(

p j− â j r̂ j
)
= 0, µ̂ j

(
1− b̂ j r̂ j

)
= 0, (6.49)

β̂ j
(
τ j− γ̂ j

)
= 0, ν̂ j

(
p j−PMD

max
)
= 0. (6.50)

From (6.48) and (6.49) we have λ̂ j =
c1q j
r̂ j

, µ̂ j =
c2q j
r̂ j

, â j =
p j
r̂ j

and b̂ j =
1
r̂ j

, respec-
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tively. Also, we have

∂ γ̂ j

∂ p j
=

∣∣∣(ĝ j + eg, j
)H u j

∣∣∣2
∑

J
n6= j pn

∣∣∣(ĝn + eg,n)
H u j

∣∣∣2 + ŝ j +σ2
j

∥∥u j
∥∥2

,

∂ r̂ j

∂ p j
=

B
ln2
(
1+ γ̂ j

) · ∂ γ̂ j

∂ p j
,

∂ γ̂n

∂ p j
=−

γ̂2
n

∣∣∣(ĝ j + eg, j
)H un

∣∣∣2
pn

∣∣∣(ĝn + eg,n)
H un

∣∣∣2 ,
∂ r̂n

∂ p j
=− B

ln2(1+ γ̂n)
· ∂ γ̂n

∂ p j
,

which can be relaxed to give the following robust formulations, respectively,

∂γ j

∂ p j
= Ξ̂ j,

∂ r j

∂ p j
=

B
ln2
(
1+ p jΞ̂ j

) · Ξ̂ j,

∂γn
∂ p j

=−

(
pnΞ̂n

)2
(
|ĝH

j un|+ εg, j‖un‖
)2

pn (|ĝH
n un|+ εg,n‖un‖)2 ,

∂ rn

∂ p j
=− B

ln2
(
1+ pnΞ̂n

) · −∂γn
∂ p j

,

where Ξ̂ j =
(|ĝH

j u j|+εg, j‖u j‖)
2

∑
J
n 6= j pn(|ĝH

n u j|+εg,n‖u j‖)
2
+s j+σ2

j ‖u j‖2 and s j =∑
K
i=1

(
|uH

j ĤSIwi|+ εSI‖u j‖‖wi‖
)2

.

Here, we used the inequalities
∣∣xHy

∣∣≤ ‖x‖‖y‖ and ‖x+y‖2 ≤ (‖x‖+‖y‖)2. Fur-

ther notice that, the optimal solutions of (6.45) can be obtained by solving the

following J subproblems since they have the same KKT conditions

min
p j

λ̂ j p j +D j p j− λ̂ jâ j r̂ j− µ̂ jb̂ j r̂ j

s.t. C̃1 : τ j− γ̂ j ≤ 0,

C3 : 0≤ p j ≤ PMD
max ,

(6.51)

where

D j =−
J

∑
n6= j

β̂n
∂γn
∂ p j
−

J

∑
n6= j

λ̂nân
∂ rn

∂ p j
−

J

∑
n6= j

µ̂nb̂n
∂ rn

∂ p j
.
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The KKT conditions are given by

λ̂ j +D j− λ̂ jâ j
∂ r j

∂ p j
− µ̂ jb̂ j

∂ r j

∂ p j
− β̂ j

∂γ j

∂ p j
+ ν̂ j = 0, (6.52)

β̂ j
(
τ j− γ̂ j

)
= 0, (6.53)

ν̂ j
(

p j−PMD
max
)
= 0. (6.54)

From (6.52), we have

p∗j =
B

ln2
λ̂ jâ j + µ̂ jb̂ j

λ̂ j +D j− β̂ ∗j Ξ̂ j + ν̂∗j
− 1

Ξ̂ j
, (6.55)

where β̂ ∗j and ν̂∗j satisfy the KKT conditions (6.53) and (6.54), respectively. After

examining the KKT conditions in similar fashion as in Section 6.3.1, we obtain the

following optimal solutions

p∗j =



τ j

Ξ̂ j
, for M̂ j <

τ j

Ξ̂ j
,

M̂ j, for τ j

Ξ̂ j
≤ M̂ j ≤ PMD

max ,

PMD
max , for M̂ j > PMD

max ,

(6.56)

β̂
∗
j =


λ̂ j+D j

Ξ̂ j
− B

ln2
λ̂ jâ j+µ̂ jb̂ j

τ j+1 , for M̂ j <
τ j

Ξ̂ j
,

0, elsewhere,
(6.57)

ν̂
∗
j =


0, for M̂ j ≤ PMD

max ,

B
ln2

Ξ̂ j(λ̂ jâ j+µ̂ jb̂ j)

PMD
maxΞ̂ j+1

− λ̂ j−D j, elsewhere,
(6.58)

where M̂ j =
B

ln2
λ̂ jâ j+µ̂ jb̂ j

λ̂ j+D j
− 1

Ξ̂ j
. We note that, the same procedure as shown in Algo-

rithm 6.3 can be used to solve the robust optimization problem (6.30) based on IS

with the corresponding solutions shown in Section 6.4.1.
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6.4.2 Robust Trade-off Design based on CI

For the robust design based on CI, we start by writing the robust formulation of

(6.26) as

|ℑ(ŷi)| ≤

ℜ(ŷi)−

√√√√Γi

J

∑
j=1

pCI
j

∣∣ ˆ̀j,i + e j,i
∣∣2 +Γiσ

2
i

 tanθ , (6.59)

where ŷi =
(
ĥi + eh,i

)H x. Thus, the robust formulation of (6.27) becomes

P6.4 : min
x,{pCI

j }
c1 · ÊCI

o f f + c2 ·
J

∑
j=1

T̂ total-CI
j

s.t. D1 : max
eg, j,ESI

q j

r̂CI
j
+

q jLBS, j

fBS
≤ Tj,∀

∥∥eg, j
∥∥≤ εg, j,‖ESI‖F ≤ εSI,∀ j,

D2 : max
eh,i,e j,i

(6.59),∀
∥∥eh,i

∥∥≤ εh,i,
∥∥e j,i

∥∥≤ ε j,i,∀i,

D3 : pCI
j ≤ PMD

max ,∀ j,

D4 : ‖x‖2 ≤ PDL
max.

