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Abstract

Zero-knowledge proofs are cryptographic protocols where a prover convinces a

verifier that a statement is true, without revealing why it is true or leaking any of

the prover’s secret information. Since the introduction of zero-knowledge proofs,

researchers have found numerous applications to other cryptographic schemes, such

as electronic voting, group signatures, and verifiable computation. Zero-knowledge

proofs have also become an integral part of blockchain-based cryptocurrencies.

Thus, designing efficient zero-knowledge proofs is an important goal. Recently,

the design space has become extremely large. To simplify protocol design, design-

ers have begun to separate the process into modular steps. Information theoretic

protocols are designed in idealised communication models and compiled into real

protocols secure under cryptographic assumptions.

In this thesis, we investigate the Ideal Linear Commitment model, which char-

acterises interactive zero-knowledge protocols where the prover and verifier use

homomorphic commitment schemes. We demonstrate the model’s power by ex-

hibiting efficient protocols for useful tasks including NP-Complete problems and

other more specialised problems. We demonstrate the model’s versatility by com-

piling the idealised protocols into real protocols under two completely different

cryptographic assumptions; the discrete logarithm assumption, and the existence of

collision-resistant hash functions.

We show that the Ideal Linear Commitment model is a useful and effective

abstraction for producing zero-knowledge protocols. Furthermore, by identifying the

limitations of the model and finding protocols outside these constraints, we display

special techniques which result in more efficient zero-knowledge proofs than ever.
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The results are novel and highly efficient protocols. Results include the first ever

discrete-logarithm argument for general statements with logarithmic communication

cost, the first ever three-move discrete-logarithm argument for arithmetic circuit

satisfiability with sub-linear communication costs, and an argument for list mem-

bership with sub-logarithmic communication, less than the number of bits required

to specify a list index. Every single one of our protocols improves the theoretical

state-of-the-art.
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Impact Statement

This thesis demonstrates how real cryptographic protocols for a variety of tasks can

be designed using a special communication model. It shows that one can separate the

algebraic machinery used to design the protocols from the cryptographic assumptions

and commitment schemes used to prove that the protocols are secure, and still exhibit

highly efficient protocols which improve asymptotically on the prior state-of-the-art.

This is likely to benefit the discipline considerably as it lowers the barriers to under-

standing and producing secure protocols of this type. Cryptographic assumptions

can be quite specialised, and it can be difficult to understand the mathematics behind

them. Having a framework within which one can prove idealised protocols secure

and knowing that the result can be made into a real protocol drastically simplifies the

task of protocol designers. Several subtle changes to the Ideal Linear Commitment

model were also introduced to make it more realistic and effective.

Furthermore, by showing that certain proofs all fit into a framework, it becomes

easier to understand their limitations. Linear algebra is an important part of security

proofs in the Ideal Linear Commitment model. Therefore, in future, zero-knowledge

protocols can be analysed through the lens of linear algebra. Linear algebra is

very well studied, and powerful techniques from this discipline may lead to strong

results about zero-knowledge protocols, such as lower bounds on the communication

complexity of certain types of interactive zero-knowledge protocol.

The protocols presented in this work led to the creation of the zero-knowledge

argument Bulletproofs [1]. Bulletproofs has been implemented by cryptocurrencies

including Monero and PIVX. PIVX plans to bring Bulletproofs implementations

into common use later in 2018. Following a first successful code audit, Bulletproofs

is also set to enter widespread use on Monero’s blockchain later in 2018, subject to

further successful audits. As a result, the author’s work will soon have a sizeable

impact on the efficiency of payment systems in the real world, which at the time

of writing, amount to a market capitalisation value of roughly two billion dollars

and a daily trade volume of roughly thirty four million dollars 1. The addition

of Bulletproofs will lead to much smaller amounts of proof data being stored on
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the blockchains for these cryptocurrencies, which means better performance and

functionality. This may have a measurable impact on cryptocurrency adoption and

pricing.

Zero-knowledge proofs are becoming better known, not only among research

scientists, but increasingly among companies and technology enthusiasts 2. There

are also ongoing standardisation efforts. The implementation of cryptographic

protocols is a notoriously difficult task even for experts, and errors can have disastrous

consequences. Making protocols easier to design and understand will be of great

benefit to interested, non-expert parties who might try to use protocols in the future,

promote their usage among wider user communities, or implement them in software

or hardware.

1Data taken from coinmarketcap.com, on the 17th of September 2018.
2See https://zkproof.org/
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Chapter 1

Introductory Material

1.1 Introduction

A zero-knowledge proof [4] is a protocol between two parties: a prover and a verifier.

The prover may want to convince the verifier that an instance u belongs to a specific

language L in NP. She wants to convince the verifier that the instance u ∈L is a

true statement without revealing any confidential information. Naturally, the protocol

should not leak any secret information which is unknown to the verifier and could

make the statement easier to prove.

Zero-knowledge proofs are widely used in cryptography since it is often use-

ful to verify that a party is following a protocol without requiring her to divulge

secret keys or other private information. Applications range from digital signatures

and public-key encryption to secure multi-party computation schemes with strong

security guarantees, anonymous credentials, and verifiable cloud computing.

More formally, a zero-knowledge proof consists of a triple of algorithms

(G ,P,V ). These are the prover P and the verifier V , and they engage in the

protocol. The common-reference-string generator G produces the necessary setup

information for P and V to run the protocol. In this thesis, the prover and verifier

are interactive algorithms. Based on the setup information produced by the generator,

the prover and the verifier exchange messages. At the end of the protocol, the verifier

decides whether the proof was convincing or not, and accepts or rejects the proof.

Zero-knowledge proofs satisfy three basic requirements.
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Completeness. When the statement is true, the prover always succeeds in convincing

the verifier. In other words, when u ∈L , and the prover has a valid witness w, the

verifier will always accept at the end of the protocol. Completeness can be viewed as

more of a functionality requirement than a security requirement, and this property

guarantees that the protocol works properly when the prover and verifier are honest.

Soundness. When the statement is false, or the prover does not know a valid witness,

the prover can practically never convince the verifier, and the verifier will almost

always reject the proof. Viewed another way, if the verifier accepted the proof, then

u ∈L , and the prover has a valid witness w. Soundness can be seen as a converse

to completeness. It is a security requirement which protects the verifier from being

fooled into accepting by a malicious prover. As such, it can be seen as a property of

the verification algorithm.

Zero-Knowledge. Despite taking part in the protocol with the prover, the verifier

can never learn anything from the interaction except that the statement is true. This

is modelled by showing that the entire interaction between the prover and the verifier

can be simulated without any knowledge of the witness. If convincing-looking proofs

can be simulated without any secret information, then it follows that nothing secret

can be learned from real proofs. Zero-knowledge is a security requirement which

protects the prover against a malicious verifier who is trying to learn the prover’s

secrets. As such, it can be seen as a property of the proving algorithm.

Many efficient zero-knowledge proofs are based on the discrete logarithm

assumption [5, 6, 7, 8, 9, 1, 2, 10, 3, 11]. Although efficiency has improved over

time, it looks as though all of these protocols draw on the same small collection of

techniques, some used for improving efficiency, and some for proving security.

For instance, all of the protocols above use commitment schemes. These allow

either party to ‘commit’ to a message, so that the message stays hidden but is fixed

relative to the commitment, and can be revealed later. A party can commit to a

message m by applying a commitment algorithm with m as input, and obtain c,

a commitment to m. The commitment c can then be sent to other parties. Later,

the party can ‘open’ c by revealing m. The other parties may then check that c
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corresponds to m.

Commitment schemes satisfy two basic requirements.

Hiding. Like a sealed envelope, a commitment should hide the message inside. The

commitment c should not leak any information about m.

Binding. Once an envelope is sealed, it is not possible to change the message inside

without breaking open the envelope. Given a commitment c to a message m, it should

be impossible to open c to a different message.

The protocols all use homomorphic commitments, where one can combine two

commitments together to obtain a commitment to the sum of the messages.

These protocols also follow a similar pattern of interaction between the prover

and the verifier. The prover sends an initial message a1 to the verifier. The verifier

responds with a random challenge value e1. The prover sends another message a2 to

the verifier, who responds with another random challenge e2. This process continues

for n rounds, until messages an and en have been exchanged. The prover sends a

final message an+1 to the verifier, and then the verifier decides whether to accept or

reject.

In fact, there are even more similarities to be observed. For many protocols, the

prover’s messages a1, a2 up to an are actually single or possibly multiple commit-

ments to secret values obtained by the prover, computed using the witness or the

random challenge values that the prover has seen up to that point. The prover’s final

message an+1 is often a specially chosen sum or linear combination of the secret

values that the prover committed to earlier. Then, the verification algorithm involves

checking that an+1 really is the correct sum or linear combination of the prover’s

secret values, using the commitments to achieve this.

In their security proofs, the protocols all seem to use the same techniques, based

on polynomial algebra, polynomial identity testing and linear algebra. In fact, on

the whole, it does not seem important that the protocols are based on the discrete

logarithm assumption, just that they use homomorphic commitment schemes to

commit to the elements of finite fields.

One can ask whether it is possible to find the techniques common to all interac-
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tive zero-knowledge protocols based on the discrete logarithm assumption, and place

them into a single framework. This would drastically simplify the tasks of designing

protocols, and proving mathematically that they are secure. Having fully understood

or implemented one protocol of this type, it would be much easier to understand

or implement any other. In this thesis, we will explore the question of whether

there is an information-theoretic framework which provides a good abstraction for

discrete-logarithm based interactive zero-knowledge protocols.

However, the framework is useless unless it can be used to create efficient

protocols for a wide range of tasks. Thus, we can extend our question in several

directions, and propose the following hypothesis for investigation.

There is an information-theoretic framework which provides a good abstraction

for discrete-logarithm based interactive zero-knowledge protocols, and further;

1. The efficiency of information-theoretic protocols in the framework accurately

models the efficiency of real protocols.

2. There are efficient protocols in the framework for many different languages.

3. The framework is useful for designing protocols outside the discrete-logarithm

setting.

1.2 Contributions
As a building block in our arguments, we present an adaptation of the polynomial

commitment sub-protocol appearing in [11], which allows the prover to commit to a

polynomial so that the verifier can learn an evaluation of the polynomial in a secure

manner. The sub-protocol has square-root communication complexity in the degree

of the polynomial.

Zero-Knowledge Proofs for Low-Depth Circuits While very efficient, arguments

for general statements, like arithmetic circuit satisfiability, often make use of generic

reductions and complex machinery, and fail to be as efficient as arguments specialised

for a particular language. We give a zero-knowledge proof for low-depth circuits. In

doing so, we bridge the gap between general and simple languages in three ways.
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Firstly, we provide a framework to describe the types of languages commonly

encountered. Protocols such as the 1-out-of-N membership argument of [2], and

the polynomial evaluation argument of [3] prove membership in languages where

the witnesses are zeroes of low-degree polynomial relations. In other words, the

statement is an arithmetic circuit of low degree, and part of the witness is a satisfying

assignment for the circuit. We give a general relation which allows us to recover

specific protocols by instantiating with concrete polynomial relations. By separating

the task of developing more efficient ways to perform the zero knowledge proof, and

the task of designing better relations to describe a given language, we can explain

the logic behind past optimisations of membership proofs in [2, 11], and produce

new optimisations for membership proofs and polynomial evaluation proofs.

Secondly, we unify the approaches used in [2, 3, 10] to construct zero-

knowledge proofs for membership and polynomial evaluation, which can all be

viewed as employing the same construction method. The constructions of zero-

knowledge arguments for low degree polynomial relations in these works proceed

by masking an input variable u as fu = ux+ub, using a random challenge x and a

random blinder ub. During the proof, the polynomial or circuit from the statement is

computed with fu in place of u, so that the original relation appears in the leading

x coefficient. The communication and computational complexity of the resulting

arguments is determined by the degree of the polynomial relation and the number of

inputs. By contrast, the complexity of general arithmetic circuit protocols is deter-

mined by the number of gates. In the case of [11], the authors embed a polynomial

evaluation argument for a polynomial of degree N into a low degree polynomial with

logN inputs and degree logN, obtaining a protocol with O(logN) communication

using 3 moves, and requiring O(logN) operations to form cryptographic commit-

ments. On the other hand, a polynomial of degree N requires N multiplication gates

to evaluate in general, so the best arithmetic circuit protocol [1] can only achieve

O(logN) communication in O(logN) moves, and uses O(N) operations to form cryp-

tographic commitments. In particular, in some settings, like the discrete logarithm

setting, forming cryptographic commitments is based on computing exponentiations



1.2. Contributions 21

in a group of prime order. The cost of computing exponentiations is usually much

higher than that of computing finite-field multiplications. Computing O(logN) group

exponentiations rather than O(N) leads to a significant performance advantage when

considering implementation on constrained devices.

Bayer [12] gives two efficient batch proofs for multiplication and polynomial

evaluation, which achieve a square-root communication overhead in the number

of proofs to be batched. The key to achieving square-root overhead in [12] is to

use Lagrange interpolation to embed many instances of the same relation into a

single field element. This technique can be applied more generally to produce

efficient batch proofs for the low-degree relations described above. Furthermore,

by combining this with the polynomial commitment subprotocol in section 8.2, we

improve the communication cost of the batched proof from
√

tc to
√

tc, where c is

the communication cost of the original non-batched proof, and t is a large number

representing the number of proofs to be batched together.

Thirdly, we exhibit a general protocol in our framework and show how to

recover protocols of previous works with some optimisation. More specifically, we

give new 1-out-of-N membership arguments and polynomial evaluation arguments.

Our new instantiations simultaneously decrease communication costs and reduce

prover and verifier computation, while retaining the conceptual clarity and simple

3-move structure of the originals. As an example, we obtain the most communication

efficient Σ-protocols for membership or non-membership of a committed value in

a public list, in the discrete logarithm setting. We also include an argument for

range proofs. Our argument captures the folklore method for performing range

proofs, where the prover commits to an integer and the bits of the integer and then

proves in zero-knowledge that each committed bit is indeed a bit, and that the bit

decomposition corresponds to the integer. This demonstrates the expressivity of our

general relation. Incorporating the batching ideas already mentioned, this gives an

efficient batch protocol for proving and verifying t instances of the same relation

simultaneously.

One notable place where we improve communication efficiency over previous
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proofs is in our membership and polynomial evaluation proofs instantiated in the

discrete logarithm setting, which use a constant number of group elements, but have

better communication efficiency regardless of whether the proofs are instantiated

in elliptic curve groups or multiplicative subgroups of finite fields. Another is the

polynomial evaluation argument which communicates O( logN
log logN ) commitments and

field elements, which is an asymptotic improvement over the previous state-of-the-art,

O(logN) commitments and field elements. Finally, our batch polynomial evaluation

argument improves on [12] as the cost is proportional to
√

logN rather than logN.

See Tables 1.2 and 1.3 for our results in the discrete logarithm setting. N is the

instance-size, t is the number of batched instances, G means the number of group

elements transmitted, Zp means the number of field elements transmitted, (G,exp)

means the number of group exponentiations and (Zp,×) means the number of field

multiplications. In the membership proofs, N is the number of items in the list for

which we prove membership. In the polynomial evaluation proofs, N is the degree

of the polynomial. In the range proofs, N is the width of the range that we consider.

See Table 1.1 for our results based on hash-functions.

Zero-Knowledge Proofs for Arithmetic Circuits. An arithmetic circuit is a circuit

that consists of addition and multiplication gates over a finite field F, whose wires

take values from the field. Arithmetic circuits are an attractive target for zero-

knowledge protocol design, where the goal is to build an efficient argument system

to prove that an arithmetic circuit is satisfiable, meaning that there exist a set of

input values to the circuit that produce the specified output value when the circuit is

evaluated. The statement is the arithmetic circuit and some specified values for the

circuit outputs. The prover’s witness is a collection of input values for the arithmetic

circuit which give the correct output. There are several reasons why this is useful.

• Given an arithmetic circuit and outputs, the problem of deciding whether there

exist input wire values satisfying the circuit is NP-Complete. Therefore, if we

1We compare against the efficiency when [2] is instantiated using Pedersen commitments, and
the prover and verifier know the openings of the list of commitments.

2We compare against the efficiency when [10] is instantiated using Pedersen commitments rather
than Elgamal ciphertexts.



Protocol Reference Communication Prover Computation Verifier Computation

Hashes Zp Hashes (Zp,×) Hashes (Zp,×)

Membership Proof This Work, 8.3.4.1 O(logN) O(logN) O(logN) O(N logN) O(λ ) O(N)

Batch Membership Proof This Work, 8.3.4.1 O(
√

t logN) O(
√

t logN) O(t log tN) O(tN log tN) O(λ ) O(tN)

Polynomial Evaluation This Work, 8.3.4.2 O( logN
log logN ) O( logN

log logN ) O( logN
log logN ) O(N logN) O(λ ) O(N)

Batch Polynomial Evaluation This Work, 8.3.4.2 O(
√

t logN) O(
√

t logN) O(t log tN) O(tN log tN) O(λ ) O(tN)

Range Proof This Work, 8.3.4.3 O( logN
log logN ) O( logN

log logN ) O(logN) O(logN) O(λ ) O(logN)

Batch Range Proof This Work, 8.3.4.3 O(
√

t logN) O(
√

t logN) O(t logN) O(t logN) O(λ ) O(t logN)

Table 1.1: Efficiency comparisons when our low-depth circuit protocol is instantiated with hash functions. Here N is the number of items in the list for a
membership proof, or the degree of the polynomial for a polynomial evaluation proof, or the width of the range in a range proof. Then t
indicates the number of statements proved at the same time in a batch proof.



Protocol Reference Communication Prover Computation Verifier Computation

G Zp (G,exp) (Zp,×) (G,exp) (Zp,×)

Membership Proof [9] 4 logN +8 2logN +7 12N O(N) 4N O(N)

Membership Proof 1 [2] 4 logN 3logN +1 O(logN) O(N logN) O(logN) O(N)

Membership Proof 2 [10] logN +12 3
2 logN +6 O(logN) O(N logN) O(logN) O(N)

Membership Proof This Work, 8.3.4.1 7 4logN +4 O( logN
log logN ) O(N logN) O( logN

log logN ) O(N)

Membership Proof This Work, 8.3.4.1 2.7
√

logN 1.9logN+ O( logN
log logN ) O(N logN) O( logN

log logN ) O(N)

+5 2.7
√

logN +4

Batch Membership Proof This Work, 8.3.4.1 4.1
√

t logN 4.1
√

t logN O(t log tN) O(tN log tN) O(
√

t log tN) O(tN)

Table 1.2: Efficiency comparisons when our low-depth circuit protocol is instantiated in the discrete logarithm setting. Here N is the number of items in
the list for a membership proof. Then t indicates the number of statements proved at the same time in a batch proof.



Protocol Reference Communication Prover Computation Verifier Computation

G Zp (G,exp) (Zp,×) (G,exp) (Zp,×)

Polynomial Evaluation [9] 4 logN +8 2logN +7 12N O(N) 4N O(N)

Polynomial Evaluation [3] 4 logN +2 3logN +3 O(logN) O(N logN) O(logN) O(N)

Polynomial Evaluation This Work, 8.3.4.2 7 3logN +4 O( logN
log logN ) O(N logN) O( logN

log logN ) O(N)

Polynomial Evaluation This Work, 8.3.4.2 O( logN
log logN ) O( logN

log logN ) O( logN
log logN ) O(N logN) O( logN

log logN ) O(N)

Batch Polynomial Evaluation [12] O(
√

t logN) O(
√

t logN) O(t logN) O(tN logN) O(
√

t logN) O(tN)

Batch Polynomial Evaluation This Work, 8.3.4.2 2.8
√

t logN 2.8
√

t logN O(t log tN) O(tN log tN) O(
√

t log tN) O(tN)

Range Proof This Work, 8.3.4.3 7 3logN +4 O(logN) O(logN) O(logN) O(logN)

Range Proof This Work, 8.3.4.3 O( logN
log logN ) O( logN

log logN ) O(logN) O(logN) O(logN) O(logN)

Batch Range Proof This Work, 8.3.4.3 2.8
√

t logN 2.8
√

t logN O(t logN) O(t logN) O(t logN) O(t logN)

Table 1.3: Efficiency comparisons when our low-depth circuit protocol is instantiated in the discrete logarithm setting. Here N is the degree of the
polynomial for a polynomial evaluation proof, or the width of the range in a range proof. Then t indicates the number of statements proved at
the same time in a batch proof.
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can design zero-knowledge proofs for arithmetic circuit satisfiability, then this

implies that we can give zero-knowledge proofs for all NP languages.

• Many cryptographic systems can be expressed in terms of arithmetic over

finite fields of prime order. Given a zero-knowledge proof system for arith-

metic circuit satisfiability, we can give zero-knowledge proofs which reason

about other cryptographic schemes, often in order to provide stronger security

guarantees.

• There exist compilers which take computer programs written in C [13, 14]

(avoiding certain commands) and convert them into arithmetic circuits. Then,

a zero-knowledge proof for arithmetic circuit satisfiability can become a zero-

knowledge proof that the C program was executed correctly.

We provide two honest verifier zero-knowledge arguments for arithmetic circuit

satisfiability. Results for discrete-logarithm arguments are given in Table 1.4 and

results for hash-based arguments in Table 1.5.

In general, the arguments have a square-root communication complexity. The

arguments work by reducing the problem of verifying arithmetic circuit satisfiability

to the problem of checking that the prover knows that for three commitments, two

correspond to committed vectors of values, and the third contains the scalar product

of the two vectors.

3-Move Protocol for Arithmetic Circuit Satisfiability We give a 3-move protocol

for arithmetic circuit satisfiability. The argument has sublinear communication

costs and fewer rounds of interaction than any previously published arguments

with sublinear communication in the discrete logarithm setting, and highlights

some interesting subtleties in our communication model. When instantiated using

Pedersen commitments, this gives the first arithmetic circuit satisfiability protocol

with a square-root communication complexity in only three moves. Unfortunately,

the argument has a large (superlinear) computational cost for both the prover and the

verifier, so is presented mostly for theoretical interest.

We start from the circuit satisfiability argument of Groth [7], which requires
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Reference Moves Communication Prover Complexity Verifier Complexity
G Zp exp. mult. exp. mult.

[6] 3 6N 5N +2 6N 6N 6N 0
[7] 7 9

√
N +4 7

√
N +6 6N

logN O(N logN) 39
√

N
logN O(N)

[7] O(logN) 2
√

N 7
√

N 6N
logN O(N) 18

√
N

logN O(N)

[8] 5 30
√

N 7
√

N 6N
logN O(N logN) 77

√
N

logN O(N)

[1] O(logN) 2logN O(1) O(N) O(N) O(N) O(N)

This work 3 O(
√

N) O(
√

N) O( N3/2

logN ) O(N2) N
logN O(N3/2)

This work 5 2
√

N 2
√

N 6N
logN 3N logN 8

√
3N

logN O(N)

This work O(logN) 4logN 2logN 12N O(N) 4N O(N)

Table 1.4: Efficiency comparison between our 5-move argument in the discrete logarithm set-
ting and the most efficient constant-move interactive zero-knowledge arguments
relying on discrete logarithms and hash-functions. We express communication in
terms of numbers of group elements G and field elements Zp. We express compu-
tational costs in terms of numbers of exponentiations over G and multiplications
over Zp. The efficiency displayed is for a circuit with N multiplication gates.

7 moves and has square root communication complexity in the total number of

gates. In this argument the prover commits to all the wires using homomorphic

multicommitments, verifies addition gates using the homomorphic properties, and

uses a product argument to show that the multiplication gates are satisfied.

We first improve Groth’s argument into a 5-move argument with square root

communication complexity in the number of multiplication gates only. We achieve

fewer moves compared to [7] by avoiding generic reductions to linear algebra

statements. We remove the communication cost of the addition gates in the argument

by providing a technique that can directly handle a set of Hadamard products and

linear relations together.

Logarithmic Complexity Argument. In spite of all these improvements, the above

argument still requires square root communication complexity with respect to mul-

tiplication gates. In the first move the prover commits to all circuit wires using

3m commitments to n elements each, where mn = N is a bound on the number

of multiplication gates, and in the last move after receiving a challenge he opens

commitments that can be constructed from the previous ones and the challenge. The

communication complexity is O(m+ n). This is minimised when m,n = O(
√

N),
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Reference Moves Communication Prover Complexity Verifier Complexity
Hashes Zp Hashes mult. Hashes mult.

[15] O(1) O(
√

N) O(
√

N) O(
√

N) O(N logN) O(
√

N) O(
√

N)

[16] O(log logN) O(
√

N) O(
√

N) O(
√

N) O(N logN) O(λ ) o(N)
[17] O(1) O(N) O(N logN) O(N) O(N logN) O(logN) O(logN)

This work 5 O(
√

N) O(
√

N) O(
√

N) O(N logN) O(λ ) O(N)

Table 1.5: Efficiency of our hash-based arguments for arithmetic circuits. The efficiency
displayed is for a circuit with N multiplication gates.

which gives square-root communication complexity.

Our key idea to break this square root communication complexity barrier is

to replace the last opening step in this protocol with a special protocol for scalar

products. In Section 10.1 we provide an argument system for this problem, which

only requires a logarithmic communication with respect to the vector sizes. The

argument is built in a recursive way, reducing the size and complexity of the statement

further in each recursion step. This uses a special property of commitments, namely

homomorphic properties with respect to the keys. Pedersen commitments, based

on the discrete logarithm assumption, satisfy this property. As a result, using this

inner product argument as a subroutine in our main argument, and instantiating with

Pedersen commitments, we obtain an arithmetic circuit satisfiability argument with

logarithmic communication complexity based on the discrete logarithm assumption.

This argument was the first of its kind. The constants in the complexities of the

protocol have since been improved in [1].

When using a logarithmic number of moves and applying a reduction similar

to [18], our scheme dramatically improves the communication costs with respect to

all previous work without incurring any significant overhead. We note that [18] uses a

similar reduction to reduce computation whereas we use it to reduce communication.

1.3 Published Work

In this section, we discuss the author’s published works.
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Group and Ring Signatures

• Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth,

and Christophe Petit. Short accountable ring signatures based on DDH. In

Computer Security - ESORICS 2015 - 20th European Symposium on Research

in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings,

Part I, pages 243–265, 2015

This work proposed a new security model for a variant of ring-signatures called

accountable ring signatures, and provided a construction of the cryptosystem. Ring

signatures allow a single user to create a signature on behalf of a group of users,

formed in an ad-hoc fashion. However, the original security model for ring signatures

has no mechanism for revoking anonymity and tracing the origin of a signature in

case a user misbehaves. Accountable ring signatures include a tracing mechanism,

where the signer can designate an opener of their choice who can reveal the signer’s

identity in case of misbehaviour. The construction of accountable ring signatures

given in the paper relies on a zero-knowledge proof that a committed value is a

member of a list of values, which are provided in encrypted form. My contribution

was to check that the construction, notation, security proof and efficiency calculations

for the zero-knowledge proof were correct.

• Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens

Groth. Foundations of fully dynamic group signatures. In Applied Cryptog-

raphy and Network Security - 14th International Conference, ACNS 2016,

Guildford, UK, June 19-22, 2016. Proceedings, pages 117–136, 2016

This work proposed a new model for the security and functionality of group

signatures, in the case where the group of users can be updated over time by adding

new users and removing some users from the system. These were named ‘Fully

Dynamic Group Signatures’, where ‘dynamic’ refers to the group of users. The

paper shows that given any construction of a fully dynamic group signature, one

can easily obtain constructions of group signatures in older security models, namely

the partially dynamic group signatures of [20] and [21], and points to some subtle
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attacks that can arise in the other models since the attacks are not prohibited by

the security definitions. In this paper, my contribution was to show that our model

for fully dynamic group models was all-encompassing and that a construction of a

fully dynamic group signature allowed one to easily build a construction of group

signatures for the other security models, and prove that the constructions satisfied

the appropriate definitions.

Lattice Cryptanalysis

• Jonathan Bootle, Mehdi Tibouchi, and Keita Xagawa. Cryptanalysis of

Compact-LWE. In Topics in Cryptology - CT-RSA 2018 - The Cryptogra-

phers’ Track at the RSA Conference 2018, San Francisco, CA, USA, April

16-20, 2018, Proceedings, pages 80–97, 2018

Compact-LWE [23] was a novel, lattice-based encryption scheme presented in

[23]. It was proposed as a secure scheme for the post-quantum setting, as part of

the recent NIST call for efficient post-quantum key-encapsulation mechanisms and

signature schemes. The scheme was also based on a new assumption called Compact

LWE, whose hardness was justified with a reduction to the more standard LWE

problem, showing that solving the Compact LWE problem was at least as hard as

solving the LWE problem. In our work, we showed that the encryption scheme was

easily broken for the concrete parameters given in the original paper, since the secret

key could always be recovered efficiently. Furthermore, we showed that the hardness

reduction to the LWE problem was flawed, and gave an algorithm for solving the

Compact-LWE problem which essentially showed that solving Compact-LWE was

no harder than solving LWE. These arguments presented a strong case against the

use of Compact-LWE. My own contribution to this paper was quite small, trying to

find the best way to explain the details of the various attacks presented.

• Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque,

and Mehdi Tibouchi. LWE without modular reduction and improved side-

channel attacks against BLISS. In Advances in Cryptology - ASIACRYPT 2018

- 24th International Conference on the Theory and Application of Cryptology
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and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,

Proceedings, Part I, pages 494–524, 2018

BLISS [25] is an efficient, lattice-based signature scheme. However, previ-

ous work [26] shows that certain variable-time implementations of the signature’s

rejection sampling algorithm lead to side-channel attacks. Two quantities derived

from the signature’s secret key are leaked, related to the norm of the secret key and

a noisy scalar product of the secret key with another public value. Previous work

[26] demonstrates that for a small subset of weak secret keys, one can use the norm

leakage to recover the secret at a high computational cost, and dismisses the scalar

product leakage, as one would have to solve a problem akin to LWE in order to

recover the secret. However, our work observes that the new LWE-like problem

does not feature modular reduction, and so can be efficiently solved using linear

regression. We measure the number of signatures and the time required to recover

the secret key for different BLISS parameter settings. We also formalise the problem

of LWE without modular reduction and give theoretical upper and lower bounds

for the number of signatures required to solve the new problem, relating these to

the BLISS parameter choices. In this paper, my contribution was to spot an idea

from another source which used regression algorithms to solve a similar problem,

implement the side-channel attack, and investigate the attack for different parameter

settings.

Surveys

• Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, and Jens Groth. Efficient

zero-knowledge proof systems. In Foundations of Security Analysis and

Design VIII - FOSAD 2014/2015/2016 Tutorial Lectures, pages 1–31, 2016

This work was a tutorial on zero-knowledge proof systems for the International

School on Foundations of Security Analysis and Design (FOSAD). It did not present

any new techniques, but was split into three parts. The first was an explanation of

the properties of zero-knowledge proofs. The second gave details on the design of

some simple interactive zero-knowledge proofs, and the third section did the same
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for some basic non-interactive zero-knowledge protocols. I was responsible for

writing the third section of the tutorial, where I explained simplified examples of

techniques from the hidden-bits model featured in [28] and a proof [29] based on

the Boneh-Goh-Nissim public-key encryption scheme [30], as well as giving some

information on pairing-based SNARKs [31, 32, 33, 34, 35, 13, 36, 37].

Prover-Efficient Zero-Knowledge and Hash-based arguments

• Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad

Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for

arithmetic circuit satisfiability. In Advances in Cryptology - ASIACRYPT

2017 - 23rd International Conference on the Theory and Applications of

Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,

Proceedings, Part III, pages 336–365, 2017

This work gave the first zero-knowledge proofs for arithmetic circuit satisfi-

ability with sub-linear communication complexity, linear computational cost, or

constant overhead, for the prover, and a slightly sub-linear verification cost. The

argument works by introducing a new commitment scheme based on hash-functions

and error-correcting codes, both of which are computable in linear time and make

use of expander graphs. Then, a collection of techniques used in other works such

as [7] are abstracted into a new idealised communication model called the Ideal

Linear Commitment model (ILC). The paper presents a proof of arithmetic circuit

satisfiability in the Ideal Linear Commitment model, and a compilation converting

zero-knowledge proofs in the idealised model into real zero-knowledge proof with

perfect zero-knowledge and soundness based on the existence of suitable collision-

resistant hash-functions and error-correcting codes. My personal contribution to

this paper was to design all of the ILC protocols for arithmetic circuit satisfiability,

provide security proofs for them, and calculate their efficiency.

• Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller.

Arya: Nearly linear-time zero-knowledge proofs for correct program execution.

In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
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ASIACRYPT 2018, pages 595–626, Cham, 2018. Springer International Pub-

lishing

This work considers a RAM machine specification called TinyRAM, and the

problem of verifying, in zero-knowledge, that a given TinyRAM program was

executed correctly. The authors solve the problem using the techniques from [16] and

obtain zero-knowledge proofs with sub-linear communication complexity and close

to constant computational overhead. The extra overhead arises due to computational

costs associated with verifying the RAM machine model of computation that were

not present with arithmetic circuits. The methodology is very similar to that of [16];

providing ILC protocols to verify the correctness of a RAM computation, and then

using a compiler to produce real zero-knowledge proofs based on hash-functions and

error-correcting codes. Again, my personal contribution to the paper was to design

all of the extra ILC protocols required to verify correct program execution, as extra

arguments, such as a verifiable shuffle, were required. I was also responsible for

their security proofs and efficiency calculations.

Discrete-Logarithm-based arguments

• Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe

Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete

log setting. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual

International Conference on the Theory and Applications of Cryptographic

Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages

327–357, 2016

In this work, the authors propose two new arguments for arithmetic circuit

satisfiability, and sub-protocols for particular tasks, based on the discrete logarithm

assumption. The first protocol is a 5-move interactive argument with a square-root

communication complexity in the size of the arithmetic circuit, using a sub-protocol

which commits to polynomials and then reveals the evaluation of the polynomial at a

given point in a verifiable manner. Using a recursive sub-protocol with logarithmic

communication and round complexity, which verifies that two values committed
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using Pedersen commitments have a given scalar product, the 5-move argument

can be converted into a new arithmetic circuit argument with similar computation

costs. My contribution to this paper was the formalisation of new security definitions

required for the polynomial commitment sub-protocol and optimising that protocol,

a description of how to pre-process an arithmetic circuit to convert it into the format

required by the main zero-knowledge arguments, and notation and part of the proof

of a generalised forking lemma used to prove the knowledge soundness of the

logarithmic move arguments in the paper.

• Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions

and more. In 2018 IEEE Symposium on Security and Privacy, SP 2018,

Proceedings, 21-23 May 2018, San Francisco, California, USA, pages 315–

334, 2018

The proof-system in this work is known as Bulletproofs. In this work, the

authors optimise the logarithmic-communication argument of [9] to reduce com-

munication costs by a factor of three. They also present a simplified argument for

the special task of range proofs, which demonstrate that a committed value lies in a

particular interval, and provide an implementation and concrete performance mea-

surements for the new argument. They also give a secure multi-party computation

protocol allowing various parties to compute their own zero-knowledge proofs in

parallel and them aggregate them securely later on. Having discovered the techniques

to cut communication costs by a factor of three in parallel with the rest of the other

authors and joined the paper write-up at a later stage when almost complete, I was

responsible for choosing the correct definitions of zero-knowledge proofs for the

paper and helping to choose good notation for the arguments in the paper.

• Jonathan Bootle and Jens Groth. Efficient batch zero-knowledge arguments for

low degree polynomials. In Public-Key Cryptography - PKC 2018 - 21st IACR

International Conference on Practice and Theory of Public-Key Cryptography,

Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II, pages 561–

588, 2018
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In this work, the authors identify the techniques used to give zero-knowledge

proofs in previous works such as [3, 2, 10], which are all statements encoded into

low-depth circuits, or low-degree polynomials. They specify a relation-framework

which encompasses all of the statements proved in those zero-knowledge proofs.

They then give a zero-knowledge protocol for single instances of the relation, and

a batched protocol which builds on techniques from [12]. They show that for

particular choices of relation, one can obtain zero-knowledge membership proofs and

polynomial evaluation arguments with better concrete and asymptotic efficiency than

previously known, and capture folklore range-proofs based on the discrete logarithm

assumption. My contributions to this paper were the security definitions for the

polynomial commitment argument and optimisations to the argument itself, which

are similar to my contributions in [9]. I also identified the method of generalising

from arguments for single statement to batched arguments, and I discovered choices

of relation within the framework which led to arguments with improved asymptotic

properties.

Lattice-based arguments

• Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth,

and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments

for arithmetic circuits. In Advances in Cryptology - CRYPTO 2018 - 38th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August

19-23, 2018, Proceedings, Part II, pages 669–699, 2018

In this work, the authors give zero-knowledge arguments for arithmetic circuit

satisfiability based on cryptographic assumptions in lattices. The arguments have

a constant number of moves, quasilinear computational complexity, and sub-linear

communication complexity. In many respects, this argument is closely related to the

square-root communication argument of [9], with modifications to reflect the change

from discrete-logarithm groups to lattices. As a crucial step in the argument, the

authors provide a zero-knowledge proof of knowledge of values committed using

commitments based on the hardness of the Short-Integer-Solution problem. This

proof-of-knowledge was a big improvement over prior work, as it proves that the
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prover knows openings to stated commitments, rather than some multiple of those

commitments, which is a weaker security guarantee. Furthermore, this is the first

lattice-based zero-knowledge argument for large and general statements which has

a sub-linear communication complexity. My contributions in this paper were the

adaptations of the 5-move argument from [9] to the new lattice-based setting, new

security proofs for the protocol, and a novel technique boosting the soundness of

the zero-knowledge protocol by simulating operations in finite field extensions over

integer modules, building on work in [40] and [41].

Work in this Thesis This thesis focusses on contributions from the following papers.

1. [9], which contains the square-root and logarithmic communication arguments

for arithmetic circuit satisfiability based on the discrete logarithm assumption.

We use all of the arguments but the polynomial commitment sub-protocol from

this paper.

2. [11], which contains the relation-framework for low-degree polynomials, and

efficient batched protocols for low-degree polynomial relations based on the

discrete logarithm assumption. We use all of the arguments from this paper.

3. [16], which defines the Ideal Linear Commitment model, and gives linear-

time zero-knowledge protocols for arithmetic circuit satisfiability based on

hash-functions and error-correcting codes. From this paper, we use the ILC

model and compilation of ILC protocols into real protocols using hashes and

error-correcting codes.

4. [39], which contains a square-root communication argument for arithmetic

circuit satisfiability based on the Short Integer Solution problem. From this

paper, we use the soundness-boosting techniques over finite field extensions.

We also include the following pieces of unpublished work.

1. A novel argument for arithmetic circuit satisfiability with three moves and a

sub-linear communication complexity, which highlights issues with the ILC

model as given in previous work.



1.4. Recipes 37

2. Small modifications to the ILC model and compiler [16], for efficiency reasons.

3. A compiler from ILC protocols to real protocols based on the discrete logarithm

assumption.

1.4 Recipes
The results in this thesis are fairly modular. That is, if one is only interested in a

particular type of zero-knowledge argument, it is possible to restrict attention to

particular parts of the thesis.