(6.60)

Here, T̂ total-CI
j =

q j

r̂CI
j
+

q jLBS, j
fBS

and ÊCI
o f f =∑

J
j=1 pCI

j t̂CI
o f f , j, where r̂CI

j =B log2

(
1+ γ̂CI

j

)
, γ̂CI

j =

pCI
j

∣∣∣(ĝ j+eg, j)
Hu j

∣∣∣2
∑

J
n 6= j pCI

n

∣∣∣(ĝn+eg,n)
Hu j

∣∣∣2+ŝCI
j +σ2

j ‖u j‖2
and ŝCI

j =
∣∣∣uH

j
(
ĤSI +ESI

)
x
∣∣∣2. Following the al-

gorithm design in Section 6.3.2, for fixed {pCI
j } we obtain x by solving

P6.4a : min
x

‖x‖2

s.t. D1, D2, D4.
(6.61)

Problem (6.61) is non-convex. We solve (6.61) as follows. First, consider constraint

D1 which can be written as

pCI
j

∣∣∣(ĝ j + eg, j
)H u j

∣∣∣2 ≥ τ j

[
J

∑
n 6= j

pCI
n

∣∣∣(ĝn + eg,n)
H u j

∣∣∣2 + ŝCI
j +σ

2
j
∥∥u j
∥∥2

]
, (6.62)
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which can be relaxed to give the following robust formulation

p j
(
|ĝH

j u j|+ εg, j‖u j‖
)2 ≥ τ j

[
J

∑
n 6= j

pn
(
|ĝH

n u j|+ εg,n‖u j‖
)2

+
(
|uH

j ĤSIx|2 + εSI‖u j‖‖x‖
)2

+σ
2
j
∥∥u j
∥∥2
]
,∀ j. (6.63)

Constraint D2 can be written as

∣∣(ĥi + eh,i)
Hx
∣∣−
(ĥi + eh,i)

H
Πx−

√√√√Γi

(
J

∑
j=1

p j
∣∣ ˆ̀j,i + e j,i

∣∣2 +σ2
i

) tanθ ≤ 0,∀i,

(6.64)

which can be relaxed to the following two robust formulations

ĥH
i (x−Πx tanθ)+ εh,i‖x−Πx tanθ‖+

√√√√Γi

(
J

∑
j=1

p j
(∣∣ ˆ̀j,i

∣∣+ ε j,i
)2
)

tanθ ≤ 0,∀i,

(6.65)

ĥH
i (−x−Πx tanθ)+εh,i‖−x−Πx tanθ‖+

√√√√Γi

(
J

∑
j=1

p j
(∣∣ ˆ̀j,i

∣∣+ ε j,i
)2
)

tanθ ≤ 0,∀i,

(6.66)

where x =
[
ℜ(x)H ℑ(xH)

]H
, Π =

0N −IN

IN 0N

, ĥi =
[
ℑ(ĥi)

H ℜ(ĥi)
H
]H

, eh,i =[
ℑ(eh,i)

H ℜ(eh,i)
H
]H

. Therefore, problem the transformed problem (6.61) can be

expressed as

P̃6.4a : min
x

‖x‖2

s.t. (6.63), (6.65), (6.66), D4.
(6.67)

(6.67) is convex and can be solved using standard convex solvers.

Accordingly, given the variable {x}, the transmit power for the mobile devices
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can be obtained by solving the following subproblem

P6.4b : min
{pCI

j },{âCI
j },

{b̂CI
j }

c1 ·

(
J

∑
j=1

q jâCI
j

)
+ c2 ·

(
J

∑
j=1

q jb̂CI
j

)

s.t. D5 :
pCI

j

r̂CI
j
≤ âCI

j , D6 :
1

r̂CI
j
≤ b̂CI

j ,

D̃1 : τ j− γ̂
CI
j ≤ 0,∀ j,

D3 : pCI
j ≤ PMD

max ,∀ j,

(6.68)

To solve (6.68), we analyse the problem using Lagrangian method in a similar fash-

ion to Section 6.4.1. Accordingly, we obtain the following as the corresponding

solutions to the problem (6.68)

λ̂
CI
j =

c1q j

r̂CI
j

, µ̂
CI
j =

c2q j

r̂CI
j

, âCI
j =

pCI
j

r̂CI
j
, b̂CI

j =
1

r̂CI
j
,

pCI∗
j =



τ j

Ξ̂CI
j
, for M̂CI

j <
τ j

Ξ̂CI
j
,

M̂CI
j , for τ j

Ξ̂CI
j
≤ M̂CI

j ≤ PMD
max ,

PMD
max , for M̂CI

j > PMD
max ,

β̂
CI∗
j =


λ̂ CI

j +DCI
j

Ξ̂CI
j
− B

ln2
λ̂ CI

j âCI
j +µ̂CI

j b̂CI
j

τ j+1 , for M̂CI
j <

τ j

Ξ̂CI
j
,

0, elsewhere,

ν̂
CI∗
j =


0, for M̂CI

j ≤ PMD
max ,

B
ln2

Ξ̂CI
j (λ̂ CI

j âCI
j +µ̂CI

j b̂CI
j )

PMD
maxΞ̂CI

j +1
− λ̂ CI

j −DCI
j , elsewhere,
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Figure 6.2: Total offloading energy vers[width=8cm]us number of iterations.

where

Ξ̂
CI
j =

(
|ĝH

j u j|+ εg, j‖u j‖
)2

∑
J
n6= j pn

(
|ĝH

n u j|+ εg,n‖u j‖
)2

+ sCI
j +σ2

j

∥∥u j
∥∥2 ,

sCI
j =

(
|uH

j ĤSIx|2 + εSI‖u j‖‖x‖
)2
,

M̂CI
j =

B
ln2

λ̂ jâCI
j + µ̂CI

j b̂CI
j

λ̂ CI
j +DCI

j

− 1
Ξ̂CI

j
.

To solve the robust design problem in (6.60), similar steps as in Algorithm 6.3 are

followed by adopting the corresponding CI based solutions as detailed in Section

6.4.2, respectively.

6.5 Simulation Results

In this section, we investigate the performance of our proposed schemes through

Monte Carlo simulations. We consider the system with the FD BS at the centre of

a cell with N = 6. We assume K = 4 DL users and J = 2 MDs, are randomly and

uniformly distributed between the distance of 2m and 20m. We model the channels

to the MDs and DL users as Rayleigh fading. The SI channel is modelled as Rician

fading channel with Rician factor 6dB [117]. Furthermore, we consider a similar

system set-up as in [116] with σi =σ j =−90dB,PMD
max = 32dBm and PDL

max = 40dBm.
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Figure 6.3: Total offloading latency versus number of iterations.

Moreover, we assume T = 100ms,Γi = 4dB,B = 1MHz,q j = 105,LBS, j = 103 and

fBS = 1010 as in [14, 144], and QPSK modulation is considered for the CI scheme.

Our baseline is the HD scheme as in [147]. In order to make the compari-

son fair, we consider that the HD BS is equipped with N number of transmit and

N number of receive antennas which are utilized for transmitting or receiving in

non-overlapping equal-length time intervals. This implies that both SI and CCI are

avoided. In addition, we set the data rate of HD equal to the one for FD, which

requires that the individual mobile devices’ and downlink users’ data rates are dou-

ble the ones for the FD case, due to the slotted HD transmission. Furthermore,

the power consumption for the uplink and downlink transmission is divided by two

since only uplink or downlink transmission is performed at a given time.

6.5.1 Convergence and Complexity of Algorithms

In this subsection, we show the convergence and complexity to the solutions for the

proposed MOOPs in (6.8) and (6.27), respectively. Since the objective functions

in (6.8) and (6.27) decrease in every iteration the convergence of Algorithm 6.3

is guaranteed, which can realized from optimizing all wk and p j in each iteration

as shown in Algorithm 6.3. In Figs. 6.2 and 6.3, we show the convergence rate

of the proposed solutions with respect to number of iterations. Each point in the

curves is obtained by solving the MOOPs in (6.8) and (6.27) for the correspond-
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Figure 6.5: Trade-off plot total offloading energy versus latency with N = 6,K = 4,J =
2,T = 100ms,Γi = 4dB,B = 1MHz,q j = 105,LBS, j = 103 and fBS = 1010.

ing number of iteration(s). Generally, we have observed that both the proposed IS

and CI schemes converge with the same number of iterations in terms of both the

offloading energy and latency respectively, although, it takes fewer iterations for

the case of the offloading latency. This is attributed to the strictness of the offload-

ing latency threshold imposed for each mobile device. In addition, even with the

same convergence rate, the CI scheme shows improved performance in both plots

compared to the IS scheme since multi-user inference in exploited rather than sup-

pressed. Furthermore, in Fig. 6.4, we show the corresponding complexity of the
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Figure 6.6: Total offloading energy versus latency threshold T , with N = 6,K = 4,J =
2,c1 = c2 = 0.5,Γi = 4dB,B = 1MHz,q j = 105,LBS, j = 103 and fBS = 1010.

proposed solutions in terms of the average run time in seconds per iteration. We

can observe that, although the solutions to proposed schemes have the same conver-

gence rate, the average run time in seconds per iteration of the CI scheme is faster

than the IS scheme. This difference in complexity mainly comes from optimizing

the beamforming vectors wk through solving subproblems (6.10) and (6.28) for the

IS scheme and CI scheme, respectively. The formulation in (6.10) is a standard SDP

problem which basically finds the optimal covariance matrix Wk before retrieving

the beamforming vector wk, while (6.28) is a second-order cone program (SOCP)

that finds the optimal beamforming vectors directly. In general, the solutions to the

proposed MOOPs show an acceptable complexity as shown in Fig. 6.4.

6.5.2 Numerical Results

Fig. 6.5 shows the trade-off between the total offloading energy and latency. The

trade-off region is obtained by varying the weights c1 and c2 between 0 to 1, re-

spectively, with a step size of 0.1. First, it can be seen that, where before one could

only optimize either the offloading energy with a fixed latency constraint, or the

latency with a fixed energy constraint, our proposed MOOP allows for a scalable

tradeoff between the two objectives. It is evident that an increase in the offloading

energy leads to the decrease in the offloading latency and vice versa. This is as a
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Figure 6.7: Total offloading latency versus latency threshold T with N = 6,K = 4,J =
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Figure 6.8: Total offloading energy versus offloading bandwidth B, with N = 6,K = 4,J =
2,c1 = c2 = 0.5,Γi = 4dB,T = 100ms,q j = 105,LBS, j = 103 and fBS = 1010.

result of the dependency of the optimization variables. On one hand, increasing the

transmit power of the mobile devices in order to satisfy the latency constraints and

minimize the offloading latency, increases the CCI to the downlink users. Hence,

the downlink transmit power is increased to accommodate for the increase in CCI,

which in turn increases the SI. In essence, this leads a continuous increase in the

uplink and downlink transmit power, thus, the offloading energy increases. On the

contrary, reducing the transmit powers in order to reduce the CCI and SI, and min-

imize the offloading energy, gives rise to an increase in the offloading latency. In



6.5. Simulation Results 144

1 2 3 4 5 6

Offloading bandwidth (MHz)

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

T
o
ta

l 
o
ff
lo

a
d
in

g
 l
a
te

n
c
y
(s

)

Baseline HD

IS FD

CI FD

Figure 6.9: Total offloading latency versus offloading bandwidth B, with N = 6,K = 4,J =
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Figure 6.10: Total offloading latency versus CPU frequency fBS, with N = 6,K = 4,J =
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addition, this results show the proposed CI scheme consumes less energy and time

as compared to the conventional FD scheme. This is because less downlink transmit

power is required to satisfy the downlink SINR constraints, hence, reduced SI, as

compared to the conventional case where interference is rather suppressed. Further-

more, the points c1 = 0 and c1 = 1 is equivalent to the having only the offloading

energy minimization problem [142, 144–146] and the offloading latency minimiza-

tion problem [143], respectively. Again, this shows the flexibility provided by the

proposed MOOP by varying the weights. More importantly, it can be seen that the
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proposed FD schemes out perform their baseline HD [147] counterpart in terms of

energy consumption and latency reduction.

In Figs. 6.6 and 6.7, we study the effect of different offloading latency

thresholds T on the considered system. Here, for the purpose of analyses we set

c1 = c2 = 0.5. Fig. 6.6 shows the total offloading energy for the different latency

thresholds. As expected for all the schemes, since increasing the latency thresh-
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old requires less transmit powers, thus, the total offloading energy consumption re-

duces, respectively. However, in terms of offloading latency in Fig. 6.7, all schemes

are proportional to increase in latency requirement. Besides, in both plots the FD

schemes outperforms the HD scheme. This further highlights the effectiveness of

the proposed FD schemes.

Next, we show the effect of the offloading bandwidth (B) in the considered

FD system. Fig. 6.8 shows that the total offloading energy consumption decreases

as B increases. This indicates that as B increase the offloading rate increases and

also energy consumption is saved by all schemes. However, still the proposed FD

schemes outperforms the HD counterpart even at large bandwidth. Similar trend can

be seen in Fig. 6.9, which shows that increasing B results in latency reduction. This

is as a result of the increase in offloading rate which translates directly to reduction

in latency. These plots highlight the importance of the offloading bandwidth in the

considered FD system.

In addition, Fig. 6.10 shows the total offloading latency versus the CPU fre-

quency of the FD BS. As the CPU frequency increases, less time is required by the

FD BS to complete the computation of the offloaded tasks. This is reported in Fig.