To construct a hash-based argument for arithmetic circuits, one can use either

the three-move arithmetic circuit argument (Section 8.4) or the five-move arithmetic

circuit argument (Section 8.5), with the compiler based on hash functions and error-

correcting codes (Section 9.1). With the three-move argument, one can use the

argument for small fields (Section ) in order to boost the soundness of the resulting

protocol.

To construct discrete-logarithm based arguments for arithmetic circuits, one

can use the three-move arithmetic circuit argument (Section 8.4) or the five-move

arithmetic circuit argument (Section 8.5), with the compiler based on Pedersen

commitments (9.2). With the five-move argument, one can then apply the recursive

argument for scalar products (Section 10.1) to obtain a protocol with logarithmic

communication complexity.

To construct arguments for specialised languages, such as polynomial evaluation

arguments, membership arguments, and range proofs, one can use the low-depth

circuit argument (Section 8.3) with either compiler.

The combinations described above are summarised in Figure 1.1.
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Figure 1.1: Different ways to combine the results in this thesis.



Chapter 2

Background and Related Work

Zero-knowledge proofs were invented by Goldwasser, Micali, and Rackoff [4]. In

defining zero-knowledge proofs, the authors solved several important conceptual

problems.

Firstly, the definition of Interactive Turing Machines put the concept of inter-

active protocols between two parties on a rigourous theoretical footing. This lead

to the new computational complexity classes IP and ZK of languages which can be

recognised by interactive proofs and zero-knowledge proofs, respectively. They gave

a zero-knowledge proof for quadratic residuosity, the first zero-knowledge proof,

showing that the class ZK was non-empty.

Secondly, they solved the problem of what it means for some party to know

something. The knowledge of a party, or computing device, was captured by whatever

it is possible for that party to compute, given the information available to it, and its

own computational constraints.

Finally, the problem of what it means to gain no knowledge from an interaction

was captured using a simulation-based definition. That is, if it is possible to efficiently

simulate the contents of an interactive protocol without taking part in the protocol or

knowing any secret information that the participants are privy to, then observing the

interaction cannot confer any new knowledge. What can be computed from viewing

the execution of the protocol is exactly the same as what can be computed without

seeing it, and using a simulated execution instead.

Goldreich et al. [42] later showed that all languages in NP have zero-knowledge
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proofs, so that NP is contained inside ZK. Informally, this means that for any problem

for which one can check the solution efficiently, one can also convince somebody

else that you hold the solution, without giving away any information about the

solution. In fact, more is true. By taking several results together, we know that

there are zero-knowledge proofs for every language in IP [43, 44, 45], assuming the

existence of one-way functions.

Feige et al. [46] introduced zero-knowledge proofs-of-knowledge. These are

different to the original proposal of zero-knowledge proofs. Let us consider the

difference for NP languages L , with an instance u and a witness w. The original zero-

knowledge proofs could be referred to as ‘zero-knowledge proofs of membership’ in

this context. They prove that u lies in L , without leaking any further information,

such as w. So the verifier learns that some valid w exists, but this does not guarantee

that the prover actually knows a witness. In a proof of knowledge, the verifier learns

that the prover knows a valid w, and nothing more. These are useful for identification

schemes, for example, where the prover might authenticate themselves by proving

that the know the secret key corresponding to a particular public key.

We can classify zero-knowledge proofs according to the number of rounds

of interaction that take place between the prover and the verifier. Non-interactive

zero-knowledge proofs were introduced in [47]. In these proofs, the proof consists of

a single message sent from the prover to the verifier, who then accepts it or rejects it.

Non-interactive zero-knowledge proofs require a common reference string as input

to the protocol, to be used by both the prover and the verifier. Without a common

reference string, it is only possible to construct non-interactive zero-knowledge

proofs for languages in the complexity class BPP, which are seen as trivial, as the

verifier can efficiently decide whether an instance is in a BPP-language without

receiving any help from the prover.

The soundness and zero-knowledge properties of zero-knowledge proofs usually

come in three different flavours:

• Perfect; the property is always satisfied, even against computationally un-

bounded adversaries.
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• Statistical; the property fails to be satisfied with at most negligible probability,

even against computationally unbounded adversaries.

• Computational; the property fails to be satisfied with at most negligible proba-

bility, against computationally bounded adversaries.

So far, we have discussed zero-knowledge proofs, which have perfect or statistical

soundness. However, these can only have computational zero-knowledge. Protocols

with computational soundness and perfect or statistical zero-knowledge are called

zero-knowledge arguments. Brassard et al. [48] showed that all languages in NP have

zero-knowledge arguments with perfect zero-knowledge. Micali [49] introduced

the related notion of CS (computationally-sound) proofs, where proofs for false

statements exist, but are computationally difficult to find.

Gentry et al. [50] used fully homomorphic encryption to construct zero-

knowledge proofs where the communication complexity corresponds to the size of

the witness. For circuit satisfiability, for example, the scheme works by encrypting

the witness using a symmetric key encryption scheme, and using fully homomorphic

encryption to decrypt the witness and evaluate the circuit homomorphically in the

witness while still in encrypted form. This result gives protocols with the lowest

communication complexity that one might expect, as proofs cannot in general have

communication that is smaller than the witness size unless surprising results about

the complexity of solving SAT instances hold [51, 52].

Kilian [53] showed that in contrast to zero-knowledge proofs, zero-knowledge

arguments can have very low communication complexity. His construction relied on

the PCP theorem. Probabilistically checkable proofs, or PCPs, are proofs consisting

of strings of many elements, whose correctness can be checked by examining only

a small number of elements, sampled at random. Kilian’s scheme has an excellent

polylogarithmic communication complexity, but does not yield a practical scheme

due to the large computational overhead required to convert statements into PCPs.

In his scheme, the prover converts the statement to be proved into a PCP consisting

of bits, commits to each of the bits using a single commitment, and then hashes all

of the commitments in a Merkle tree. The verifier chooses a few bits of the PCP
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to verify. The prover reveals those commitments from the Merkle tree, and uses a

simple, auxiliary zero-knowledge proof system to prove that the committed bits will

pass the verifier’s checks.

Ishai et al. [54] introduce commitment schemes with linear decommitment.

After the committer commits to several values, they can open a linear combination

of the commitments, in a verifiable manner. This is a weakening of the property

of homomorphic commitments, where one can use the homomorphic property to

compute the correct linear combination of the commitments, and then open them.

These commitments are closely related to the ILC model. One could view parts

of our compilation of ILC protocols into zero-knowledge protocols based on hash

functions and error-correcting codes as a proof that one can construct a commitment

scheme with linear decommitment from these ingredients; one with an interactive

decommitment phase.

An interactive protocol is zero-knowledge if for any verifier, even a mali-

cious one, there exists an efficient simulator for the protocol. Honest verifier zero-

knowledge [55] is a weaker property, which only guarantees that there exists a

simulator for the interaction between an honest prover and an honest verifier. On

introducing the notion, [55] show that any protocol with statistical honest-verifier

zero-knowledge can be converted into a fully statistical zero-knowledge protocol

under the discrete logarithm assumption. [56] show the same result under general

one-way permutations, and [57] improved the result to one-way functions.

We say a proof system is public coin if the verifier’s messages are chosen

randomly and correspond exactly to the verifier’s randomness. Another result by

Damgaard [58] showed that public-coin honest verifier zero-knowledge protocols

with a constant number of rounds can be transformed into a fully zero-knowledge

protocol without any complexity assumptions. [59] show that statistical honest-

verifier zero-knowledge proofs can be converted into statistical fully zero-knowledge

proofs without any complexity assumptions.

An interactive zero-knowledge protocol is concurrently secure if even concur-

rent protocol executions involving a single prover and one or more verifiers do not
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leak information about the witness. Assuming a common reference string and relying

on trapdoor commitments, Damgård [60] gave a transformation yielding concurrently

secure protocols for Σ-Protocols. The transformation can be optimized [61] using

the idea that for each public-coin challenge x, the prover first commits to a value x′,

then the verifier sends a value x′′, after which the prover opens the commitment and

uses the challenge x = x′+ x′′. The coin-flipping can be interleaved with the rest of

the proof, which means the transformation preserves the number of rounds and only

incurs a very small efficiency cost to do the coin-flipping for the challenges.

If one does not wish to rely on a common reference string for security, one can

use a private-coin transformation where the verifier does not reveal the random coins

used to generate the challenges sent to the prover (hence the final protocol is no

longer public coin). One example is the Micciancio and Petrank [62] transformation

(yielding concurrently secure protocols) while incurring a small overhead with

respect to the number of rounds of interaction as well as the computational and

communication cost in each round. The transformation preserves the soundness and

completeness errors of the original protocol; however, it does not preserve statistical

zero-knowledge as the obtained protocol only has computational zero-knowledge.

There are other public-coin transformations to general zero-knowledge e.g. Gol-

dreich et al. [59]. The transformation relies on a random-selection protocol between

the prover and verifier to specify a set of messages and restricting the verifier to

choose challenges from this set. This means to get negligible soundness error these

transformations require ω(1) sequential repetitions so the round complexity goes up.

The Fiat-Shamir transformation [63] is a method of converting public-coin

interactive zero-knowledge arguments into non-interactive zero-knowledge proofs.

The new non-interactive protocol include a hash function in the common reference

string. The prover replaces the verifier’s messages with a hash of the protocol

transcript up to that point. The resulting arguments are highly efficient in practice

and are provably secure in the random oracle model [64]. In the random oracle

model, even if the initial interactive proof only has honest verifier zero-knowledge,

the resulting argument will have full zero-knowledge.
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However, it has been shown [65, 66] that there are interactive protocols which

are sound in the random oracle model, but which are insecure for any choice of hash

function. Despite this theoretical problem, the Fiat-Shamir heuristic is still used to

produce arguments for practical applications, where the hope is that it does give

sound arguments for “natural” protocols.

Schnorr [5] and Guillou and Quisquater [67] gave early examples of practical

zero-knowledge arguments for concrete number theoretic problems. Schnorr’s pro-

tocol proves knowledge of a discrete logarithm, and Guillou-Quisquater’s protocol

proves knowledge of the message corresponding to an RSA encryption. Extending

Schnorr’s protocols, there have been many constructions of zero-knowledge argu-

ments based on the discrete logarithm assumption. Cramer and Damgård [6] gave a

zero-knowledge argument for arithmetic circuit satisfiability, which has linear com-

munication complexity. The argument uses homomorphic commitments to all wire

values in the circuit, using the homomorphic property to verify that that the addition

gates in the circuit are satisfied, and giving a protocol to verify multiplications which

is used for each multiplication gate in the circuit.

Before the logarithmic protocol presented in this thesis, the most efficient dis-

crete logarithm based zero-knowledge arguments for arithmetic circuits were the

protocols by Groth [7] and Seo [8], which are constant move arguments with a

communication proportional to the square root of the circuit size. Both of these

protocols fit into the Ideal Linear Commitment model. The square-root communica-

tion cost comes from the fact that all of the wire values in the arithmetic circuit are

arranged into a matrix, and the prover sends the verifier a commitment to each row,

and a linear combination of the rows. Balancing the number of rows and columns in

the matrix gives a square-root communication cost in total. This thesis also gives

two arguments for arithmetic circuit satisfiability based on the discrete logarithm

assumption. One has fewer rounds of interaction than these previous works, and the

other has lower concrete communication costs, and fewer verification equations.

Using pairing-based cryptography instead of just relying on the discrete loga-

rithm assumption, Groth [68] extended these techniques to give a zero-knowledge
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argument with cube-root communication complexity. In this argument, the prover

arranges the wire-values into a cuboid. Each slice of the cuboid is a matrix, and the

prover commits to each row of each matrix using a Pedersen commitment, which

collapses the cuboid of wire-values into a matrix of Pedersen commitments. Then,

the prover uses a pairing-based commitment scheme to collapse the matrix of Ped-

ersen commitments into a vector of pairing-based commitments. The cube-root

communication complexity comes from the fact that the prover has to send values to

the verifier for each dimension of the cuboid, and balancing the dimensions gives the

cube-root. The argument requires only a constant number of moves. It is the ability

to use multiple related commitment schemes that allows the compression. In fact,

given a candidate cryptographic multi-linear map, one could continue committing to

commitments at multiple different levels. For a multi-linear map with l levels, one

could achieve (l +2)th-root communication complexity.

Our logarithmic-communication-complexity protocol for arithmetic circuit satis-

fiability employs a similar concept, but works in a slightly different way. Wire-values

can be arranged in an d-dimensional hypercube. All elements are committed to

using a Pedersen commitment. At each step in the argument, the prover receives

a random challenge from the verifier, and takes a random linear combination of

(d−1)dimensional hypercubes to reduce the dimension of the hypercube by one.

This operation is compatible with the Pedersen commitment scheme, up to some

correction factors, and results in a Pedersen commitment to fewer elements. It is the

sequential interaction over many rounds, and the special properties of the Pedersen

commitment scheme, that allows the compression. This led to the protocol given

in [9], which shows that not only is the commitment scheme compatible with the

compressing operation, but one can reduce a scalar-product check on the original

elements to a check on the new compressed elements, leading to a highly efficient

protocol for verifying the scalar product of committed vectors.

Bunz et al [1] observe that the original protocol uses separate Pedersen commit-

ments for each input vector to each scalar product, and optimises the argument by

giving a new argument where multiple values are contained in a single commitment.
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Hyrax [69] uses the same scalar-product argument in a different way, combined

with a multi-variate polynomial commitment scheme, to give efficient proofs for

highly structured circuits, which achieve sub-linear proof size, linear prover time,

and sub-linear verification time when giving proofs for a highly parallelisable circuit,

or computing a batch proof for a large number of identical circuits. This approach

performs best for circuits of low depth.

[39] adapts the square-root communication protocol of [9] to the post-quantum

setting, using commitments based on the hardness of the shortest vector problem for

lattices. This work can be seen as the compilation of a particular ILC protocol into the

new lattice-based setting. However, the commitment scheme used does not seem to

admit the same special properties needed to replicate the argument with logarithmic

communication complexity which is possible in the discrete logarithm setting. Like

the compilation of ILC protocols based on hash functions, the lattice-based protocol

requires an check on all commitments, in the form of a proof-of-knowledge. The

main difference between that protocol and our work is the adaptation of the same

techniques to a new algebraic setting where the size of elements is important, and

which is not a field, so that proof-techniques based on linear algebra become much

more difficult to apply.

An exciting line of research [31, 32, 33, 34, 35, 13, 36, 37] has developed many

proposals for succinct non-interactive arguments (SNARGs) yielding pairing-based

constructions where the arguments consist of a constant number of group elements.

The arguments have a constant size, and a constant verification time, which allowed

for effective recursive composition [35] and exciting proof-carrying-data techniques.

The disadvantage of these arguments is the super-linear computational complexity of

the prover. The techniques have also been extended to give proofs with simulation-

extractability [70, 71].

Like the ILC model’s relationship with many discrete-logarithm-based protocols,

the pairing-based protocols above can all be captured using the model of Linear

Interactive Proofs and Linear PCPs [72]. In linear interactive proofs, the prover

and verifier send vectors of field elements to one another. The verifier makes linear
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queries on a proof vector created by the prover. However, the prover can only send

linear (or affine) transformations of the verifier’s previously sent vectors, which

distinguishes these systems from ILC protocols, in which the prover is allowed to

perform more general computation. It is possible to convert ILC protocols into linear

interactive proofs, and vice-versa, but the resulting protocols are usually inefficient,

reflecting the fact that the models were tailored to different use-cases. Furthermore,

linear interactive proofs usually involve a verifier of algebraic degree two. The ILC

protocols presented in this work sometimes have a higher algebraic degree, so they

could not be converted into linear interactive proofs and compiled using the same

methods.

The idealised linear interactive proofs are compiled into real arguments in

pairing groups in works like [37] by creating a common reference string with all of

the verifier’s queries embedded into the exponents of group elements. The resulting

protocols are proved secure under strong assumptions implying that whenever one

can find group elements satisfying particular equations, then the group elements

must be linear combinations of the group elements in the CRS. However, due to

the nature of the verifier’s queries in the idealised proofs, the common reference

strings are highly structured and must either be generated by a trusted third party or

an expensive multiparty computation protocol. Other works such as [73] attempt to

mitigate the problem. They give a protocol which updates common reference strings,

so that the updated common reference strings are trustworthy, even if the old ones

were not. [74, 75] present secure multi-party computation protocols used to generate

the common reference strings of pairing-based SNARKs.

Furthermore, non-falsifiable knowledge extractor assumptions are used to guar-

antee security. In contrast, the arguments we develop here are based solely on the

discrete logarithm assumption, or collision resistant hash functions, and use a small

common reference string which is independent of the circuit. This is because we

choose to compile our idealised protocols under these alternative assumptions.

Bootle et al [16] used error-correcting codes and linear-time collision-resistant

hash functions to give the first zero-knowledge proof and argument systems for
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arithmetic circuit satisfiability with constant computational overhead. The prover

uses a linear number of field multiplications, and verification is even more efficient,

requiring only a linear number of additions. They proposed the ILC model, which

forms the basis of this work. Their methodology was also similar, designing an

ideal protocol with the correct security properties and compiling it into a real proof.

The result hinges on choices of particularly efficient linear-time-computable hash

functions and codes. This work includes similar compilations, modified to account

for changes in the ILC model, some optimisations using Reed-Solomon codes, and

the discrete logarithm setting.

STARKs [17] give an argument with logarithmic communication costs, and

logarithmic verification costs. Computational complexity for the prover is quasilinear,

but the large constants involved give this approach higher computational time for

the prover than other cryptographic proof implementations such as [1, 69] for giving

proofs about practical instances.

Another effective way to construct efficient zero-knowledge proofs is to follow

the so-called MPC-in-the-head paradigm of [76]. This approach leads to very

efficient constructions both in theory and in practice. When the prover wants to

prove, for example, that a circuit is satisfiable, they simulate a secure multi-party

computation protocol to evaluate the circuit on secret-shared inputs. They commit to

the view of each party in the multi-party computation protocol. The verifier randomly

selects some fraction of the views, and checks that they are consistent. ZKBoo [77]

and subsequent optimisation ZKB++ [78] use hash functions to construct zero-

knowledge arguments for the satisfiability of boolean circuits. Their communication

complexity is linear in the circuit size, but the use of symmetric primitives gives

good performance in practice.

Ligero [15] provides another implementation of the MPC-in-the-head paradigm

and used techniques similar to [16] to construct sublinear arguments for arithmetic

circuits. The approach used in Ligero is similar to the approach used in this work.

One difference is that Ligero uses the multiplicative properties of Reed-Solomon

codewords to help verify multiplications. This work does not require codewords to
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have any multiplicative properties.

Jawurek et al. [79] gave a different approach to zero-knowledge proofs derived

from multiparty computation protocols, using garbled circuits.

All of the arguments mentioned above which rely on collision-resistant hash-

functions for security only require a simple common reference string including a

description of the hash-function. This makes them suitable for blockchain applica-

tions where a trusted-setup procedure is particularly undesirable.

Other works give a composite approach, combining different zero-knowledge

proof systems for both algebraic and non-algebraic techniques. Chase et al [80] uses

two approaches to interactive zero-knowledge. They use the garbled-circuit tech-

niques of [79] to prove non-algebraic statements, and algebraic protocols based on

the discrete logarithm assumption and RSA assumption to prove algebraic statements.

They leverage both techniques at the same time in order to construct efficient privacy-

preserving credentials. [81] uses similar ideas to give non-interactive zero-knowledge

proofs, this time by combining pairing-based SNARKs with discrete-logarithm-based

interactive zero-knowledge proofs, after using the Fiat-Shamir heuristic to make the

interactive protocols non-interactive.

Another model for protocols is that of interactive oracle proofs, introduced

in [82]. Interactive oracle proofs are interactive proofs between a prover, and a

verifier, in which the verifier only has query access to the prover’s messages. They

simultaneously generalise interactive proofs and PCPs. Intuitively, one way to view

interactive oracle proofs is as PCPs where the interaction between the prover and the

verifier means that the prover only has to compute a small part of the PCP for the

verifier to check. In fact, Ideal Linear Commitment protocols can also be seen as

interactive oracle proofs with some extra restrictions.

Recently, the notion of linear PCPs was generalised to fully-linear PCPs in [83].

Just as PCPs were generalised by IOPs, the same paper, [83] goes on to generalise

LPCPs further to (fully-)linear IOPs. In particular, linear and fully-linear IOPs are

very similar to Ideal Linear Commitment protocols, allowing the verifier to make

linear queries on a committed proof string, but ultimately measures the efficiency of



50

a protocol using different metrics, as the authors aim to describe different types of

interactive protocols.

As well as general proof proof systems, various works give protocols with low

communication complexity for specific languages. For example, in a membership

argument [84, 85], a prover demonstrates that a secret committed value λ is an

element of a list L = {λ0, . . . ,λN−1}, without revealing any other information about

λ . In a polynomial evaluation argument [86, 85], a prover demonstrates that a secret

committed value v is the evaluation of a public polynomial h(U) at another secret

committed value u. In a range proof [87, 88], a prover demonstrates that a secret

committed value a is an element of the interval [A;B].

The goals of membership arguments are related to those of zero-knowledge sets

[89]. Membership arguments allow a prover to commit to a secret value and show

that it lies in a public set, without leaking information on the value. On the other

hand, zero-knowledge sets allow the prover to commit to a secret set, and handle

membership and non-membership queries in a verifiable manner, without leaking

information on the set.

Herranz constructs attribute-based signatures [90] using what is essentially a set

membership argument for multiple values. The argument relies only on the discrete

logarithm assumption, but the communication complexity is linear in the size of

the set. Camenisch et al. [91] also provide set membership proofs with logarithmic

communication complexity, and Fauzi et al. [92] construct constant size arguments

for more complex relations between committed sets. The latter two works both rely

on pairing-based assumptions.

Groth and Kohlweiss [2], and a follow-up work [10] show that one can prove that

one out of N commitments contain 0 with logarithmic communication complexity,

based on the discrete logarithm assumption. For homomorphic commitments, it is

easy to reduce the task of a membership argument to the task of checking that one

commitment contains a zero, by dividing every commitment in the public set by the

prover’s own commitment. Both arguments work by arranging the values in the list

into a tree, and having the prover commit to a sequence of bits which describe a path
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from the root of the tree to the leaf which is equal to the prover’s own commitment.

[10] optimises the protocol given in [2] by generalising to an n-ary tree rather than a

binary one.

Range arguments can be seen as a special case of membership arguments,

where L is simply a list of consecutive integers. Many are based on the strong RSA

assumption, and use Lagrange’s Four-Square Theorem. Couteau et al. show that this

assumption can be replaced by an RSA-variant which is much closer to the standard

RSA assumption [93]. Their techniques can be applied to existing works such as [94,

88]. Chaabouni et al. [95] give an argument with sub-logarithmic communication

complexity in the size of the list, which is comparable to the efficiency we achieve,

and also relies on the hardness of the discrete logarithm problem, but uses pairings

for verification.

Membership arguments also generalise arguments that a committed value lies

in a linear subspace such as [96, 97, 98]. The protocols in these works all operate

in bilinear-pairing groups. Peng [99] achieves a square-root complexity. Some

existing protocols [3], [2] even achieve logarithmic communication complexity. Our

single-value membership proof is an extension of the latter works where we reduce

the number of commitments from logarithmic to constant.

Cryptographic accumulators [100, 101, 102, 103] can also be used to give mem-

bership proofs. The members of a set are absorbed into a constant-size accumulated

value. Witnesses for set-membership can then be generated and verified using the

accumulated value. Efficient instantiations of accumulators exist and often rely

on the Strong RSA assumption or pairing-based assumptions. An RSA modulus

has to be λ 3

polylogλ
bits to provide security against factorisation using the General

Number Field Sieve. For a given security level, pairing-based schemes with constant

embedding degree scale similarly due to sub-exponential algorithms for attacking

the discrete logarithm problem in the target group. Furthermore, such schemes

require a trusted setup. By contrast, when instantiating our proofs using Pedersen

commitments or collision resistant hash functions, we only require commitments of

size O(λ ) bits for security against discrete logarithm attacks in elliptic curve groups,
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or collision-finding attacks against the hash functions.

Some of the schemes can be adapted to give zero-knowledge arguments for

non-membership, from a variety of settings. For example, [3, 99] also give non-

membership arguments in the discrete logarithm setting. Accumulators that support

non-membership arguments have been constructed, based on both pairing assump-

tions ([104]) and the strong RSA assumption ([105]).

Our polynomial commitment protocol is a key part of our zero-knowledge

argument. Polynomial commitments were first introduced by Kate et al. [106],

who give a construction using bilinear maps. The original construction has also

been extended to the multivariate case [107, 108]. Libert et al. [109] also gave a

construction relying on much simpler pairing-based assumptions. Our polynomial

commitment protocol builds on the polynomial commitment protocol presented

in [9], and gives a square-root communication complexity when instantiated with

compact commitments. Later, Hyrax [69] gives a commitment scheme for multi-

linear polynomials using the scalar-product argument of [9, 1], with a logarithmic

communication complexity. The same idea can be incorporated into our batch

protocol for low-degree polynomials, but does not improve asymptotic performance,

so for ease of exposition, we do not discuss this.

Some zero-knowledge proofs and arguments use the idea of embedding many

statements into a single polynomial using Lagrange interpolation polynomials in a

challenge x. The idea originates in the quadratic arithmetic programs of Gennaro

et al. [34]. It was used in the context of interactive zero-knowledge arguments by

Bayer [12]. The technique was originally applied to construct a Hadamard product

argument and batched polynomial evaluation argument. Earlier work by Gennaro et

al. [110] batches Schnorr proofs using simple powers of x.

Other batch arguments in the literature use methods from [111] and multiply

different instances of the proof by small exponents before compressing the proofs

together. This approach may be used to trade soundness for efficiency. The batch

argument in this thesis proves and verifies the logical AND of many statements

simultaneously. There are also batch proofs for OR statements [112], and k-out-of-N
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batch proofs [113]. Finally, Henry and Goldberg [113] define a notion of conciseness

to characterise batch proofs.

Camenisch and Stadler [114] also propose a general framework of relations for

zero-knowledge proofs based on the discrete logarithm assumption. Their notation

is useful for describing large and complex statements. We take some inspiration

from their notation, but use different notation since the ILC model describes general

relations over fields, and values committed using a generic commitment scheme.



Chapter 3

Formal Definitions

3.1 Notation and Computational Model

This thesis is concerned with algorithms modelled as probabilistic polynomial-time

Turing machines, and interactive probabilistic polynomial-time Turing machines.

We use the abbreviations PPT and DPT for algorithms running in probabilistic

polynomial time and deterministic polynomial time respectively, where the running

time is polynomial in the size of the algorithm inputs. Unless otherwise stated, the

sizes of inputs and outputs to the machines will be bounded above by a polynomial

in a security parameter λ , usually provided to the algorithms in unary form as 1λ .

For functions f ,g : N→ [0,1], we write f (λ )≈ g(λ ) if | f (λ )−g(λ )|= 1
λ ω(1) .

We say a function f is overwhelming if f (λ )≈ 1 and f is negligible if f (λ )≈ 0.

Write y = A(x;r) when the algorithm A outputs y on input x with randomness r.

We write y← A(x) to mean selecting r at random and setting y = A(x;r). We write

y← S for sampling y uniformly at random from a set S. We define [n] to be the set

of integers 1, . . . ,n.

We use F to denote a finite field. We use bold letters such as v for row vectors.

For v ∈ Fn and a set J = { j1, . . . , jk} ⊂ [n] with j1 < · · ·< jk we define the vector

v|J to be (v j1, . . . ,v jk). Similarly, for a matrix V ∈ Fm×n we let V |J ∈ Fm×k be the

submatrix of V restricted to the columns indicated in J.

Let z1, . . . ,zm be distinct points in a finite field F. and let l1(X), . . . , lm(X) be
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their associated Lagrange polynomials. Explicitly,

li(X) = ∏
j 6=i

X− z j

zi− z j

Note that li(z j) = δi, j, so it is easy to see how to combine the Lagrange polynomials

to produce a polynomial which interpolates a given function at z1, . . . ,zm. Let

l0(X) = ∏
m
i=1(X− zi).

3.2 Arithmetic Circuits
Arithmetic circuits are a model for algebraic computation over fields. An arithmetic

circuit consists of addition and multiplication gates. Our satisfiability arguments

consider arithmetic circuits described as a list of multiplication gates together with a

set of linear consistency equations relating the inputs and outputs of the gates. In

this section, we show how to reduce an arbitrary arithmetic circuit to this format.

Definition 1 An arithmetic circuit over a field F and variables (A1, . . . ,Am) is a

directed acyclic graph whose vertices are called gates. Gates of in-degree 0 are

inputs to the circuit and labelled with some Ai or a constant field element. All other

gates are labelled + or ×.

Given field elements ai ∈ F, an arithmetic circuit is evaluated in several steps.

First, label the inputs with the ai. Then, take gates whose inputs are all labelled with

field elements, apply the operation on the gate to the inputs and write the answer on

the output wire. and repeating this process until all gates have been labelled with

output field elements.

We may consider fan-in 2 circuits, in which case all of the + and × gates have

in-degree 2, or arbitrary fan-in circuits. We consider circuits with arbitrary fan-out,

in which case all of the + and × gates have unbounded out-degree.

Arithmetic circuits can be measured in various ways. The size of an arithmetic

circuit is the number of gates in the circuit. This can be further split into the number

of addition gates and the number of multiplication gates. The depth of a circuit is

the length of the longest path beginning from any circuit input. It is easy to see that
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arithmetic circuits compute polynomial functions of their inputs, and the degree of

the arithmetic circuit is the total degree of the polynomial that it computes.

Arithmetic circuits can be described alternatively as a list of multiplication gates

with a collection of linear consistency equations relating the inputs and outputs of

the gates. Our zero-knowledge protocols for circuit satisfiability use circuits in this

form. Any circuit described as an acyclic graph can be efficiently converted into the

alternative description.

At a high level, we transform an arithmetic circuit into two kinds of equations.

Multiplication gates are directly represented as equations of the form a ·b = c, where

a,b,c represent the left, right and output wires. We will arrange these values in matrix

form producing a Hadamard matrix product. This process will lead to duplicate

values, when a wire is the output of one multiplication gate and the input of another,

or when it is used as input multiple times. We keep track of this by using a series

of linear constraints. For example, suppose we have two multiplication gates with

wire values a1,b1,c1 and a2,b2,c2. If the output of the first multiplication gate is the

right input of the second, we would write c1−b2 = 0.

We also add linear constraints representing the addition and multiplication by

constant gates of the circuit. We then rewrite those equations so that the only wires

that are referenced in the equations are those linked to (non-constant) multiplication

gates. We now describe this process.

3.2.1 Preprocessing Arithmetic Circuits for Arguments

We show how to remove addition and multiplication-by-constant gates from an

arithmetic circuit A, and replace them with bilinear consistency equations on the

inputs and outputs of the remaining gates, such that satisfiability of the equations is

equivalent to satisfiability in the original circuit.

Let B be the sub-circuit of A containing all wires and gates before a multiplica-

tion gate, with m input wires and n output wires. Label the m inputs of B with the

unit vectors ei = (0, . . . ,1, . . . ,0) of length m. For every addition gate with inputs

labelled as x,y, label the output wire as x+y. For every multiplication-by-constant

gate with inputs x and constant c label the output with cx. By proceeding inductively,



3.2. Arithmetic Circuits 57

the n outputs of B are now labelled with vectors of length m representing them as

linear combinations of the inputs.

This requires at most m |B| arithmetic operations. Note however that all outputs

of B are linear combinations of the inputs, and that B can be written with n(2m−1)

fan-in 2 gates in such a way that the consistency equations can be trivially read off

from the circuit description. More specifically, a linear combination ∑
m
i=1 aixi can be

produced using m multiplication-by-constant gates and m−1 addition gates to add

the answers together.

We can now remove the gates of B from A. We also remove any multiplication

gates whose inputs are the inputs of the new circuit. Now we simply repeat the

process of finding consistency equations until we have considered the whole of A. In

Figure 3.1 there is an example of a circuit together and the corresponding consistency

equations.

The first (input) and final (output) sub-circuits require additional processing.

We show how to do this for the output sub-circuit. The input sub-circuit is very

similarly handled.

Let B be the output sub-circuit. Write (a1, . . . ,am) = a for the input wires of

B and (b1, . . . ,bn) = b for the output wires. Without loss of generality, we may

ignore variable output wires. By construction of B, each output bi is of the form

∑
n
i=1 qi ja j + pi, with consistency equations obtained as above. We write this in terms

of an m×n matrix Q and a column vector p of size m, namely

b = Qa+p.

Let r be the rank of Q. We convert Q into reduced row echelon form R, writing

b′′ = Ra.

By the properties of reduced row echelon form, after relabelling the ai and

permuting the columns of R to match, we have that b′′i = ai + ∑
m
j=l+1 ri ja j for

1≤ i≤ l. Therefore, we may consider al+1, . . . ,am as free wires and express other
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c1 = a4

c2 = b4
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•
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×

c4 a5

b6

b5

a6

c5

c6

c1 = a4

c2 = b4

c4 = a5

4c3 + c4 = b5

4c3 + c4 = a6

4c3 = b6

Figure 3.1: A simple arithmetic circuit, and the corresponding consistency equations. The
first sub-circuit contains the wires a1,b1,c1,a2,b2,c2,a3,a3,c3. The second sub-
circuit contains the wires c1,a4,c2,b4,c4,c5,c6. The third sub-circuit B contains
the wires c3,c4,a5,b5,a6.

ai as linear functions of these wires plus constants.

Note that if b′′i 6= 0 for some i > l, the circuit can never be satisfied anyway.

However, assuming that our statement is a satisfiable circuit, with a witness consisting

of satisfying wire values, this never occurs. Then the original circuit is satisfied if

and only if the ai values satisfy the consistency equations.

If Q is an m×n matrix then it can be converted into reduced row echelon form

using O(max(m,n)mn) operations. It is trivial that m≤ 2 |B| and n≤ |B|. This gives

an upper bound of O(|B|3) computation for the output sub-circuit. Note that this is

often a large over-estimate; this upper bound occurs for circuits of depth 1 where

inputs feed into distinct gates. For circuits of large depth, where the same input is

fed into several gates, the upper bound will definitely not be reached.

The case of the input sub-circuit is very similar, except that we take the transpose

of the matrix.

3.2.2 Reduction of Circuit Satisfiability Problem to a Hadamard

Matrix Product and Linear Constraints.

Having preprocessed the arithmetic circuit as in the previous section, we may assume

that the input and the output wires feed into and go out from multiplication gates

only. We number the multiplication gates from 1 to N and we arrange the inputs

and outputs of these gates into three m×n matrices A,B and C such that the (i, j)

entries of the matrices correspond to the left input, right input and output of the same

multiplication gate.
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As shown in [9], an arithmetic circuit can be described as a system of equations

in the entries of the above matrices. The multiplication gates define a set of N

equations

A◦B =C (3.1)

where ◦ is the Hadamard (entry-wise) product. The circuit description also contains

constraints on the wires between multiplication gates. Denoting the rows of the

matrices A,B,C as

ai = (ai,1, . . . ,ai,n) bi = (bi,1, . . . ,bi,n) ci = (ci,1, . . . ,ci,n) for i ∈ {1, . . . ,m}

these constraints can be expressed as Q < 2N linear equations of inputs and outputs

of multiplication gates of the form

m

∑
i=1

ai ·wq,a,i +
m

∑
i=1

bi ·wq,b,i +
m

∑
i=1

ci ·wq,c,i = Kq for q ∈ {1, . . . ,Q} (3.2)

for constant vectors wq,a,i,wq,b,i,wq,c,i and scalars Kq.

For example, suppose that the circuit contains a single addition gate, with

a1,1 and a1,2 as inputs, and b1,1 as output. In this case, Q = 1 and we would set

w1,a,1 = (1,1,0, . . . ,0), w1,b,1 = (−1,0, . . . ,0), and all other w vectors would be set

to 0. Then (3.2) would simply read

a1,1 +a1,2−b1,1 = 0

to capture the constraint imposed by the addition gate.

In total, to capture all multiplications and linear constraints, we have N +Q

equations that the wires must satisfy in order for the circuit to be satisfiable.

3.3 Commitment Schemes
A non-interactive commitment scheme allows a sender to commit to a secret mes-

sage and later reveal the message in a verifiable way. Here we are interested in

commitment schemes that take as input an arbitrary length message so the message
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space is {0,1}∗. A commitment scheme is defined by a pair of PPT algorithms

(Setup,Commit).

Setup(1λ )→ ck: Given a security parameter, this returns a commitment key ck.

Commitck(m)→ c: Given a message m from a message space Mck, this picks ran-

domness r←Rck, from a randomness space, and computes a commitment

c = Commitck(m;r) ∈ Cck.

A commitment scheme must be binding and hiding. The binding property means that

it is infeasible to open a commitment to two different messages, whereas the hiding

property means that the commitment does not reveal anything about the committed

message.

Definition 2 (Binding) A commitment scheme is computationally binding if for all

PPT adversaries A

Pr

 ck← Setup(1λ ); (m0,r0,m1,r1)←A (ck) :

m0 6= m1 ∧ Commitck(m0;r0) = Commitck(m1;r1)

≈ 0.

If this holds also for unbounded adversaries, we say the commitment scheme is

statistically binding.

Definition 3 (Hiding) A commitment scheme is computationally hiding if for all

PPT stateful adversaries A

Pr

 ck← Setup(1λ ); (m0,m1)←A (ck); b←{0,1};

c← Commitck(mb) : A (c) = b

≈ 1
2
,

where A outputs messages of equal length |m0|= |m1|. If the definition holds also

for unbounded adversaries, we say the commitment scheme is statistically hiding.

Suppose further that (Mck, ·), (Rck,◦) and (Cck,⊕) are groups.

Definition 4 (Homomorphic Commitment Scheme) We call the commitment

scheme homomorphic if Commit : Mck×Rck→ Cck is a group-homomorphism, i.e.

Commit(m ·m′;r ◦ r′) = Commit(m;r)⊕Commit(m′;r′)
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3.4 Error-Correcting Codes
A code over an alphabet Σ is a subset C ⊆ Σn. A code C is associated with an

encoding function EC : Σk→ Σn mapping messages of length k into codewords of

length n. We assume there is a setup algorithm GenEC
which takes as input a finite

field F and the parameter k ∈ N, and outputs an encoding function EC .

We use error-correcting codes as part of our compilation from ILC protocols to

proof systems based on collision-resistant hash-functions. We restrict our attention to

F-linear codes for which the alphabet is a finite field F, the code C is a k-dimensional

linear subspace of Fn, and EC is an F-linear map. The rate of the code is defined to

be k
n . The Hamming distance between two vectors x,y ∈ Fn is denoted by hd(x,y)

and corresponds to the number of coordinates in which x,y differ. The (minimum)

distance of a code is defined to be the minimum Hamming distance hdmin between

distinct codewords in C . We denote by [n,k,hdmin]F a linear code over F with length

n, dimension k and minimum distance hdmin. The Hamming weight of a vector x is

wt(x) = |{i ∈ [n] : xi 6= 0}|.