6.10 for all schemes. The figure also shows the effect of the computation task size

with regards to the CPU frequency. It can be seen that an increase in the compu-

tation task size increases the overall offloading latency. This is obviously due the

fact that increasing the task size implies more cycles/s is required to complete the

task, hence, an increase in the overall latency. Besides, our proposed FD schemes

outperform the HD scheme in all cases.

Furthermore, in Figs. 6.11 and 6.12 we investigate the performance of the pro-

posed robust FD schemes. Fig. 6.11 shows the obtained total energy consumption

with increasing CSI error bounds where it can be seen that increasing error bound

increases the energy consumption. The reason is that increasing the error bounds

implies reduced CSI knowledge at the FD BS. Similarly, in Fig. 6.12, the total

latency increases with increase in the CSI error bounds.
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6.6 Summary
In this chapter, we studied the offloading energy and latency trade-off in a multiuser

FD system that performs both data transmission and MEC. We proposed one FD

scheme based on the traditional downlink MUI interference suppression and the

other based on downlink MUI exploitation. We further extended the two proposed

schemes to consider practical scenarios with imperfect CSI knowledge. The pro-

posed FD schemes show a promising performance improvement over the baseline

HD schemes.



Chapter 7

Delay-Constrained BF and Resource

Allocation in FD Systems

This chapter is based on our publication in [J1].

7.1 Introduction
The strict requirements on latency and reliability for the next generation 5G commu-

nication system has set new priorities for researchers and has led to the development

of various techniques and algorithms in order to match these requirements. Moti-

vated by this and the fact that the rapid growth of high data rate services leads to

the increase in the power consumption in communication networks, it has become

important to design power efficient communication systems in order to reduce the

amount of greenhouse gases emission and operational expenses of communication

systems. In this chapter, we study a delay-constrained beamforming (BF) and re-

source allocation problem in a multiuser FD system.

In traditional system design, the main goal is to minimize the system power

consumption while satisfying some QoS constraints [79]. For example, [12] studied

the resource allocation for distributed antenna systems with a FD base station (BS)

that simultaneously serves uplink and downlink users where the network power con-

sumption is minimized by jointly optimizing the downlink beamformer and uplink

transmit power. Similarly, in [116], the authors investigated a power efficient re-

source allocation design for secure communications in a similar FD system setup.
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Also, the trade-off between the uplink and downlink power consumption was in-

vestigated in [116, 154]. In [154], the authors used the knowledge of the downlink

signals at the FD BS to exploit multi-user interference (MUI) instead of treating the

MUI as unwanted as in traditional interference suppression techniques.

Delay is a critical performance metric that determines the reliability of a wire-

less system and it is directly related to the system queue length [162]. [163] studied

the trade-off between energy efficiency (EE) and delay in time-varying wireless

systems by maximizes the system EE subject to network stability constraints. Sim-

ilarly, in [164] the authors studied EE maximization in a bufffer-aided relay system

while maintaining queue stability. In [165], the authors studied resource allocation

in LTE-A system by maximizing a utility function of the transmission rate with

queue stability constraints. The authors in [166] proposed a QoS-aware resource

allocation for vehicle-to-vehicle (V2V) communications by minimizing the trans-

mission power subject to queueing latency constraints.

In contrast to the above mentioned works, which study either resource allo-

cation in FD system without stability constraints or half-duplex (HD) resource al-

location with stability constraints, we design a power-efficient resource allocation

algorithm in multi-user FD system. Unlike existing FD works in [12, 116, 154],

we aim at minimizing the long-term average system transmit power while ensur-

ing system queue stability. Likewise, the existing HD methods in [163–166] can

not be applied to our considered problem due to the introduction of SI and CCI in

our FD study. This requires the joint optimization of the downlink beamforming

vectors and uplink transmit power, which is not trivial to handle given the nature

of the problem. Thus, in this chapter we aim at addressing these gaps by means of

weighted and delay constrained optimization.

7.2 System Model

We consider a multiuser communication system where a FD BS with N transmit

and N receive antennas simultaneously serves K single-antenna downlink users and

J uplink users [12, 116, 154]. In the considered system, we assume communication
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is time slotted and slot t refers to the interval [t, t + 1), where t ∈ {0,1,2, . . .}. We

assume that the duration of one time slot is enough to transmit 1 bit of data. Accord-

ingly, by letting hk ∈ CN×1 and g j ∈ CN×1 be the channels between the FD BS and

the k-th downlink user, the j-th uplink user, respectively, the downlink and uplink

transmission rates at slot t in unit of bits/slot/Hz are defined respectively by

RDL,k(t) = log2
(
1+ γDL,k

)
, (7.1)

RUL, j(t) = log2
(
1+ γUL, j

)
, (7.2)

where

γDL,k(t) =

∣∣hH
k wk

∣∣2
∑

K
i 6=k

∣∣hH
k wi

∣∣2 +∑
J
j=1 PUL, j

∣∣` j,k
∣∣2 +σ2

k

,

=
hH

k Wkhk

∑
K
i 6=k hH

k Wihk +∑
J
j=1 PUL, j

∣∣` j,k
∣∣2 +σ2

k

,

(7.3)

γUL, j(t) =
PUL, j

∣∣∣gH
j u j

∣∣∣2
∑

J
n6= j pn

∣∣gH
n u j
∣∣2 + s j +σ2

j

∥∥u j
∥∥2 , (7.4)

are the signal-to-interference plus noise ratio (SINR) at the k-th downlink user and

at the FD BS, respectively. In (7.3) and (7.4), wk ∈ CN×1, PUL, j and ` j,k denote the

beamforming vector for the k-th downlink user with Wk = wkwH
k , the j-th uplink

transmit power and the channel between the j-th uplink user and the k-th downlink

user, respectively. In addition, nk ∼ C N (0,σ2
k ) and n j ∼ C N (0,σ2

j ) are the ad-

ditive white Gaussian noise at the k-th downlink user and the FD BS, respectively,

and u j ∈N×1 is the receive beamforming vector for the j-th uplink user. In this chap-

ter, to reduce complexity, we adopt ZF receive beamforming at the FD BS for the

detection of the uplink signals.

Furthermore, due to the simultaneous transmission and reception at the FD

BS, there is a strong SI that degrades the reception of the uplink signals at the

FD BS. In the literature, there are several SI mitigation techniques which could be

employed to reduce the effects of SI. In order to isolate our proposed scheme from
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the specific implementation of any passive or active SI mitigation techniques, we

model the SI after cancellation as s j = ρ

{
uH

j HSI
(
∑

K
k=1 Wk

)
HH

SIu j

}
[116], where

the matrix HSI ∈ CN×N denotes the SI channel at the FD BS and 0 ≤ ρ � 1 is the

SI cancellation constant.

The FD BS has separate queue buffers to store data for each downlink user.

Similarly, at each uplink user a queue buffer is used to store the data to be transmit-

ted to the FD BS. Data arrive through a random process every slot at the FD BS and

the uplink users. At slot t, the queue length for the k-th downlink user and the j-th

uplink user are denoted by QDL,k(t) and QUL, j(t), respectively, and these queues

evolve as follows:

QDL,k(t +1) = max
{

QDL,k(t)−RDL,k(t),0
}
+ADL,k(t), (7.5)

QUL, j(t +1) = max
{

QUL, j(t)−RUL, j(t),0
}
+AUL, j(t), (7.6)

where ADL,k(t) and AUL, j(t) are the data arrival rate for the k-th downlink user and

the j-th uplink user, which follow Poisson distributions, with mean arrival rates of

ADL,k and AUL, j, respectively. Accordingly, as data keeps arriving in every slot t,

the queue buffers become overloaded which may result to packet drop. In essence,

the queue buffers become unstable and communication becomes unreliable in the

system.

As such, a discrete time queue process Q(t) is mean-stable if limt→∞
E[|Q(t)|]

t =

0 [167], and a system of queues is said to be stable if all individual queues are

stable. This implies that to stabilize the system, it is required to control the size

of the queues. In addition, according to Little’s law [162], for a given arrival rate

the average queue length is proportional to the average delay. Thus, the system

delay is dependent on the queue length and stability. As a result, we can address the

transmission delay by the queue length and stability. To this end, in our problem

formulation we impose a queue stability constraint to ensure that the data in the

buffers are not trapped and are delivered with a finite delay. This is equivalent to

ensuring that the long-term average transmission rates are greater or equal to the

average arrival rates.



7.3. Delay-constrained Power Minimization and Algorithm Design 152

7.3 Delay-constrained Power Minimization and Al-

gorithm Design

Due to the stochastic nature of the channel conditions and data arrivals in the con-

sidered system and following [163–165], we consider the long-term average system

performance metrics in our design. Thus, our main objective is to design an opti-

mal resource allocation optimization problem that minimizes the the time-averaged

total system transmit power while satisfying queue stability constraints, quality of

service (QoS) constraints as well as maximum power constraints. This can be math-

ematically formulated as

P7.1 : min
{Wk�0}
{PUL, j}

c1 ·
K

∑
k=1

PDL,k + c2 ·
J

∑
j=1

PUL, j

s.t. A1 : RDL,k ≥ ADL,k,∀k,

A2 : RUL, j ≥ AUL, j,∀ j,

A3 : γDL,k(t)≥ ΓDL,∀k,∀t,

A4 : γUL, j(t)≥ ΓUL,∀ j,∀t,

A5 :
K

∑
k=1

PDL,k(t)≤ PDL
max,∀t,

A6 : 0≤ PUL, j(t)≤ PUL
max,∀ j,∀t,

(7.7)

where PDL,k(t) = Tr{Wk}, and c1 and c2 are weights attached to the to-

tal downlink and uplink transmit powers, respectively. Here, we define x =

limT→∞
1
T ∑

T
t=1E[x(t)] as the time average expectation of the variable x(t). Ac-

cordingly, constraints A1 and A2 ensure that the time-averaged transmission rate is

greater or equal to the average arrival rate, which guarantee queue stability for the

uplink and downlink queues. Constraints A3 and A4 ensure a minimum QoS for all

users and constraint A5 and A6 impose the maximum power on the the FD BS and

uplink users, respectively. The problem (7.7) is a non-convex problem due the time-

averaged objective and constraints, thus, classified as a stochastic problem [167].

In order to solve (7.7) we resort to the classical drift-plus-penalty approach based
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on Lyapunov framework [167].

To tackle (7.7), let Θ(t) =
{

QDL,k(t),QUL, j(t)
}

represent the queuing states of

all queues. Then, the Lyapunov function is defined as

L(Θ(t)) = E

[
1
2

K

∑
k=1

QDL,k(t)2 +
1
2

J

∑
j=1

QUL, j(t)2

]
, (7.8)

and the conditional drift-plus-penalty is defined as

D(Θ(t))=̂ E

[
L(Θ(t +1))−L(Θ(t))+V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)∣∣Θ(t)

]
.

(7.9)

The non-negative parameter V is the control parameter that is chosen as desired,

which captures the trade-off between the queue length and the total system trans-

mit power [167]. Accordingly, following straightforward calculations and using

(max{x,0})2 ≤ x2, we obtain the following upper bound for (7.9)

D(Θ(t))≤ E

[
M+V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)

−
K

∑
k=1

QDL,k(t)RDL,k(t)−
J

∑
j=1

QUL, j(t)RUL, j(t)
∣∣Θ(t)

]
, (7.10)

where M is a constant which does not influence the system performance [167]. Ac-

cording to [167], the solution to (7.7) can be acquired by minimizing the righthand

side of (7.10) in each slot t. Specifically, the optimisation problem is given by

P7.2 : max
{Wk�0}
{PUL, j}

K

∑
k=1

QDL,k(t)RDL,k(t)+
J

∑
j=1

QUL, j(t)RUL, j(t)

−V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)
s.t. A3, A4, A5, A6.

(7.11)

The minimization problem (7.11) is not trivial to handle due to the rate expres-

sions in the objective term. Thus, we simplify the objective as shown in (7.12) by
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expanding the non-linear log terms into linear log terms.

K

∑
k=1

QDL,k(t)

[
log2

(
K

∑
i=1

hH
k Wihk +

J

∑
j=1

PUL, j
∣∣` j,k

∣∣2 +σ
2
k

)

− log2

(
K

∑
i 6=k

hH
k Wihk +

J

∑
j=1

PUL, j
∣∣` j,k

∣∣2 +σ
2
k

)]
−V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)

+
J

∑
j=1

QUL, j(t)
[
log2

(
s j +σ

2
j
∥∥u j
∥∥2

+PUL, j
∣∣gH

j u j
∣∣2)− log2

(
s j +σ

2
j
∥∥u j
∥∥2
)]

.

(7.12)

The objective function in (7.12) is still non-convex, however, by close observation

(7.12) can be written as a difference of two concave functions. Thus, in order to

solve (7.11), we employ the convex-concave procedure (CCP) [168] to convexify

the objective function. The basic idea of the CCP is to convexify the DC problem

by replacing the convex part of the function by their first order Taylor series expan-

sions. This then makes the convex part affine functions. Hence, the CCP solves a

series of concave problems successively and iteratively by initiating the procedure

with a feasible point. In addition, the CCP has been proven to converge to the local

optima of DC programming, we refer the reader to [168] for a formal proof.