To get good results when compiling, we will use families of linear codes

achieving asymptotically good parameters. More precisely, we require codes with

linear length, n = Θ(k), and linear distance, hdmin = Θ(k), in the dimension k of

the code. We recall that random linear codes achieve with high probability the best

trade-off between distance and rate. However, in this work we are concerned with

the computational efficiency of the encoding procedure and random codes are not

known to be very efficient. The reader can keep Reed-Solomon codes in mind for

concrete instantiations, as these as simple, satisfy all of the necessary requirements,

and are practically efficient as well as asymptotically.



Chapter 4

Zero-Knowledge Proofs and the Ideal

Linear Commitment Model

In this chapter, we begin by defining zero-knowledge proofs. Then we define what it

means to be an Ideal Linear Commitment protocol, and compare that model with

other similar models which give rise to zero-knowledge proof systems.

This chapter is important, as the core contribution of this thesis is to provide

efficient Ideal Linear Commitment protocols and show that they can be converted

into real proof systems. None of this would be possible without first precisely

definining the model.

We choose to present zero-knowledge proofs and the definition of the Ideal

Linear Commitment model together in the same chapter, because the two types of

protocol will satisfy largely similar security definitions.

4.1 Zero-Knowledge Proofs
A proof system is defined by a triple of stateful PPT algorithms (K ,P,V ), which

we call the common-reference-string generator, the prover and verifier, respectively.

The setup generator K creates public parameters σ which provide the necessary

setup information for Pand V to run the protocol. On input 1λ , the generator G

produces a common reference string σ . We think of σ as being honestly generated

and use the public parameter model purely for simplicity and efficiency in our proofs.

However, in the proofs we construct, σ consists of parts that are either publicly
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verifiable or could be generated by the verifier, so we do not rely on the public

parameter model for security in any way.

Different Types of Interactive Protocols. The prover and verifier interact with each

other in some sort of interaction environment, or communication channel which we

will denote by chan←→. In the usual interaction environment ←→, all messages are

forwarded between prover and verifier. In fact, ←→ refers to exactly the sort of

interaction defined by the complexity class IP. We also consider an ideal linear com-

mitment environment, ILC, defined properly in Section 4.2. This thesis is concerned

with producing ILC proof protocols which are defined by interactions between the

prover and verifier in the ILC environment.

Why speak of interaction environments at all? We do this because the definitions

of what it means to be a secure zero-knowledge proof protocol will really depend

very little on whether the interaction takes place as an interactive proof protocol or

an ILC protocol. This is to be expected, as ILC proof protocols were designed as an

information theoretic abstraction of certain zero-knowledge proofs.

When P and V interact on inputs s and t via chan←→, then let viewV ←

〈P(s) chan←→ V (t)〉 be the view of the verifier in the execution, which is made up of all

of the verifier’s inputs, including random coins, and let transP ←〈P(s) chan←→ V (t)〉

denote the transcript of the communication between prover and channel. This over-

loads the notation← 〈P(s) chan←→ V (t)〉 but it will always be clear from the variable

name if we get the verifier’s view or the prover’s transcript. At the end of the inter-

action the verifier accepts or rejects. We write 〈P(s) chan←→ V (t)〉= b depending on

whether the verifier rejects (b = 0) or accepts (b = 1).

We say a proof system is public coin if the verifier’s messages to the commu-

nication channel are chosen uniformly at random and independently of the actions

of the prover, i.e., the verifier’s messages to the prover correspond to the verifier’s

randomness ρ . All of our protocols, whether they are ILC protocols, or real protocols

compiled under cryptographic assumptions, will be public coin. Public coin protocols

are very relevant as they are conceptually simple, and one can prove simpler variants

of standard security properties, such as special-honest-verifier zero-knowledge, with
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the understanding that standard transformations and techniques will provide full

security later.

We will model our zero-knowledge proofs using ternary relations R consisting

of tuples (σ ,u,w). The first item in the tuple is the common reference string σ

containing the setup information required for the protocol. Typically, σ will specify

the security parameter λ , perhaps implicitly through its length, and may also contain

other parameters used for specifying the specific relation, e.g. a description of a field.

Often, σ will also contain parameters that do not influence membership of R but

may aid the prover and verifier, for instance, a description of an encoding function

that they will use. The second item in the tuple, u is the instance and represents

what the prover wants to prove. The final item, w, is the prover’s secret witness that

(σ ,u) ∈LR where the language LR ⊂ {0,1}∗ as follows.

LR = {(σ ,u)|∃w : (σ ,u,w) ∈R}

Intuitively speaking, this is the collection of statements which are ‘true’, and for

which the verifier should output 1 after running the protocol with an honest prover.

The languages LR are decidable in polynomial time.

The protocol (K ,P,V ) is called a proof of knowledge over communication

channel chan←→ for relation R if it has perfect completeness and computational knowl-

edge soundness as defined below.

Definition 5 (Perfect Completeness) The proof is perfectly complete if for all PPT

adversaries A

Pr

 σ ←K (1λ );(u,w)←A (σ) :

(σ ,u,w) /∈R ∨ 〈P(σ ,u,w) chan←→ V (σ ,u)〉= 1

= 1.

Definition 6 (Knowledge soundness) A public-coin proof system has computa-

tional (strong black-box) knowledge soundness if for all DPT P∗ there exists
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an expected PPT extractor E such that for all PPT adversaries A

Pr

 σ ←K (1λ );(u,s)←A (σ);w← E 〈P
∗(s) chan←→V (σ ,u)〉(σ ,u) :

b = 1 ∧ (σ ,u,w) /∈R

≈ 0.

Here the oracle 〈P∗(s) chan←→ V (σ ,u)〉 runs a full protocol execution and if the proof

is successful it returns a transcript of the prover’s communication with the channel.

The extractor E can ask the oracle to rewind the proof to any point in a previous

transcript and execute the proof again from this point on with fresh public-coin

challenges from the verifier. We define b ∈ {0,1} to be the verifier’s output in the

first oracle execution, i.e., whether it accepts or not, and we think of s as the state of

the prover. The definition can then be paraphrased as saying that if the prover in

state s makes a convincing proof, then we can extract a witness.

If the definition holds also for unbounded P∗ and A we say the proof has

statistical knowledge soundness.

If the definition of knowledge soundness holds for a non-rewinding extractor,

i.e., a single transcript of the prover’s communication with the communication

channel suffices, we say the proof system has knowledge soundness with straight-line

extraction.

This definition gives a security guarantee against computationally bounded ad-

versaries. Zero-knowledge protocols satisfying this definition are properly called

zero-knowledge arguments of knowledge to distinguish them from zero-knowledge

proofs of knowledge, for which knowledge soundness is guaranteed even against

unbounded adversaries. However, the term ‘proofs’ is often used in both cases.

Remark. The definition of knowledge soundness uses a knowledge extractor running

in expected polynomial time. One might question the validity of proofs of computa-

tional knowledge soundness based on some cryptographic assumption, which prove

that either the knowledge extractor extracts a witness, or manages to break some

computational assumption in expect polynomial time. This is because cryptographic

assumptions are usually defined using probabilistic polynomial time adversaries

rather than expected polynomial time adversaries. Fortunately, Markov’s inequality
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allows us to relate the expected polynomial time extractor to a probabilistic poly-

nomial time algorithm. Suppose that the expected running time of the extractor

is given by T . Then, by Markov’s inequality, the probability that the knowledge

extractor runs for time longer than 2T is at most 1/2. If we define a new algorithm

that runs the knowledge extractor for time at most 2T and then aborts if the running

time exceeds 2T , then we have a probabilistic polynomial time algorithm capable of

either finding a witness or breaking a computational assumption. This means that

it is really possible to reduce the knowledge soundness of the scheme to a standard

cryptographic assumption, at the cost of some looseness in the reduction coming

from the probability that the knowledge extractor runs for too long and the algorithm

aborts.

Another way to define a proof of knowledge follows Groth and Ishai [115] who

borrowed the term witness-extended emulation from Lindell [116]. Informally, their

definition says that given an adversary that produces an acceptable argument with

some probability, there exists an emulator that produces a similar argument with the

same probability together with a witness w. Note that the emulator is allowed to

rewind the prover and verifier’s interaction to any previous move.

Definition 7 (Witness-extended emulation) (P,V ) has statistical witness-

extended emulation if for all deterministic polynomial time P∗ there exists an

expected polynomial time emulator E such that for all interactive adversaries A

Pr
[
(u,s)←A (1λ ); tr← 〈P∗(u,s) chan←→ V (u)〉 : A (tr) = 1

]
≈ Pr

 (u,s)←A (1λ );(tr,w)← E 〈P
∗(u,s) chan←→V (u)〉(u) :

A (tr) = 1 and if tr is accepting then (u,w) ∈ R


where the oracle called by E 〈P

∗(u,s),V (u)〉 permits rewinding to a specific point and

resuming with fresh randomness for the verifier from this point onwards.

Note that in this definition, the role of the adversary A is as a distinguisher, while

it is the job of P∗ to produce proofs. That is why the two are decoupled from one

another.
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We can interpret s as the state of P∗, including the randomness. So, whenever

P∗ is able to make a convincing argument when in state s, E can extract a witness.

Witness Extended Emulation implies Knowledge Soundness [61].

We will construct public-coin proofs that have special honest-verifier zero-

knowledge. This means that if the verifier’s challenges are known, or even adversar-

ially chosen, then it is possible to simulate the verifier’s view without the witness.

In other words, the simulator works for verifiers who may use adversarial coins

in choosing their challenges but they follow the specification of the protocol as an

honest verifier would.

Definition 8 (Special Honest-Verifier Zero-Knowledge) The proof of knowledge

is computationally special honest-verifier zero-knowledge (SHVZK) if there exists

a PPT simulator S such that for all stateful interactive PPT adversaries A that

output (u,w) such that (σ ,u,w) ∈ R and randomness ρ for the verifier

Pr

 σ ←K (1λ );(u,w,ρ)←A (σ);

viewV ← 〈P(σ ,u,w) chan←→ V (σ ,u;ρ)〉 : A (viewV ) = 1


≈ Pr

[
σ ←K (1λ );(u,w,ρ)←A (σ);viewV ←S (σ ,u,ρ) : A (viewV ) = 1

]
.

We say the proof is statistically SHVZK if the definition holds also against

unbounded adversaries, and we say the proof is perfect SHVZK if the probabilities

are exactly equal.

4.2 Introduction to the Ideal Linear Commitment

Model
In this section, we will precisely define Ideal Linear Commitment protocols. We

will then compare and contrast this interaction model with other models. Later, in

Section 7, we give some simple examples of discrete-logarithm-based protocols and

their equivalent protocols in the ILC model.

Ideal Linear Commitment protocols were first described in [16], but never

completely formally defined. The definitions given in this section are new, and an
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important contribution of this thesis. Though the definitions are new, they draw

inspiration from the definitions of similar models for information-theoretic proof

systems, such as Interactive Oracle Proof protocols [82].

In contrast to standard interactions between a prover and a verifier in IP pro-

tocols, we will consider interactions in an ideal linear commitment interaction

environment, ILC. Figure 4.1 provides some graphical insight into how parties in

an ILC proof protocol interact. Our motivation for introducing this new interaction

environment was to model zero-knowledge proof protocols using compressing and

homomorphic cryptographic commitment schemes.

PILC VILC

Figure 4.1: Description of the ILC interaction environment. The vi here are vectors over a
field F, x is a value from F and V,V ′ and Q are matrices over F.

As such, when using the ILC channel, the prover can submit a commit com-

mand to commit to vectors of field elements of some fixed length k, specified in σILC.

The vectors remain secretly stored, and will not be forwarded to the verifier. Instead,

the verifier only learns how many vectors the prover has committed to, and their

lengths.

The ILC could be viewed in several possible different ways, as a commitment

functionality, communication channel, a trusted third party, or an oracle for the

verifier. When Ideal Linear Commitment protocols are compiled into real zero-

knowledge protocols, the functionality previously guaranteed by the ILC will be

enforced using various cryptographic tools.
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The verifier can send single field elements to the prover. The verifier can

also submit queries to an open oracle for obtaining the opening of any linear

combinations of the vectors of the same length sent by the prover. We stress that

the verifier can request several linear combinations within a single open query, as

depicted in Figure 4.1.

In addition to the ILC commands and oracles used in the original model [16],

we introduce a new check oracle. Inside the ILC model, this command behaves in

a very similar way to the open oracle. However, the two commands will be treated

slightly differently when ILC protocols are compiled into real protocols. The reason

for making the distinction is that in some of our protocols, the verifier needs to check

whether a large vector, that they have computed themselves, is the correct linear

combination of vectors committed by the prover. This could be solved by having

the verifier make an send query for the correct linear combination and checking

whether the result is equal to the large vector, which incurs a communication cost

for the large vector in the ILC protocol. However, in a real protocol, where the

verifier’s queries will actually be computed and sent by the prover, the verifier can

re-commit to the vector that they have computed, and check this against the prover’s

commitments. In other words, since the verifier has already computed the vector

for themself, there is no need for them to receive it again. Therefore, the check

oracle is used to distinguish this case, which should not be counted as part of the

communication costs of a proof. This issue will be discussed further in later chapters.

4.2.1 Definitions

We will now define general Ideal Linear Commitment protocols, and then specialise

to the case of public-coin protocols.

Definition 9 (Ideal Linear Commitment Protocol) In a µ-round Ideal Linear

Commitment protocol, a prover PILC and a verifier VILC will interact with each

other via the ILC, each sending µ messages. An Ideal Linear Commitment protocol

is defined over a field F and will use a fixed vector length k. Let (t1, . . . , tµ) ∈ Nµ

be a tuple of message lengths. There is a setup generator KILC which outputs

σILC = (F,k,(t1, . . . , tµ),aux), where aux consists of extra elements of F which might
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be useful when running the protocol.

The prover and the verifier will run the protocol on given inputs. They will use

random coins ρP and ρV , and they will maintain states statePi and stateVi that will

allow them to remember information over several different rounds of the protocol.

The initial state stateP0 of the prover will be equal to the prover’s input. The initial

state stateV0 of the verifier will be equal to the prover’s input. Initially, the ILC will

store V0, which is either a matrix with k columns, or equal to ⊥. The matrix V0

corresponds to any commitments that have been made before the protocol begins,

that might form part of the prover or verifier’s input.

In every round i ∈ {1, . . . ,µ}:

• The prover takes as input the round number i, the setup information σILC,

the verifier’s previous messages m1, . . . ,mi−1, internal state statePi−1, and

randomness ρP , and outputs a matrix Vi ∈ Fti×k and a new internal state

statePi . It commits to Vi using the commit command.

• After round i, the ILC stores the vertical concatenation of the matrices

V0, . . . ,Vi.

• The verifier takes as input the round number i, the setup information σILC,

internal state stateVi−1, and randomness ρP . It makes linear open and check

queries on the contents of the ILC. Then it outputs a new message mi ∈ F and

a new internal state stateVi .

• The verifier’s final message mµ is either 1, in which case we say the verifier

has accepted, or 0, in which case we say that the verifier has rejected.

We call a proof system over the ILC channel non-adaptive if the verifier makes

one open query and then immediately makes one check query to the ILC channel,

before terminating his interaction with the channel, and these are the only open

and check queries that the verifier makes. Otherwise we call it adaptive. Although

adaptive proof systems are allowed, we will only consider non-adaptive ILC proof

systems to simplify the exposition. In non-adaptive ILC proof systems with vectors
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of length k, the verifier will produce two query matrices, Q for the open query and

Q′ for the check query.

We give pseudocode descriptions of an Ideal Linear Commitment protocol in

Figure 4.2. Here, V open(·),check(·,·)
ILC means that VILC has access to open and check

oracles.

An ILC Protocol on σILC,ρP ,ρV ,stateP0 ,stateV0

• Initialise protocol.:

– Set M =V0.

• For i = 1 to µ:

• Run prover algorithm:

– (Vi,state
P
i )←PILC(i,{m j} j<i,state

P
i−1,ρP)

– commit(Vi)

• Run verifier algorithm:

– (mi,state
V
i )← V

open(·),check(·,·)
ILC (i,stateVi−1,ρV )

• Accept or Reject

commit(V )

• If M =⊥ then set M =V .

• If V =⊥ then do nothing.

• Otherwise, update M by verti-
cally concatenating it with V ,
with V at the bottom.

open(Q)

• If M =⊥ then output ⊥.

• Output QM.

check(Q′,V ′)

• If M =⊥ then output ⊥.

• If Q′M =V ′ then output >.

• Otherwise output ⊥.

Figure 4.2: Description of how the parties in an ILC protocol interact.

The security properties of ILC proof protocols, including the completeness,

soundness, and zero-knowledge properties, are defined in exactly the same way as

for normal zero-knowledge protocols.

4.2.2 Complexity Measures

The first useful complexity measure for an ILC protocol is the vector length k. We

have already mentioned µ , the number of rounds of an ILC protocol. This is another

useful complexity measure.

Set t = ∑
µ

i=1 ti. This is the total number of vectors that the prover commits

to as part of the ILC protocol. Later one, we will see that this can impact the

communication complexity and computational complexity of real protocols based

on ILC protocols.
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We define qc to be the open query complexity, i.e. the number of linear

combinations that the verifier obtains using the open oracle. Every time the verifier

makes an open query on a matrix Q ∈ Fl× t, we consider this to be l queries for

the purpose of measuring the query complexity. Then, qc is the total number of rows

from all matrices Q on which the verifier has called the open oracle. Similarly,

we define qc′ to be the check query complexity, i.e. the number of times that the

verifier queries certain linear combinations using the check oracle.

4.2.3 Public Coin Protocols

As with zero-knowledge protocols, we say that an Ideal Linear Commitment protocol

is public coin if the following conditions hold.

1. Except for the final message mµ , the verifier’s messages to the communication

channel are chosen uniformly at random from F and independently of the

actions of the prover, i.e., the verifier’s messages mi correspond to the verifier’s

randomness ρV .

2. The query matrices Q and Q′ in the verifier’s open and check queries are

determined only by the values of m1, . . . ,mi that have appeared in the protocol

so far. The query matrices V ′ in the verifier’s check queries are determined

only by the values of m1, . . . ,mi that have appeared in the protocol so far

and by the values of open query responses that the verifier has seen for far.

In particular, this means that the prover can actually antipicate the queries

that will be made, because the verifier never uses information that the prover

doesn’t know when making queries.

3. The verifier’s final message mµ is determined by the messages m1, . . . ,mµ−1

and the results of the queries made so far.

In this case, we are able to make several simplifications. Since for i < µ the verifier’s

messages mi only depend on ρV , all open and check queries can be deferred until

the end of the protocol, since they will not affect the messages in any way. In fact,

the verifier will only need to make one open query and then one check query.
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Similarly, the state of the verifier will not affect any of the messages mi for i < µ , so

the verifier need not update state their state either, apart from possibly producing a

final state stateVµ after making the open and check queries.

4.2.4 Remarks on the Interaction Model

Remark. We have presented an interaction environment using vectors of fixed length

k. In fact, in our protocols, we will allow the prover to commit to vectors of several

different fixed lengths k1, . . . ,kr, which will be specified at the beginning of the

protocol. This is easily formalised by defining a new interaction environment, giving

the prover and verifier access to r copies of different commit, open and check

commands and oracles using vectors of lengths k1, . . . ,kr. Such a channel will

be referred to as an ILC channel for vectors of several fixed lengths, and will be

specified simply by including multiple vector lengths in σILC rather than just one.

The resulting interaction environment is shown in Figure 4.3.

Alternatively, we can easily incorporate vectors of different lengths into the

model by padding all vectors with zeroes until they are the same length as the longest

vector. This will have no impact on the asymptotic efficiency of our protocols. Some

of our ILC protocols require single values to be committed as well as vectors.

In this case, the matrices V0, j, which correspond to commitments to data made

before the protocol begins, each have k j columns, or maybe be equal to ⊥.

Remark. It is of course easy to generalise to the case where the verifier’s messages

are not single field elements. We use the case of single field elements for notational

simplicity and because it suffices for all of our protocols.

Remark. We will assume that all parties output messages which parse correctly.

In other words, no party or functionality will ever deviate from the protocol using

messages which are from the wrong domain, or of incorrect length. This includes the

verifier making open and check queries Q such that matrices Q and M cannot be

multipled together, or such that Q′V and V ′ are of different dimensions. This will not

be a problem for security. Indeed, provided that checking the format of a message

can be done efficiently, it would be simple, but tedious, to add such checks at the

beginning of every algorithm, and instruct all algorithms to abort if the checks are
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An ILC Protocol on σILC,ρP ,ρV ,stateP0 ,stateV0

• Initialise protocol.:

– Parse σILC = (F,k1, . . . ,kr).

– Set M j =V0, j for each j ∈ [r].

• For i = 1 to µ:

• Run prover algorithm:

– (Vi,1, . . . ,Vi,r,state
P
i )←PILC(i,{m j} j<i,state

P
i−1,ρP)

– commit(k j,Vi, j) for each j ∈ [r].

• Run verifier algorithm:

– (mi,state
V
i )← V

open(·,·),check(·,·,·)
ILC (i,stateVi−1,ρV )

• Accept or Reject

commit(ki,V )

• If Mi =⊥ then set Mi =V .

• If V =⊥ then do nothing.

• Otherwise, update Mi by verti-
cally concatenating it with V ,
with V at the bottom.

open(ki,Q)

• If Mi =⊥ then output ⊥.

• Output QMi.

check(ki,Q′,V ′)

• If Mi =⊥ then output ⊥.

• If Q′Mi =V ′ then output >.

• Otherwise output ⊥.

Figure 4.3: Description of how the parties interact in an ILC protocol with several vector
lengths.

failed. We assume that this is the case in all of our compiled protocols.

Remark. If we had followed the original model of [16], we might have allowed

sequences of commit, send and open and check queries to be performed in

an arbitrary order. Our definition does not incur a loss in generality by having the

prover and verifier alternate in the protocol, as valid protocols in the original model

could be recovered by having rounds in which either the prover does nothing or the

verifier does not use certain oracles. Rather, our definition corresponds to a sensible

reordering of such protocols. For example, the verifier gains no power by being able

to make an open query directly after sending a message to the prover, but before the

prover has committed to any new vectors. The verifier might just as well compute

their message without sending it, make their query, and then send the message.

Remark. The verifier also produces a state in their final round, in addition to their

final message mµ ∈ {0,1} which signifies whether they want to accept or reject.

This serves a useful purpose. In Section 8.2, we define a polynomial commitment

scheme in the ILC model. At the end of the protocol, the verifier is able to compute
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the evaluation of a committed polynomial and then store it in their final state. In this

way, the polynomial commitment scheme can be used as a subprotocol in other ILC

protocols, as the evaluation can be passed around as part of the final state.

Remark. We have formally defined how the prover and verifier interact as part of

an ILC protocol, and how the prover receives the verifier’s computed outputs mi, for

example. Later on, when designing protocols, we will be slightly less formal, and

refer, for example, to the verifier sending mi to the prover. We will also suppress the

vector (t1, . . . , tµ) from our descriptions of σILC and protocols, and assume that both

the prover and verifier know the message schedule of the protocol.

4.2.5 Comparison with Other Models and Types of Protocol

Interactive Oracle Proofs. Interactive Oracle Proofs (IOPs) were introduced in [82].

They were designed to simultaneously generalise the interactive protocols of the

class IP and probabilistically-checkable proofs (PCPs). IOP protocols share a similar

syntax and pattern of interaction to ILC protocols, but the most significant difference

is in the verifier’s query oracles. In IOP protocols, the prover sends functions to the

verifier, and the verifier may make queries to learn the values of these functions at

certain points. If one views a function as a long string which is the concatenation

of all possible outputs of the function, then one can imagine the verifier making

pointwise queries on the string. This naturally leads to the idea of instantiating IOP

protocols using commitments based on Merkle trees [17] which can be efficiently

opened to individual positions of a committed string.

Thus, the key difference between IOP and ILC protocols is that IOP protocols

use pointwise queries rather than linear queries. This difference leads to another

difference in the interaction environment. In IOP protocols, the prover commits to a

different function or string in each round, and the verifier has separate oracle access

to each string committed so far. On the other hand, the ILC stores a matrix M which is

updated using the prover’s commit commands, accumulating all committed vectors

into a single matrix which the verifier can make queries on, rather than allowing

the verifier to make queries on each matrix separately. This clearly leads to more

powerful protocols when linear queries are involved; as the verifier can, for example,



4.2. Introduction to the Ideal Linear Commitment Model 76

make a query and obtain a vector ax+b, where a and b are from different committed

matrices, without learning the value of either a or b.

Linear Interactive Proofs. Linear Interactive Proofs (LIPs) were introduced in

[72]. In linear interactive proofs both the prover and verifier send vectors of field

elements, but the prover can only send linear (or affine) transformations of the

verifier’s previously sent vectors. This is a good model for certain types of zero-

knowledge protocol which use a trusted setup. In such cases, the trusted setup

consists of various messages, encoded, for example, inside elements from a finite

group or suitable homomorphic encryption scheme or commitment scheme. The

prover can manipulate the messages in a linear fashion, via the group elements or

ciphertexts, but cannot produce new encodings by any other method. An example of

a zero-knowledge proof that can be modelled in this way is given in [34].

Both models use vectors of fixed lengths over fields. However, for LIPs, it is

the prover who is restricted to certain types of linear computations, as the inspiration

for this model came from proofs where the prover manipulates homomorphic com-

mitments. For our constructions it is important that the prover can compute on field

elements received by the verifier and for instance evaluate polynomials, while it is

the verifier who is restricted to linear queries, as the inspiration for our model came

from proofs where the verifier manipulates homomorphic commitments.

(Fully) Linear PCPs and (Fully) Linear IOPs Linear PCPs were introduced in

[72] as a further abstraction of arguments lying behind some LIPs. They were

generalised to fully-linear PCPs in [83]. Just as PCPs were generalised by IOPs, the

same paper, [83] goes on to generalise LPCPs further to (fully-)linear IOPs.

All of these formal models are very closely related to the ILC model. In these

models, the prover produces proof strings defined over some field, and the verifier is

allowed to make linear queries on the proof strings. The prover produces one proof

string in an LPCP protocol, whereas in a LIOP protocol, the prover produces several

proof strings over several rounds of interaction with the verifier. In the fully-linear

case, the verifier is further restricted so that in addition, they can only make linear

queries on the instance u.
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The differences between ILC protocols and LIOP protocols are largely motivated

by different efficiency metrics. Intuitively, a LIOP protocol behaves like an ILC

protocol where the fixed vector length k is equal to 1, and both types of protocol

can be converted into the other, although the resulting protocols may suffer unusual

parameter choices. For example, an ILC protocol with k = 1 is possible, but when

converted into a real protocol using a highly-compressing homomorphic commitment

scheme, it is easy to imagine that we create a more efficient protocol by committing

to more than one element at once.

LPCP and LIOP protocols are suitable for modelling zero-knowledge proofs

where the prover uses non-compressing methods to hide their messages, perfectly

binding homomorphic commitment schemes, or homomorphic encryption schemes.

The ‘fully-linear’ abstraction captures the case where the instance u also relates to

encrypted or committed data, for example, and the prover wishes to give a proof

about the data.



Chapter 5

Cryptographic Assumptions and

Concrete Commitment Schemes

Zero-knowledge protocols are often built based on cryptographic assumptions stating

that various mathematical problems cannot be solved efficiently. In this thesis, we

show that efficient zero-knowledge proofs and arguments can be built easily based

on two different cryptographic assumptions: the discrete logarithm assumption, and

the existence of collision resistant hash functions. Here, we formally define both of

these assumptions.

Note that our compilation proofs are not limited to the use of the commitment

schemes in this chapter. The Pedersen commitment scheme could be replaced by any

homomorphic commitment scheme over a field in our compilation in Section 9.2.

Similarly, we would like to emphasise that we have specified a commitment scheme

based on collision-resistant hash-functions in this chapter purely for concreteness,

and the compilation procedure in Section 9.1 could be based on an arbitrary string

commitment scheme.

We define cryptographic assumptions relative to instance generators G .

5.1 The Discrete Logarithm Assumption
The discrete logarithm assumption is a computational hardness assumption relative

to a given group G. Given two group elements g and h in G, the discrete logarithm

problem is to compute an integer k such that gk = h in G.
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The discrete logarithm problem has been extensively studied. It forms the basis

for cryptosystems and commitments, such as the ElGamal encryption scheme and

the Pedersen commitment scheme. Researchers have also devised algorithms to

solve the discrete logarithm problem, some of which work for any group, and some

of which work for particular choices of group.

Formal Definition Let G be a probabilistic, polynomial time algorithm that on

input 1λ returns a description gk= (G, p,g) of a group G of prime order p, with a

generator g. Assume that the group has associated polynomial time algorithms for

computing group operations and deciding membership.

We say that the discrete logarithm assumption holds relative to G if for all

probabilistic polynomial time adversaries A and all λ ∈ N,

Pr
[
gk= (G, p,g)← G (1λ );x← Zp;h := gx : A (gk,h) = x

]
≈ 0

Commitment Scheme The Pedersen commitment scheme [117] is a well-known

commitment scheme based on the discrete logarithm assumption. The original

commitment scheme allows a committer to commit to a single element, but is easily

generalised to a commitment scheme for multiple elements, shown in Figure 5.1.

Here, the message space is Zn
p and the randomness space is Zp. Commitments lie

in G. The binding property comes from the discrete logarithm assumption, and

the hiding property from the fact that r is chosen uniformly at random, so that

commitments are distributed as random group elements.

Perhaps suprisingly, a Pedersen commitment on a message of length n can be

computed using O(n/ logn) group operations rather than the O(n) operations that

one might expect, using Pippenger’s algorithm. A special case of the algorithm-

which is sufficient to obtain our results- is explained in Appendix C.

Pedersen commitments are an attractive choice because they are both succinct,

and simple and easy to compute using exponentiation operations on group elements.

Our ILC protocols use only arithmetic operations over fields. When instantiated

using Pedersen commitments, although the protocols are more complicated, the

types of operations required to compute the resulting zero-knowledge proofs are
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Figure 5.1: Pedersen Commitments

1: KeyGen
(
1λ ,n

)
:

2: gk= (G, p,g)← G (1λ )
3: Select g←Gn+1

4: Return (gk,g)

1: Commitck (m;r):
2: Parse (m1, . . . ,mn) = m
3: Parse ((G, p,g),(g1, . . . ,gn,h)) = ck
4: Return hr

∏
n
i=1 gmi

i

fundamentally the same as those required to compute DSA or ECDSA signatures,

with the addition of well-known Fast Fourier transform algorithms to perform some

polynomial operations. This should make it extremely easy to produce efficient

implementations of our ILC protocols when they are compiled into the discrete

logarithm setting.

Parameter Choices The discrete logarithm problem is believed to be difficult when

G is chosen to be a subgroup of the multiplicative group of a prime field, or the

group of points of an elliptic curve over a finite field, with large prime order. In order

to achieve λ bits of security, different sizes of group are required in each case. Over

prime fields, the best known algorithms are based on the general number field sieve

[118], and in light of these algorithms, a prime of roughly O(λ 3) bits is required for

λ bits of security. For most elliptic curves, except those from a few special families,

the best algorithms are generic algorithms such as Pollard’s rho algorithm, and the

order of G should be approximately 2λ bits.

The problem of breaking the binding property of the Pedersen commitment

scheme can be reduced to the discrete logarithm problem.

The discrete logarithm assumption is well-known, well-examined, and widely

used in cryptography. Our protocols rely on the discrete logarithm assumption in

groups with prime order p. The assumption is believed to hold in suitable subgroups

of elliptic-curve groups. The best algorithms for finding discrete logarithms in such

elliptic curve groups are still generic algorithms with complexity Ω(
√

p). For these

groups we therefore enjoy lower parameter sizes than protocols based on RSA groups

that are subject to sub-exponential attacks.
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The discrete logarithm assumption is also believed to hold in well-chosen

multiplicative sub-groups of finite fields. Finite fields of prime order should have

moduli of λ 3

polylogλ
bits in order to achieve λ bits of security against the best known

attacks. This makes protocols communicating large numbers of group elements

highly impractical in this setting. Some of our protocols can be tuned so that they

only require a constant number of group elements, resulting in much better efficiency

when instantiated in finite fields of prime order, since the λ 3

polylogλ
communication

cost can then appear as a constant additive factor rather than a multiplicative one.

5.2 The Collision Problem for Hash Functions

Hash functions are functions which produce a short digest, or hash, of fixed length

when applied to an input of arbitrary size. When using hash functions for cryp-

tographic security guarantees, a common requirement is collision resistance. The

computational problem here is to generate two different inputs which give the same

hash value.

Like Pedersen commitments, hash-based commitments can be extremely simple

and efficient to compute. But Pedersen commitments are based on the hardness

of the discrete logarithm assumption, and so we expect that a quantum computer

running Shor’s algorithm would be able to break the binding property of Pedersen

commitments, and thus the soundness property of our ILC protocols when compiled

in the discrete logarithm setting. However, there is currently no efficient quantum

algorithm for breaking the collision-resistance of hash-functions much faster than

classical algorithms.

Recent works, most notably [119], argue that when made into non-interactive

zero-knowledge proofs, certain zero-knowledge proofs are secure in strong threat

models against quantum adversaries who are able to perform quantum interactions

with the prover or the verifier. Making such arguments about our own protocols is

beyond the scope of this thesis, but as they are based on a cryptographic assumption

which still resists cryptanalytic attempts by quantum algorithms, it is possible that

they could be proved secure against quantum adversaries in the future, or inspire



5.2. The Collision Problem for Hash Functions 82

other protocols with quantum security proofs.

Formal Definition. Collision resistance is properly defined for a family of functions.

Let m, l : N→ N be increasing functions such that m(λ )> l(λ ) for all λ ∈ N. Let

G be a probabilistic, polynomial time algorithm that on input 1λ returns a key s.

Then suppose that there exists a DPT algorithm h such that for every λ and every s,

h defines a function h : {0,1}m(λ )→ {0,1}l(λ ). Then (G ,h) is a fixed-length hash

function.

We say that (G ,h) is a collision resistant hash function if for all probabilistic

polynomial time adversaries A and all λ ∈ N,

Pr
[
s← G (1λ ) : A (s) = (x,x′), x,x′ ∈ {0,1}m(λ ),hs(x) = hs(x′)

]
≈ 0

Commitment Scheme. Halevi and Micali [120] show that a collision-resistant hash

function gives rise to an efficient and compact statistically hiding commitment

scheme. In the following, we tacitly assume that m(λ ) is large enough to create

a functional commitment scheme. If this is not the case, one can use the Merkle-

Damgaard construction or alternatives [121, 122] used to extend the hash function to

a larger input length.

Let Tm,n be the space of m×n Toeplitz matrices over Z2. This is the collection

of matrices such that for each top-left to bottom-right diagonal, every element in the

diagonal is equal. Note that A can be described using m+n−1 bits.

Figure 5.2 gives a commitment scheme with message space {0,1}m, randomness

space {0,1}O(l) and commitment space {0,1}O(l).

Parameter Choices The best known generic attack on collision resistant hash func-

tions is the birthday attack, which shows that a collision can be found in O(2l/2)

operations. This is a square-root of the cost of the simplest possible attack, which

simply hashes every possible message until a collision is found, and uses O(2l)

operations in the worst case.



5.2. The Collision Problem for Hash Functions 83

Figure 5.2: Hash-Based Commitments

1: KeyGen
(
1λ ,m

)
:

2: Set L = 6λ +4.
3: s← G (1λ ).
4: Return (h,s,L)

1: Commitck (m;r):
2: Parse m as a bitstring.
3: Parse r ∈ {0,1}L.
4: Compute m′ = hs(m).
5: Select A← Tl,L.
6: Compute b = m′−Ar.
7: Compute y = hs(r).
8: Return (A,b,y)



Chapter 6

Lemmata for Security Proofs

In this chapter, we present a variety of useful lemmata which will be used to prove

that the ILC protocols in Chapter 8 are secure, and to prove that those protocols

have a few useful additional properties for the purpose of compiling them into

discrete-logarithm-based protocols in Chapter 9.

These results are presented here together because they are technical in nature.

They are useful for proving the security of the protocols but unnecessary for under-

standing the flow of any of the protocols. In particular, Lemma 3 and Lemma 4

prevent a good deal of repetition in the proofs of the properties given after each ILC

protocol.

6.1 Variant of the Schwarz-Zippel Lemma
This lemma is a non-standard variant of the Schwarz-Zippel Lemma, and was proved

for the first time by the author of this thesis in [16]. The role of this lemma is to

help prove the soundness of the ILC protocol in Section 8.5, which uses two random

challenges x and y. When d′= 0, we also recover the original Schwarz-Zippel lemma

which is useful for proving the soundness of the other protocols in Chapter 8.

Intuitively, in protocols with two random challenges represented by X and Y ,

where Y was produced after X , the coefficients of Q(X) correspond to values that the

prover committed before having seen X or Y , and the functions R j(X) correspond

to values that the prover committed to after having seen X , but before having seen

Y . This is why the R j(X) are allowed to be arbitrary functions of X . As in the
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example in Section 7.2, the coefficients of P(X ,Y ) will all be zero if the prover has

behaved honestly, and the verifier checks an equality of polynomials evaluated at

random points. If P(X ,Y ) is not identically zero, then we would like to know the

probability that the prover succeeds if P(X ,Y ) nevertheless evaluates to zero. The

lemma provides an upper bound on the probability that a cheating prover will fail to

be caught out during this process.

A Laurent polynomial is a polynomial which also has terms with negative

powers in some variable. For example, a Laurent polynomial in one formal variable

X with coefficients in the field F is an expression of the form ∑i∈I aiX i where I is a

finite set of integers (some of which may be negative) and ai is an element of F for

each i ∈ I.

Lemma 1 Let F be a field. Let P be a function of the following form, where Q(X)

is a Laurent polynomial of total degree at most d and R j(X) are arbitrary functions

and not necessarily polynomials.

P(X ,Y ) = Q(X)+
d′

∑
j=−d′, j 6=0

R j(X) Y j

Let S be a finite subset of F×. Let x, and y be selected at random independently and

uniformly from S. Let F be the event that either Q(X) is not the zero polynomial or

one of the values of R j(x) is not zero. Then

Pr [{P(x,y) = 0}∧F ]≤ (d +2d′+1)
|S|

Remark This lemma can be extensively generalised to functions with more variables,

and used to prove the security of ILC protocols with a larger number of random

challenges. See in particular [16].

Proof Assume that the result holds for u−1. We prove the lemma for u. Write

P(X ,Y ) = Q(X)+
d′

∑
j=−d′, j 6=0

R j(X) Y j
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For a fixed value x of X , this is a Laurent polynomial of total degree 2d′+1 in Y .

Let G be the event that P is the zero polynomial in Y . Let F ′ be the event that Q is

not the zero polynomial.

Pr [{P(x,y) = 0}∧F ] = Pr [{P(x,y) = 0}∧F ∧G]

+Pr [{P(x,y) = 0}∧F ∧¬G]

If G holds, then P is the zero polynomial in Zu, so since Q(x) is the constant term,

then Q(x) is necessarily zero. On the other hand, if G and F hold simultaneously,

then each value R j(x) must be zero, so Q must be a non-zero polynomial. Therefore,

F ′ holds. We use these facts to bound the first probability. We bound the second

probability by simply removing the event F .