Accordingly, the objective function in (7.12) can be written as a difference of

two concave functions, i.e., fDL,k(t)− rDL,k(t) and fUL, j(t)− rUL, j(t), where,

fDL,k(t) = log2

(
K

∑
i=1

hH
k Wihk +

J

∑
j=1

PUL, j
∣∣` j,k

∣∣2 +σ
2
k

)
,

rDL,k(t) = log2

(
K

∑
i 6=k

hH
k Wihk +

J

∑
j=1

PUL, j
∣∣` j,k

∣∣2 +σ
2
k

)
,

fUL, j(t) = log2

(
s j +σ

2
j
∥∥u j
∥∥2

+PUL, j
∣∣gH

j u j
∣∣2) ,

rUL, j(t) = log2

(
s j +σ

2
j
∥∥u j
∥∥2
)
.

Based on the above analysis, the optimization problem (7.11) can be reformulated
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as a standard DC problem as shown below

P̃7.2 : max
{Wk�0}
{PUL, j}

K

∑
k=1

QDL,k(t)
(

fDL,k(t)− rDL,k(t)
)
+

J

∑
j=1

QUL, j(t)
(

fUL, j(t)− rUL, j(t)
)

−V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)
s.t. A3, A4, A5, A6.

(7.13)

The difficulty in solving (7.13) lies in convexifying the concave components rDL,k(t)

and rUL, j(t). To proceed, suppose that the values of Wk and PUL, j at the i-th iteration

are denoted by W(i)
k and P(i)

UL, j. Since rDL,k(t) and rUL, j(t) are differentiable, thus,

we can express their first order affine approximations as shown below, respectively.

r(i)DL,k(t) = rDL,k

(
W(i)

k ,P(i)
UL, j

)
+

J

∑
j=1

[(
Ψ

(i)
DL,k

)−1(
PUL, j−P(i)

UL, j

)∣∣` j,k
∣∣2]

+
K

∑
i6=k

[(
Ψ

(i)
DL,k

)−1
hH

k

(
Wi−W(i)

k

)
hk

]
, (7.14)

r(i)UL, j(t)= rUL, j

(
W(i)

k

)
+

K

∑
k=1

 ρuH
j HSI

(
Wk−W(i)

k

)
HH

SIu j

ρuH
j HSI

(
∑

K
l=1 W(i)

l

)
HH

SIu j +σ2
j

∥∥u j
∥∥2

 , (7.15)

where

Ψ
(i)
DL,k =

K

∑
m 6=k

hH
k W(i)

m hk +
J

∑
j=1

P(i)
UL, j

∣∣` j,k
∣∣2 +σ

2
k .

Here, we have used the fact that ∇X log2
(
I+ZXZH) = XH (I+ZXZH)−1 X and

∇x log2 (1+ zx) = x(1+ zx)−1. Therefore, the transformed optimization problem
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Algorithm 7.4 Optimal Algorithm to solve (7.7) or (7.17)
1: Input: T = the maximum number of time slots
2: Initialise: t = 0,QDL,k(t) = 0,QUL, j(t) = 0

Repeat
3: Set i = 0,
4: Generate initial feasible points for all W(i)

k and P(i)
UL, j

Repeat
5: Solve (7.16) or (7.18) to obtain all W∗k and P∗UL, j
6: Update i = i+1
7: Update all W(i)

k = W∗k and P(i)
UL, j = P∗UL, j

Until Convergence
8: t = t +1,
9: Update all queues QDL,k(t),QUL, j(t), accordingly.

Until t = T
10: Output: W∗k ,∀k, and P∗UL, j,∀ j.

(7.13) can be expressed as

P7.3 : max
{Wk�0}
{PUL, j}

K

∑
k=1

QDL,k(t)
(

fDL,k(t)− r(i)DL,k(t)
)
+

J

∑
j=1

QUL, j(t)
(

fUL, j(t)− r(i)UL, j(t)
)

−V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)
s.t. A3, A4, A5, A6.

(7.16)

Problem (7.16) is convex with respect to the optimization variables and can be

solved efficiently using standard convex solvers. Please note that the formulation in

(7.16) is a relaxed problem where the rank 1 constraint on Wk has been dropped.

If the resulting solution Wk after solving (7.16) is rank 1, the optimal wk can be

obtained by applying eigenvalue-decomposition (EVD), otherwise, randomization

technique can be used to retrieve wk.

After obtaining the beamforming vectors and the transmit powers from (7.16)

for slot t, the queues QDL,k(t),QUL, j(t) are updated accordingly. The overall pro-

cedure to solve the optimization problem (7.7) is summarized in Algorithm 7.4.
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Figure 7.1: Average sum transmit power versus V-parameter with ΓDL = 8dB, ΓUL = 6dB
and ADL = AUL = 2 bit/slot/Hz

7.4 Delay Fairness Optimization

Building upon the simplified problem formulation (7.16) in Section 7.3, in this

section, we propose a resource allocation algorithm based on delay fairness. By

close examination of the simplified convex optimization problem (7.16), it can be

observed that (7.16) basically aims at maximizing the sum rate of the uplink and

downlink users while minimizing the sum transmit power. Resource allocation that

focuses solely on sum rate maximization usually results in an unfair resource al-

location, since the system resources are consumed by the users with good chan-

nel conditions [169]. In essence, the resource allocation based on (7.16) results in

starvation of users with poor channel conditions, which is unfair. As such, we for-

mulate a fair beamforming optimization and resource allocation problem that aims

at maximizing the minimum transmission rate for the downlink and uplink users,

respectively. This problem is often referred to as the max-min problem and can be

mathematically expressed as
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P7.4 : max
{Wk�0}
{PUL, j}

min
k

(
QDL,k(t)

(
fDL,k(t)− r(i)DL,k(t)

))
+min

j

(
QUL, j(t)

(
fUL, j(t)− r(i)UL, j(t)

))
−V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)
s.t. A3, A4, A5, A6.

(7.17)

The max-min problem (7.17) can not be solved directly in its current form, however,

(7.17) can be simplified by introducing auxilary variables [84], tDL(t) and tUL(t),

respectively. Thus, the simplified convex problem is given by

P̃7.4 : max
{Wk�0}
{PUL, j}

tDL(t)+ tUL(t)−V ·

(
c1

K

∑
k=1

PDL,k(t)+ c2

J

∑
j=1

PUL, j(t)

)

s.t. QDL,k(t)
(

fDL,k(t)− r(i)DL,k(t)
)
≥ tDL(t),∀k,

QUL, j(t)
(

fUL, j(t)− r(i)UL, j(t)
)
≥ tUL(t),∀ j,

A3, A4, A5, A6.