Pr [{P(x,y) = 0}∧F ]≤ Pr
[
{Q(x) = 0}∧F ′

]
+Pr [{P(x,y) = 0}∧¬G]

The first probability is bounded by the fact that Q(X) is a polynomial of degree d and

has at most d roots. To bound the second probability, observe that for any value of x

such that ¬G holds, P is a non-zero Laurent polynomial of degree at most 2d′+1 in

Y , and has at most 2d′+1 roots y. The result follows. �

6.2 A general forking lemma.
In this section, we prove a general forking lemma which connects two security

notions for interactive protocols. One type of notion includes properties such as

special soundness, where one can use a collection of accepting protocol transcripts in

the correct format to compute a witness for the protocol. The other includes notions

such as knowledge soundness and witness-extended emulation, where a knowledge

extractor with rewindable black-box access to the prover and verifier must compute

a witness. This forking lemma connects the two by showing that the knowledge
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extractor can efficiently sample the collection of transcripts required to compute a

witness. This lemma was first proved in [9].

Suppose that we have a (2µ +1)-move public-coin argument with µ challenges,

x1, . . . ,xµ in sequence. Let ni ≥ 1 for 1 ≤ i ≤ µ . Consider ∏
µ

i=1 ni accepting tran-

scripts with challenges in the following tree format. The tree has depth µ and ∏
µ

i=1 ni

leaves. The root of the tree is labelled with the statement. Each node of depth i < µ

has exactly ni children, each labelled with a distinct value for the ith challenge xi.

This can be referred to as an (n1, . . . ,nµ)-tree of accepting transcripts.

Definition 10 ((n1, . . . ,nµ)-tree special soundness) Let (G ,P,V ) be an interac-

tive argument. Let n1(λ ), . . . ,nµ(λ ) ∈ N such that ∏
µ

i=1 ni is bounded above by a

polynomial in the security parameter λ . Suppose that there exists a DPT algorithm

χ such that given viewV for each transcript of an (n1, . . . ,nµ)-tree of accepting

transcripts as input, χ outputs a valid witness w for the statement at the root of the

tree. Then we say that (G ,P,V ) has (n1, . . . ,nµ)-tree special soundness.

All of our arguments allow a witness to be extracted efficiently from an ap-

propriate tree of accepting transcripts. This lemma therefore shows that they all

have knowledge soundness. This is a natural generalisation of special-soundness for

Sigma-protocols, where µ = 1 and n = 2. For simplicity in the following lemma, we

assume that the challenges are chosen uniformly from a field F where |F|= 2λ , but

any sufficiently large challenge space would suffice.

Lemma 2 (Forking Lemma) Let (P,V ) be a (2µ +1)-move, public coin interac-

tive protocol with (n1, . . . ,nµ)-tree soundness. Then (P,V ) has witness-extended

emulation.

For simplicity in the following proof, we assume challenges are chosen uniformly

from Zp where |p|= λ , but any sufficiently large challenge space would suffice.

We now provide a proof of the Forking Lemma we need for Theorems 7 and 11.

For simplicity in the following lemma, we assume that the challenges are chosen

uniformly from Zp where |p|= λ , but any sufficiently large challenge space would

suffice.
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Proof Suppose that for deterministic polynomial time P∗ there is a polynomial

time interactive adversary A in the sense of witness-extended emulation, such that

Pr
[
(u,s)←A (1λ ); tr← 〈P∗(u,s),V (u)〉 : A (tr) = 1

]
= ε.

Note that if ε is negligible, then we do not need to extract a witness, since the

emulator can simply fail every time and trivially achieve witness-extended emulation.

Therefore, from now on, we assume that ε is not negligible.

We construct an expected polynomial time emulator E , which has access to

a rewindable transcript oracle 〈P∗,V 〉 and produces a witness. This is done via

recursive calls to tree-finders T that deal with the protocol after the first few chal-

lenges are already fixed. The ith tree-finder takes the previous challenges and partial

transcript given to it as input, picks random values for xi+1, runs the prover on these

values and hands the result to the next tree-finder. Each tree-finder may fail on the

first value of xi+1, ensuring that the whole process runs in expected polynomial

time. With overwhelming probability, the emulator obtains an (n1, . . . ,nµ)-tree of

transcripts and is then able to extract a witness, using the efficient algorithm χ that

exists by assumption.

E 〈P
∗,V 〉(u)→ (tr,w):

• Run T 〈P∗,V 〉(1)→ (tr, tree)

• If tree=⊥ then return (tr,⊥).

• If tree is not a valid (n1, . . . ,nµ)-tree of transcripts (i.e. there are colli-

sions in certain challenges) then return (tr,⊥).

• Else run w← χ(u, tree).

• Return (tr,w)

For 1≤ i≤ µ +1:

T 〈P∗,V 〉(i)→ (tr, tree):

• If i = µ +1
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• Obtain a complete protocol transcript from tr← 〈P∗,V 〉

• Run V (tr)→ b

• If b = 0 then return (tr,⊥).

• If b = 1 then set tree= {tr} and return (tr, tree).

• Run 〈P∗,V 〉 up to and including move 2i+1.

• Run T 〈P∗,V 〉(i+1)→ (tr, tree)

• If tree=⊥ then return (tr,⊥).

• Set counter = 1

• While counter < ni:

• Rewind 〈P∗,V 〉 back until just before move 2i.

• Run T 〈P∗,V 〉(i+1)→ (tr′, tree′)

• If tree 6=⊥, then append the transcripts in tree′ to tree, and incre-

ment counter.

• Return (tr, tree)

Fix 1 ≤ i ≤ µ , and fix x1, . . . ,xi−1. We say that T (i) has failed if it returns

(tr,⊥).

Let ε ′ be the probability that T (i) fails for this choice of challenges, and let

ε ′(xi) be the probability that T (i+1) fails for this choice of challenges continued

with xi. The ith tree-finder can fail only if the (i+1)th tree-finder fails the first time

it is called. This implies that for uniformly random xi, the probability that T (i+1)

fails is ε ′ = ∑xi∈FPr[X = xi]ε
′(xi).

Therefore, the expected number of times that T (i) runs T (i + 1) is 1 +

ε ′ (ni−1)
ε ′ = ni. The final tree-finder T (k+1) merely checks whether the transcript

is accepting or not. Hence, the total expected running time for T (1) to be ∏
µ

i=1 ni

multiplied by the time taken to check whether a transcript is accepting. We conclude

that the emulator E runs in expected polynomial time.

The first tree-finder T (1) only outputs (tr,⊥) if the very first set of challenges

generated by all of the emulators fails to produce an accepting transcript. This is
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exactly the probability that P∗ successfully produces an accepting transcript in one

run.

Given that we receive ∏
µ

i=1 ni accepting transcripts in tree, we now consider the

probability that they do not form an (n1, . . . ,nµ)-tree. This occurs only when the ni

values of challenge xi used by 〈P∗,V 〉 while in the loop controlled by counter are

not distinct, or in other words, there is a collision between these values, for some i.

By Markov’s inequality, an algorithm whose expected running time is t will

only run for longer than time T > t with probability t
T . Let t be the expected running

time of E , which is bounded above by a polynomial in the security parameter. For

easier analysis, we limit the actual running time of E to T , whose value will be

chosen later.

When E runs in time at most T , then at most T uniformly random public coin

challenges were selected by V in 〈P∗,V 〉. If there are no collisions between any

of the public coins chosen, then there are certainly no collisions of the type which

would prevent tree from being a (n1, . . . ,nµ)-tree of transcripts. The probability that

there is a collision between T values sampled uniformly from F is at most T 2

p .

Now, we choose T = 3
√

p. The probability that tree fails to be an (n1, . . . ,nµ)-

tree is at most t
T + T 2

p which is now equal to t
3√p +

1
3√p . This is negligible. Therefore,

there is negligible probability of the tree-finding algorithms succeeding, yet E failing

to extract a witness. This proves the argument has statistical witness-extended

emulation. �

6.3 Extractable Algebraic Queries

The following lemma shows that matrices from a certain family are always invertible.

This fact is used to prove a further lemma which will be useful for arguing about the

security of ILC protocols that have been compiled into discrete logarithm protocols.

Lemma 3 Let p = (p1(X), . . . , pk(X)) be linearly independent (Laurent) polynomi-

als over F[X ] of degree at most k−1. Let x = (x1, . . . ,xk) be distinct points in F∗.
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Then the following matrix is invertible.

M(p,x) =


p1(x1) p1(x2) · · · p1(xk)

p2(x1) p2(x2) · · · p2(xk)
...

... . . . ...

pk(x1) pk(x2) · · · pk(xk)


Proof The matrix M(p,x) is square. In order to prove that the matrix is in-

vertible, it suffices to prove that the rows are linearly independent. Suppose for

contradiction that there was a linear relation between the rows of M(p,x). Since all

of the polynomials have degree at most k−1, the coefficients of each polynomial are

completely determined by their evaluations at the points of x, by applying a linear

map. Therefore, any linear relation over the rows implies a linear relation over the

polynomials, contradicting linear independence. �

Using the invertibility of matrices from the previous lemma, the next lemma

shows that for certain types polynomials in multiple variables, where one has a lot of

polynomial evaluations at a structured set of points, one can solve a linear system to

recover the coefficients of the polynomials.

Intuitively, in real protocols in the discrete logarithm setting, the verifier often

receives an opening of a linear combination of many commitments. The coefficients

of the linear combination come from the polynomials given below. Given a large

number of openings at different points x and y, one can solve the linear system and

recover openings to all of the commitments. This lemma is new but not general,

with each type of polynomial corresponding to one of the ILC protocols in Chapter

Chapter 8.

Lemma 4 Consider an ILC protocol with random verifier challenges x and y. Con-

sider ILC queries of the following polynomial forms given in the list below, where pi

are constant vectors, and q j(y) are vectors which were committed after the prover

saw y. We prove the result for each type of polynomial in the list. Suppose that

we have an (n1,n2)-tree of query results, written as a vector q. There exist n1 and

n2 such that given the result of the query for n1 different values of x, and for each
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value of x, for n2 different values of y, there exists a linear map L such that Lq is the

concatenation of all of the pi values, and the values of q j(y) for each query y. In

other words, ILC protocols that use queries of this form have (n1,n2)-tree special

soundness for some n1 and n2.

1. v = ∑
m
i=−m hixi.

2. v = ∑
m
i=0 hili(x), where l1(X), . . . , lm(X) is the set of Lagrange interpolation

polynomials with distinct interpolation points z1, . . . ,zm and l0(X)=∏i=1(X−

zi).

3. v = ∑
m
i=1 hili(x)+ l0(x) ∑

m−2
i=0 dixi.

4. v = v0y+∑
m
i=0 hili(x).

5. v = f2y2 + f1y+∑
m
i=1 hili(x)+ l0(x) ∑

m−2
i=0 dixi.

6. v = ey+∑
m
i=−m hixi.

7. v = ∑
m
i=1 aixiyi +∑

m
i=1 bix−i + xm

∑
m
i=1 cixi +dx2m+1.

8. v = ∑
m
i=1 aiyi +∑

m
k=−m,k 6=0 bkxk.

Proof

1. Given queries for 2m+ 1 different values of the challenge x, this follows

from Lemma 3 with p a vector of powers of X , which are clearly linearly

independent, and x a vectors of the different values of the challenge.

2. Given queries for m different values of the challenge x, this follows from

Lemma 3 with p a vector containing all of the polynomials li(X). The Lagrange

interpolation polynomials on points z1, . . . ,zm are clearly linearly independent,

and l0(X) is independent from all of these Lagrange polynomials as it has

degree m while they have degree m−1.

3. Given queries for 2m−1 different values of the challenge x, this follows from

Lemma 3 in a similar way to the previous two items.
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4. Fix x. Given query answers for two different values of y, we have a linear

system in v0 and ∑
m
i=0 hili(x). Applying Lemma 3 with p = (Y,1) and Y a

vector containing the two different values of the challenge y, we can invert

the linear system to recover v0 and ∑
m
i=0 hili(x). Now, recovering the hi values

from m values of ∑
m
i=0 hili(x) for m different values of x reduces to an earlier

case.

5. Fixing a single value of x, given three query answers for three different values

of y, we can eliminate y in a similar way to the previous case. Then, recovering

the hi and di from many different values of x is exactly the third case already

covered.

6. Fixing a single value of x, given two query answers for two different values of

y, we can eliminate y in a similar way to the previous case. Then, recovering

the hi from many different values of x is exactly the first case already covered.

7. For 4m+3 different values of x, fix the value of y. Now ignore the powers of

y multiplying the ai and apply the first case to recover aiyi, bi, ci and d. If we

assume that we have the query results for at least two distinct values of y for

each x, then at least one of the y values from the pair must be non-zero. Then

we can simply divide by y to recover the ai.

8. Fix y. Suppose that we have query answers for 2m+ 1 distinct of x. Then

apply the result of the first case in order to recover all bk and the value of

∑
m
i=1 aiyi. Now, apply the first case again for many different values ∑

m
i=1 aiyi

for distinct values of y to recover ai for each i.

�



Chapter 7

Simple Protocols through the ILC

Lens

In this chapter, to motivate the ILC model and to help the reader warm up before they

read about more complicated matters in later chapters, we present some very simple

zero-knowledge protocols in the discrete logarithm setting, and rewrite them as ILC

protocols.

In the process, we explain the rationale and design process for protocols in the

Ideal Linear Commitment model with reference to two simple, concrete examples

of a zero-knowledge protocol based on the discrete logarithm assumption. We also

explain why in later chapters we prove properties about the rank and dimension of

the query matrices.

7.1 Basic Proof-of-Knowledge

In this section, we present one of the simplest possible useful examples of a discrete-

logarithm-based protocol, and show how it can be rewritten as an ILC protocol.

Let G be a group of prime order p in which the discrete logarithm problem is

hard to solve. Let g and h be elements of G. We will use the Pedersen commitment

scheme. A commitment A to message m with randomness α shall be computed as

A = gm ·hα .



7.1. Basic Proof-of-Knowledge 95

The relation corresponding to the proof is

R =
{

σ = (G, p,g,h),u =C,w = {a,r} : C = ga ·hr
}

Now we present the protocol.

Common input: Setup information σ = (G, p,g,h).

Instance: Group element u =C ∈G.

Prover’s witness: A field element. w = (a,r) ∈ Z2
p such that C = ga ·hr.

Protocol:

P: The prover randomly selects b,s← Zp. The prover computes B = gb · hs and

sends B to the verifier.

V: The verifier randomly selects x← Zp, and sends x to the prover.

P: The prover computes f = ax+b, and u = rx+ t, and sends f and u to the verifier.

V: The verifier checks the equation g f ·hu ?
=Cx ·B.

Theorem 5 The Schnorr protocol 7.1 has perfect completeness, knowledge-

soundness and special honest verifier zero-knowledge.

Proof Perfect completeness follows by careful inspection.

For SHVZK, we describe a simulator. Given a challenge x, the simulator selects

f and u uniformly at random from Zp so that they are distributed exactly as in a real

argument. Now, B is uniquely determined by the verification equation, and can be

efficiently computed by rearranging the equation to see that B = g− f ·h−u ·C−x. All

values are distributed exactly as they would be in a real argument. Therefore the

simulated argument is indistinguishable from a real argument and we have SHVZK.

Finally, we prove knowledge-soundness. To do this, we show that the protocol

has special soundness. That is, given two proofs with the same first message and

distinct challenges x and x′, we show that it is possible to extract a valid witness w.

This is the same as 2-tree special soundness from Definition 10.
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Given B ∈ G, distinct x,x′ ∈ Zp and f , f ′,u,u′ ∈ Zp such that g f ·hu =Cx ·B,

and g f ′ ·hu′ = Cx′ ·B, we can divide the two copies of the verification equation to

eliminate B. We obtain g f− f ′ · hu−u′ = Cx−x′ . Since x and x′ are distinct, x− x′ is

invertible in Zp. Setting a = f− f ′
x−x′ and r = u−u′

x−x′ , we see that ga ·hr =C.

To see that the protocol has knowledge soundness, apply Lemma 2, which shows

that the protocol has witness extended emulation. Then, as mentioned previously,

[61] shows that witness extended emulation implies knowledge soundness. �

Next, we give the ILC version of this protocol. The idea behind the basic proof-

of-knowledge protocol is that the prover gives the verifier a linear combination of

their secret value a and a random blinding value b used to hide a. Thus, we can

reimagine Schnorr’s protocol as an ILC protocol.

Notice that the verifier always accepts! This is not a mistake. ILC protocols

model zero-knowledge protocols where the verifier wants to check relations between

different linear combinations of committed values. In the real proof-of-knowledge

protocol, the prover sends the values B = gb ·hs, f , and u to the verifier. We know

that C = ga ·hr. Then, the verification equation checks that z = sx+ t in the exponent

of the group element g. If the check is satisfied, then we know that z = sx+ t.

In the ILC version of the protocol, the verifier is already sure that f is of the

correct form, having used the open oracle to get it. The point of the ILC abstraction

is to remove the need to think about a concrete commitment scheme, assume that all

linear combinations that were previously checked using the homomorphic commit-

ments are of the correct form, and focus on the how the prover and verifier compute

on and check relations between the values in the finite field. We also remove the

randomness used in the commitment scheme. This means that in the ILC version of

the basic proof-of-knowledge protocol, the verifier simply needs to see the value of

f , and nothing more.

Of course, in a real protocol it is important that this condition is actually checked.

To see how the ILC version of the basic proof-of-knowledge protocol is converted

into the actual basic proof-of-knowledge protocol, first, replace the prover’s uses of

the commit command with real commitments, and send the commitments to the
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verifier as they are made. Next, notice that the verifier’s open query is split into two

parts in the real protocol. The prover sends f and the randomness u corresponding

to it, and the verifier checks the verification equation.

Common Reference String: σ = (Zp,1,aux=⊥).

Instance: The committed field element [a], which is already committed or stored in

the ILC.

Prover’s witness: The field element a.

P: The prover randomly selects b← Zp. The prover commits to b using commit.

V: The verifier samples the challenge x← Zp uniformly at random.

The verifier makes an open query to get f = ax+b.

The verifier outputs 1 to accept.

Lemma 6 The protocol has perfect completeness, knowledge-soundness, and perfect

special honest verifier zero-knowledge.

Proof Perfect completeness of the protocol follows by careful inspection.

For perfect special honest verifier zero knowledge, we provide an efficient

simulator for the protocol. The simulator simulates the view of the verifier by

picking f uniformly at random from Zp.

Finally, we prove knowledge-soundness. This is trivial as the ILC knowledge

extractor already has access to all messages that the prover has committed to using

commit. �

7.2 Proof-of-Knowledge of a Committed Bit
Next, we give an example of a more complicated zero-knowledge protocol based on

the discrete logarithm assumption. In this protocol, the prover proves to the verifier

that they know how to open a given commitment to either 0 or 1.

This protocol will illustrate, for this basic case, some of the techniques used to

design ILC protocols for particular statements.



7.2. Proof-of-Knowledge of a Committed Bit 98

The relation corresponding to the proof is

R =
{

σ = (G, p,g,h),u =C,w = {a ∈ {0,1},r ∈ Zp} : B = ga ·hr
}

In the basic proof-of-knowledge protocol, the prover sent a linear combination

f = ax+b to the verifier, and this linear combination contained the secret, but looked

random to the verifier. In this protocol, we want to check that a is a bit. One way to

do this would be to find a way to use f to compute a useful function of a. Since a is

a bit, it satisfies a(1−a). So we can design a protocol around this fact.

We can use f to compute a(1−a), although there will be some extra terms too,

since f = ax+b. Observe that f (x− f ) = a(1−a)x2+b(1−2a)x−a2. The leading

coefficient is a(1−a). This means that if the prover is honest and a is really a bit,

then f (x− f ) will be a polynomial of degree 1, instead of a polynomial of degree 2

as we might expect. So if the verifier can check this condition using commitments,

then they will be satisfied that a really is a bit.

To check this, in the protocol, the prover will act as in the previous example, but

will compute extra commitments K1 and K2 to k1 := b(1−2a) and k2 :=−a2. Then

the verifier will be able to commit to f (x− f ) later on and check that it is a linear

polynomial. Note that the verifier doesn’t need to worry about what the values inside

K1 and k2 are. They simply serve to prove that f (x− f ) has the correct degree.

This example demonstrates a useful strategy for designing protocols. The prover

commits to their witness, and extra random blinding values which will be used to

hide the witness. They send the prover a masked version of the witness, and the

verifier uses this to compute a polynomial which has a useful expression involving

the witness in one of the coefficients. If the prover really knows a witness, that

coefficient of the polynomial will be equal to zero, or some other known value. The

prover commits to the other coefficients of the polynomial in advance to convince

the verifier that the polynomial really is of this special form.

Now we present the protocol.

Common input: Setup information σ = (G, p,g,h).
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Instance: Group element u =C ∈G.

Prover’s witness: w = {a ∈ {0,1},r ∈ Zp} such that C = ga ·hr

Protocol:

P: The prover randomly selects b,s, t1, t2← Zp.

The prover computes B = gb ·hs, K1 = gb(1−2a) ·ht1 and K2 = g−a2 ·ht2 .

The prover sends B, K1 and K2 to the verifier.

V: The verifier randomly selects x← Zp, and sends x to the prover.

P: The prover computes f = ax+b, u = rx+ s, and v = t1x+ t2, and sends f , u and

v to the verifier.

V: The verifier checks the equations g f ·hu ?
=Cx ·B and g f (x− f ) ·hv ?

= Kx
1 ·K2.

Theorem 7 The Schnorr protocol 7.2 has perfect completeness, knowledge-

soundness and special honest verifier zero-knowledge.

Proof Perfect completeness follows by careful inspection.

For SHVZK, we describe a simulator. Given a challenge x, the simulator

selects f , u and v uniformly at random from Zp so that they distributed exactly as

in a real argument. Choose K2 uniformly at random from G. Now, B and K1 are

uniquely determined by the verification equation, and can be efficiently computed

by rearranging the equations. All values are distributed exactly as they would be in

a real argument. Therefore the simulated argument is indistinguishable from a real

argument and we have SHVZK.

Finally, we prove knowledge-soundness. To do this, as before, we show that

the protocol has special soundness. That is, given two proofs with the same first

message and distinct challenges x and x′, we show that it is possible to extract a valid

witness a. This is the same as 2-tree special soundness from Definition 10.

Suppose that we are given B,K1,K2 ∈G, distinct x,x′ ∈ Zp and f , f ′, u, u′, v,

v′ ∈ Zp such that g f ·hu =Cx ·B, g f (x− f ) ·hv ?
= Kx

1 ·K2 and similarly equalities hold

for the other copies of the verification equations in x′.
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We can divide the two copies of the first verification equation to eliminate B.

We obtain g f− f ′ ·hu−u′ =Cx−x′ . Since x and x′ are distinct, x− x′ is invertible in Zp.

Setting a = f− f ′
x−x′ and r = u−u′

x−x′ , we see that ga ·hr =C. By substituting this value for

C into a copy of the first verification equation, we can also compute b and s such that

B = gb ·hs. In a similar way, we can use the two copies of the second verification

equation to find openings k1,κ1 of K1 and k2,κ2 of K2.

Now, by the binding property of the commitment scheme, we know that f =

ax+b and that f (x− f ) = k1x+ k2. Substituting the first expression into the second,

we obtain the quadratic polynomial a(1−a)x2 +(b(1−2a)− k1)x−a2− k2. If the

leading coefficient, a(1−a), is non-zero, then this is a linear or quadratic equation,

and there are at most two values of x which are roots. So the probability that the

prover is able to produce a proof that the verifier will accept is at most 2/p. Therefore,

we conclude that a(1−a) = 0, and that a is a bit.

To see that the protocol has knowledge soundness, apply Lemma 2, which shows

that the protocol has witness extended emulation. Then, as mentioned previously,

[61] shows that witness extended emulation implies knowledge soundness. �

Now we present the ILC version of the protocol. In this case, the verifier is

already sure that f is of the correct form ax+b, having used the open oracle to get

it. The prover commits to k1 and k2 in advance. Since the verifier has f = ax+b,

they can compute f (x− f ) for themselves and then use an check command to

check that it is equal to k1x+ k2. Remember that it does not matter exactly what

the values of k1 and k2 are, so long as they exist and f (x− f ) is a linear and not a

quadratic polynomial.

This example in particular shows how the ILC model can be a useful abstraction.

The details of the commitment scheme used, and the randomness in the commitments,

are removed. One can focus on the polynomial arithmetic that actually makes the

protocol work.

Common Reference String: σ = (Zp,1,aux=⊥).

Instance: The committed element [a], which is already committed or stored in the

ILC.
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Prover’s witness: The bit a ∈ {0,1}.

P: The prover randomly selects b← Zp. The prover computes k1 = b(1−2a) and

k2 =−a2. The prover commits to b,k1 and k2 using commit.

V: The verifier samples the challenge x← Zp uniformly at random.

The verifier makes an open query to get f = ax+b.

The verifier computes f (x− f ), and makes a check query to check whether

it is equal to k1x+ k2.

The verifier outputs 1 if the check query passed, and 0 otherwise.

Lemma 8 The protocol has perfect completeness, knowledge-soundness, and perfect

special honest verifier zero-knowledge.

Proof Perfect completeness of the protocol follows by careful inspection.

For perfect special honest verifier zero knowledge, we provide an efficient

simulator for the protocol. The simulator simulates the view of the verifier by

picking f uniformly at random from Zp, and setting the output of the check query

to >.

Finally, we prove knowledge-soundness. Firstly, note that the ILC knowledge

extractor already has access to all messages that the prover has committed to using

commit. As in the previous protocol, we know that f = ax+b and that f (x− f ) =

k1x+ k2. Substituting the first expression into the second, we obtain the quadratic

polynomial a(1−a)x2 +(b(1−2a)− k1)x−a2− k2. If a(1−a) is non-zero, then

this is a quadratic equation, and there are at most two values of x which are roots. So

the probability that the prover is able to produce a proof that the verifier will accept

is at most 2/p. Therefore, we conclude that a(1−a) = 0, and that a is a bit. �

7.2.1 Query Matrices

After many protocols in Chapter 8 of this thesis, and in the security proof for the

compilation procedure in Section 9.2, we are concerned with the condition that the

ILC query matrices have full rank, and fewer rows than columns. With the aid of the

protocols from Sections 7.2 and 7.2, we explain why this is the case.
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Let us look at the query matrix for the protocol of Section 7.2. The matrix isx 1 0 0

0 0 x 1

 .

The columns correspond to A, B, K1 and K2 from 7.2, and the rows correspond to

the first and second verification equations. We can use this matrix to connect the

randomness values sent by an honest prover to the randomness values used in the

prover’s commitments.

u

v

=

x 1 0 0

0 0 x 1




r

s

t1

t2

 .

This is a system of linear equations.

Consider the rank-nullity theorem. Over a field F, the rank-nullity theorem

says when the matrix is considered to be a linear map, the dimension of the image

of the map, plus the dimension of the kernel of the map, are equal to the number

of columns, or the length of the vectors to which the matrix is applied. In an ILC

protocol, this is equal to the number of commitments that the prover has made.

Imagine that this system of linear equations had a trivial kernel. In that case,

given the randomness openings u and v from an honest prover, the verifier would be

able to solve the system to recover the randomness used in the prover’s commitments.

In general, this seems as though it will not lead to protocols with the zero-knowledge

property. This leads us to a first condition on the query matrix. If the kernel is

non-trivial, this implies that the rank of the query matrix should be strictly less than

the number of columns in the matrix.

Returning to the protocols for a second, we can also see that the protocol from

Section 7.2 is very easy to simulate. One picks a commitment opening f at random.

One also has to pick some randomness values v and u for the commitments in the

verification equations, and these are also picked uniformly at random. Then, it
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is always possible to select some of the commitment group elements uniformly

at random, and determine the others by rearranging the verification equations. In

the ILC version of this protocol in Section 7.2, the commitments and commitment

randomness have been abstracted out of the protocol, and we only need to simulate

f .

When considering more complicated ILC protocols, and how they might be

converted into real protocols in the discrete logarithm setting, we could hope to use

the same strategy to prove zero knowledge. Namely, we could produce a simulator

for the discrete-logarithm based protocol by using the simulator for the underlying

ILC protocol to simulate all of the commitment openings, and then if we needed

to simulate any values for commitment randomness, we could select all of those

values uniformly at random. Then, one could select some of the commitment group

elements uniformly at random and rearrange the verification equations to determine

what the rest of the commitments should be in the simulated transcript. One could

refer to this as the ‘simple’ simulator.

Now, suppose that the rank of the ILC query matrix is strictly less than the

number of rows in the matrix. This means that the simulated openings for the

randomness values could not be chosen to be independently and uniformly at random;

as they would then come from a space of higher dimension than the space of an

honest prover’s openings for the randomness. In such a case, we would not be able to

use the simple simulator. So we have a second condition on the query matrix, namely

that the rank of the query matrix should be greater than or equal to the number of

rows in the matrix.

If we take the condition that the rank of the ILC query matrix is at least the

number of rows in the matrix, but strictly less than the number of columns in the

matrix, then we must have that the number of rows is less than the number of columns.

Then, the matrix must achieve maximum possible rank, which is the number of rows

in the matrix. So, motivated by some simple situations which seem like they might

be problematic for the zero-knowledge property and the use of the simple simulator,

we have placed some limitations on the ILC query matrix.
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In Section 9.2, we give a proof that these conditions on the query matrix

are sufficient for honest-verifier zero-knowledge; that is, we show that the simple

simulator suffices. These conditions on the query matrix apply to all of our protocols.

However, we do not claim that the conditions are necessary for zero-knowledge.



Chapter 8

Generic ILC Protocols

In this section, we present efficient ILC protocols for a variety of different statements.

8.1 Remarks
Before stating our ILC protocols, we briefly discuss how ILC proofs will be compiled

into real proofs. This will motivate the efficiency discussions after each protocol. In

the ILC protocols, the prover will commit to vectors by sending them to ILC. After

interacting with the prover, and simply receiving vectors from the open and check

oracles, the verifier will make several ILC queries in order to obtain certain linear

combinations of the committed vectors. In real, compiled protocols, the prover will

commit to vectors using the commitment scheme, and will personally compute and

send the linear combinations requested by the verifier. Therefore, when discussing

the communication costs of ILC protocols, we will refer to the number and length of

committed vectors, and the number and length of vectors which form the verifier’s

queries to the ILC. When discussing the computational costs of the protocols, we

will refer to the number and length of committed vectors, and the cost in field

multiplications for the prover, verifier, and ILC.

As discussed earlier, when the verifier makes a check query, the result will not

be counted as part of the communication complexity of the protocol. This is because

in the original compilation from ILC protocols to standard zero-knowledge protocols

given in [16], all open queries made by the verifier end up being computed and

sent by the prover in the compiled protocol. Then, the verifier checks all query
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answers against commitments, and checks that the query answers satisfy certain

equations. For example, the verifier might query ILC and obtain vectors ā, b̄ and

c̄. Then, in the real proof, the verifier would check ā, b̄ and c̄ against committed

values, and check some equations, such as ā◦ b̄ = c̄, for example. However, rather

than actually make a query for c̄, the verifier could simply check ā◦ b̄ against the

commitments for c̄. Since the verifier can compute for themselves what c̄ ought to be

from the verification equations, there is no need for the verifier to receive this values.

The check command is used to distinguish this case, which should not be counted

as part of the communication costs of a proof. Furthermore, linear combinations

queried using check queries do not need to be generated by the simulator, as they

can already be computed using the answers to other open queries.

Throughout this chapter, we will present ILC protocols over a field |F| and prove

that they have soundness error poly(λ )/|F|. We will assume that |F| is sufficiently

large so that the protocols have negligible soundness error. However, if this is not the

case, then in Section 10.2, we provide a technique to boost soundness with minimal

overhead, which applies to the three-move arithmetic circuit protocol in Section 8.4.

For each protocol, we will prove that with high probability, the ILC query matrix

for the protocol has full rank, and fewer rows than columns. This will be useful in

Chapter 9 when arguing that compiled protocols satisfy the zero-knowledge property.

8.2 Polynomial Commitment Sub-Protocol
The basis for the polynomial commitment protocol in this section was originally

published in joint work [11] with Jens Groth, as a discrete-logarithm based protocol.

We present an ILC protocol that allows the prover to commit to a polynomial,

so that the prover can later reveal the evaluation of the polynomial at a specific point

x chosen by the verifier and prove that the evaluation is correct. This protocol is the

same as the polynomial commitment protocol in [11], and similar to the polynomial

commitment protocol of [9], but is rewritten slightly as an ILC protocol.

Motivation. It may seem unnecessary to produce a special protocol for committing

to a polynomial and revealing the evaluation in the ILC model. After all, the prover
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could simply commit to each coefficient of the polynomial separately, and using a

single query, the verifier could obtain an evaluation of the polynomial by requesting a

single linear combination of the coefficients. However, the protocol in this subsection

allows a trade-off between the number of commitments made by the prover, and the

length of the vector which is given to the verifier as a response to the verifier’s query.

In most cases, this will lead to an improvement in communication complexity over

the naive method of producing a separate commitment to each coefficient.

Looking ahead to the compilation of our ILC protocols into real zero-knowledge

protocols, the flexibility that the polynomial commitment protocol affords will be

extremely useful. Our compilation based on hash-functions results in one commit-

ment for each element of the longest committed vector. Our compilation based on

the discrete-logarithm assumption results in one commitment for each committed

vector. The polynomial commitment protocol allows a trade-off between these two

dimensions, so that the same protocol can be tuned for each compilation method.

8.2.1 Definitions

A polynomial commitment scheme enables a prover to commit to a secret vector of

polynomials h(X) ∈ Fl[X ]. By this, we mean that h(X) is a vector with l entries, and

that each entry is a polynomial with coefficients in F, in the formal variable X . Later

on the verifier can learn the evaluation of the committed polynomial at a given point.

We add an integer argument id to both the prover and verifier algorithms. Some

protocols will use the polynomial commitment scheme more than once to commit

to different polynomials, and the id argument will allow the verifier to request the

correct polynomial evaluation as part of PolyVerify.

Let us discuss the algorithms in more detail. Let us suppose that we wish to

commit to a polynomial of degree d, meaning that the maximum of the degrees of

the l entries of h(X) is d. Set d = mn, for some positive integers m and n. In the

ILC model, we could commit to the l coefficients of X i as a vector, for each X i, and

use an ILC protocol with vector length l. However, it will be more efficient if we

combine more data from different powers of X into the different entries of the same

vector, so we use a longer vector length N = nl, and the prover who commits to a
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polynomial will make roughly m commitments.

Let K ,P and V define an ILC protocol with µ rounds. The public information

available to both the prover and the verifier is σ = (F,N) and u = (m, l). Only the

prover has access to a secret vector of polynomials h(X) ∈ Fl[X ] of degree mn. The

verifier receives an evaluation point x ∈ F as input, and queries the ILC to obtain

some useful values. The verifier then saves the evaluation h(x) as part of their final

state stateVµ .

The polynomial commitment scheme is not considered, alone, to be a zero-

knowledge protocol. However, it will be a useful subroutine in other zero-knowledge

protocols. As such, we need to describe some security properties of the scheme so

that we can use them to prove the security properties of other protocols where poly-

nomial commitment is used as a subroutine. For the definitions, we draw inspiration

from the Oblivious Polynomial Evaluation scheme of [123]. We give three security

properties. These are correctness, soundness, and prover privacy. Correctness and

prover privacy directly correspond to the definitions of correctness and sender secu-

rity given in [123], except for small adjustments, since the scheme will be running

as an ILC protocol. Since we do not require the verifier’s evaluation point to be

hidden from the prover, we refer to the functionality of polynomial evaluation rather

than oblivious polynomial evaluation. This corresponds to abandoning the notion of

receiver privacy from the original scheme.

First, we define the functionality of polynomial evaluation for the prover and

verifier. Suppose that the prover and verifier are running as part of an ILC protocol

over field F with vector length k.

• Prover Input: h(X) ∈ Fl[X ], with deg(h)≤ mn.

• Verifier Input: x ∈ F.

• Prover Output: Nothing.

• Verifier Output: h(x).

The definition of correctness simply guarantees that if the protocol is carried

out honestly, then the verifier will return the correct polynomial evaluation h(x).
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Definition 11 (Correctness) The polynomial commitment scheme is correct if for

all h(X) ∈ Fl[X ] with deg(h)≤ mn and x ∈ F, the verifier receives h(x), the output

of the polynomial evaluation functionality.

Definition 12 (Prover Privacy) For every probabilistic polynomial time V ∗ play-

ing the role of the verifier, there exists a probabilistic polynomial time simulator S

that produces output identically distributed to the view of V ∗.

The original definitions given in [123] do not bind the prover to a fixed poly-

nomial of particular degree. We saw in Section 7.2 that it could be important to

check that open values were evaluations of a polynomial of a particular degree.

Therefore, we provide an extra definition that ensures that the verifier’s outputs must

be consistent with evaluations of the same polynomial.

Definition 13 (Knowledge soundness) A polynomial commitment scheme has

knowledge soundness if for all DPT P∗ there exists an expected PPT extractor E

such that for all PPT adversaries A

Pr


σ ←K (1λ );((m, l),s,x,x′)←A (σ);

h(X)← E 〈P
∗(s) ILC←→V (σ ,(m,l))〉(σ ,(m, l),x);

〈P∗(s) ILC←→ V (σ ,(m, l))〉(σ ,(m, l),x′) :

stateVµ 6= h(x′) ∧ h(X) ∈ Fl[x] ∧ deg(h) = mn

≈ 0.

Here the oracle 〈P∗(s) ILC←→ V (σ ,(m, l))〉 runs a full protocol execution and if

the proof is successful it returns a transcript of the prover’s communication with

the channel. The extractor E can ask the oracle to rewind the proof to any point

in a previous transcript and execute the proof again from this point on with fresh

public-coin challenges from the verifier. We think of s as the state of the prover.

8.2.2 Idea

In the following, we will build a polynomial commitment scheme as in ILC sub-

protocol using vectors in Fnl . Let us first give some intuition about how the construc-

tion will work.
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Let h(X) = ∑
N
i=0 hiX i be a polynomial of degree N = (n+1)m−1 with coeffi-

cients that are row-vectors in Fl . Define an m× (n+1)l matrix


h0,0 h0,1 · · · h0,n

h1,0 h1,1 · · · h1,n
...

... . . .

hm−1,0 hm−1,1 · · · hm−1,n

=


h0 hm · · · hnm

h1 hm+1 · · · hnm+1
...

... . . .

hm−1 h2m−1 · · · hN



With this matrix we have h(X) = ∑
n
j=0(∑

m−1
i=0 hi, jX i)Xm j. In the polynomial

commitment scheme, the prover commits to each row of the matrix. Then, the

verifier can make a single ILC query to obtain (h̄0, . . . , h̄n) = ∑
m
i=0(hi,0, . . . ,hi,n)xi.

The verifier can use this value to compute h(x) = h̄0 +∑
n
j=1 h̄ jx( j−1)m+d .