(7.18)

The problem (7.18) is convex and can be efficiently solved using standard solvers.

Similar to (7.16), the formulation (7.18) is a relaxed problem. If the resulting solu-

tion Wk after solving (7.16) is rank 1, the optimal wk can be obtained by applying

eigenvalue-decomposition (EVD), otherwise, randomization technique can be used

to retrieve wk. The procedure for solving (7.17) is summarized in Algorithm 7.4.

7.5 Simulation Results
We consider the system with the FD BS at the centre of a cell with N = 3 an-

tennas, each for transmitting and receiving. We assume K = J = 2 downlink

and uplink users, are randomly and uniformly distributed between the distance

of 10m and 50m. We model the channels to the downlink and uplink users as

Rayleigh fading. The SI channel is modelled as Rician fading channel with Ri-

cian factor 6dB. Furthermore, we consider a similar system set-up as in [116] with

σi = σ j = −60dBm,PUL
max = 23dBm,PDL

max = 35dBm,ρ = −80dB and c1 = c2 = 1.
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Figure 7.2: Average rate difference between the best and worst user with ΓDL = 8dB, ΓUL =
6dB and V = 4
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Figure 7.3: Average sum transmit power versus mean arrival rate with ΓDL = 8dB, ΓUL =
6dB and V = 4

Our baseline is the HD scheme as in [163–165]. For fair comparison, here, the over-

all data rate of HD is set equal to the one for FD which requires that the individual

data rate of the downlink and uplink users are double the ones for the FD case, due

to the slotted HD transmission. Besides, the CCI and SI are avoided with HD. In

the figures, we refer to the results obtained from the problem formulations in (7.7)

and (7.17) as max-sum and max-min, respectively.

In Fig. 7.1, we show the average sum transmit power versus the objective

weight parameter V . This plot shows the effect of the control parameter V in the
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Figure 7.4: Average system delay versus mean arrival rate with ΓDL = 8dB, ΓUL = 6dB
and V = 4
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Figure 7.5: Average system delay versus mean arrival rate with ΓDL = 8dB, ΓUL = 6dB
and V = 4

optimization problems. As V increases, more emphasis is given to the system ob-

jective i.e., minimizing the sum transmit power, as can be seen from the curves in

the figure. In addition, the proposed max-sum optimization achieves the minimum

sum transmit power compared with the proposed max-min optimization. This is

because the proposed max-min optimization tries to balance the power allocation

among all users, since some users perform poorer than others. As a result the pro-

posed max-min optimization provides a fairer power allocation for all user than the

max-sum schemes where the users with good channel conditions overshadow the
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users with poor channel conditions. This is further illustrated in Fig. 7.2, where the

average rate difference between the best and worst user is plotted against the mean

arrival rate. It can be seen that the proposed max-min optimization has a lower rate

difference since it gives no preference in the power allocation between all users.

Moreover, the figure also shows that the proposed FD schemes out perform the

baseline HD schemes for both max-sum and max-min resource allocation.

Furthermore, in Fig. 7.3 we show the average sum transmit power for varying

mean arrival rate. It can be seen that the average sum transmit power increases as

the mean arrival rate increases for both the proposed FD max-sum and max-min

schemes, since an increase in arrival rate implies more data to be transmitted which

requires an increase in the transmit power. However, it can be seen that at the

sum transmit power saturates with large arrival rates for all the schemes when the

maximum allowable power is reached. Besides, the proposed FD schemes perform

better than the HD schemes. This further shows the superiority of the proposed FD

schemes over their HD counterpart.

In Figs. 7.4 and 7.5, we show the average system delay in slots with varying

mean arrival rate for the proposed FD max-sum and max-min resource allocation

schemes, respectively. As can be observed, the system delay is proportional to in-

crease in arrival rates. The proposed max-sum scheme achieves lower delay because

it exploits users with good channel conditions to improve the system delay, while

the proposed max-min ensures fairness to all users at the expense of higher system

delay.

7.6 Summary

In this chapter, we studied the delay-constrained BF and resource allocation prob-

lem in a multiuser FD system. We minimized the long-term sum transmit power

while satisfying the long-term stability constraints on the queue buffers. By adopt-

ing the classic drift-plus-penalty function, the optimization problem was trans-

formed and simplified to a convex problem which aims at maximing the sum rate of

the uplink and downlink users while minimizing the sum transmit power which
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guarantees system stability. We further proposed a FD max-min resource allo-

cation problem that ensures fairness among all users. Simulation analysis show

that the proposed FD schemes show promising improvement compared to their HD

schemes.



Chapter 8

Conclusion and Future Work

Beamforming and resource allocation techniques are essential in materializing the

goals of the 5G of wireless communication networks. Employing FD in wireless

communication systems give the opportunity to serve variety of services to differ-

ent users since FD has the ability to transmit and receive at the same time and

frequency. Therefore, integrating FD with SWIPT is necessary to improve the pro-

vision of information and power to users as well as for efficient use of the radio

spectrum. Furthermore, as the popularity of smart phones, tablets and other wear-

able devices is rapidly increasing, the use of computation intensive applications has

drastically increased, thus, integrating FD with MEC presents a promising solution.

Accordingly, this thesis has studied and proposed a number of design strategies for

realistic and efficient communication in multi-user FD systems.

8.1 Conclusion
Chapter 2 of this thesis provides an overview of MIMO communication systems.

We reviewed the various precoding schemes in the literature for downlink trans-

mission, both the linear and non-linear schemes, as well as some simulation results

highlighting their advantages and disadvantages. Also, the chapter presents a re-

view of the various optimization based beamforming techniques and strategies in

the literature. These techniques were categorized into two. The conventional op-

timization based beamforming that is based on the traditional approach that treats

interference as a detrimental phenomenon; and the constructive interference based
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beamforming, where the knowledge of the data symbols at the BS is used to exploit

interference constructively rather than suppress it for PSK and QAM modulated

signals.

In Chapter 3, a review of some of the new and promising technologies that are

expected to be employed in 5G systems and even beyond is presented. First, FD

communication that allows simultaneous transmission and reception was presented,

where the various SI cancellation schemes including passive and active schemes

were reviewed. In addition, the chapter discussed the EH technology that provides

a promising solution for prolonging the battery life of wireless communication net-

works. This is then followed by an overview of MEC technology that provides

a means for devices to offload their intensive and latency-critical tasks to nearby

servers for remote execution. Chapter 3 also presents a review the technologies that

support URLLC in 5G systems.