While the main idea we have sketched above gives the verifier assurance that

the committed polynomial has been correctly evaluated, the prover may not be

happy. The problem is that the solution gives away information about the coefficients

of h(X). We will therefore introduce some random blinding vectors to ensure no

information is leaked about the committed coefficients except the evaluation of the

polynomial. We will also adjust the protocol to handle an arbitrary polynomial

degree N = mn+d for 0≤ d < m by shifting the first column of the matrix.

We pick random blinders b1, . . . ,bn ← Fl and define an (m+ 1)× (n+ 1)l

matrix
{

hi, j
}m,n

i=0, j=0 as follows:



h0 b1 · · · bn−1 bn

h1 hd+1 · · · h(n−2)m+d+1 h(n−1)m+d+1
...

hd−b1
... . . . hnm

0 hnm+1
...

...

0 hm+d−1 · · · h(n−2)m+d−1 hN−1

0 hm+d−b2 · · · h(n−2)m+d−bn hN


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We can therefore rewrite the polynomial as

h(X) =
m

∑
i=0

hi,0X i +
n

∑
j=1

(
m

∑
i=0

hi, jX i

)
X ( j−1)m+d.

Intuitively, the prover will be committing to the rows of the matrix, and the

verifier will be using the open oracle to reveal a linear combination of the rows,

and then computation a polynomial evaluation using a method similar to that of the

previous example. We describe the scheme below.

8.2.3 Protocol

In this protocol, we suppress the inputs σ ,m, l and h(X) for notational simplicity.

PPC(id): The prover randomly selects b1, . . . ,bn ← Fl and arranges them into a

matrix with entries
{

hi, j
}m,n

i=0, j=0 as follows:



h0 b1 · · · bn−1 bn

h1 hd+1 · · · h(n−2)m+d+1 h(n−1)m+d+1
...

hd−b1
... . . . bn

0 hnm+1
...

...

0 hm+d−1 · · · h(n−2)m+d−1 hN−1

0 hm+d−b2 · · · h(n−2)m+d−bn hN



The prover commits to each row of the matrix above using commit (i.e. for

1≤ i≤ m, the prover commits to the row vector (hi,0|| . . . ||hi,n)).

VPC(x, id): The verifier makes an open query to the ILC to obtain (h̄0, . . . , h̄n) =

∑
m
i=0(hi,0, . . . ,hi,n)xi.

The verifier computes and returns h(x) = h̄0 +∑
n
j=1 h̄ jx( j−1)m+d .
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8.2.4 Security Proof

Lemma 9 The polynomial commitment protocol given above has correctness,

knowledge-soundness, and prover privacy.

Proof By inspection, it follows that when the prover is honest, the verifier always

recovers h̄ = h(x).

We describe an efficient simulator to prove that the protocol has prover

privacy. The simulator is given h(x), and also given ρ , which determines the

value of x. The simulator first picks random h̄1, . . . , h̄n ← Fl and then computes

h̄0 = h(x)−∑
n
j=1 h̄ jx( j−1)m+d . In other words, the h j are chosen uniformly at ran-

dom, conditional on giving the correct evaluation h(x).

This is a perfect simulation. The values h̄1, . . . , h̄n are chosen independently

and uniformly at random in real proofs due to the choices of b1, . . . ,bn just as in the

simulated proofs. Finally, given these random values both real and simulated proofs,

the matching h̄0 are uniquely determined. This means we have identical distributions

of real and simulated proofs which are consistent with the evaluation h(x).

Finally, we prove knowledge-soundness. The knowledge extractor already has

access to the vectors committed as (hi,0|| . . . ||hi,n) for 0 ≤ i ≤ m, having seen all

messages sent between the prover and the ILC. Therefore, we define the polynomial

to be

h(X) =
m

∑
i=0

hi,0X i +
n

∑
j=1

(
m

∑
i=0

hi, jX i

)
X ( j−1)m+d

In the protocol, the verifier queries ILC to obtain (h̄0, . . . , h̄n) = ∑
m
i=0(hi,0, . . . ,hi,n)xi

and then computes and returns h̄ = h̄0 +∑
n
j=1 h̄ jx( j−1)m+d . Substituting the query

values into the expression for h̄ shows that h(x) = h̄ and completes the proof of

soundness. �

Lemma 10 The protocol has tree-special soundness, and the extraction algorithm

χ is a linear map.

Proof The verifier’s view takes the form (h̄0, . . . , h̄n) = ∑
m
i=0(hi,0, . . . ,hi,n)xi.

This corresponds to case 1 of Lemma 4. Therefore, given the verifier’s view for
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sufficiently many distinct values of x, one can recover the committed polynomial

using a linear map.

Lemma 11 With high probability, the ILC query matrix for the protocol has full

rank, and fewer rows than columns.

Proof The rows of the query matrix correspond to the number of ILC queries

made by the verifier. The columns correspond to vectors which the prover has

committed to. In this protocol, there is only one query, so there are clearly fewer

queries than commitments whenever m is greater than 1. The query matrix consists of

only a single vector, and is therefore full rank whenever the query matrix is non-zero.

With high probability over the choice of x, the query is non-trivial.

8.2.5 Efficiency

Communication. The prover must send m+ 1 vectors in Fnl to ILC. The verifier

receives a single vector of length N = nl from ILC.

Computation. The prover does not need to do any algebraic computation. The

verifier’s computation is dominated by the ml multiplications over F required to

compute h(x). It costs the ILC mnl multiplications to compute the verifier’s query.

8.3 3-Move Low Depth Circuit Protocol
The basis for the protocol in this section was originally published in joint work [11]

with Jens Groth, as a discrete-logarithm based protocol.

We present an ILC protocol that allows the prover to prove knowledge of values

which satisfy a polynomial relation of low-degree. This type of relation is useful

when giving zero-knowledge membership and non-membership proofs, such as the

membership proof in [2], its subsequent optimisation in [10], and the polynomial

evaluation proof of [3]. This protocol is the same as the main protocol given in [11],

but is rewritten slightly as an ILC protocol.

A special case of this protocol, a zero-knowledge proof of membership described

in 8.3.4.1, has been prototyped in Python.

In the following we will refer to the parameters `a, `b, `P,dP, `Q,dQ such that
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ai, j ∈ F`a , bi, j ∈ F`b , P is a vector of length `P with entries (`a + `b)-variate polyno-

mials of total degree dP, and Q is a vector of length `Q containing (`a + `b)-variate

polynomials of total degree dQ.

The idea is to prove that the prover knows solutions to polynomial relations

encoding various statements, but allow the statements to be tweaked through an extra

input to the polynomial. Let {bi, j}i∈[m], j∈[n] be some public vectors, representing

the extra inputs or ‘tweaks’. Let P and Q be vectors of polynomials which take two

inputs, {ai, j,bi, j}i∈[m], j∈[n]. We assume that the prover has already committed to C

which we will write with square brackets in the instance [C]. We give a proof of

knowledge of values {ai, j}i∈[m], j∈[n], such that P(ai, j,bi, j) = 0 for i ∈ [m], j ∈ [n],

and such that

C =


Q(a1,1,b1,1), Q(a1,2,b1,2), . . . ,Q(a1,n,b1,n)

Q(a2,1,b2,1), Q(a2,2,b2,2), . . . ,Q(a2,n,b2,n)
...

Q(am,1,bm,1), Q(am,2,bm,2), . . . ,Q(am,n,bm,n)


The protocol we design will be more efficient than repeating t = mn instances of

the basic protocol in parallel, as the communication complexity will depend on
√

t

rather than t.

Let us explain what all of the different letters above represent, and give an

example of how to instantiate the parameters to get a simple range proof, where the

prover wishes to prove that a secret committed integer lies in a given interval. The

range proof example is stated again more precisely later on in Section 8.3.4.3.

• Firstly, we have a. This is a secret vector, and part of the prover’s witness.

For our simple range proof, a will be a vector containing the the k-bit binary

expansion of the prover’s secret integer.

• Secondly, we have b. This is a public vector of extra inputs to the protocol. For

our simple range proof, we can imagine setting b = (1,2,4, . . . ,2k−1). This

will give a range proof for the interval [0,2k−1], but by tweaking the last entry

of b to make it smaller, we could get range proofs for other intervals.
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• Next, we have the polynomial P. This represents a polynomial that the witness

a should satisfy, possibly using the extra tweaks b. For a range proof, a is

made up of bits, so P = a◦ (1−a), and P(a) = 0 if and only if a consists of

bits.

• Finally, we have the polynomial Q and the commitment [C]. Polynomial Q

connects the witness with the contents of the commitment [C]. For example,

for the simple range proof, we set Q(a,b) = a ·b, so that Q computes the

number represented by the bits of a. The commitment [C] should contain the

value of Q(a,b), which is the prover’s secret integer in this case.

The relation corresponding to the proof is as follows, where “LD” is short for

“low-depth”.

RLD =



(σ ,u,w) =
(
(F,n,z1, . . . ,zm) , ([C],P,Q,{bi, j}i∈[n], j∈[m]),{ai, j}i∈[n], j∈[m]

)
:

∀i ∈ [m],∀ j ∈ [n],P(ai, j,bi, j) = 0

C =


Q(a1,1,b1,1), Q(a1,2,b1,2), . . . ,Q(a1,n,b1,n)

Q(a2,1,b2,1), Q(a2,2,b2,2), . . . ,Q(a2,n,b2,n)
...

Q(am,1,bm,1), Q(am,2,bm,2), . . . ,Q(am,n,bm,n)




.

8.3.1 Intuition behind Protocol

The protocol embeds multiple instances of the same polynomial equality into a single

polynomial by using Lagrange interpolation polynomials, inspired by [34, 12]. To

recover a single instance, simply evaluate the polynomial in one of the interpolation

points.

More concretely, the prover commits to the following vectors.

(a0,1|| a0,2|| . . . || a0,n)

(a1,1|| a1,2|| . . . || a1,n)

(a2,1|| a2,2|| . . . || a2,n)
...

(am,1|| am,2|| . . . || am,n)
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Here, the values a0,1, . . . ,a0,n ∈ Fla , where the value of the first index is 0, are

blinding values chosen uniformly at random. These are completely unrelated to

the values of the witness, which are a1,1, . . . ,am,n, where the first index has a value

strictly greater than 0. The verifier chooses a random challenge x and queries the

ILC to obtain (ā1, . . . , ān) = ∑
m
i=0(ai,1, . . . ,ai,n)li(x).

We must demonstrate that ai, j,bi, j satisfy the polynomial relations in the state-

ment. Let b̄ j = ∑
m
i=1 bi jli(x). The verifier evaluates P, Q using ā j and b̄ j for each j.

By definition of ā j and b̄ j, when evaluating at an interpolation point zi, we obtain the

single evaluation of the original polynomial, P(ai, j,bi, j). This implies, for example,

that P(ā j, b̄ j)≡ 0 mod l0(x), or in other words, that P(ā j, b̄ j) is a multiple of l0(X)

for each j. The prover must commit to the coefficients of P(ā j, b̄ j)/l0(x) in advance

(as a polynomial in x), and uses the polynomial commitment scheme to achieve this

for every j simultaneously.

Finally, the prover needs to convince the verifier that the committed matrix C

contains the values of Q(ai, j,bi, j). This is done in a similar way to the P polynomial,

except here we build up polynomial equalities over committed values. The full

protocol can be found below.

Common Reference String: σ = (F,n,k1, t1,z1, . . . ,zm) where z1, . . . ,zm are dis-

tinct points in F defining Lagrange polynomials l1(X), . . . , lm(X) such that

li(z j) = δi, j and defining l0(X) = ∏
m
j=1(X− z j).

Instance: {bi, j}i∈[m], j∈[n],P,Q polynomials, and the [C] that are already stored in

the ILC.

P: Pick a0,1, . . . ,a0,n← F`a and c0,1, . . . ,c0,n← F`Q . Commit to (c0,1|| . . . ||c0,n) and

(ai,1|| . . . ||ai,n) for i ∈ {0}∪ [m] using commit.

Define

ā j(X) = ∑
m
i=0 ai, jli(X) b̄ j(X) = ∑

m
i=1 bi, jli(X)

P∗j(X) =
P(ā j(X),b̄ j(X))

l0(X) Q∗j(X) = c0, j +
∑

m
i=1 Q(ai, j,bi, j)li(X)−Q(ā j(X),b̄ j(X))

l0(X)
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Run PPC(σ = (F,k1), id = 1) and commit to (P∗1(X)|| . . . ||P∗n(X)).

Run PPC(σ = (F, t1), id = 2) and commit to (Q∗1(X)|| . . . ||Q∗n(X)).

V: The verifier samples the challenge x← F\{z1, . . . ,zm} randomly. The verifier

runs

VPC(x, id = 1)→ p̄ = (p̄1, . . . , p̄n) VPC(x, id = 2)→ q̄ = (q̄1, . . . , q̄n)

Let ci = (ci,1|| . . . ||ci,n) denote the rows of C, where ci, j ∈ F`Q . The verifier

makes an open query for the following value.

(ā1|| . . . ||ān) =
m

∑
i=0

(ai,1|| . . . ||ai,n)li(x)

The verifier computes b̄ j = b̄ j(x). The verifier performs the following checks.

(P(ā j, b̄ j)) j∈[n]
?
= p̄l0(x)

(q̄ jl0(x)+Q(ā j, b̄ j)) j∈[n]
?
=

m

∑
i=0

(ci,1|| . . . ||ci,n)li(x)

The first check is made directly. The second check uses one check query. If

all checks are satisfied, then the verifier outputs 1, and otherwise 0.

Lemma 12 The protocol has perfect completeness, knowledge-soundness, and per-

fect special honest verifier zero-knowledge.

Proof Perfect completeness of the protocol follows by correctness of the

PolyCommit sub-protocol, which was used to commit to (P∗1(X)|| . . . ||P∗n(X)) and

(Q∗1(X)|| . . . ||Q∗n(X)), and by careful inspection.

For perfect special honest verifier zero knowledge, we provide an efficient

simulator for the protocol. The simulator selects ā j← F`a and q̄ j← F`Q for each

j. All these values are distributed exactly as in a real protocol, where they are

also uniformly random. She then simulates the view of the verifier when running

VPC(x, id = 1) and VPC(x, id = 2) using the evaluation point x and evaluations p̄ and

q̄, which are determined by the values already simulated, and using the simulator
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which comes from the prover privacy property of the PolyCommit sub-protocol. By

the prover privacy of the polynomial commitment scheme, the simulated values have

identical distribution to the real proofs. Finally, the simulator sets the output of all

check queries to >.

Finally, we prove knowledge-soundness. The ILC knowledge extractor already

has access to all messages sent between the prover and ILC. It remains to show that

if the committed values are not a valid witness, then there is a negligible probability

that the verifier will accept. Recall the verification checks. The verifier runs

VPC(x, id = 1)→ p̄ = (p̄1, . . . , p̄n) VPC(x, id = 2)→ q̄ = (q̄1, . . . , q̄n)

The verifier queries ILC to obtain the following values.

(ā1|| . . . ||ān) =
m

∑
i=0

(ai,1|| . . . ||ai,n)li(x)

(c̄1|| . . . ||c̄n) =
m

∑
i=0

(ci,1|| . . . ||ci,n)li(x)

The verifier computes b̄ j = b̄ j(x). The verifier performs the following checks, for

all j ∈ [n].

P(ā j, b̄ j)
?
= p̄ jl0(x) q̄ jl0(x)+Q(ā j, b̄ j)

?
= c̄ j

Now, substitute the expressions for ā j, b̄ j and c̄ j into the left-hand side of the

verification equations. By the soundness of the polynomial commitment protocol, we

know that p j is a polynomial of degree m(dP−1) in x, and that q j is a polynomial of

degree m(dQ−1) in x. The verifier only accepts if the equations hold. By assumption

P∗
prod is deterministic, and we know when it made its commitments. Hence, ai, j,

bi, j and ci, j are constants. By the soundness of the polynomial commitment protocol,

and the fact that the polynomials were committed by the prover before seeing x, we

know that p j is a polynomial of degree m(dP−1) in x, and that q j is a polynomial

of degree m(dQ−1) in x.

We can now apply Lemma 1, which implies the Schwarz-Zippel Lemma. Sup-



8.3. 3-Move Low Depth Circuit Protocol 119

pose that there exist i and j such that

P(ai, j,bi, j) 6= 0 or Q(ai, j,bi, j) 6= ci, j

This implies that

P(ā j(X), b̄ j(X)) 6= p̄ j(X)l0(X) or q̄ j(X)l0(X)+Q(ā j(X), b̄ j(X)) 6= c̄ j(X)

By the Schwarz-Zippel Lemma, if there is not an equality of polynomials, then

the probability that that verification checks are satisfied is max(dP,dQ)m/|F|. The

verifier can only accept if we have equality, so this shows that the probability that the

committed values does not satisfy the product relation but that the verifier accepts is

negligible, which proves knowledge soundness. �

Lemma 13 The protocol has tree-special soundness, and the extraction algorithm

χ is a linear map.

Proof The verifier sees the following queries as part of the protocol.

(ā1|| . . . ||ān) =
m

∑
i=0

(ai,1|| . . . ||ai,n)li(x)

(c̄1|| . . . ||c̄n) =
m

∑
i=0

(ci,1|| . . . ||ci,n)li(x)

These both correspond to case 2 of Lemma 4. Therefore, given the verifier’s view

for sufficiently many distinct values of x, one can recover the committed polynomial

using a linear map. �

Lemma 14 With high probability, the ILC query matrix for the protocol has full

rank, and fewer rows than columns.

Proof The rows of the query matrix correspond to the number of ILC queries

made by the verifier. The columns correspond to vectors which the prover has

committed to. In this protocol, there are a constant number of queries, including

the queries from the polynomial commitment sub-protocol, so there are clearly
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fewer queries than commitments whenever m is large enough. The query matrix

has full rank. This is because the two submatrices corresponding to the polynomial

commitment sub-protocols have full rank. The submatrix corresponding to the main

protocol also has full rank, since the two queries are non-trivial and operate on

different commitments. Since each sub-matrix operates on different commitments

to each other, the entire query matrix has full rank. With high probability over the

choice of x, all queries are non-trivial. �

8.3.2 Communication

Let k1,k2 be the dimensions of the matrix used in the PolyCommit subprotocol when

committing to P∗, and similarly, let t1, t2 be the dimensions of the matrix in the

subprotocol for committing to Q∗. In total, the prover commits to m+ k1 + t1 +4

vectors using ILC (k1 vectors of length k2, t1 vectors of length t2, and m vectors of

length n). The verifier’s queries amount to a total of `an+ `Pn(k2 + 1)+ `Qn(t2 +

1)+4 field elements. The verifier makes 3 queries to ILC, with queries on vectors of

lengths k2, t2 and n respectively.

Single Proof Case When t = mn = 1 and the prover is proving a single relation, we

may choose parameters so that the protocol only sends a constant number of vectors

to ILC. This will be useful for the compiled proofs, where commitments often use

extremely large group elements. Set k1 = t1 = 1, k2 = dP−1, t2 = dQ−1. Then the

prover need only send 7 vectors to ILC. The verifier’s queries amount to a total of

`a + `PdP + `QdQ +4 field elements. This will minimise communication in the case

where the protocol is compiled and instantiated over a multiplicative subgroup of a

finite field, where group elements are much bigger than field elements.

In the case where the protocol is later instantiated using an elliptic curve group,

commitments and field elements have roughly the same size. Then, we can minimise

the total communication costs by choosing k2 =
⌈√

dP
`P

⌉
, k1 ≈ dP

k2
. Set t2 =

⌈√
dQ
`Q

⌉
,

t1 ≈
dQ
t2

. Then the prover must send
√
`PdP +

√
`QdQ + 5 vectors to ILC. The

verifier’s queries amount to a total of `a +
√
`PdP +

√
`QdQ +4 field elements.

Batch Proof Case When t is large, we choose parameters so that the communication

costs in compiled proofs are proportional to
√

t rather than t. Set k2 =
⌈√

dPm
`Pn

⌉
,
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k1 ≈ dPm
k2

. Set t2 =
⌈√

dQm
`Qn

⌉
, t1 ≈

dQm
t2

. Finally, set m ≈
√
`at,n ≈ t

m . Then the

protocol requires the prover to send roughly
√
`at +

√
dP`Pt +

√
dQ`Qt vectors to

ILC. The verifier’s queries amount to a total of
√
`at +

√
dP`Pt +

√
dQ`Qt field

elements.

8.3.3 Computation

Over F, the prover must perform

O((`a + `b + `P)tdP logmdP +(`a + `b + `Q)tdQ logmdQ + tdPEvalP + tdQEvalQ)

multiplications. Here, EvalP is the cost of evaluating P once, and similarly for Q. The

vectors of polynomials P∗(X),Q∗(X) are computed using FFT techniques. Over F,

the verifier must perform O((`P + `Q)n+nEvalP +nEvalQ) multiplications. To com-

pute the verifier’s queries, the ILC uses `PdPmn+`QdQmn multiplications to compute

the verifier’s polynomial commitment queries, and mn(`a + `b) multiplications to

compute the verifier’s other ILC queries.

8.3.4 Applications

In this section, we specify concrete choices of relations for P,Q, which give rise to

zero-knowledge arguments for several useful applications.

8.3.4.1 Membership Argument with Public List

In membership arguments [84, 85], the prover wishes to convince the verifier that a

commitment contains one of the values in a given list L = (λ0, . . . ,λN−1). Groth

and Kohlweiss [2] give an efficient membership argument, which with minor tweaks

fits into our framework. For simplicity, we will in the following assume N is a power

of 2.

Statement: ([c],λ0, . . . ,λN−1)

Witness: ` such that c = λ`

Polynomial Encoding: Let m = log2 N and let (l0, . . . , lm−1) be the binary expan-

sion of l, satisfying l j(1− l j) = 0 for 0 ≤ j ≤ m− 1. Define l j,1 := l j and
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l j,0 = 1− l j. We have that

N−1

∑
i=0

λi

m−1

∏
j=0

l j,i j = λl

where we write the binary expansion of i as (i0, . . . , im−1).

Parameter Choice: Writing ◦ for the entry-wise product of two vectors

• `a = log2 N, `b = N, `P = log2 N,dP = 2, `Q = 1,dQ = log2 N

• a = (l0, . . . , lm−1)

• b = (λ0, . . . ,λN−1)

• P(a,b) = a◦ (1−a)

• Q(a,b) = ∑
N−1
i=0 λi ∏

m−1
j=0 l j,i j

An alternative construction was given in [10] that optimises the membership

argument by using an n-ary representation of l. This alternative construction is

captured by our framework as follows, this time assuming for simplicity that N is a

power of n, using different polynomials P and Q.

Polynomial Encoding: Let m = logn N and let (l0, . . . , lm−1) be the n-ary expan-

sion of l. Let δrs be the Kronecker delta symbol, which is equal to 1 if r = s and

0 otherwise. Consider the bit-string (δl0,0,δl0,1, . . . ,δlm−1,n−1), each element

satisfying δi, j(1−δi, j) = 0, and with ∑
n−1
i=0 δl j,i = 1 for each j. As described

in [10], we have that
N−1

∑
i=0

λi

m−1

∏
j=0

δ j,i j = λl

where i j the jth n-ary digit of i.

Parameter Choice:

• `a = n logn N, `b = N, `P = n logn N, dP = 2, `Q = 1, dQ = logn N

• a = (δl0,1, . . . ,δlm−1,n−1), not including δ j,0 for any j.

• b = (λ0, . . . ,λN−1).
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• δl j,0 = 1−∑
n−1
i=1 δl j,i for each j.

• v =
(
δl0,0, . . . ,δlm−1,n−1

)
, with the δ j,0 included.

• P(a,b) = v◦ (1−v)

• Q(a,b) = ∑
N−1
i=0 λi ∏

m−1
j=0 δ j,i j = λl

When t = 1 and we are aiming for a constant number of commitments, the sim-

ple binary version of the argument gives the lowest communication costs. Otherwise,

in the cases where t is large, or where t = 1 and we aim to minimise the total number

of elements communicated in the compiled proof, setting n = 3 gives the lowest

communication costs. The protocol efficiency is reported in Table 1.2.

8.3.4.2 Polynomial Evaluation Argument

In a polynomial evaluation argument [86, 85], we have a polynomial of degree N and

commitments to a point and its purported evaluation in that point. The prover wants

to convince the verifier that the committed evaluation of the polynomial is correct.

The most efficient discrete logarithm based polynomial evaluation argument

was given by Bayer and Groth [3]. We will now use our framework of polynomial

relations to capture their protocol.

Statement: ([cu], [cv],h(X)), where h(X) is a polynomial of degree N.

Witness: u,v such that cu = u,cv = v, and h(u) = v.

Polynomial Encoding: Set ui = u2i
for 0 ≤ i ≤ log2 N− 1, so that ui = u2

i−1 for

each i. If h(X) = ∑
N−1
i=0 hiX i, then we can write h(u) = ∑

N−1
i=0 hi ∏

log2 N−1
j=0 ui j

j .

Parameter Choice:

• `a = log2 N, `b = N, `P = log2 N−1, dP = 2, `Q = 1, dQ = log2 N

• a = (u0, . . . ,ulogN−1)

• b = (h0, . . . ,hN−1)

• P(a,b) = (u1−u2
0, . . . ,ulogN−1−u2

logN−2)

• Q(a,b) = ∑
N−1
i=0 hi ∏

logN−1
j=0 ui j

j
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With alternative choices of the matrices P,Q, we can improve the communica-

tion costs of their argument by switching to an n-ary encoding of the powers in the

polynomial.

Polynomial Encoding: Set ui = uni
for 0 ≤ i ≤ logn N− 1, so that ui = un

i−1 for

each i. If h(X) = ∑
N−1
i=0 hiX i, then we can write h(u) = ∑

N−1
i=0 hi ∏

logn N−1
j=0 ui j

j ,

where this time, i j is the jth digit of the nary representation of i. This gives

rise to the efficiencies listed in Table ??.

Parameter Choice:

• `a = logn N, `b = N, `P = logn N, dP = n, `Q = 1, dQ = logn N

• a = (u0, . . . ,ulogn N−1)

• b = (h0, . . . ,hN−1)

• P(a,b) = (u1−un
0, . . . ,ulogn N−1−un

logn N−2)

• Q(a,b) = ∑
N−1
i=0 hi ∏

logn N−1
j=0 ui j

j

When t = 1 and we are aiming for a constant number of commitments, setting

n = 4 gives the lowest communication costs. When t = 1 and we aim to minimise the

total number of elements communicated in the compiled proof, we set n =
log2 N

log2 log2 N .

Otherwise, in the cases where t is large, setting n= 6 gives the lowest communication

costs. The protocol efficiency is reported in Table 1.3.

We would like to highlight the results when t = 1 and n =
log2 N

log2 log2 N . In this

case, the total communication complexity of the polynomial evaluation protocol is

O
(

logN
log logN

)
commitments and field elements in the discrete logarithm settting. In

particular, this protocol has the best asymptotic efficiency for polynomial evaluation

in zero-knowledge based on the discrete-logarithm assumption. If we use the polyno-

mial to specify a set through its roots, then argument gives a membership argument

where the communication costs are asymptotically less than logN, the number of

bits required to specify an element of the set. The best known arguments for general

arithmetic circuits [9, 1] achieve a logarithmic communication complexity, as the

number of multiplication gates required to compute a polynomial of degree N is N.
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This protocol also uses commitments to vectors of length O(logN) rather than O(N)

which translates to dramatically fewer cryptographic operations.

We note that [12] gives a batch argument for polynomial evaluation based on

similar ideas. However, ours is more communication efficient.

Remark. The relations above arise from choices of a small set of powers of u which

generate all powers from u to uN−1. This is the same as choosing an additive basis

for [N−1]. For certain parameter choices, we have found modest benefits to using

more complex bases, such as generalised Zeckendorf bases, but these give only slight

improvements, so are omitted for simplicity.

8.3.4.3 Range Proof

In range proofs [87, 88], we have a commitment and a range [A;B]. The prover

wants to convince the verifier that the committed value inside the commitment falls

in the given range. A common strategy for constructing a range proof is to write

the committed value in binary, prove all the bits are indeed 0 or 1, and that their

weighted sum yields a number within the range. We now describe this type of range

proof in our framework of polynomial relations, where we for simplicity focus on

intervals [0,N] with N = 2m−1.

Statement: (N, [c])

Witness: a,r such that c = a,a ∈ [0,N].

Polynomial Encoding: Let a0, . . . ,am−1 be the binary representation of a, so that

ai(1−ai) = 0 for 0≤ i≤ m−1. Then a = ∑
m−1
i=0 ai2i.

Parameter Choice:

• `a = m, `b = m, `P = m,dP = 2, `Q = 1,dQ = m+1

• a = (a0, . . . ,am−1)

• b = (20,21, . . . ,2m−1)

• P(a,b) = a◦ (1−a)

• Q(a,b) = ∑
m−1
i=0 ai2i



8.4. 3-Move Square-Root Protocol 126

With an alternative choice of P,Q, following [95], it is possible to improve the

communication costs of the argument by using an n-ary base. This gives rise to the

efficiencies listed in Table 1.3.

Polynomial Encoding: Let N = nm−1. Let a0, . . . ,am−1 be the n-ary representa-

tion of a, so that ∏
n−1
k=0(ai− k) = 0 for 0≤ i≤ m−1. Then a = ∑

m−1
i=0 aini.

Parameter Choice:

• `a = m, `b = m, `P = m, dP = n, `Q = 1, dQ = 1

• a = (a0, . . . ,am−1)

• b = (1,n, . . . ,nm−1)

• P(a,b) = a◦ (a−1)◦ . . .(a−n+1)

• Q(a,b) = ∑
m−1
i=0 aini

When t = 1 and we are aiming for a constant number of commitments, setting

n = 4 gives the lowest communication costs. When t = 1 and we aim to minimise the

total number of elements communicated in the compiled proof, we set n =
log2 N

log2 log2 N .

Otherwise, in the cases where t is large, setting n= 6 gives the lowest communication

costs. The protocol efficiency is reported in Table 1.3.

8.4 3-Move Square-Root Protocol
In this section, we present an ILC protocol for arithmetic circuit satisfiability which

consists of only 3 moves.

One might ask why it is necessary to include both a 3-move protocol and a

5-move protocol in this thesis. The 5-move protocol is more efficient in almost

every way except for the number of moves. Furthermore, many users are more

interested in non-interactive protocols anyway. After making the 5-move argument

non-interactive using the Fiat-Shamir heuristic, does the existence of the 3-move

protocol matter?

There are several reasons why it was important to include the 3-move argument.

Firstly, it yields, for example, using the later compilation with discrete logarithm
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comitments, the first known zero-knowledge argument of knowledge for arithmetic

circuit satisfiability that has square-root communication complexity, and only 3

moves, based on the discrete logarithm assumption. The previous best arguments

[8, 7] consisted of 5 moves.

Secondly, it was this argument that drew attention to some corner cases within

the ILC model, and led to the creation of the check command alongside the open

command. Finally, when both proofs have been compiled into real protocols using

homomorphic commitments and the compilation procedure in Section 9.2, the 3-

move protocol requires much less rewinding of the prover and verifier in order to

prove knowledge soundness. This is a potential advantage either when one is thinking

about the concrete security of each protocol and the tightness of security reductions,

or when one is trying to give security proofs in a quantum security model1 where

rewinding techniques are still only applicable in quite limited scenarios.

We will construct SHVZK proofs of knowledge for the relation RAC, where the

instances are arithmetic circuits over a field F specified by σ . An instance consists

of many fan-in 2 addition and multiplication gates over F, a description of how wires

in the circuit connect to the gates, and values assigned to some of the input wires.

Witnesses w are the remaining inputs such that the output of the circuit is 0. For an

exact definition of how we represent an arithmetic circuit, see Section 3.2.

In this argument, we use the earlier reduction of arithmetic circuit satisfiability

give in 3.2, and check that some committed vectors have the correct Hadamard

product and satisfy some linear consistency equations. An approach similar to that

of [13] works well for doing many operations in parallel, so this will be used for the

Hadamard product. Embedding field elements as the coefficients of polynomials as

in [7] works well for scalar products, so will be used for the consistency equations.

The Hadamard product component of this argument is not new. It is the

Hadamard Product argument of section 5.4, [12].

One disadvantage of this approach is that the prover sends the blinded wire

1The compilation procedure from Section 9.2 was given with discrete-logarithm-based commit-
ments in mind, but applies to all homomorphic commitments, including those which might be secure
against attacks by quantum adversaries.
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values to the verifier more than once. Nevertheless, the compiled protocol achieves a

square-root complexity in 3 rounds.

The relation corresponding to the proof is

RAC1 =



(σILC ,u,w); σILC = (F,n,Q,(z1, . . . ,zm)),

u =
(
{wq,a,i,wq,b,i,wq,c,i}q∈[Q],i∈[m],{Kq}q∈[Q]

)
,

w = {ai,bi,ci}i∈m :

∀q ∈ [Q],∀i ∈ [m], wq,a,i,wq,b,i,wq,c,i ∈ Fn

∀i ∈ [m], ai,bi,ci ∈ Fn, ai ◦bi = ci

∧ ∀q ∈ [Q], ∑
Q
q=1 wq,a,i ·ai +∑

Q
q=1 wq,b,i ·bi +∑

Q
q=1 wq,c,i · ci = Kq


8.4.1 Idea

The prover will begin by commiting to each ai, bi and ci for each i.

Given distinct points z1, . . . ,zm, let li(X) be the Lagrange polynomials using

distinct interpolation points z1, . . . ,zm ∈ F. Explicitly,

li(X) = ∏
j 6=i

X− z j

zi− z j

Recall that li(z j) = δi, j. Set l0(X) = ∏
m
i=1(X− zi).

The Hadamard product holds if and only if there exists a polynomial d(X) of

degree m−2 such that the following polynomial equation holds:(
m

∑
i=1

aili(X)

)
◦

(
m

∑
i=1

bili(X)

)
−

(
m

∑
i=1

cili(X)

)
= d(X)l0(X)

The prover can commit to the coefficients di of d(X) beforehand. Then, for a

randomly chosen challenge x, the verifier can make the following ILC queries.

ā =
m

∑
i=1

aili(x) c̄ =
m

∑
i=1

cili(x)+ l0(x)
m−2

∑
i=0

dixi

b̄ =
m

∑
i=1

bili(x)
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with suitable random blinding values used in the real protocol to hide the wire values.

The verifier can then verify that the Hadamard product holds by checking whether

ā◦ b̄ ?
= c̄.

Define the following polynomials.

ē(X) =
m

∑
i=1

aiX i +Xm
m

∑
i=1

biX i +X2m
m

∑
i=1

ciX i

wq(X) =
m

∑
i=1

wq,a,iX−i +X−m
m

∑
i=1

wq,b,iX−i +X−2m
m

∑
i=1

wq,c,iX−i

The linear consistency equations hold if and only if there exist vectors h j ∈ FQ such

that the following polynomial equation holds:

(ē(X) ·w1(X), . . . , ē(X) ·wQ(X)) = (K1, . . . ,KQ)+
3m

∑
j 6=0, j=−3m

h jX j

The prover can commit to the vectors h j in before receiving x. Then verifier can

make ILC queries to obtain e(X) and also

h =
3m

∑
j 6=0, j=−3m

h jx j

Since all of the coefficients are public, the verifier can compute wq(x) by themselves

for each q ∈ [Q]. Finally, the verifier can verify that the linear consistency equations

hold by checking whether

(ē ·w1(x), . . . , ē ·wQ(x))
?
= (K1, . . . ,KQ)+

3m

∑
j 6=0, j=−3m

h jx j

This protocol was the main motivation for introducing the check command to

the ILC model. If this command had not been introduced, then the verifier might have

made a open query for (K1, . . . ,KQ)+∑
3m
j 6=0, j=−3m h jx j. Following the compilation

in [16], this would have resulted in the prover sending a vector of length Q to the

verifier. In general, Q could be as large as N, the number of multiplication gates in
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the arithmetic circuit. However, it is unnecessary for the prover to send this value to

the verifier, as in a real proof, the verifier can compute (ē ·w1(x), . . . , ē ·wQ(x)) and

check this value against succinct commitments to the h j.

Common input: Setup information σILC = (F,n,Q,(z1, . . . ,zm)). The description

of an arithmetic circuit u =
(
{wq,a,i,wq,b,i,wq,c,i}q∈[Q],i∈[m],{Kq}q∈[Q]

)
.

Prover’s witness: Satisfying assignments w = {ai,bi,ci}i∈m to the wires of the

circuit.

Protocol:

P: The prover randomly selects a0,b0,c0 ← Fn, and commits to them using

commit. For i ∈ [m], the prover commits to ai, bi and ci ∈ Fn using commit.

The prover computes d0, . . . ,dm ∈ Fn such that(
m

∑
i=0

aili(X)

)
◦

(
m

∑
i=0

bili(X)

)
−

(
m

∑
i=0

cili(X)

)
= l0(X)

m

∑
i=0

diX i

Note that the sums on the left begin from i = 0 to incorporate the blinders. For

0≤ i≤ m, the prover commits to di using commit.

The prover randomly selects e← Fn and commits to it using commit. The

prover computes h j ∈ FQ such that

(ē(X) ·w1(X), . . . , ē(X) ·wQ(X)) = (c1, . . . ,cQ)+
3m

∑
j 6=0, j=−3m

h jX j

where

ē(X) = e+
m

∑
i=1

aiX i +Xm
m

∑
i=1

biX i +X2m
m

∑
i=1

ciX i

wq(X) =
m

∑
i=1

wq,a,iX−i +X−m
m

∑
i=1

wq,b,iX−i +X−2m
m

∑
i=1

wq,c,iX−i

For j 6= 0,−3m≤ j ≤ 3m, the prover commits to h j using commit.

V: The verifier randomly selects x← F∗, and makes the following open queries to
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ILC.

ē = e+
m

∑
i=1

aixi + xm
m

∑
i=1

bixi + x2m
m

∑
i=1

cixi

ā =
m

∑
i=0

aili(x) b̄ =
m

∑
i=0

bili(x)

For each q ∈ [Q], the verifier computes

wq =
m

∑
i=1

wq,a,ix−i + x−m
m

∑
i=1

wq,b,ix−i + x−2m
m

∑
i=1

wq,c,ix−i

The verifier performs the following checks, using one check query for each.

ā◦ b̄ ?
=

m

∑
i=0

cili(x)+ l0(x)
m

∑
i=0

dxi

(ā ·w1, . . . , ā ·wQ)
?
= (c1, . . . ,cQ) +

3m

∑
j 6=0, j=−3m

h jx j

Theorem 15 The argument of subsection 8.4.1 for satisfiability of an arithmetic

circuit has perfect completeness, knowledge-soundness and special honest verifier

zero-knowledge.

Proof Perfect completeness follows by careful inspection.

For SHVZK, we describe a simulator. Given a challenge x such that l0(x) 6= 0,

the simulator randomly selects ā and b̄ uniformly at random from Fn and ē uniformly

at random from FQ. Finally, the simulator sets the output of all check queries to >.

These are distributed exactly as in a real argument. Therefore the simulated argument

is indistinguishable from a real argument and we have SHVZK.

Finally, we prove knowledge-soundness. The ILC knowledge extractor already

has access to all messages sent between the prover and ILC. It remains to show that

if the committed values are not a valid witness, then there is a negligible probability

that the verifier will accept. Recall that the verifier makes open queries in order to
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obtain the following values.