After the two introductory chapters above that discussed the literature review

of the technical contributions and focus of this thesis, Chapter 4 - 7 presents the

main contributions of this thesis, respectively. Specifically,

• Chapter 4 studied the application of the interference exploitation concept to

a MU-MIMO system with a FD BS. We proposed novel MOOP designs to

study the trade-off between the total uplink and downlink transmit power for

PSK and QAM modulated signals. The main observations in this chapter are:

1. The significant power gains of the CI technique is extended to multi-

user FD systems, where FD gives the opportunity to jointly optimize the

uplink and downlink variables i.e., the uplink transmit power and the

downlink beamforming vectors. This coexistence of uplink and down-

link warrants the MOOP designs, such that, the MOOP designs allow

for the power saved in the downlink transmission to be traded-off for

both downlink and uplink power savings. Compared to the conventional

interference suppression techniques and HD schemes, the proposed FD

MOOP schemes show tremendous power gains with low computational

complexity.
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2. The existence of uplink and downlink transmission brings about the joint

optimization of the transmit and receive beamforming vectors, and the

uplink transmit power. Hence, we proposed an iterative algorithm that

jointly optimizes these variables for both IS and CI schemes. The pro-

posed algorithms show increase in power savings compared to the ZF

approaches for both IS and CI schemes at the expense of a scalable

complexity increase.

• Chapter 5 focused on exploring FD communications with SWIPT, where ro-

bust designs were explored to jointly minimize the total uplink and downlink

transmit power, and maximize the total harvested energy with imperfect CSI.

By making the practical assumption that the CSI for all the channel links are

not perfectly known, two optimization problem formulations were proposed.

One based on the classic MUI suppression and the other based on MUI ex-

ploitation. It was observed that based on the average harvested energy in

terms of the BS transmit power, the minimum harvested energy threshold and

CCI level between the uplink and downlink users, the proposed CI scheme

harvests more energy than the proposed IS scheme. This is because more

power is available to be harvested since less power is required to satisfy the

downlink and uplink QoS constraints for the CI scheme compared to the IS

scheme. Additionally, the proposed CI scheme proved to be less sensitive

to the minimum harvested energy threshold compared to the more sensitive

IS scheme. Most importantly, it was observed that for the same data rate re-

quirements the proposed FD schemes show improved performance compared

to HD scheme.

• In Chapter 6, we proposed novel algorithms to study the offloading energy

and latency trade-off based on MOOP designs in a multiuser FD system that

performs both data transmission and MEC in the downlink and uplink, re-

spectively. The following key point were observed

1. By decomposing the complex optimization formulations into two sub-
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problems and employing Lagrangian method, closed form solutions to

the transmit power were derived that satisfy the KKT conditions of the

original problem. As a result, an the optimal transmit beamforming

vectors and power allocation for the mobile devices are obtained via the

proposed algorithm, which was shown to converge within few iteration

with low computational complexity in terms of the average algorithm

runtime in seconds.

2. The proposed MOOP designs show promising performance improve-

ment compared to the baseline HD schemes in terms of the offloading

energy and latency. In addition, the proposed MOOP designs allow for a

scalable optimization technique, where before one could only optimize

either the offloading energy with a fixed latency constraint, or the la-

tency with a fixed energy constraint. This observation further highlights

the flexibility provided by the proposed FD schemes.

3. The dependency between the optimization variables and objectives is

further proven, where increasing the transmit power of the mobile de-

vices in order to minimize the offloading latency increases the CCI to

the downlink users. Similarly, increasing the downlink transmit power

to accommodate the increase in CCI increases the SI and offloading en-

ergy. This further shows the trade-offs involved in the proposed opti-

mization designs.

• In chapter 7, we proposed a delay-constrained beamforming and resource

allocation algorithm for a multiuser FD system to minimize the long-term

sum transmit power while satisfying the long-term stability constraints on the

queue buffers. The central remarks of this chapter are:

1. We exploited the classic drift-plus-penalty function to transform the pro-

posed formulation into two different optimization problems. One based

on the max-sum, that exploits users with good channel conditions for

efficient resource allocation and the other based on the max-min, that



8.2. Future Work 167

ensures delay-fairness among all users.

2. The proposed max-sum optimization achieves lower transmit power

and delay compared to the proposed max-min optimization because the

max-sum optimization exploits users with good channel conditions for

efficient power allocation as well as to improve the system delay. How-

ever, the max-min optimization provides a fairer approach as was shown

that the average sum-rate difference between the best and worst user is

lower for the proposed max-min optimization compared to the proposed

max-sum optimization.

8.2 Future Work

Throughout this thesis, we have developed algorithms that study the trade-off be-

tween important and conflicting objectives, for both the system operator and users,

based on MOO formulations for multi-user FD systems. Thus, the proposed tech-

niques in this thesis have prompted further investigations in some research direc-

tions which are summarized below:

• URLLC in multiuser FD systems: URLLC is a generic service that en-

ables mission critical applications such as vehicular communications, indus-

trial automation, cloud computing and augmented reality. URLLC has strict

requirement for latency and reliability for the next generation 5G systems in

delivering both data and control information. Therefore, depending on just

system stability constraints may not be enough to meet the latency and relia-

bility requirement of some applications. Thus, as an extension to the work in

Chapter 7, where we used the fact that the system delay is directly dependent

on the queue length and stability to design a delay-constrained optimization

by ensuring system stability, we consider imposing probability constraints on

the queue length to directly constraint the latency. According to Little’s law,

the queue length is proportional to the average queue latency. To this end, us-
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ing QDL,k(t)/ADL,k as the latency measure, we have the following constraint

Pr
{

QDL,k(t)
ADL,k

≥ LDL,k

}
≤ εk,∀t,k, (8.1)

where LDL,k is the allowable queue length requirement and εk� 1 is the target

probability, for low latency and reliable communication for downlink trans-

mission.

• Energy efficiency maximization in MEC systems: In Chapter 6, we have

considered the minimization of offloading energy and latency in a multiuser

FD MEC system. As a future work, it will be of particular interest to con-

sider the energy efficiency maximization problem of the FD MEC system.

Energy efficiency is one of the main aims of the future wireless communi-

cation systems due to the high rate of power consumption of mobile devices

as well as base stations in the offloading, computation and downloading pro-

cesses. Another interesting solution to the high power consumption of the

mobile devices is to consider wireless power transfer. In particular, it will be

interesting to consider the joint optimization of the transmit beamformer, the

transmit power of the mobile devices and power splitting or time switching

ratio, where the mobile devices can harvest energy from the BS for use in the

next phase of communication during the downloading process through power

splitting or time switching.

Finally, this thesis has presented key strategies, solutions and results in the

study of multiuser FD systems. The author hopes the solutions, the results and

conclusions derived in this thesis will help explore the potentials and motivate new

novel designs for the 5G wireless communication systems and beyond.
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