ā =
m

∑
i=0

aili(x) b̄ =
m

∑
i=0

bili(x)

Now, substitute these expressions into the expression containing ā and b̄ that arises

from the check query. This yields the following polynomial equation evaluated at

x. (
m

∑
i=0

aili(x)

)
◦

(
m

∑
i=0

bili(x)

)
−

m

∑
i=0

cili(x)−
m

∑
i=0

dil0(x) = 0 (8.1)

By assumption P∗
prod is deterministic, and we know when it made its commitments.

Hence, all of the vector coefficients in Equation 8.1 are constant with respect to

x. If there exist i and j such that ai, j ◦bi, j 6= ci, j, then Equation 8.1 is a non-zero

polynomial of degree 2m which is zero at x. Since a polynomial of degree 2m can

have at most 2m roots, the probability that this equality holds is at most 2m
|F|−m . The

verifier can only accept if we have equality, so this shows that the probability that

the committed values does not satisfy the product relation but verifier accepts is

negligible, which proves knowledge soundness. �

Lemma 16 The protocol has tree-special soundness, and the extraction algorithm

χ is a linear map.

Proof The verifier sees the following queries as part of the protocol.

ē = e+
m

∑
i=1

aixi + xm
m

∑
i=1

bixi + x2m
m

∑
i=1

cixi

ā =
m

∑
i=0

aili(x) b̄ =
m

∑
i=0

bili(x)
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ā◦ b̄ ?
=

m

∑
i=0

cili(x)+ l0(x)
m

∑
i=0

dxi

(ā ·w1, . . . , ā ·wQ)
?
= (c1, . . . ,cQ) +

3m

∑
j 6=0, j=−3m

h jx j

These all correspond to cases of Lemma 4. Therefore, given the verifier’s view for

sufficiently many distinct values of x, one can recover the committed polynomial

using a linear map. �

Lemma 17 With high probability, the ILC query matrix for the protocol has full

rank, and fewer rows than columns.

Proof The rows of the query matrix correspond to the number of ILC queries

made by the verifier. The columns correspond to vectors which the prover has

committed to. In this protocol, there are a constant number of queries, including the

queries from the polynomial commitment sub-protocol, so there are clearly fewer

queries than commitments whenever m is large enough. The query matrix has full

rank. This is because the rows corresponding to each query operate on different

commitments. Since each row operates on different commitments to the others, the

entire query matrix has full rank. With high probability over the choice of x, all

queries are non-trivial. �

8.4.2 Efficiency

Communication The prover sends 4m+ 4 vectors of length n and 6m vectors of

length Q to ILC. Choosing n ≈ m ≈
√

N minimises the total cost in the compiled

proof.

Computation The dominant cost for the prover in field multiplications is

O(Qmn logm) from multiplying vectors of polynomials using FFT techniques.

For the verifier, the number of field multiplications is dominated by 3Qmn.
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8.5 5-Move Square-Root Protocol

The basis for the protocol in this section was originally published in joint work

[9] with Andrea Cerulli, Pyrros Chaidos, Jens Groth and Christophe Petit, as a

discrete-logarithm based protocol.

We present and ILC protocol for arithmetic circuit satisfiability which consists

of 5 moves. This protocol is the similar to the protocol in [11], but is rewritten

slightly as an ILC protocol.

The relation corresponding to the proof is

RAC2 =



(σILC ,u,w); σILC = (F,n),

u =
(
{wq,a,i,wq,b,i,wq,c,i}q∈[Q],i∈[m],{Kq}q∈[Q]

)
,

w = {ai,bi,ci}i∈m :

∀q ∈ [Q],∀i ∈ [m], wq,a,i,wq,b,i,wq,c,i ∈ Fn

∀i ∈ [m], ai,bi,ci ∈ Fn, ai ◦bi = ci

∧ ∀q ∈ [Q], ∑
Q
q=1 wq,a,i ·ai +∑

Q
q=1 wq,b,i ·bi +∑

Q
q=1 wq,c,i · ci = Kq


This relation has been modified slightly in comparison with the previous relation

RAC1 used for the previous two arithmetic circuit protocols. The only changes are

in the setup information. The previous protocols used Lagrange polynomials, so

interpolation points (z1, . . . ,zm) were included in the setup material. The previous

protocols also required the prover to commit to vectors of lengths n and Q, whereas

this protocol only requires commitments to vectors of length n.

Motivation Although 8.4 already presents a protocol for arithmetic circuit satisfiabil-

ity, it does not seem to admit further optimisation techniques or improvements. The

protocol in this section reduces checking arithmetic circuit satisfiability to a scalar

product check on committed values. If one considers the scalar-product argument

of Chapter 10 as a special opening protocol for scalar products on Pedersen com-

mitments, one can combine the two protocols to produce a protocol for arithmetic

circuit satisfiability with logarithmic communication complexity, as in [9], and later

in [1].
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Overview The argument works by folding both the Hadamard matrix product and the

linear constraints of Section 3.2 into a single polynomial equation, where a Laurent

polynomial has 0 as its constant term, and use an ILC protocol to prove that this is

the case. We can optionally integrate the inner product argument of Section 10.1 into

the compiled proof to reduce communication.

Our technique improves on the efficiency of arguments such as [7] by making

two main changes, each resulting in efficiency improvements.

• We do not need commitments to the input and output wires of addition gates.

We handle addition gates with linear consistency equations thus yielding a

significant performance improvement proportional to the number of addition

gates. This parallels [34] who also manage to eliminate addition gates when

constructing Quadratic Arithmetic Programs from circuits.

• We avoid black-box reductions to zero-knowledge arguments for generic linear

algebra statements and instead design an argument directly for arithmetic

circuit satisfiability. As a result, our square-root argument has only 5 moves,

while the argument from [7] requires 7 moves. We note that [8] reduced

the complexity of [7] to 5 moves as well, but at a significant computational

overhead whereas we also reduce the computational cost.

These improvements give us a square root communication complexity with

respect to the number of multiplication gates in the circuit. This is because for a

circuit with N = mn multiplication gates, the prover makes 3m commitments to wire

values in his first move, and later provides an opening consisting of n field elements

to a homomorphic combination of these commitments. Optimising the parameters

by choosing m≈ n≈
√

N leads to square root complexity.

Below we give a first informal exposition of our arguments, and follow with a

formal description.
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8.5.1 Idea

Let us consider the relation which encodes arithmetic circuit satisfiability.

RAC2 =



(σILC ,u,w); σILC = (F,n),

u =
(
{wq,a,i,wq,b,i,wq,c,i}q∈[Q],i∈[m],{Kq}q∈[Q]

)
,

w = {ai,bi,ci}i∈m :

∀q ∈ [Q],∀i ∈ [m], wq,a,i,wq,b,i,wq,c,i ∈ Fn

∀i ∈ [m], ai,bi,ci ∈ Fn, ai ◦bi = ci

∧ ∀q ∈ [Q], ∑
Q
q=1 wq,a,i ·ai +∑

Q
q=1 wq,b,i ·bi +∑

Q
q=1 wq,c,i · ci = Kq


This contains N =mn multiplication constraints, and Q linear consistency constraints.

Let Y be a formal indeterminate. We will reduce the N+Q equations above to a

single polynomial equation in Y by embedding each equation into a distinct power of

Y . In our argument we will then require the prover to prove that this single equation

holds when replacing Y by a random challenge received from the verifier.

Let Y′ denote the vector (Y m, . . . ,Y mn) and Y denote (Y,Y 2, . . . ,Y m). Then, we

can multiply (3.1) by Y from the left and Y′T on the right to obtain Y(A◦B)Y′T =

YCY′T , or equivalently

m

∑
i=1

Y i(ai ◦bi) ·Y′ =
m

∑
i=1

Y i(ci ·Y′)

Since (a◦b) ·Y′ = a · (b◦Y′), we obtain the following expression

m

∑
i=1

ai · (bi ◦Y′)Y i =

(
m

∑
i=1

ciY i ·Y′
)

This is easily seen to be equivalent to (3.1), because (ai) j(bi) j = (ci) j appears

in the coefficients of Y i+ jm, and i+ jm takes every value from m+1 to M = N +m

exactly once.

Moreover, the Q linear constraints on the wires are satisfied if and only if

Q

∑
q=1

(
m

∑
i=1

ai ·wq,a,i +
m

∑
i=1

bi ·wq,b,i +
m

∑
i=1

ci ·wq,c,i

)
Y q =

Q

∑
q=1

KqY q
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since the qth constraint arises from comparing the coefficients of Y q. Combining the

two polynomial equations by adding them after multiplying the latter by Y M, and

swapping summations, we see that the circuit is satisfied if and only if(
m

∑
i=1

ai · (bi ◦Y′)Y i

)
+

m

∑
i=1

ai ·

(
Q

∑
q=1

wq,a,iY M+q

)
+

m

∑
i=1

bi ·

(
Q

∑
q=1

wq,b,iY M+q

)

+
m

∑
i=1

ci ·

(
−Y iY′+

Q

∑
q=1

wq,c,iY M+q

)
=

(
Q

∑
q=1

KqY M+q

)

Let us define

wa,i(Y ) =
Q

∑
q=1

wq,a,iY M+q wb,i(Y ) =
Q

∑
q=1

wq,b,iY M+q

wc,i(Y ) =−Y iY′+
Q

∑
q=1

wq,c,iY M+q K(Y ) =
Q

∑
q=1

KqY M+q

Then the circuit is satisfied if and only if

m

∑
i=1

ai · (bi ◦Y′)Y i +
m

∑
i=1

ai ·wa,i(Y )+
m

∑
i=1

bi ·wb,i(Y )+
m

∑
i=1

ci ·wc,i(Y )−K(Y ) = 0

(8.2)

In the argument, the prover will commit to ai,bi and ci. The verifier will then

issue a random challenge y← F∗ and the prover will convince the verifier that the

committed values satisfy Eq. 8.2, evaluated on y. If the committed values do not

satisfy the polynomial equation, the probability the equality holds for a random y is

negligible, so the prover is unlikely to be able to convince the verifier.

In order to show that (8.2) is satisfied, we craft a special Laurent polynomial

t(X) in a second formal indeterminate X , whose constant coefficient is exactly twice

the left-hand side of (8.2). Therefore, this polynomial will have zero constant term if
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and only if (8.2) is satisfied. We define

r(X) :=
m

∑
i=1

aiyiX i +
m

∑
i=1

biX−i +Xm
m

∑
i=1

ciX i +dX2m+1

s(X) :=
m

∑
i=1

wa,i(y)y−iX−i +
m

∑
i=1

wb,i(y)X i +X−m
m

∑
i=1

wc,i(y)X−i

r′(X) := r(X)◦y′+2s(X)

t(X) := r(X) · r′(X)−2K(y)

Here y′ is the vector Y′ evaluated at y, and d is a blinding vector consisting of

random scalars that the prover commits to in the first round. In the protocol, the

prover will reveal r(x) for a randomly chosen challenge x ∈ F∗, and the blinding

vector d ensures that we can reveal r(x) without leaking information about ai,bi and

ci. We also observe that s(x) is efficiently computable from public information about

the circuit and the challenges.

We have designed these polynomials such that the constant term of r · (r◦y′)

is equal to 2∑
m
i=1 ai · (bi ◦ y′)yi and the constant term of r · s is equal to ∑

m
i=1 ai ·

wa,i(y)+∑
m
i=1 bi ·wb,i(y)+∑

m
i=1 ci ·wc,i(y). We conclude that the constant term of

t(X) is exactly twice the left-hand side of (8.2), and is therefore zero if and only if

the circuit is satisfied.

We are now in a position to describe a protocol with square root communication

complexity.

The prover first commits to vectors ai,bi,ci and d and the verifier replies with

a challenge y← F∗. The prover computes t(X) and commits to it by committing

to each coefficient using the ILC functionality. Then, the verifier selects a random

challenge x← F∗ and uses ILC queries to get r(x) and an evaluation v = t(x).

The verifier computes s(x),r′(x) and K, then checks if v = r(x) · r′(x)− 2K.

The verifier accepts the argument if both checks are satisfied.

8.5.2 Protocol Description

Common input: Setup information σILC = (F,n). The description of an arithmetic

circuit u =
(
{wq,a,i,wq,b,i,wq,c,i}q∈[Q],i∈[m],{Kq}q∈[Q]

)
.
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Prover’s witness: Satisfying assignments w = {ai,bi,ci}i∈m to the wires of the

circuit.

Protocol:

P: The prover chooses d← Fn uniformly at random, and commits to it using

commit. For i ∈ [m], commit to ai,bi,ci to commit.

V: The verifier randomly selects y← F∗ and sends it to the prover.

As argued before, the circuit determines vectors of polynomials wa,i(Y ),

wb,i(Y ), wc,i(Y ) and K(Y ) such that C is satisfiable if and only if

m

∑
i=1

ai · (bT
i ◦Y′)Y i +

m

∑
i=1

ai ·wa,i(Y )+
m

∑
i=1

bi ·wb,i(Y )+
m

∑
i=1

ci ·wc,i(Y ) = K(Y )

where Y′ = (Y m, . . . ,Y mn). Given y, both the prover and verifier can compute

K = K(y), wa,i = wa,i(y), wb,i = wb,i(y) and wc,i = wc,i(y).

P: The prover computes Laurent polynomials r,s,r′, which have vector coefficients,

and Laurent polynomial t, in the indeterminate X .

r(X) =
m

∑
i=1

aiyiX i +
m

∑
i=1

biX−i +Xm
m

∑
i=1

ciX i +dX2m+1

s(X) =
m

∑
i=1

wa,iy−iX−i +
m

∑
i=1

wb,iX i +X−m
m

∑
i=1

wc,iX−i

r′(X) = r(X)◦y′+2s(X)

t(X) = r(X) · r′(X)−2K =
4m+2

∑
k=−3m,k 6=0

tkXk

When the wires ai,bi,ci correspond to a satisfying assignment, the Laurent

polynomial t(X) will have constant term t0 = 0.

The prover commits to t(X) by committing to each coefficient tk using a

separate commit command.
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V: The verifier randomly selects x← F∗ and makes an open queries to obtain

r =
m

∑
i=1

aixiyi +
m

∑
i=1

bix−i + xm
m

∑
i=1

cixi +dx2m+1

v =
4m+2

∑
k=−3m,k 6=0

tkxk

The verifier computes r′ = r ◦ y′+ 2s(x). The verifier accepts only if the

following check is satisfied.

r · r′−2K ?
= v

8.5.3 Security Analysis.

Theorem 18 The argument of subsection 8.5.2 for satisfiability of an arithmetic

circuit has perfect completeness, perfect special honest verifier zero-knowledge and

statistical witness-extended emulation for extracting either a breach of the binding

property of the commitment scheme or a witness for the satisfiability of the circuit.

Proof Perfect completeness follows by inspection and using the fact that the

polynomial commitment protocol and inner product argument also have perfect

completeness.

For perfect special honest verifier zero-knowledge we are given y,x ∈ F∗, which

allows us to compute wa,i,wb,i,wc,i and K from the circuit. The simulator picks

r← Fn. To see that the simulated components have the same distribution as a real

argument observe r is uniformly random. Finally, the simulator sets the output of all

check queries to >.

It remains to show that we have knowledge soundness. The ILC knowledge

extractor already has access to all messages sent between the prover and ILC. It

remains to show that if the committed values are not a valid witness, then there is a

negligible probability that the verifier will accept. Recall that the verifier makes an



8.5. 5-Move Square-Root Protocol 141

open query in order to obtain the following value

r =
m

∑
i=1

aixiyi +
m

∑
i=1

bix−i + xm
m

∑
i=1

cixi +dx2m+1

then computes r′ = r◦y′+2s(x). Substitute these values into the verifier’s check

query r ·r′−2K ?
= ∑

4m+2
k=−3m,k 6=0 tkxk. Following the explanation before the description

of the protocol, we obtain a polynomial equation in x and y of the following form:(
2

m

∑
i=1

ai · (bi ◦y′)yi +
m

∑
i=1

ai ·wa,i(y)+
m

∑
i=1

bi ·wb,i(y)+
m

∑
i=1

ci ·wc,i(y)

)

+
4m+2

∑
k=−3m,k 6=0

t ′kxk = 0

The verifier only accepts if the equation holds. By assumption P∗
prod is deterministic,

and we know when it made it’s commitments. Hence, all of the terms in ai, bi and ci

are constants, and the t ′k terms are functions of y. We can now apply Lemma 1. If

the circuit is not satisfied, then the coefficient of some power of y in the equation

above will be non-zero, which means that we have F . The verifier can only accept

if we have equality, so this shows that the probability that the committed values do

not satisfy the circuit but that the verifier still accepts is negligible, which proves

knowledge soundness. �

Lemma 19 The protocol has tree-special soundness, and the extraction algorithm

χ is a linear map.

Proof The verifier sees the following queries as part of the protocol.

r =
m

∑
i=1

aixiyi +
m

∑
i=1

bix−i + xm
m

∑
i=1

cixi +dx2m+1

r · r′−2K ?
=

4m+2

∑
k=−3m,k 6=0

tkxk

After relabelling the variables, these all correspond to cases of Lemma 4. Therefore,

given the verifier’s view for sufficiently many distinct values of x and y, one can

recover the committed polynomial using a linear map. �
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Lemma 20 With high probability, the ILC query matrix for the protocol has full

rank, and fewer rows than columns.

Proof The rows of the query matrix correspond to the number of ILC queries

made by the verifier. The columns correspond to vectors which the prover has

committed to. In this protocol, there are a constant number of queries, including the

queries from the polynomial commitment sub-protocol, so there are clearly fewer

queries than commitments whenever m is large enough. The query matrix has full

rank. This is because the rows corresponding to each query operate on different

commitments. Since each row operates on different commitments to the others, the

entire query matrix has full rank. With high probability over the choices of x and z,

all queries are non-trivial. �

8.5.4 Efficiency

Communication The argument above has the prover send O(m) elements to ILC.

Setting m ≈
√

N, n ≈
√

N will minimise the communication complexity in the

compiled proof.

Computation The main computational cost for the prover is computing t(X) using

FFT-based techniques, which costs O(mn logm) multiplications in F. The main

cost in the verification is computing s(X) given the description of the circuit which

requires in the worst case Qn multiplications in F, considering arbitrary fan-in

addition gates. In case of O(N)-size circuits with fan-in 2 gates, computing s(X)

requires O(N) multiplications. Evaluating s(x) requires 3N multiplications.



Chapter 9

Compiling Ideal Linear Commitment

Protocols into Standard

Zero-Knowledge Proofs

Remark When considering ILC protocols with multiple fixed vector lengths, as

explained earlier, one can either define a new ILC channel consisting of many copies

of ILC channels of single lengths to handle the issue, or simply pad all vectors to

the length of the maximum vector. In the first case, we obtain compilation proofs

for the new channel simply by running the compilation on the ILC protocol for each

single-length ILC channel that makes up the multiple length channel.

9.1 Compiling into Hash-Based Proofs
In this section, we show how to compile a proof of knowledge with straight-line

extraction for relation R over the communication channel ILC into a proof of knowl-

edge for the same relation over the standard channel, based on the existence of

collision-resistant hash functions.

The compilation proof given in this section comes from joint work in [16] with

Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi and Sune K.

Jakobsen. In particular, Sune K Jakobsen is responsible for the technical lemmas in

the compilation proof, but the proof and compilation have been adapted for use with

our modified ILC model and optimisations to the compilation method.
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As well as the fact that we can instantiate protocols designed for homomorphic

commitment schemes without any homomorphic commitments, and showing that the

ILC model really is very useful and general, the resulting protocols have the potential

to be extremely efficient in practice. Ligero [15], a similar protocol which is also

based on hashes and error-correcting codes with an additional special property, has

been implemented in C++ and provides evidence for the deployability of interactive

protocols based on hash functions and error-correcting codes.

The idea behind the compilation of an ILC proof is that instead of committing

to vectors vτ using commit, the prover encodes each vector vτ as EC (vτ) using a

linear error-correcting code EC . In any given round, we can think of the codewords

as rows EC (vτ) in a matrix EC (V ). However, instead of committing to the rows of

the matrix, the prover commits to the columns of the matrix. When the verifier wants

to make an open query for a linear combination of the original vectors, he sends the

coefficients q = (q1, . . . ,qt) of the linear combination to the prover, and the prover

responds with the linear combination v(q)← qV .

We also add a check, where the verifier sends an extra random linear combina-

tion γ ∈ Ft to ensure that if a malicious prover commits to values of eτ that are far

from being codewords, the verifier will most likely reject. The reason the challenges

q and q′ from the ILC proof are not enough to ensure this is that they are not chosen

uniformly at random. One could, for instance, imagine that there was a vector vτ that

was never queried in a non-trivial way, and hence the prover could choose it to be far

from a codeword. To make sure this extra challenge γ does not reveal information to

the verifier, the prover picks a random blinding vector v0, which is added as the first

row of V and will be added to the linear combination of the challenge γ .

Notice that we will use the notation v(q), and later on v(γ), to denote vectors

that depend on q and γ: the q and γ are not indices. Now, to spot check that the

prover is not giving a wrong v(q), the verifier may request the jth element of each

committed codeword eτ . This corresponds to revealing the jth column of error-

corrected matrix EC (V ). Since the code EC is linear, the revealed elements should

satisfy EC (v(q)) j = ∑
t
τ=1 qτEC (vτ) j = q(EC (V )| j). The verifier will spot check on
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multiple columns, so that if the code has sufficiently large minimum distance and

the prover gives a wrong v(q), then with overwhelming probability, the verifier will

open at least one column j where the above equality does not hold.

Revealing entries in a codeword may leak information about the encoded vector.

To get SHVZK, instead of using EC , we use a randomized encoding ẼC defined

by ẼC (v;r) = (EC (v)+ r,r). This doubles the code-length to 2n but ensures that

when you reveal entry j, but not entry j+n, then the verifier only learns a random

field element. The spot checking technique using ẼC is illustrated in Fig. 9.1. In the

following, we use the notation eτ = (EC (vτ)+ rτ ,rτ) and E = (EC (V )+R,R).

The original compilation given in [16] handled an earlier version of the ILC

model without check queries. We must discuss how to treat these queries. The

verifier makes check queries q′ = (q′1, . . . ,q
′
t) of linear combinations of committed

vectors. Now, check queries handle the case where the verifier can compute

what v′(q)← q′V should be by themselves, using the results of other open queries.

Therefore, the prover need not send v′(q) to the verifier. The prover, given q′, must

still reveal r′(q) = q′R. The verifier now asks for openings of 2λ columns J =

{ j1, . . . , j2λ} in E and verifies for these columns that q′E|J = ẼC (v′(q);r′(q))|J , using

the value of v′(q) that they have computed using other openings. To avoid revealing

any information about EC (V ), we must ensure that ∀ j ∈ [n] : j ∈ J⇒ j+n /∈ J. If

the spot checks pass, the verifier believes that v′(q) = q′V .
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 v0
...

vt

 ẼC−→

 EC (v0)+ r0 r0
...

...
EC (vt)+ rt rt


q ↓ q ↓ j1 . . . q ↓ jλ q ↓ jλ+1 . . .q ↓ j2λ(

v(q)
) ẼC−→

(
EC (v(q))+ r(q) r(q)

)
Figure 9.1: Vectors vτ organized in matrix V are encoded row-wise as matrix E = ẼC (V ;R).

The vertical line in the right matrix and vector denotes concatenation of matrices
respectively vectors. The prover commits to each column of E. When the prover,
given q and q′, wants to reveal the linear combination v(q) = qV she also reveals
r(q) = qR and r′(q) = q′R. The verifier now asks for openings of 2λ columns
J = { j1, . . . , j2λ} in E and verifies for these columns that qE|J = ẼC (v(q);r(q))|J
and q′E|J = ẼC (v′(q);r′(q))|J , where the verifier computed v′(q) by themselves.
To avoid revealing any information about EC (V ), we must ensure that ∀ j ∈ [n] :
j ∈ J⇒ j+n /∈ J. If the spot checks pass, the verifier believes that v(q) = qV
and v′(q) = q′V .

9.1.1 Reed-Solomon Codes

In order to show that we can instantiate our construction efficiently, we give a short

description of Reed-Solomon codes. Reed Solomon codes are a simple example of

linear codes with a constant relative minimum distance and an efficient (quasilinear)

encoding algorithm. As such, they are a good choice for instantiating the error-

correcting codes in our proofs.

A Reed-Solomon code over a field F is defined as follows. Fix distinct points

a1, . . . ,an ∈ F.

{(p(a1), . . . , p(an) : p(X) is a polynomial of degree at most k over F}

We can encode a vector of length k by embedding the coefficients into the

coefficients of a polynomial p, and then using the codeword corresponding to p.

Reed-Solomon codes have minimum distance n− k + 1. Choosing a1, . . . ,an to

be suitable roots of unity in F, the codeword can be computed in O(n logn) field

operations. To achieve constant relative minimum distance, we can choose n= 2k−1,

for example.
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Note that we will not use the multiplicative properties of Reed-Solomon codes.

In our compilation, the verifier only does linear calculations on elements of code-

words. The one place where the verifier may do non-linear calculations on values

sent by the prover is as part of check queries, but here, the operations are done prior

to encoding. This is important to note. Otherwise, the algebraic degree of the ILC

verifier might lead to restrictions on our choices of parameters, since for the product

of Reed-Solomon codewords to be a valid codeword, the degrees of the polynomials

associated with the codewords must not be too high.

9.1.2 Construction

Let (KILC,PILC,VILC) be a non-adaptive µ-round SHVZK proof of knowledge

with straight-line extraction over ILC for a relation R. Here, non-adaptive means

that the verifier waits until the last round before querying linear combinations

of vectors and they are queried all at once instead of the queries depending on

each other.1 Let GenEC
be a generator that given field F and length parameter

k outputs a constant rate linear code EC that is efficiently computable given its

description, and has linear minumum distance. Define the ẼC with code length 2n as

above: ẼC (v;r) = (EC (v)+ r,r). Finally, let (Setup,Commit) be a non-interactive

commitment scheme.

We now define a proof of knowledge (K ,P,V ) in Fig. 9.2, where we use the

following notation: given matrices V1, . . . ,Vµ , R1, . . . ,Rµ and E1, . . . ,Eµ we define

V =


V1
...

Vµ

 R =


R1
...

Rµ

 E =


E1
...

Eµ

 .

The matrices V1, . . . ,Vµ are formed by the row vectors PILC commits to, and we let

t1, . . . , tµ be the numbers of vectors in each round, i.e., for all i we have Vi ∈ Fti×k.

We say that a set J ⊂ [2n] is allowed if |J∩ [n]|= λ and |J \ [n]|= λ and there is

no j ∈ J such that j+n ∈ J. In the following we will always assume codewords have

1The construction can be easily modified to an adaptive ILC proof. For each round of queries in
the ILC proof, there will one extra round in the compiled proof.
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length n≥ 2λ . We use ẼC (V ;R) to denote the function that applies ẼC row-wise to V

and R. In the protocol for V , we are using that ẼC (v;r)|J can be computed from just

v and r|{ j∈[n]: j∈J∨ j+n∈J}. We use Commit(E;s) to denote the function that applies

Commit column-wise on E and returns a vector c of 2n commitments. We group all

VILC’s queries in two matrices Q ∈ Fqc×t and Q′ ∈ Fqc′×t , where t is the total number

of vectors committed to by P , qc is the open query complexity of VILC, i.e., the

total number of linear combinations q that VILC requests to be opened, and qc′ is the

checkquery complexity of VILC, i.e., the total number of linear combinations q′

that VILC requests to be checked.

Remark For the protocol to be well-defined, we need n≥ 2λ so we have sufficiently

many columns. Otherwise no allowed J exists. If the output of EC is shorter than

2λ , KIOP will extend EC by a factor
⌈

2λ

n

⌉
to ensure that output length n satisfies

n≥ 2λ . Here the extension of EC is given by {(e, . . . ,e) : e∈ EC }, where the number

of e’s is the factor of the extension. In particular, extending by a factor 1 leaves

everything unchanged. Extending by a larger factor keeps the input length constant

while extending the output length. Notice that we are interested in efficiency when `

is large compared to λ , in which case no extension is needed.

9.1.3 Security Analysis

Theorem 1 (Completeness) If (KILC,PILC,VILC) is complete for relation R over

ILC, then (K ,P,V ) in Fig. 9.2 is complete for relation R.

Proof All the commitment openings are correct, so they will be accepted by the

verifier. In the execution of 〈P(σ ,u,w)←→ V (σ ,u)〉, the fact that EC is linear

implies ẼC is linear and hence all the linear checks will be true. If (σ ,u,w)∈R then

(σILC,u,w) ∈ R and being complete 〈PILC(σILC,u,w)
ILC←→ VILC(σILC,stm)〉 = 1

so V ’s internal copy of VILC will accept. Thus, in this case, 〈P(σ ,u,w)←→

V (σ ,u)〉= 1, which proves completeness. �

Theorem 2 (Knowledge Soundness) If (KILC,PILC,VILC) is statistically knowl-

edge sound with a straight-line extractor for relation R over ILC and

(Setup,Commit) is computationally (statistically) binding, then (K ,P,V ) as
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constructed above is computationally (statistically) knowledge sound for relation R.

Proof We prove the computational case. The statistical case is similar.

In order to argue that (K ,P,V ) is computationally knowledge sound, we will

first show that for every DPT P∗ there exists a deterministic (but not necessarily

efficient) P∗
ILC such that for all PPT A we have

Pr


σ ←K (1λ );(σILC, ·) = σ ;(u,s)←A (σ) :

〈P∗(s)←→ V (σ ,u;(ρILC,ρ))〉= 1

∧ 〈P∗
ILC(s,σ ,u) ILC←→ VILC(σILC,u;ρILC)〉= 0

≈ 0. (9.1)

Note that the randomness ρILC in V which comes from the internal VILC in line two

is the same as the randomness used by VILC in line three.

Our constructed P∗
ILC will run an internal copy of P∗. When the internal P∗

in round i sends a message (ci, ti), P∗
ILC will simulate P∗ on every possible continu-

ation of the transcript, and for each j = 1, . . . ,2n find the most frequently occurring

correct opening ((Ei) j,(si) j) of (ci) j. P∗
ILC will then use this to get matrices E∗i .

For each row e∗τ of these matrices, P∗
ILC finds a vector vτ and randomness rτ such

that hd(ẼC (vτ ,rτ),e∗τ)<
hdmin

3 if such a vector exists. If for some τ no such vector

vτ exists, then P∗
ILC aborts. Otherwise we let Vi and Ri denote the matrices formed

by the row vectors vτ and rτ in round i and P∗
ILC sends Vi to the ILC. Notice that

since the minimum distance of ẼC is at least hdmin, there is at most one such vector

vτ for each e∗τ .

The internal copy of P∗ will expect to get two extra rounds, where in the

first it should receive γ , Q and Q′, and should respond with v∗(γ),r
∗
(γ),V(Q), R(Q) and

R′(Q), and in the second it should receive J and send E01|J,s1|J, . . . ,Eµ ,sµ |J . Since

P∗
ILC does not send and receive corresponding messages, P∗

ILC does not have to

run this part of P∗. Of course, for each commitment sent by P∗, these rounds are

internally simulated many times to get the most frequent opening. Notice that a

VILC communicating over ILC with our constructed P∗
ILC will, on query Q receive

V(Q) = QV from the ILC.

The verifier V accepts only if its internal copy of VILC accepts. Hence, the only
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three ways 〈P∗(s)←→ V (σ ,u;(ρILC,ρ))〉 can accept without 〈P∗
ILC(s,σ ,u) ILC←→

VILC(σILC,u;ρILC)〉 being accepting are

1. if P∗ makes an opening of a commitment that is not its most frequent opening

of that commitment, or

2. if P∗
ILC has an error because for some τ no vτ ,rτ with hd(ẼC (vτ ,rτ),e∗τ)<

hdmin
3 exists, or

3. if P∗ sends some V ∗(Q) 6=V(Q) .

We will now argue that for each of these three cases, the probability that they happen

and V accepts is negligible.

First Case Since P∗ runs in polynomial time and the commitment scheme is compu-

tationally binding, there is only negligible probability that P∗ sends a valid opening

that is not the most frequent. Since V will reject any opening that is not valid, the

probability of V accepting in case 1 is negligible.

Second Case To do so, define the event Err that E∗ is such that for some γ∗ ∈

Ft we have hd(C̃ ,γ∗E∗) ≥ hdmin
3 . Here C̃ denotes the image of ẼC , i.e. C̃ =

{(c+ r,r) : c ∈ C ,r ∈ Fn}. Clearly, if P∗
ILC returns an error because no vi,ri with

hd(ẼC (vi,ri),e∗i )<
hdmin

3 exist then we have Err.

Lemma 21 Let e∗0, . . . ,e
∗
t ∈ F2n. If Err occurs, then for uniformly chosen γ ∈ Ft ,

there is probability at most 1
|F| that hd(C̃ ,e∗0 + γE∗)< hdmin

6 .

Proof Assume Err, that is, there exist γ∗ ∈ Ft with hd
(
C̃ ,γ∗E∗

)
≥ hdmin

3 . We

will show that for any r ∈ F× we have

hd
(
C̃ ,e∗0 + γE∗

)
+hd

(
C̃ ,e∗0 +(γ + rγ

∗)E∗
)
≥ hd

(
C̃ ,γ∗E∗

)
≥ hdmin

3
. (9.2)

This implies that at most one of e∗0+γE∗ and e∗0+(γ + rγ∗)E∗ can have distance less

than hdmin
6 to C̃ . That is, for at most one γ ∈ Ft in each equivalence class in Ft/γ∗F

can e∗0 + γE∗ have distance less than hdmin
6 to C̃ . Since each such equivalence class
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contains |F| elements, there is probability at most 1
|F| that a random γ ∈ Ft satisfies

hd
(
C̃ ,e∗0 + γE∗

)
< hdmin

6 .

To finish the proof, we need to prove (9.2). Write e∗0 + γE∗ = c1 + v1 and

e∗0+(γ +rγ∗)E∗ = c2+v2 with c1,c2 ∈ C̃ and wt(v1) = hd
(
C̃ ,e∗0 + γE∗

)
,wt(v2) =

hd
(
C̃ ,e∗0 +(γ + rγ∗)E∗

)
. Now

γ
∗E∗ =(e∗0 +(γ + rγ

∗)E∗− (e∗0 + γE∗))r−1

=(c2 + v2− c1− v1)r−1

=(c2− c1)r−1 +(v2− v1)r−1

Here (c2− c1)r−1 ∈ C̃ and (v2− v1)r−1 has at most

wt(v1)+wt(v2) = hd
(
C̃ ,e∗0 + γE∗

)
+hd

(
C̃ ,e∗0 +(γ + rγ

∗)E∗
)

non-zero elements. This proves inequality (9.2), and hence the lemma. �

Thus, if Err then with probability at least 1− 1
|F| the vector γ is going to be such

that hd(C̃ ,e∗0 + γE∗) ≥ hdmin
6 . If this happens, then for the vectors (v∗(γ),r

∗
(γ)) sent

by P∗, we must have hd(ẼC (v∗(γ),r
∗
(γ)),e

∗
0 + γE∗) ≥ hdmin

6 . This means that either

in the first half of the codeword ẼC (v∗(γ),r
∗
(γ)) or in the second half, there will be

at least hdmin
12 values of j where it differs from e∗0 + γE∗. It is easy to see that the λ

values of j in one half of [2n] are chosen uniformly and independently at random

conditioned on being different.

For each of these j, there is a probability at most 1− hdmin
12n that ẼC (v(γ),r(γ)) j =

e∗0, j + γE∗| j, and since the j’s are chosen uniformly under the condition that they

are distinct, given that this holds for the first i values, the probability is even smaller

for the i+1’th. Hence, the probability that it holds for all j in this half is negligible.

This shows that the probability that Err happens and V accepts is negligible.

Third Case Now we turn to the third case, where Err does not happen but P∗ sends

a V ∗(Q) 6= V(Q). In this case, for all γ∗ ∈ Ft , we have hd(C̃ ,∑t
τ=1 γ∗τ e∗τ) <

hdmin
3 . In

particular, this holds for the vector γ given by γτ = 1 and γτ ′ = 0 for τ ′ 6= τ , so the

vτ ’s are well-defined.
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For two matrices A and B of the same dimensions, we define their Hamming

distance hd2(A,B) to be the number of j’s such that the jth column of A and jth

column of B are different. This agrees with the standard definition of Hamming

distance, if we consider each matrix to be a string of column vectors.

Lemma 22 Assume ¬Err and let V and R be defined as above. Then for any q ∈ Ft

there exists an r(q) with hd(ẼC (qV,r(q)),qE∗)< hdmin
3 .

In particular, for any V ∗(Q) 6= QV , and any R∗(Q) we have

hd2

(
ẼC

(
V ∗(Q),R

∗
(Q)

)
,QE∗

)
≥ 2

hdmin

3
.

Of course, the same statement holds for q′, r′(q), V
′∗
(Q) 6= Q′V and R

′∗
(Q).

Proof Assume that ¬Err, that is for all q ∈ Ft we have hd(C̃ ,qE∗) < hdmin
3 .

Informally, we need to strengthen this by showing that the elements in C̃ that are

close to each qE∗, are themselves linear in q.

We have chosen vτ ’s and rτ ’s such that hd(ẼC (vτ ,rτ),e∗τ)<
hdmin

3 , and V is the

matrix where the τth row is vτ . We will show by induction on number of non-zero

elements wt(q) in q that there exists r(q) with hd(ẼC (qV,r(q)),qE∗)< hdmin
3 .

This is trivially true for wt(q) = 0. For wt(q) = 1 it follows from our choice

of vτ . Assume for induction that it is true for all q with wt(q)≤ κ and consider a q

with wt(q)≤ 2κ . We can now write q = q1 +q2 where wt(q1),wt(q2)≤ κ . By the

induction hypothesis, there exists r(q1) such that hd(ẼC (q1V,r(q1)),q1E∗) < hdmin
3

and similar for q2. Since q = q1 +q2 this implies

hd
(
ẼC

(
qV,r(q1)+ r(q2)

)
,qE∗

)
= hd

(
ẼC

(
(q1 +q2)V,r(q1)+ r(q2)

)
,(q1 +q2)E∗

)
≤ hd

(
ẼC

(
q1V,r(q1)

)
,q1E∗

)
+hd

(
ẼC

(
q2V,r(q2)

)
,q2E∗

)
< 2

hdmin

3
.

Since we assume ¬Err, we know that there exist some v(q) and r(q) such that

hd(ẼC (v(q),r(q)),qE∗)< hdmin
3 . Now, by the triangle inequality for Hamming dis-
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tance, this implies

hd
(
ẼC

(
v(q),r(q)

)
, ẼC

(
qV,r(q1)+ r(q2)

))
≤ hd

(
ẼC

(
v(q),r(q)

)
,qE∗

)
+hd

(
qE∗, ẼC

(
qV,r(q1)+ r(q2)

))
<

hdmin

3
+2

hdmin

3
= hdmin

Since hdmin is the minimum distance of ẼC , we must have v(q) = qV , and hence

hd(ẼC (qV,r(q)),qE∗)< hdmin
3 . This finishes the induction argument.

The triangle inequality for Hamming distance shows that for any (v∗(q),r
∗
(q))

with v∗(q) 6= qV we have hd(ẼC (v∗(q),r
∗
(q)),qE∗) ≥ 2hdmin

3 . Now for any

V ∗(Q) 6= QV there is a row τ where the two matrices differ. Let q be the τth

row of Q. Then hd(ẼC (v∗(q),r
∗
(q)),qE∗) ≥ 2hdmin

3 tells us that the τth row of

ẼC (V ∗(Q),R
∗
(Q)) and τth row of QE∗ differs in at least 2hdmin

3 positions. In particular,

hd2

(
ẼC

(
V ∗(Q),R

∗
(Q)

)
,QE∗

)
≥ 2hdmin

3 . �

This means that if ¬Err occurs and P∗ attempts to open a V ∗(Q) 6=V(Q) = QV

then

hd2

(
ẼC

(
V ∗(Q),R

∗
(Q)

)
,QE∗

)
≥ 2

hdmin

3
.

As argued above, if the distance between two strings of length 2n is at least hdmin
3 ,

the probability that J will not contain a j such that the two strings differ in position j

is negligible. Hence, the probability that ẼC

(
V ∗(Q),R

∗
(Q)

)
|J = QE∗|J is negligible.

Thus, the probability that ¬Err and V accepts while VILC does not is negligible.

This proves (9.1).

Next, we want to define a transcript extractor T that given rewindable ac-

cess to 〈P∗(s)←→ V (σ ,u)〉 outputs ˜transPILC
, which we would like to corre-

spond to all messages committed by P∗
ILC using commit in 〈P∗

ILC(s,σ ,u) ILC←→

VILC(σILC,u;ρILC)〉. Here ρILC is the randomness used by the VILC inside V in the

first execution of T ’s oracle 〈P∗(s)←→ V (σ ,u)〉. However, we allow T to fail if

V does not accept in this first transcript and further to fail with negligible probability.

Formally, we want T to run in expected PPT such that for all PPT A :
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Pr


σ ←K (1λ );(σILC, ·) = σ ;(u,s)←A (σ);

˜transPILC
←T 〈P∗(s)←→V (σ ,u)〉(σ ,u);

transPILC
← 〈P∗

ILC(s,σ ,u) ILC←→ VILC(σILC,u;ρILC)〉 :

b = 1 ∧ transPILC
6= ˜transPILC

≈ 0. (9.3)

Here b is the value output by V the first time T ’s oracle runs 〈P∗(s)←→ V (σ ,u)〉,

and the randomness ρILC used by VILC in the third line is identical to the random value

used by the VILC inside V in the first transcript. On input (σ ,u), the transcript extrac-

tor T will first use its oracle to get a transcript of 〈P∗(s)←→ V (σ ,u;(ρILC,ρ))〉.

If V rejects, T will just abort. If V accepts, T will rewind the last message of P∗

to get a transcript for a new random challenge J. T continues this way, until it has

an accepting transcript for 2n independently chosen sets J. Notice that if there is

only one choice of J that results in V accepting, P∗ will likely have received each

allowed challenge around 2n times and T will get the exact same transcript 2n times

before it is done rewinding. Still, T runs in expected polynomial time: if a fraction

p of all allowed sets J results in accept, the expected number of rewindings given

that the first transcript accepts is 2n−1
p . However, the probability that the first run

accepts is p, and if it does not accept, T does not do any rewindings. In total, that

gives (2n−1)p
p = 2n−1 rewindings in expectation.

We let J1, . . . ,J2n denote the set of challenges J in the accepting transcripts

obtained by T . If
⋃2n

i=1 Ji has less than 2n− hdmin
3 elements, T terminates. Otherwise,

T is defined similarly to P∗
ILC: it uses the values of the openings to get at least

2n− hdmin
3 columns of each Ei. For each of the row vectors, eτ , it computes vτ and

rτ such that ẼC (vτ ,rτ) agrees with eτ in all entries (eτ) j for which the j’th column

have been revealed, if such v exists. Since T will not correct any errors, finding

such vτ and rτ corresponds to solving a linear set of equations. Notice that since the

minimum distance is more than 2hdmin
3 there is at most one such vτ for each τ ∈ [t]. If

for some τ there is no such vτ , then T aborts, otherwise T use the resulting vectors

vτ as the prover messages to define ˜transPILC
.
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If |
⋃

κ
i=1 Ji| < 2n− hdmin

3 , there are at least hdmin
6 numbers in [n] \

⋃
κ
i=1 Ji or in

{n+1, . . . ,2n}\
⋃

κ
i=1 Ji. In either case, a random allowed J has negligible probability

of being contained in
⋃

κ
i=1 Ji. Since T runs in expected polynomial time, this implies

by induction that there is only negligible probability that |
⋃

κ
i=1 Ji| < min(κ,2n−

hdmin
3 ) and therefore |

⋃2n
i=1 Ji|< 2n− hdmin

3 .

Finally, we need to show

Lemma 23 The probability that for some τ there are no vτ and rτ such that

ẼC (vτ ,rτ) agrees with eτ on the opened j ∈
⋃2n

i=1 Ji and b = 1 is negligible.

In particular, the probability that b = 1 but T does not extract the transcript of

P∗
ILC is negligible.

Proof Since we can ignore events that happen with negligible probability, and

the expected number of rewindings is polynomial, we can assume that in all the

rewindings, P∗ only makes openings to the most common openings. We showed that

the probability that b = 1 but P∗ sends a V ∗(Q) 6= QV , or V computes a V
′∗
(Q) 6= Q′V

is negligible and by the same argument the probability that b = 1 but P∗ sends

v∗(γ) 6= v(γ) is negligible. Therefore, in the following, we will assume v∗(γ) = v(γ).

Now suppose that there is some eτ such that the opened values are inconsistent

with being ẼC (vτ ,rτ) for any rτ . That is, there is some j such that j,n+ j ∈
⋃2n

i=1 Ji

and (eτ) j− (eτ)n+ j 6= EC (v) j. For uniformly chosen γτ ∈ F, we get that γτ((eτ) j−

(eτ)n+ j−EC (v) j) is uniformly distributed in F. Hence for a random γ ∈ Ft , we

have that γ · ((e) j− (e)n+ j−EC (v) j) is uniformly distributed. When V sends γ , P∗

will respond with v∗(γ) = v(γ) and some r∗(γ). V will only accept on a challenge J if

for all j ∈ J we have (e0 + γe) j = ẼC (v(γ),r∗(γ)) j. Since j,n+ j ∈
⋃2n

i=1 Ji we have

(e0 + γe) j = ẼC (v(γ),r∗(γ)) j and (e0 + γe)n+ j = ẼC (v(γ),r∗(γ))n+ j so

(e0) j− (e0)n+ j + γe j− γen+ j =ẼC (v(γ),r∗(γ)) j− ẼC (v(γ),r∗(γ))n+ j

=EC (v(γ)) j

=(EC (v0)+ γEC (v)) j
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that is,

γe j− γen+ j− γEC (v) j = EC (v0) j− (e0) j +(e0)n+ j

For random γ the left-hand side is uniform and the right-hand side is fixed, hence

equality only happens with negligible probability. That proves the lemma. �

Since E
〈P∗

ILC(s,σ ,u) ILC←→VILC(σILC,u)〉
ILC (σ ,u) is a straight-line extractor, we can

simply assume that it gets the transcript as an input, and can be written as

EILC(σILC,u, transPILC
). For any PPT A consider the following experiment.



σ ←K (1λ );(σILC, ·) = σ ;(u,s)←A (σ);

˜transPILC
←T 〈P∗(s)←→V (σ ,u〉(σ ,u);

transPILC
← 〈P∗

ILC(s,σ ,u) ILC←→ VILC(σILC,u;ρILC)〉= bILC;

w← EILC(σILC,u, transPILC
);

w̃← EILC(σILC,u, ˜transPILC
);


(9.4)

We have shown that when doing this experiment, the probability that b = 1∧bILC = 0

and the probability that b = 1∧ transPILC
6= ˜transPILC

are both negligible. By knowl-

edge soundness of (KILC,PILC,VILC), the probability that bILC = 1∧ (σ ,u,w) /∈R

is also negligible. Finally, if transPILC
= ˜transPILC

then clearly w = w̃. Taken to-

gether this implies that the probability of b = 1∧ (σ ,u, w̃) /∈ R is negligible. We now

define E 〈P
∗(s)←→V (σ ,u)〉(σ ,u) to compute EILC(σILC,u,T 〈P∗(s)←→V (σ ,u)〉(σ ,u)).

The above experiment shows that (K ,P,V ) is knowledge sound with E as extrac-

tor. �

Theorem 3 (SHVZK) If (KILC,PILC,VILC) is perfect SHVZK and (Setup,Commit)

is computationally (statistically) hiding then (K ,P,V ) is computationally (statis-

tically) SHVZK.

Proof To prove we have SHVZK we describe how the simulator S (σ ,u,ρ) should

simulate the view of V . Along the way, we will argue why, the variables output by

S have the correct joint distribution. To keep the proof readable, instead of saying

that “the joint distribution of [random variable] and all previously defined random

variables is identical to the distribution in the real view of V in 〈P(σ ,u,w)←→
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V (σ ,u)〉” we will simply say that “[random variable] has the correct distribution”.

Using the randomness ρ the simulator learns the queries ρILC=(x1, . . . ,xµ−1,Q)

the internal VILC run by the honest V will send. S can therefore run

SILC(σILC,u,ρILC) to simulate the view of the internal VILC. This gives it

(t1, . . . , tµ ,V(Q)). By the SHVZK property of (KILC,PILC,VILC) these random

variables will all have the correct joint distribution.

Then S reads the rest of ρ to learn also the challenges γ and J that V will

send. The simulator picks uniformly at random v(γ)← Fk. Since in a real proof v0 is

chosen at random, we see that the simulated v(γ) has the correct distribution. Now

S picks E01|J, . . . ,Eµ |J uniformly at random. Recall that we defined ẼC (v;r) =

(EC (v) + r,r) and by definition of J being allowed, we have for all j ∈ J that

j+n /∈ J. This means for any choice of v0 ∈ Fk and V ∈ Ft×k that when we choose

random r0← Fn and R← Ft×n we get uniformly random ẼC (v0;r0)|J and ẼC (V ;R).

Consequently, E01|J, . . . ,Eµ |J have the correct distribution.

Next, the simulator picks r(γ) ∈ Fn and R(Q) ∈ Ft×n one entry and column at a

time. For all j such that j /∈ J and j+n /∈ J the simulator picks random (r(γ)) j← F

and random R j ← Ft . For all j such that j ∈ J or j + n ∈ J, the simulator then

computes the unique (r(γ)) j ∈ F and R j ∈ Ft such that we get ẼC (v(γ);r(γ)) =

e0|J + γE|J and ẼC (V(Q);R(Q)) = QE|J and ẼC (V ′(Q);R′(Q)) = Q′E|J .

Finally, S defines E01|J̄, . . . ,Eµ |J̄ to be 0 matrices. It then picks s1, . . . ,sµ

at random and makes the commitments c1, . . . ,cµ as in the protocol. For j ∈ J

we see that all the ci| j commitments are computed as in the real execution from

values that have the same distribution as in a real proof. Hence, they will have the

correct distribution. The ci| js for j /∈ J are commitments to different values than

in a real proof. However, by the computational (statistical) hiding property of the

commitment scheme, they have a distribution that is computationally (statistically)

indistinguishable from the correct distribution. �

9.1.4 Efficiency

We will now estimate the efficiency of a compiled proof of knowledge (K ,P,V )

for (σ ,u,w) ∈R. Let µ be the number of rounds, t = ∑
µ

i=1 ti, k,n given in EC , qc
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the open query complexity, i.e., Q ∈ Fqc×t , and qc′ the check query complexity,

i.e., Q′ ∈ Fqc′×t . Let TPILC
be the running time of PILC(σILC,u,w), TẼC

(k) be

the encoding time for a vector in Fk, TCommit(ti) be the time to commit to ti field

elements, TMmul(qc, t,b) be the time it takes to multiply matrices in Fqc×t and Ft×b

and similarly for qc′. Let TVILC
be the running time of VILC(σILC,u), and let CILC be

the communication from the verifier to the prover in 〈PILC
ILC←→ VILC〉, CCommit(ti)

be the combined size of commitment and randomness for a message consisting of ti

field elements.

We give the dominant factors of efficiency of the compiled proof in Fig. 9.3.

The estimates presume TCommit(t1 +1) is not too far from TCommit(t1). Of course, in

many realistic cases, the cost of computing queries will be less than TMmul(qc, t,b) if

the query matrix contains large zero-submatrices, or has some other special form.

9.1.5 Optimisations

Motivated by the argument in Section 8.4, we discuss two possible optimisations to

the compilation procedure. Consider the following ILC check query.

(ā ·w1, . . . , ā ·wQ)
?
= (c1, . . . ,cQ) +

3m

∑
j 6=0, j=−3m

h jx j

Since this is a check query, the prover will not need to send the value of

(c1, . . . ,cQ) +∑
3m
j 6=0, j=−3m h jx j to the verifier, because the verifier can compute

what this value out to be for themself. This was the reason for introducing the check

queries in the first place, because otherwise, if this was handled as a send query,

the prover would have had to send a vector of length Q to the verifier in the compiled

proof. Since Q may be as large as O(N), this would have prevented the proof from

having sub-linear communication costs.

However, the compiled proof introduces a further causes for concern. An

obvious issue is that the prover commits to matrices column-wise, so the prover

will produce Q commitments. This is easily solved however, by hashing all of

these commitments into a Merkle tree, and opening the commitments required for

the verification checks. This changes the communication costs associated with
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committing from O(N) hash values to O(1) hash values, and the cost of opening

from O(λ ) openings to O(λ logN) openings, and adds some computational overhead.

This option was not considered in [16], but was unnecessary for the asymptotic results

in that protocol.

In the compiled proof, we use the randomised encoding ẼC (v;r) = (EC (v)+

r,r), and the prover commits to the randomised encodings. This means that the

prover still needs to send some randomness to the verifier, computed from a linear

combination of the randomness used to commit to the vectors hi, which are vectors

of length Q. Then the vectors of randomness will be of length Q too, resulting in a

vector of length Q being sent to the verifier.

We can remove the dependency of the length of the randomness vector on the

length of the vector, k. Fix distinct points a1, . . . ,a2λ ∈ F at the beginning of the

protocol. Instead of sampling a truly random vector r∈ Fk, the prover selects a vector

r′← F2λ . This specifies the coefficients of a polynomial of degree 2λ − 1. The

prover computes the Reed-Solomon encoding of r′ with respect to points a1, . . . ,a2λ

and gets a vector r ∈ Fk.

Now, if the prover uses this r as randomness for the randomised encoding

instead of choosing one uniformly at random, then they need only send a vector of

length λ to the verifier. Changes to the security proofs are given in Appendix A.

Note that we should consider the ILC protocol compilation both with and

without these optimisations, as these optimisations will add unecessary computational

overhead into the compilation when applied to short vectors. Therefore, we can use

the optimisations when compiling ILC protocols with vectors of multiple lengths,

and only apply them to the long vectors.

We give the dominant factors of efficiency of the compiled proof in Fig. 9.6.

The estimates presume TCommit(t1 +1) is not too far from TCommit(t1). Notation is

as before, with l the output length of the hash function used for committing, and

TRS(2λ ) the time taken to compute a Reed-Solomon codeword of length n from an

input word of length 2λ .
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9.2 Compiling into Discrete-Logarithm-Based Proofs

In this section, we show how to compile a proof of knowledge with straight-line

extraction for relation R over the communication channel ILC into a proof of knowl-

edge for the same relation over the standard channel based on the discrete logarithm

assumption, provided that the ILC protocol satisfies some simple additional condi-

tions. In fact, this compilation will work for any homomorphic commitment scheme

over the field F in which the ILC protocol takes place, but for concreteness and

efficiency, we use Pedersen commitments. These will give rise to efficient zero-

knowledge arguments as Pedersen commitments are extremely succinct; only one

group element is required to commit to a large number of field elements.

The idea behind this compilation of an ILC proof is that instead of committing

to vectors vτ using the channel ILC, the prover commits to each vector using a real

homomorphic commitment scheme. When the verifier wants to open a linear com-

bination of the original vectors using an open command, he sends the coefficients

q = (q1, . . . ,qt) of the linear combination to the prover, and the prover responds with

the linear combination v(q)← qV . As before, we will use the notation v(q) to denote

vectors that depend on q.

Now, to check that the prover is not giving a wrong v(q), the verifier will

compute a commitment to v(q) using the real homomorphic commitment scheme,

and check that this commitment is the correct linear combination of the commitments

to vτ . This works because the commitment scheme is homomorphic.

Of course, to prevent real commitments from leaking information about com-

mitted vectors, randomness is necessary. Each vector vτ will have the randomness

sτ used to commit to it concatenated to it, and then the prover will respond with

the linear combination v(q)← qV as before, plus s(q) = qs. Then SHVZK for the

compiled proof is inherited from the underlying ILC proof. Unlike the previous

compilation technique which reveals some entries of committed codewords, almost

all of the verifier’s calculations are done on hiding commitments, along with a few

openings that do not reveal any information due to the SHVZK property of the

underlying ILC proof. Therefore, it is not necessary to use any additional linear
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combinations in the proof.

As before, we must discuss how to treat check queries. The verifier makes

check queries q′ = (q′1, . . . ,q
′
t) of linear combinations of committed vectors. Now,

check queries handle the case where the verifier can compute what v′(q)← q′V

should be by themselves, using the results of other open queries. Therefore, the

prover need not send v′(q) to the verifier. The prover, given q′, must still reveal

s′(q) = q′s. To check that the prover is not giving a wrong v′(q), the verifier will

compute a commitment to v′(q) using the real homomorphic commitment scheme with

randomness s′(q), and check that this commitment is the correct linear combination

of the commitments to vτ .

9.2.1 Construction

Let (KILC,PILC,VILC) be a non-adaptive µ-round SHVZK proof of knowledge with

tree extraction over ILC for a relation R. We now define a proof of knowledge

(K ,P,V ) in Fig. 9.5, where we use the same notation as in the previous section.

That is, given matrices V1, . . . ,Vµ and vectors s1, . . . ,sµ , c1, . . . ,cµ , we define

V =


V1
...

Vµ

 s =


s1
...

sµ

 c =


c1
...

cµ

 .

The matrices V1, . . . ,Vµ are formed by the row vectors PILC commits to, and we let

t1, . . . , tµ be the numbers of vectors in each round, i.e., for all i we have Vi ∈ Fti×k.

This time, we use Commit(E;s) to denote the function that applies Commit

row-wise on E and returns a vector c of t = ∑
µ

i=1 ti commitments.

9.2.2 Security Analysis

Theorem 4 (Completeness) If (KILC,PILC,VILC) is complete for relation R over

ILC, then (K ,P,V ) in Fig. 9.2 is complete for relation R.

Proof All the commitment openings are correct, so they will be accepted by the

verifier. In the execution of 〈P(σ ,u,w) ←→ V (σ ,u)〉, the fact that the com-

mitment scheme is homomorphic implies that all the linear checks will be true.



9.2. Compiling into Discrete-Logarithm-Based Proofs 162

If (σ ,u,w) ∈R then (σILC,u,w) ∈R and being complete 〈PILC(σILC,u,w)
ILC←→

VILC(σILC,stm)〉 = 1 so V ’s internal copy of VILC will accept. Thus, in this case,

〈P(σ ,u,w)←→ V (σ ,u)〉= 1, which proves completeness. �

Theorem 5 (Knowledge Soundness) If (KILC,PILC,VILC) is statistically knowl-

edge sound for relation R over ILC, has tree-special soundness with a linear extrac-

tion algorithm, and (Setup,Commit) is computationally (statistically) binding, then

(K ,P,V ) as constructed above is computationally (statistically) knowledge sound

for relation R.

Proof Given that (KILC,PILC,VILC) has tree-special-soundness, we know that it is

possible to extract a witness to the protocol from sufficiently many structured views

of VILC. In (K ,P,V ), the view of VILC is given by the final message that P sends

to V . We first show that (K ,P,V ) satisfies the same tree-special-soundness as

(KILC,PILC,VILC), with the same values of ni.

Suppose that we have a tree of accepting transcripts for (K ,P,V ) with the

same values of ni as in the tree-special-soundness of (KILC,PILC,VILC). Now, V

checks the verification equations Commit(V(Q);s(Q))=Qc and Commit(V ′(Q);s′(Q))=

Q′c. In (KILC,PILC,VILC), we would know, by the properties of the ILC model, that

V(Q) = QV and V ′(Q) = Q′V , where V is the matrix consisting of vectors committed

by PILC. Consider the linear system created by vertically stacking every copy of

V(Q) = QV and V ′(Q) = Q′V for every transcript in the tree. By the fact that the ILC

protocol has a linear extraction algorithm, there is a linear map M which, when

applied to the left and right hand side of this linear system, recovers each row of

V . To extract a witness for (K ,P,V ), consider a similar linear system created by

vertically stacking every copy of the verification equations Commit(V(Q);s(Q)) = Qc

and Commit(V ′(Q);s′(Q)) = Q′c. If we apply the linear map M to this system, which

solves for the rows of the linear system, we obtain openings to each commitment in

c, given by the rows of a matrix V ∗. We know when each commitment was made, so

for each opening, we know that it cannot be a function of the challenges which the

prover saw before the commitment was made. Furthermore, we know that by the

binding property of the commitment scheme, V(Q)=QV ∗, and similarly, V ′(Q)=Q′V ∗,
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because the compiled protocol (K ,P,V ) checks the same equations as the ILC

protocol, but in committed format. By the soundness of (KILC,PILC,VILC), the

verifier V would not accept unless V ∗ provided a valid witness for the ILC protocol.

Finally, by Lemma 2, given rewindable black-box access to (K ,P,V ), one

can sample a tree of accepting transcripts with the correct values of ni in expected

polynomial time. �

Theorem 6 (SHVZK) If (KILC,PILC,VILC) is perfect SHVZK, with an ILC query

matrix Q∗ =

 Q

Q’

 which has full rank, and fewer rows than columns, and

(Setup,Commit) is computationally (statistically) hiding then (K ,P,V ) is com-

putationally (statistically) SHVZK.

Proof To prove we have SHVZK we describe how the simulator S (σ ,u,ρ) should

simulate the view of V . Along the way, we will argue why, the variables output by

S have the correct joint distribution.

Using the randomness ρ the simulator learns the queries ρILC=(x1, . . . ,xµ−1,Q)

the internal VILC run by the honest V will send. S can therefore run

SILC(σILC,u,ρILC) to simulate the view of the internal VILC. This gives it

(t1, . . . , tµ ,V(Q),V ′)(Q)). By the SHVZK property of (KILC,PILC,VILC) these

random variables will all have the correct joint distribution.

Since the query matrix has full rank, in an honest proof, where si are chosen uni-

formly at random, s(Q) and s′(Q) will also be uniformly random vectors. Therefore, the

simulator selects each element of s(Q) and s′(Q) uniformly at random from F. Finally,

S picks c1, . . . ,cµ uniformly at random, conditioned on Commit(V(Q),s(Q)) = Qc

and Commit(V ′(Q),s
′
(Q)) = Q′c. Since Q∗ has fewer rows than columns, this can

be done by writing Q∗ in reduced row echelon form. Each column of Q∗ corre-

sponds to a commitment or committed value, and some entry of a ci. Then, all

entries of c1, . . . ,cµ which do not correspond to a column of Q with a leading order

1 can be chosen uniformly at random. The other entries which do correspond to

columns with a leading order 1 are now fully determined by the values of the entries

which have already been chosen, and the fact that Commit(V(Q),s(Q)) = Qc and
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Commit(V ′(Q),s
′
(Q)) = Q′c.

Now, just as in the real protocol, s(Q) and s′(Q) are distributed uniformly at

random, and the commitments are all uniformly random conditioned on satisfying

Commit(V(Q),s(Q)) = Qc and Commit(V ′(Q),s
′
(Q)) = Q′c. �

9.2.3 Efficiency

We will now estimate the efficiency of a compiled proof of knowledge (K ,P,V )

for (σ ,u,w) ∈R. Let µ be the number of rounds, t = ∑
µ

i=1 ti, k,n given in EC , qc

the open query complexity, i.e., Q ∈ Fqc×t , and qc′ the check query complexity,

i.e., Q′ ∈ Fqc×t . Let TPILC
be the running time of PILC(σILC,u,w), TCommit(ti) be

the time to commit to ti field elements, TMmul(qc, t,b) be the time it takes to multiply

matrices in Fqc×t and Ft×b, and TVILC
is the running time of VILC(σILC,u). Let further-

more CILC be the communication from the verifier to the prover in 〈PILC
ILC←→ VILC〉,

CCommit(ti) be the combined size of commitment and randomness for a message

consisting of ti field elements.

We give the dominant factors of efficiency of the compiled proof in Fig. 9.6. As

before, estimates presume TCommit(t1 +1) is not too far from TCommit(t1).
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P(σ ,u,w)

• Parse input:

– Parse σ = (σILC,EC ,ck)

– Parse σILC = (F,k)
– Get n from EC

• Round 1:

– v0← Fk

– e0← ẼC (v0;r0)

– (commit,V1)←PILC(σILC,u,w)

– E1← ẼC (V1;R1)

– Let E01 =

(
e0
E1

)
– c1 = Commit(E01;s1)

– Send (c1, t1) to V

• Rounds 2≤ i≤ µ:

– Get challenge xi−1 from V

– (commit,Vi)←PILC(xi−1)

– Ei← ẼC (Vi;Ri)

– ci = Commit(Ei;si)

– Send (ci, ti) to V

• Round µ +1:

– Get (γ,Q,Q′) from V

– v(γ)← v0 + γV

– r(γ)← r0 + γR

– V(Q)← QV

– R(Q)← QR

– R(Q′)← Q′R

– Send (v(γ),r(γ),V(Q),R(Q),R′(Q)) to V

• Round µ +2:

– Get J ⊂ [2n] from V

– Send (E01|J,s1|J, . . . ,Eµ ,sµ |J) to V

K (1λ )

• σILC←KILC(1λ )

• Parse σILC = (F,k)

• EC ← GenEC
(F,k)

• ck← Setup(1λ )

• Return σ = (σILC,EC ,ck)

V (σ ,u)

• Parse input

– Parse σ = (σILC,EC ,ck)

– Parse σILC = (F,k)
– Get n from EC

– Give input (σILC,u) to VILC

• Rounds 1≤ i < µ:

– Receive (ci, ti)

– (send,xi)← VILC(ti)

– Send xi to P

• Round µ:

– Receive (cµ , tµ)

– γ ← F∑
µ

i=1 ti

– (open,Q)← VILC(tµ)

– (check,Q′)← VILC(tµ)

– Send (γ,Q,Q′) to P

• Round µ +1:

– Receive
(v(γ),r(γ),V(Q),R(Q))

– VILC computes the answers
V ′(Q) to its check queries

– Choose random allowed
J ⊂ [2n]

– Send J to P

• Round µ +2:

– Receive
(E01|J,s1|J, . . . ,Eµ ,sµ |J)

– Check c1|J =
Commit(E01|J;s1|J),
. . . ,cµ |J =
Commit(Eµ |J;sµ |J)

– Check ẼC (v(γ),r(γ))|J =
e0|J + γE|J

– Check ẼC (V(Q),R(Q))|J =
QE|J

– Check ẼC (V ′(Q),R
′
(Q))|J =

Q′E|J
– If all checks pass, return

decision of VILC(V(Q)), else
return 0

Figure 9.2: Construction of (K ,P,V ) from (KILC,PILC,VILC), commitment scheme
(Setup,Commit) and error-correcting code C .
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Measure Cost
Prover Computation TPILC

+ t ·TẼC
(k)+2n ·∑µ

i=1 TCommit(ti)
+TMmul(qc+qc′+1, t,k+n)

Verifier Computation TVILC
+(qc+qc′+1) ·TẼC

(k)+2λ ·∑µ

i=1 TCommit(ti)
+TMmul(qc+qc′+1, t,2λ )

Communication CILC+2n ·∑µ

i=1CCommit(ti)+(qc+1) · (k+n)+qc′n
+(qc+qc′+1) · t +2λ · t

Round Complexity µ +2

Figure 9.3: Efficiency of a compiled proof of knowledge (K ,P,V ) for (σ ,u,w) ∈ R.
Communication is measured in field elements and computation in field opera-
tions.

Measure Cost
Prover Computation TPILC

+ t · (TEC
(k)+TRS(2λ ))+2n ·∑µ

i=1 TCommit(ti)
+2µn ·Thash(2l)+TMmul(qc+qc′+1, t,k+2λ )

Verifier Computation TVILC
+(qc+qc′+1) · (TEC

(k)+TRS(2λ ))+2λ ·∑µ

i=1 TCommit(ti)
+λ logn ·Thash(2l)+TMmul(qc+qc′+1, t,2λ )

Communication CILC+(µ +λ (2logn+1)) ·CCommit(2l)+(qc+1) · (k+2λ )
+2λqc′+(qc+qc′+1) · t +2λ · t

Round Complexity µ +2

Figure 9.4: Efficiency of a compiled proof of knowledge (K ,P,V ) for (σ ,u,w) ∈ R
with optimisations made to the compiler. Communication is measured in field
elements and computation in field operations.
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P(σ ,u,w)

• Parse input:

– Parse σ = (σILC,ck)

– Parse σILC = (F,k)
– Get n from EC

• Round 1:

– (commit,V1)←PILC(σILC,u,w)

– c1 = Commit(V1;s1)

– Send (c1, t1) to V

• Rounds 2≤ i≤ µ:

– Get challenge xi−1 from V

– (commit,Vi)←PILC(xi−1)

– ci = Commit(Vi;si)

– Send (ci, ti) to V

• Round µ +1:

– Get (Q,Q′) from V

– V(Q)← QV

– s(Q)← Qs
– s′(Q)← Q′s

– Send (V(Q),s(Q),s′(Q)) to V

K (1λ )

• σILC←KILC(1λ )

• Parse σILC = (F,k)

• ck← Setup(1λ )

• Return σ = (σILC,ck)

V (σ ,u)

• Parse input

– Parse σ = (σILC,ck)

– Parse σILC = (F,k)
– Give input (σILC,u) to VILC

• Rounds 1≤ i < µ:

– Receive (ci, ti)

– (send,xi)← VILC(ti)

– Send xi to P

• Round µ:

– Receive (cµ , tµ)

– (open,Q)← VILC(tµ)

– (check,Q′)← VILC(tµ)

– Send (Q,Q′) to P

• Round µ +1:

– Receive (V(Q),s(Q),s′(Q))

– VILC computes the answers
V ′(Q) to its check queries

– Check
Commit(V(Q);s(Q)) = Qc

– Check
Commit(V ′(Q);s′(Q)) = Q′c

– If all checks pass, return
decision of VILC(V(Q)), else
return 0

Figure 9.5: Construction of (K ,P,V ) from (KILC,PILC,VILC), and homomorphic com-
mitment scheme (Setup,Commit).
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Measure Cost
Prover Computation TPILC

+ t ·∑µ

i=1 TCommit(k)+TMmul(qc+qc′+1, t,k+1)
Verifier Computation TVILC

+(qc+qc′) ·TCommit(k+ t+1)
Communication CILC+ t ·CCommit+(k+1)qc+qc′+(qc+qc′)t
Round Complexity µ +1

Figure 9.6: Efficiency of a compiled proof of knowledge (K ,P,V ) for (σ ,u,w) ∈ R
based on homomorphic commitments. Communication is measured in field
elements and computation in field operations. Here κ is the cost of computing a
group exponentiation in the commitment space.



Chapter 10

Optimisations outside the ILC Model

10.1 Recursive Argument for Inner Product Evalua-

tion
Using Pedersen commitments as our commitment scheme, we will now give an inner

product argument of knowledge of two vectors a,b ∈ Zn
p such that A = Commitck(a),

B = Commitck′(b) and a ·b = z. Here, we assume that z∈Zp, commitments A, B and

commitment keys ck,ck′ are known to both the prover and the verifier. The argument

will be used as a subroutine where zero-knowledge is not required, so the prover

could in principle just reveal the witness a,b to the verifier. In the following we show

how to use interaction to reduce the communication from linear to logarithmic in n,

the length of the vectors.

The basic step in our inner product argument is a 2-move reduction to a smaller

statement using techniques similar to [18]. It will suffice for the prover to reveal

the witness for the smaller statement in order to convince the verifier about the

validity of the original statement. In the full argument, the prover and the verifier

recursively run the reduction to obtain increasingly smaller statements. The argument

is then concluded with the prover revealing a witness for a very small statement.

The outcome of this is a O(logn)-move argument with an overall communication of

O(logn) group and field elements. The inner product argument will be used in the

next section to build a logarithmic size argument for circuit satisfiability.

Due to the obvious relationship with Pedersen commitments, we will think of
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multi-exponentiations ga and hb as commitments with randomness set to zero, and

to a,b as openings with respect to commitment keys g,h.

10.1.1 Main Idea

We now describe the basic step in our argument. Consider the common input for

both prover and verifier to be of the form (G,Zp,ck,A,ck′,B,z,m) where m divides

n, the length of the vectors. For arbitrary n one can always reduce to the case where

m|n by appending at most m−1 extra commitment keys for single elements to ck

and ck′.

We split the bases for the multi-exponentiations into m sets g = (g1, . . . ,gm)

and h = (h1, . . . ,hm), where each set has size n
m . We want to prove knowledge of

vectors a = (a1, . . . ,am) and b = (b1, . . . ,bm) such that

A = ga =
m

∏
i=1

gai
i B = hb =

m

∏
i=1

hbi
i a ·b =

m

∑
i=1

ai ·bi = z

The key idea is for the prover to replace A with A′, a commitment to a shorter vector

a′ = ∑
m
i=1 aixi, given a random challenge x← Z∗p provided by the verifier. In the

argument, the prover first computes and sends

Ak =
min(m,m−k)

∏
i=max(1,1−k)

gai+k
i for k = 1−m, . . . ,m−1

corresponding to the products over the diagonals of the following matrix

a1 a2 · · · am

g1
...

gm−1

gm


ga1

1 ga2
1 · · · gam

1
. . . ga2

2
. . . ...

ga1
m−1

. . . . . . gam
m−1

ga1
m ga2

m · · · gam
m

 Am−1
...

Am−2

A1−m A2−m · · · A0 = A
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Notice that A0 = A is already known to the verifier since it is part of the

statement. The verifier now sends a random challenge x← Z∗p.

At this point, both the prover and the verifier can compute g′ := ∏
m
i=1 gx−i

i and

A′ := ∏
m−1
k=1−m Axk

k . If the prover is honest then we have A′ = (g′)a′ , namely A′ is a

commitment to a′ under the key g′. Furthermore, even if the prover is dishonest,

we can show that if the prover can open A′ with respect to the key g′ for 2m− 1

different challenges x, then we can extract openings (a1, . . . ,am) corresponding to

A = ∏
m
i=1 gai

i .

The same type of argument can be applied in parallel to B with the inverse

challenge x−1 giving us a sum of the form b′ = ∑
m
i=1 bix−i and a new base h′ =

∏
m
i=1 hxi

i .

All that remains is to demonstrate that z is the constant term in the product

a′ ·b′ = ∑
m
i=1 aixi ·∑m

j=1 b jx− j. Similarly to A and B, the prover sends values

zk =
min(m,m−k)

∑
i=max(1,1−k)

ai ·bi+k for k = 1−m, . . . ,m−1

where z0 = z = ∑
m
i=1 ai ·bi, and shows that z′ := a′ ·b′ = ∑

m−1
k=1−m zkx−k.

To summarise, after the challenge x has been sent, both parties compute

g′,A′,h′,B′,z′ and then run an argument for the knowledge of a′,b′ of length n
m .

Given n = mµmµ−1 · · ·m1, we recursively apply this reduction over the factors of

n to obtain, after µ−1 iterations, vectors of length m1. The prover concludes the

argument by revealing a short witness associated with the last statement.

10.1.2 Formal description

We now give a formal description of the argument of knowledge introduced above.

Common input: (G, p,g,A,h,B,z,mµ = m,mµ−1 = m′, . . . ,m1) such that g,h ∈

Gn, A,B ∈G and n = ∏
µ

i=1 mi.

Prover’s witness: (a1, . . . ,am,b1, . . . ,bm) satisfying

A =
m

∏
i=1

gai
i B =

m

∏
i=1

hbi
i

m

∑
i=1

ai ·bi = z



10.1. Recursive Argument for Inner Product Evaluation 172

Argument if µ = 1:

P: Send (a1, . . . ,am,b1, , . . . ,bm).

V: Accept if and only if

A =
m

∏
i=1

gai
i B =

m

∏
i=1

hbi
i

m

∑
i=1

aibi = z

Reduction if µ 6= 1:

P: Send A1−m,B1−m,z1−m, . . . ,Am−1,Bm−1,zm−1 where

Ak =
min(m,m−k)

∏
i=max(1,1−k)

gai+k
i Bk =

min(m,m−k)

∏
i=max(1,1−k)

hbi+k
i zk =

min(m,m−k)

∑
i=max(1,1−k)

ai ·bi+k

Observe A0 = A,B0 = B,z0 = z so they can be omitted from the message.

V: x← Z∗p.

Both prover and verifier compute a reduced statement of the form

(G, p,g′,A′,h′,B′,z′,mµ−1, . . . ,m1)

where

g′ = (g′1, . . . ,g
′
m′) =

m

∏
i=1

gx−i

i A′ =
m−1

∏
k=1−m

Axk

k

h′ = (h′1, . . . ,h
′
m′) =

m

∏
i=1

hxi

i B′ =
m−1

∏
k=1−m

Bx−k

k z′ =
m−1

∑
k=1−m

zkx−k

The prover computes a new witness as (a′1, . . . ,a
′
m′) = ∑

m
i=1 aixi and

(b′1, . . . ,b
′
m′) = ∑

m
i=1 bix−i.

10.1.2.1 Security Analysis.

Theorem 7 The argument has perfect completeness and computational witness

extended emulation for either extracting a non-trivial discrete logarithm relation or

a valid witness.
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Proof Perfect completeness can be verified directly. To prove witness-extended

emulation we start by giving an extractor that either extracts a witness for the original

statement or a non-trivial discrete logarithm relation.

For µ = 1 we have (perfect) witness-extended emulation since the prover reveals

a witness and the verifier checks it.

Before discussing extraction in the recursive step, note that if we get a non-trivial

discrete logarithm relation for g′1, . . . ,g
′
m′ then we also get a non-trivial discrete loga-

rithm relation for g1, . . . ,gm, since x 6= 0. A similar argument applies to h′1, . . . ,h
′
m′

and h1, . . . ,hm.

Now, assume we get witness a′,b′ such that

A′ =
m−1

∏
k=1−m

Axk

k =

(
m

∏
i=1

gx−i

i

)a′

B′ =
m−1

∏
k=1−m

Bx−k

k =

(
m

∏
i=1

hxi

i

)b′

a′ ·b′ =
m−1

∑
k=1−m

zkx−k

for 2m−1 different challenges x ∈ Z∗p. We will show that they yield either a witness

for the original statement, or a non-trivial discrete logarithm relation for either

g1, . . . ,gm or h1, . . . ,hm.

Take 2m− 1 different challenges x ∈ Z∗p. They form a shifted Vandermonde

matrix with rows (x1−m,x2−m, . . . ,xm−1). By taking appropriate linear combinations

of the vectors we can obtain any unit vector (0, . . . ,0,1,0, . . . ,0). Taking the same

linear combinations of the 2m−1 equations

m−1

∏
k=1−m

Axk

k =

(
m

∏
i=1

gx−i

i

)a′

we get vectors ak,i such that Ak =
m

∏
i=1

gak,i
i

For each of the 2m−1 challenges, we now have ∏
m−1
k=1−m Axk

k =
(

∏
m
i=1 gx−i

i

)a′
,

which means that for all i we have

x−ia′ =
m−1

∑
k=1−m

ak,ixk

unless we encounter a non-trivial discrete logarithm relation for g1, . . . ,gm. This

means that a′ = ∑
m−1
k=1−m ak,ixk+i for all i, and in particular ∑

m−1
k=1−m ak,ixk+i =
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∑
m−1
k=1−m ak,1xk+1 = ∑

m−1
k=1−m ak,mxk+m. Matching terms of degree outside {1, . . . ,m}

reveals ak,i = 0 for k+ i /∈ {1, . . . ,m}. Defining ai = a0,i, and matching terms of

similar degree we get

ak,i =

 ak+i if k+ i ∈ {1, . . . ,m}

0 otherwise

This means

a′ =
m−1

∑
k=1−m

ak,1xk+1 =
m−1

∑
k=0

ak+1xk+1 =
m

∑
i=1

aixi

A similar analysis of B1−m, . . . ,Bm−1 and openings b′ for 2m− 1 different

challenges x−1 ∈ Z∗p gives us either a non-trivial discrete logarithm relation for

h1, . . . ,hm or vectors bi such that b′ = ∑
m
i=1 bix−i and B = ∏

m
i=1 hbi

i .

Finally, with ∑
m
i=1 aixi ·∑m

j=1 b jx− j = ∑
m−1
k=1−m zkx−k for 2m−1 different chal-

lenges we get z = z0 = ∑
m
i=1 ai ·bi.

We can now apply the forking lemma to a tree of size (2mµ − 1)(2mµ−1−

1) · · ·(2m2−1)≤ n2, which is polynomial in λ , to conclude that the argument has

witness-extended emulation. �

10.1.3 Efficiency.

The recursive argument uses 2µ −1 moves. The communication cost of all steps

sums up to 4∑
µ

i=2(mi−1) group elements and 2∑
µ

i=2(mi−1)+2m1 field elements.

At each iteration, the main cost for the prover is computing the Ak and Bk

values, using less than
4(m2

µ mµ−1...m1)

log(mµ ...m1)
group exponentiations via multi-exponentiation

techniques, and the zk values using m2
µmµ−1 · · ·m1 field multiplications. The cost of

computing the reduced statements is dominated by 2(mµ mµ−1...m1)
logmµ

group exponentia-

tions for both the prover and the verifier. In the case where mµ = . . .= m1 = m, the

verifier complexity is bounded above by 2mµ

logm
m

m−1 group exponentiations. The prover

complexity is bounded above by 6mµ+1

logm
m

m−1 group exponentiations and mµ+1 m
m−1

field multiplications.
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10.1.4 How to use this Argument

At the end of the argument of Section 8.5, once compiled using Pedersen com-

mitments, the verification equations verify exactly the statement of the recursive

argument above. This means that rather than the prover sending the vector r to the

verifier in that argument, along with some commitment randomness which appears

in the compiled argument, the prover and verifier can conduct an inner product

argument like the one above to prove that the prover knows values which satisfy

the verification equations. To get a logarithmic communication complexity, one can

use the original 5-move arithmetic circuit argument with extremely long vectors, of

length O(N), where N is the number of multiplication gates in the arithmetic circuit.

Then the prover and verifier run the recursive argument with mi = 2 for all i.

The argument is presented in stand-alone form in Appendix B. This argument

has been implemented in Python. It is closely related to the Bulletproofs protocol

given in [1], which has been implemented in various different languages including

Java, C and Rust, and deployed as part of the Monero cryptocurrency.

10.1.5 Generalisations

Our original recursive argument applied to Pedersen commitments, which have the

following form:

ck = (g1, . . . ,gn,h)

Commit(a1, . . . ,an;r) = hr
∏

n
i=1 gai

i

We applied the argument to prove that committed values gave a particular scalar

product:

z = a ·b = ∑
N
i=1 aibi

Taking a step back, consider ga and ab. Both of these functions are very

simple bilinear maps. Scalar products and Pedersen Commitments (or multi-

exponentiations) come from combining multiple instances of these simple bilinear

maps.

Thus, under the right conditions, we can replace these with other similar bilin-

ear maps and recover a recursive argument. For example, we have the following

commitment scheme for group elements:
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ck = (g1, . . . ,gn,h)

Commit(a1, . . . ,an;r) = e(h,r)∏
n
i=1 e(gi,ai)

We may wish to prove for example that a committed vector of group elements

and a committed vector of field elements have a particular multi-exponentiation, or

that two committed vectors of group elements have a particular pairing-product.

Bilinear Commitment Scheme Suppose that f : G×X →A is a non-degenerate

bilinear map between abelian groups. For any N, we can create a homomorphic

commitment scheme with key space GN , message space XN and commitments in A

as follows:

ck = (g1, . . . ,gN ,gR)← GN+1

F(g1, . . . ,gN ,gR;x1, . . . ,xN ,xR)=Commit(x1, . . . ,xN ;xR)= f (gR,xR)∏
N
i=1 f (gi,xi)

Since f is bilinear, the commitment scheme is homomorphic in both messages

and keys. Since f is non-degenerate, if xR is chosen uniformly at random, then the

commitment will be uniformly random too.

Relevant instantiations do have the perfectly hiding property, but we are more

interested in the binding property at present.

Lemma 24 (Linear Independence) Assume that given (g1, . . . ,gN ,gR)←GN+1, it

is difficult to efficiently find x1, . . . ,xN ,xR such that f (gR,xR)∏
N
i=1 f (gi,xi) = 1. Then

the commitment scheme is computationally binding.

This includes the homomorphic commitment scheme for group elements used

in [68], where G = G1,X = G2,A = GT and our bilinear map is the pairing e :

G1×G2→GT , under the Double Pairing Assumption.

It also includes the Pedersen commitment scheme where G =G,X = Zp,A =

G, and f (g,x) = gx, under the Discrete Logarithm Assumption.

When all of the groups involved are F-modules, one can generalise the recursive

scalar product argument for two Pedersen-committed values to a recursive bilinear

product argument for two values committed using bilinear commitment schemes,

with an extremely similar protocol and security proof. The argument also works with

two different bilinear commitment schemes. It would be interesting to see whether an

argument of this form using the pairing-based commitment scheme of [68] could be
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used in conjunction with the logarithmic communication protocol resulting from the

scalar product argument above, to get an interactive argument with sub-logarithmic

communication complexity.

10.2 Field Extension Techniques

The basis for the techniques in this section was originally published in joint work

[9] with Carsten Baum, Andrea Cerulli, Rafael del Pino, Jens Groth and Vadim

Lyubashevsky as part of a post-quantum zero-knowledge protocol based on lattice

cryptography. We do not explain the details of the protocol, here, as they are unnec-

essary and lattice cryptography is beyond the scope of this thesis. The inspiration for

these techniques came from [41] and [40].

Suppose that we have an ILC protocol which works over a small finite field

F. Since soundness of these protocols is proved using the Schwarz-Zippel lemma,

the soundness error in such protocols is limited to O(1/|F|). If the proof relates to

an algebraic statement which is naturally phrased over a small field, one approach

which yields protocols with low soundness error is to simulate the behaviour of the

smaller field in the larger one, and produce a proof for an equivalent relation over a

larger field. However, this usually leads to significant overhead costs. Following a

naı̈ve approach, one can imagine, for example, embedding a boolean circuit into a

large prime field. Then, running an ILC protocol on large field elements is wasteful,

when some large field elements actually only contain boolean values. Instead, we

show how to embed many elements from a finite field into one single extension

field element, and also to perform useful operations on base field elements using

operations on extension field elements.

This is a viable approach when working with the hash-based commitment

scheme from chapter 5.

Based on [39], we now show how to embed witness elements into field ex-

tensions. This will allow us to use the generic 3-move protocol from Chapter 8

for arithmetic circuit satisfiability with O(1/|F|2k) soundness error, which gives

protocols with negligible soundness error in a single run.
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For simplicity, we explain how our techniques work over Zp. However, they

will also work over other finite fields.

Let GF(p2k) ' Zp[φ ]/〈 f (φ)〉, where f is a polynomial of degree 2k that is

irreducible over Zp. Our goal is to embed k elements of Zp into the extension field in

a way so that we can multiply two GF(p2k) elements in a way that does not interfere

with the products of the original Zp elements. Let e1, . . . ,ek be distinct interpolation

points in Zp (note that in particular, this forces p > k). Let l1(X), . . . , lk(X) be the

Lagrange polynomials associated with the points ei, which have degree k−1. Let

l0(X) = ∏
k
j=1(X− ei), which has degree k.

Now, suppose that we have a1, . . . ,ak, b1, . . . ,bk and c1, . . . ,ck in Zp such that

a j · b j = c j mod p for each j. By evaluating the expression at each interpola-

tion point, we see that the following statement about polynomials holds over Zp:(
∑

k
j=1 a jl j(X)

)
·
(

∑
k
j=1 b jl j(X)

)
≡
(

∑
k
j=1 c jl j(X)

)
mod l0(X).

Therefore, there are c′0, . . . ,c
′
k−2 ∈Zp such that

(
∑

k
j=1 a jl j(X)

)
·
(

∑
k
j=1 b jl j(X)

)
=(

∑
k
j=1 c jl j(X)

)
+ l0(X)∑

k−2
j=0 c′jX

j.

The degree of f is 2k, so if we choose the basis

B = {l1(φ), . . . , lk(φ), l0(φ),φ l0(φ), . . . ,φ k−1l0(φ)

for GF(p2k)} we can perform multiplications of extension field elements without

any overflow modulo f interfering with the individual product relations aibi = ci in

Zp. We can therefore incorporate the above equality into GF(p2k) as the equality(
∑

k
j=1 a jl j(φ)

)
·
(

∑
k
j=1 b jl j(φ)

)
=
(

∑
k
j=1 c jl j(φ)

)
+ l0(φ)∑

k−2
j=0 c′jφ

j.

This allows one multiplication of committed values to be performed without

any overflow modulo f . As we shall see, this is sufficient for verifying multiplication

triples for arithmetic circuit satisfiability.

We also need to be able to view single commitments to elements of Zp as

elements of the extension field in a way that helps to verify linear consistency

relations between the elements.

Now, suppose that we have a1, . . . ,ak, b1, . . . ,bk and c1, . . . ,ck in Zp,

and coefficients wa,1, . . . ,wa,k, wb,1, . . . ,wb,k and wc,1, . . . ,wc,k in Zp such that
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∑
k
j=1 a jwa, j + ∑

k
j=1 b jwb, j + ∑

k
j=1 c jwc, j = K mod p. By comparing coeffi-

cients, we see that the following statement about polynomials holds over

Zp:
(

∑
k
j=1 a jX j−1

)
·
(

∑
k
j=1 wa, jXk− j

)
+
(

∑
k
j=1 b jX j−1

)
·
(

∑
k
j=1 wb, jXk− j

)
+
(

∑
k
j=1 c jX j−1

)
·
(

∑
k
j=1 wc, jXk− j

)
= KXk−1 + ∑

2k−2
j=0, j 6=k−1 K jX j, where the K j

are extra terms determined from the a,b,c and w values.

If we choose the basis B′ = 1,φ ,φ 2, . . . ,φ 2k−1 for GF(p2k), we can perform

multiplications of extension field elements in a way that always yields a useful linear

relation in the φ k−1 term without any overflow modulo f .

By viewing multiplication in GF(p2k) as a linear map over Z2k
p , we can simulate

arithmetic in the extension field using arithmetic in Z2k
p .

Let A1, . . . ,A2k ∈ C 2k be homomorphic commitments to single elements,

a1, . . . ,ak ∈Zp. We can consider the tuple A= (A1, . . . ,Ak) to be a commitment to an

element a = (a1, . . . ,a2k) of GF(p2k). Now, if we consider x ∈ Z2k
p as an element of

GF(p2k), then there is a matrix Mx which simulates multiplication by x in Z2k
p when

we multiply on the left by Mx. Since the Ai are homomorphic commitments, we can

obtain a commitment to x∗a by computing MxA, where ∗ represents multiplication

in GF(p2k).

10.2.1 Reduction of Circuit Satisfiability to a Hadamard Matrix

Product and Linear Constraints over GF(p2k).

Let N = mnk be the number of multiplication gates in the arithmetic circuit. To

reduce circuit satisfiability to constraints over GF(p2k), we can consider the same

polynomial equations as before, written over GF(p2k) rather than Zp. We consider

the rows of matrices A, B, and C as before, but this time, we label the row vectors of

the matrices ai, j,bi, j and ci, j ∈ Zn
p, for 1≤ i≤ m and 1≤ j ≤ k. Now, we consider

the row vectors ai,1, . . . ,ai,k, which are elements of Zn
p, as an element in GF(p2k)n.

Let ai =
(
ai,1,ai,2, . . . ,ai,k,0, . . . ,0

)T represent this element in GF(p2k)n. Each

column of the matrix represents a separate element of GF(p2k).

Satisfiability conditions over Zp were embedded using scalar products, denoted

by ·, and element-wise products, denoted by ◦. If a and b in Z2k×n
p represent elements

of GF(p2k)n, then each column represents an element of GF(p2k), and the scalar
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products and element-wise products of a and b are computed using the columns. We

denote the element-wise product by a©b and the scalar product by a
⊙

b to avoid

confusion with any other matrix products on a and b.

a =

 v1 v2 . . . vn

 b =

 w1 w2 . . . wn



a©b =

 Mv1w1 Mv2w2 . . . Mvnwn

 a
⊙

b = Mv1w1 +Mv2w2 + . . .+Mvnwn

Note that in the verification equations, although the verifier computes high pow-

ers of random challenges x and y, the verifier only computes quadratic polynomials

of values such as a and b which have been sent by the prover. This is important,

because when we expand a and b in terms of their coefficients ai and bi, we see that

the verifier only computes expressions which have degree 2 in the prover’s secret

committed wire values, embedded as elements of GF(p2k). Therefore, considering

a field extension of degree 2k with the basis B is sufficient for our purposes: we

only need to ensure that a single multiplication in GF(p2k) preserves the individual

product relations embedded in the GF(p) elements.

When embedding satisfiability conditions into a polynomial over Zp, using

random challenges x,y ∈ Zp, the prover could send linear combinations of vectors

ai ∈ Zn
p such as a(x) = a0 +∑

m
i=1 aiyixi to the verifier.

However, when embedding satisfiability conditions into a polynomial over

GF(p2k), using random challenges x,y ∈ GF(p2k), the prover sends linear combina-

tions of vectors ai ∈ GF(p2k)n such as a(x) = a0 +∑
m
i=1(My)

i(Mx)
iai.
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10.2.2 How to Apply This Idea

Suppose that we wish to give an argument for arithmetic circuit satisfiability over

a small field F. The way to use this technique to apply the 3-move square-root

protocol over an algebraic extension of F, and use the above technique to embed

the conditions for circuit satisfiability into extension field operations. This yields an

arithmetic circuit satisfiability argument over F with negligible soundness error in a

single run, and the argument over the extension field will have the same asymptotic

communication costs as one over the base field, but with negligible soundness error.

This idea was used by the author for the first time in [39], but drew inspiration

from works such as [41] and [40] which used related techniques to prove much

simpler statements. The advantage of using this idea over simply repeating the

protocol many times in parallel is that the communication overhead is reduced. For

example, if one uses a basic protocol over Zq to prove a single statement u with

soundness error approximately 1/q, then the protocol may need to be repeated O(t)

times, for some t, to provide a negligible soundness error. Each repetition is only

proving the same statement. By contrast, the techniques above allow one to embed

O(t) different statements, or O(t) different portions of a single large statement, into

a proof of the same size as the repeated proof. When the desired security level is λ

bits, and a proof is given over F, these techniques reduce communication overhead

by a factor of λ/ log |F| compared with naively performing parallel repetitions.



Chapter 11

Conclusion

In this thesis, we introduced the ILC model, modified it to bring it closer to real pro-

tocols, and gave compilations from ILC protocols to real zero-knowledge protocols

based on hash functions and error-correcting codes. The compilations separate the

cryptographic and non-cryptographic parts of the design process and simplify the

protocol design process. In particular, designing our ILC protocols and proving them

secure was a matter of applying linear algebra and simple lemmata about polynomial

identity testing. Proving that the ILC protocols could be securely compiled into real

arguments was more complicated, but was done once and for all, and the compila-

tions can be reused for many ILC protocols in the future. We presented protocols

with state-of-the-art communication complexity and round complexity, and showed

that the ILC model is powerful enough to reason about both general NP-Complete

statements like arithmetic circuit satisfiability. We also gave ILC protocols for sim-

pler statements such as polynomial evaluation or range proofs, in a manner that leads

to highly efficient protocols. This included the framing of general relations to cap-

ture a class of zero-knowledge protocols characterised by low-degree polynomials,

formalising the techniques used in such protocols, and providing a generic protocol

for reasoning about such relations, which can be used to give batch-proofs for many

statements at the same time.

We found techniques used in interactive zero-knowledge protocols in the dis-

crete logarithm setting, and rewrote many of those protocols in the ILC model. Thus,

this work shows that a great many discrete logarithm arguments follow the same
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basic design paradigms. Surprisingly, the same style of protocol and design tech-

niques extend beyond the discrete logarithm setting to another commitment scheme

which is not homomorphic! This shows that the ILC model addresses our goals of

providing a good abstraction for discrete-logarithm-based protocols, which is also

useful outside its original setting.

Using only this methodology, we were able to present some protocols with state-

of-the-art communication complexity. Examples include a discrete-logarithm based

polynomial evaluation argument, with a better asymptotic communication complexity

than observed prevously, and a discrete-logarithm based membership argument,

whose asymptotic communication complexity has improved constants over previous

work, and which has highly tuneable parameters. These are of practical significance

as they can be used as part of membership and non-membership arguments both in

the designs of other primitives, like group and ring signatures, and in applications

such as preventing double-spending in cryptocurrencies. Since ILC protocols can

also be compiled based on hash functions and error-correcting codes, we also obtain

some completely new arguments for polynomial evaluation and membership based

on the existence of collision resistant hash functions. This shows that our goals of

designing efficient protocols for a wide variety of different applications was also

addressed.

We also presented some extra techniques which fall outside the ILC model,

namely, a recursive argument to show that committed values have a particular scalar

product, and a field extension technique which boosts the soundness of ILC protocols

over small fields. This is at once a strength and a weakness of using idealised

communication models. Protocols inside such models are highly constrained, which

makes them easier to design and reason about, but may also limit their performance

and utility. The fact that the most efficient protocol in this thesis, the logarithmic-

communication argument for arithmetic circuit satisfiability, does not lie within the

main model of communication, is a limitation. However, once a suitable model has

been identified, one can also try to design useful protocols by attempting to create

protocols outside the model.
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There are other zero-knowledge protocols [39], some based on lattices, and

some based on the Strong RSA assumption, which seem to work on the same basis as

ILC protocols. That is, the prover commits to certain vectors, and the verifier picks a

random challenge, and uses structured linear combinations of the committed vectors

in a number of verification equations. Unlike in the ILC model, in which all elements

belong to a field and the notion of size is not important, these settings require careful

consideration of the size of committed elements to ensure zero-knowledge, and often

for soundness too. The model falls short of capturing these protocols. Improving the

model to take this into account, in particular for lattice-based protocols which may

enjoy post-quantum security guarantees, is an attractive target for future research.

Another avenue that was not investigated is restricting the verifier’s ILC queries.

In all of the ILC protocols presented in this thesis, the coefficients of the verifier’s

linear queries are given by a linearly-independent set of polynomials evaluated at

uniformly random challenges chosen by the verifier. The queries have a carefully

chosen algebraic structure. For every protocol that we give, the query matrix appears

to be a form of strongly universal hash function. The compilation from ILC protocols

to discrete-logarithm based protocols requires restrictions on the rank and dimension

of the matrix, and that a related system of linear equations can be solved. These

conditions are treated in an ad-hoc manner outside of the proofs that the protocols

are secure in the idealised model. There is still a gap between the model and the

compiled protocols, and the communication model can be refined further. One could

hope that such strong algebraic restrictions lead to interesting results, such as lower

bounds on the communication complexity of ILC protocols, as linear algebra is an

old discipline with many results that one could hope to apply to the structure of the

query matrices.



Appendix A

Security Proofs for Optimised Hash

and Error-Correcting-Code

Compilation

Theorem 8 (Completeness) If (KILC,PILC,VILC) is complete for relation R over

ILC, then the compiled (K ,P,V ) with optimisations from Subsection 9.1.5 is

complete for relation R.

Proof All the commitment openings are correct, so they will be accepted by the

verifier. In the execution of 〈P(σ ,u,w)←→ V (σ ,u)〉, the fact that EC is linear

and Reed-Solomon codes are linear implies that ẼC is linear and hence all the

linear checks will be true. If (σ ,u,w) ∈R then (σILC,u,w) ∈R and being complete

〈PILC(σILC,u,w)
ILC←→ VILC(σILC,stm)〉= 1 so V ’s internal copy of VILC will accept.

Thus, in this case, 〈P(σ ,u,w)←→ V (σ ,u)〉= 1, which proves completeness. �

Theorem 9 (Knowledge Soundness) If (KILC,PILC,VILC) is statistically knowl-

edge sound with a straight-line extractor for relation R over ILC and

(Setup,Commit) is computationally (statistically) binding, then (K ,P,V ) with

the optimisations from Subsection 9.1.5 is computationally (statistically) knowledge

sound for relation R.

Proof

Throughout the proof of Theorem 2, we used the fact that ẼC is linear. This
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is still the case, due to the linearity of Reed-Solomon codes. The only part of the

proof of Theorem 2 that used the form of ẼC as part of the proof was Lemma 23.

We reprove this lemma.

Lemma 25 The probability that for some τ there are no vτ and rτ such that

ẼC (vτ ,rτ) agrees with eτ on the opened j ∈
⋃2n

i=1 Ji and b = 1 is negligible.

In particular, the probability that b = 1 but T does not extract the transcript of

P∗
ILC is negligible.

Proof Since we can ignore events that happen with negligible probability, and

the expected number of rewindings is polynomial, we can assume that in all the

rewindings, P∗ only makes openings to the most common openings. We showed that

the probability that b = 1 but P∗ sends a V ∗(Q) 6= QV , or V computes a V
′∗
(Q) 6= Q′V

is negligible and by the same argument the probability that b = 1 but P∗ sends

v∗(γ) 6= v(γ) is negligible. Therefore, in the following, we will assume v∗(γ) = v(γ).

Now suppose that there is some eτ such that the opened values are inconsistent

with being ẼC (vτ ,rτ) for any rτ . That is, either there is some j such that j,n+ j ∈⋃2n
i=1 Ji and (eτ) j− (eτ)n+ j 6= EC (v) j, or there exists some set J′ ⊂ [n+1,2n] of size

at least 2λ +1 such that (eτ) j are not consistent with a Reed-Solomon codeword.

Note that if n = 2λ , then a suitable Reed-Solomon codeword always exists by

interpolation, so we do not need to consider this value of n. The first case with j and

n+ j has already been covered by Lemma 23. Therefore, we prove the second case.

If we are in the second case, then there exist µ j ∈ F which give a parity check

on J′ such that ∑ j∈J′ µ j(eτ) j 6= 0. This can be seen as follows. If the values are

not consistent with a Reed-Solomon codeword, then that means that there is no

polynomial whose evaluations would be consistent with polynomial evaluations

(eτ) j for j ∈ J′. Therefore, there exist 2λ +1 values j ∈ J′, and j∗ ∈ J′ such that if

we interpolate to compute the polynomial which evaluates to (eτ) j at points a j, and

then evaluate at a j∗ , the result is not equal to (eτ) j∗ . Interpolation from evaluations

at the points a j and then evaluation at a j∗ are both linear operations, and composing

both linear maps yields the values µ j.

Then,for uniformly chosen γτ ∈ F, we get that γτ(∑ j∈J′ µ j(eτ) j) is uniformly
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distributed in F. Hence for a random γ ∈Ft , we have that γ(∑ j∈J′ µ j(e) j) is uniformly

distributed. When V sends γ , P∗ will respond with v∗(γ) = v(γ) and some r∗(γ). V

will only accept on a challenge J if for all j ∈ J we have (e0+ γe) j = ẼC (v(γ),r∗(γ)) j.

Since J′ ⊂
⋃2n

i=1 Ji we have (e0 + γe) j = ẼC (v(γ),r∗(γ)) j for each j ∈ J′ so

(
∑
j∈J′

µ j(e0) j

)
+ γ

(
∑
j∈J′

µ j(e) j

)
= ∑

j∈J′
µ jẼC (v(γ),r∗(γ)) j = 0

that is, (
∑
j∈J′

µ j(e0) j

)
=−γ

(
∑
j∈J′

µ j(e) j

)
For random γ the right-hand side is uniform and the left-hand side is fixed, hence

equality only happens with negligible probability. That proves the lemma. �

Theorem 10 (SHVZK) If (KILC,PILC,VILC) is perfect SHVZK and (Setup,Commit)

is computationally (statistically) hiding then (K ,P,V ) with the optimisations from

Subsection 9.1.5 is computationally (statistically) SHVZK.

Proof To prove we have SHVZK we describe how the simulator S (σ ,u,ρ) should

simulate the view of V . Along the way, we will argue why, the variables output by

S have the correct joint distribution. To keep the proof readable, instead of saying

that “the joint distribution of [random variable] and all previously defined random

variables is identical to the distribution in the real view of V in 〈P(σ ,u,w)←→

V (σ ,u)〉” we will simply say that “[random variable] has the correct distribution”.

Using the randomness ρ the simulator learns the queries ρILC=(x1, . . . ,xµ−1,Q)

the internal VILC run by the honest V will send. S can therefore run

SILC(σILC,u,ρILC) to simulate the view of the internal VILC. This gives it

(t1, . . . , tµ ,V(Q)). By the SHVZK property of (KILC,PILC,VILC) these random

variables will all have the correct joint distribution.

Then S reads the rest of ρ to learn also the challenges γ and J that V will send.

The simulator picks uniformly at random v(γ)←Fk. Since in a real proof v0 is chosen

at random, we see that the simulated v(γ) has the correct distribution. Now S picks

E01|J, . . . ,Eµ |J uniformly at random. Recall that this time ẼC (v;r) = (EC (v)+ r,r)
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where r is the Reed-Solomon encoding of r′ ∈ F2λ . By definition of J being allowed,

we have for all j ∈ J that j + n /∈ J. This means for any choice of v0 ∈ Fk and

V ∈ Ft×k that when we choose random r′0← F2λ and R′← Ft×2λ we get uniformly

random ẼC (v0;r′0)|J , and ẼC (V ;R′) is uniformly random subject to the second half

of each vector being a Reed-Solomon codeword. Consequently, E01|J, . . . ,Eµ |J have

the correct distribution.

Next, the simulator picks r′(γ) ∈ F2λ and R′(Q) ∈ Ft×2λ . To do this, for all j such

that j ∈ J or j+n ∈ J, the simulator computes the unique (r(γ)) j ∈ F, R j ∈ Ft and

R′j ∈ Ft such that we get ẼC (v(γ);r(γ)) = e0|J + γE|J and ẼC (V(Q);R(Q)) = QE|J
and ẼC (V ′(Q);R′(Q)) = Q′E|J . For all j such that j /∈ J and j+ n /∈ J, the values of

(r′(γ)) j ∈ F, R′j ∈ Ft and R′j ∈ Ft are now completely determined, by interpolation.

Finally, S defines E01|J̄, . . . ,Eµ |J̄ to be 0 matrices. It then picks s1, . . . ,sµ

at random and makes the commitments c1, . . . ,cµ as in the protocol. For j ∈ J

we see that all the ci| j commitments are computed as in the real execution from

values that have the same distribution as in a real proof. Hence, they will have the

correct distribution. The ci| js for j /∈ J are commitments to different values than

in a real proof. However, by the computational (statistical) hiding property of the

commitment scheme, they have a distribution that is computationally (statistically)

indistinguishable from the correct distribution. �



Appendix B

Stand-alone Argument for

Arithmetic Circuit Satisfiability with

Logarithmic Communication

Complexity

We now give the formal description of a stand-alone argument of knowledge for the

satisfiability of an arithmetic circuit, which combines the compiled version of the

ILC protocol from Section 8.5, and the recursive protocol for inner products from

Section 10.1. Both prover and verifier take the move parameter µ as common input.

For square root communication complexity, the inner product argument is not used

and we set µ = 0. For µ > 0, the common input includes the values (mµ , . . . ,m1)

used in the inner product argument.

Common Input: (ck,C,N,m,n,m′1,m
′
2,n
′,mµ , . . . ,m1,µ) where ck is a commit-

ment key.The description of an arithmetic circuit

(
{wq,a,i,wq,b,i,wq,c,i}q∈[Q],i∈[m],{Kq}q∈[Q]

)
with N = mn multiplication gates. µ is the move parameter and n = mµ · · ·m1.

Parameters (m′1,m
′
2,n
′) are set to satisfy both 3m≤ m′1n′ and 4m+2≤ m′2n′.

Prover’s Witness: Satisfying assignments ai,bi and ci to the wires of C.
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Argument:

P: Pick randomness α1,β1,γ1, . . . ,αm,βm,γm,δ ← Zp and blinding vector d← Zn
p.

Compute for i ∈ {1, . . . ,m}

Ai = Commit(ai;αi) Bi = Commit(bi;βi)

Ci = Commit(ci;γi) D = Commit(d;δ )

Send A1,B1,C1, . . . ,Am,Bm,Cm,D to the verifier.

V: y← Z∗p.

As argued before, the circuit determines vectors of polynomials wa,i(Y ),

wb,i(Y ), wc,i(Y ) and K(Y ) such that C is satisfiable if and only if

m

∑
i=1

ai · (bT
i ◦Y′)Y i +

m

∑
i=1

ai ·wa,i(Y )+
m

∑
i=1

bi ·wb,i(Y )+
m

∑
i=1

ci ·wc,i(Y ) = K(Y )

where Y′ = (Y m, . . . ,Y mn). Given y, both the prover and verifier can compute

K = K(y), wa,i = wa,i(y), wb,i = wb,i(y) and wc,i = wc,i(y).

P: Compute Laurent polynomials r,s,r′, which have vector coefficients, and Lau-

rent polynomial t, in the indeterminate X

r(X) =
m

∑
i=1

aiyiX i +
m

∑
i=1

biX−i +Xm
m

∑
i=1

ciX i +dX2m+1

s(X) =
m

∑
i=1

wa,iy−iX−i +
m

∑
i=1

wb,iX i +X−m
m

∑
i=1

wc,iX−i

r′(X) = r(X)◦y′+2s(X)

t(X) = r(X) · r′(X)−2K =
4m+2

∑
k=−3m

tkXk

When the wires ai,bi,ci correspond to a satisfying assignment, the Laurent

polynomial t(X) will have constant term t0 = 0.

Commit to t(X) by computing Tk = Commit(tk;τk) for each k 6= 0, and send

all of these commitments to the verifier.
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V: x← Z∗p

P: Compute v = t(x), τ = ∑
4m+2
k=−3m,k 6=0 τkxk, and

r =
m

∑
i=1

aixiyi +
m

∑
i=1

bix−i + xm
m

∑
i=1

cixi +dx2m+1

ρ =
m

∑
i=1

αixiyi +
m

∑
i=1

βix−i + xm
m

∑
i=1

γixi +δx2m+1

• If µµµ = 0 : the inner product argument is not used. The prover sends

(v,τ,r,ρ) to the verifier.

• If µµµ > 0 : the inner product argument is used. The prover computes

r′ = r′(x) and sends (v,τ,ρ) to the verifier.

Verification: The verifier checks whether Commit(v;τ)
?
= ∏

4m+2
k=−3m,k 6=0 T xk

k .

• If µµµ = 0 : the inner product argument is not used. The verifier computes

r′ = r◦y′+2s(x), and accepts only if

r · r′−2K = v

Commit(r;ρ) =
[
∏

m
i=1 Axiyi

i

][
∏

m
i=1 Bx−i

i

][
∏

m
i=1Cxm+i

i

]
Dx2m+1

• If µµµ > 0 : prover and verifier run the inner product argument with com-

mon input

(G, p,g,R,h,R′,v+2K,mµ ,mµ−1, . . . ,m1) where

ck = (G, p,g,g) n = mµmµ−1 · · ·m1

g = (g1,g2, . . . ,gn) h = (gy−m

1 ,gy−2m

2 , . . . ,gy−mn

n )

R = Commit(0;−ρ)
[
∏

m
i=1 Axiyi

i

] [
∏

m
i=1 Bx−i

i

][
∏

m
i=1Cxm+i

i

]
Dx2m+1

= gr

R′ = R ·h2s(x) = hr′

and the prover’s witness is r and r′.

The verifier accepts if the inner product argument is accepting.
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B.0.1 Security Analysis.

Theorem 11 The argument for satisfiability of an arithmetic circuit has perfect

completeness, perfect special honest verifier zero-knowledge and statistical witness-

extended emulation for extracting either a breach of the binding property of the

commitment scheme or a witness for the satisfiability of the circuit.

Proof Perfect completeness follows by inspection and using the fact that the

inner product argument also have perfect completeness.

For perfect special honest verifier zero-knowledge we are given y,x ∈Z∗p, which

allows us to compute wa,i,wb,i,wc,i and K from the circuit. The simulator picks

r← Zn
p and ρ ← Zp and random commitments Ai,Bi and Ci. It computes

D =

[
m

∏
i=1

Axiyi

i Bx−i

i Cxm+i

i Commit(−r;−ρ)

]−x−2m−1

v = r · r′−2K

The simulator picks random commitments T−3m, . . . ,T4m+2 and computes T4m+2

from the verification equation Commit(v;τ)
?
= ∏

4m+2
k=−3m,k 6=0 T xk

k .

To see that the simulated components have the same distribution as a real argu-

ment observe that since the commitment scheme is perfectly hiding the commitments

Ai,Bi and Ci have the same distribution as in a real argument. Also, in both the

simulation and a real argument r and ρ are uniformly random. Given these values

the commitment D is uniquely defined, and similarly for the Tk.

When µ > 0 we simply remove r from the transcript and execute a fresh run of

the inner product argument, given our knowledge of r.

It remains to show that we have witness-extended emulation. We treat the cases

µ = 0 and µ > 0 separately.

Square Root Argument. Assume that we have N +Q different challenges y ∈ Z∗p
for the same initial message, and for each of these challenges a further 7m+ 3

different challenges x ∈ Z∗p for the same third message, all with valid answers. We

begin by showing that from this information we either extract a satisfying assignment

to the wires ai,bi,ci in the circuit, or encounter a breach of the binding property of

the commitment scheme.
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Let us first consider a fixed initial transcript (A1, . . . ,Am, . . . ,Cm,D,y,T−3m, . . . ,T4m+2)

and suppose we have valid arguments with 3m+2 different values of x. Then the

vectors (x−m, . . . ,x2m+1) form the rows of a shifted Vandermonde matrix and we can

obtain any unit vector (0, . . . ,1, . . . ,0) by taking an appropriate linear combination

of these vectors. By taking the correct linear combinations of the 3m+2 verification

equations Dx2m+1
∏

m
i=1 Axiyi

i Bx−i

i Cxm+i

i = Commit(r;ρ), we can then extract openings

to each Ai,Bi and Ci, since y ∈ Z∗P.

We have valid arguments for 7m + 3 different challenges x ∈ Z∗p. Similar

arguments to the above show that we can extract a Laurent polynomial t(X) =

∑
4m+2
k=−3m,k 6=0 tkxk that is consistent with respect to all 3m+ 2 evaluations of r(X) ·

r′(X)−2K. This directly implies that Equation 8.2 holds for Y = y.

Finally, suppose that this holds for N+Q different challenges y ∈ Z∗p. Then, we

have equality of polynomials in Equation 8.2, since a non-zero polynomial of degree

N +Q−1 cannot have N +Q roots. This means that the circuit is satisfied.

Now we can apply the forking lemma to get witness-extended emulation, as the

tree formed by the transcripts has size (N +Q) · (7m+3) which is polynomial in λ .

Inner Product Variant Assume that we have (N + Q) · (7m + 3) · (2mµ −

1) . . .(2m2 − 1) accepting transcripts for the same statement arranged in a tree

as follows:

• The root is labeled with the statement.

• Each of the (N +Q) depth 1 nodes is labeled with a different challenge y and

has 7m+3 children labeled x.

• The children are subtrees of size (2mµ −1) . . .(2m2−1)

• Each level has nodes labeled with the challenges xi used in the i-th move of

the recursive argument, and of degree 2mµ−i+1−1.

Given the above tree of transcripts, we are able to do a two-stage extraction:

First, we invoke the witness-extended emulation of the recursive inner product

argument. At this point, we either have a a non-trivial discrete logarithm relation, in
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which case we are done, or we have an accepting r for each y,x pair. In this case,

we proceed with the second stage and repeat the extraction procedure for µ = 0 to

obtain either a witness for the original statement or a breach of the binding property

of the commitment scheme.

We now point out that the size of the tree will be O(N · (2m)µ)≈ O(N2+logm 2)

which is polynomial in the security parameter λ and invoke the forking lemma to

complete the proof. �

B.0.2 Efficiency

Square Root Communication. When we set µ = 0, the argument above has a

communication cost of 10m+1 commitments and n+3 field elements. Setting m≈√
N
10 , n≈

√
10N, we get a total communication complexity where the total number

of group and field elements sent is as low as possible and approximately 3.2
√

N each.

The main computational cost for the prover is computing the initial commitments,

corresponding to 3mn
logn group exponentiations. The prover can compute t(X) using

FFT-based techniques. Assuming that p is of a suitable form for the Fast Fourier

transform, the dominant number of multiplications for this process is 3
2mn logm. The

main cost in the verification is computing s(X) given the description of the circuit

which requires in the worst case Qn multiplications in Zp, considering arbitrary

fan-in addition gates. In case of O(N)-size circuits with fan-in 2 gates, computing

s(X) requires O(N) multiplications. Evaluating s(x) requires 3N multiplications.

The last verification equation costs roughly (n+3m)
logn+3m group exponentiations to the

verifier.

(µ +1)-Root Communication. We can reduce communication by using µ = O(1)

iterations of the inner product argument. Choosing m = N
1

µ+1 , n = N
µ

µ+1 and

mi = (N
m)

1
µ will give us a communication complexity of 4µN

1
µ+1 group elements

and 2µN
1

µ+1 field elements. The prover’s complexity is dominated by 6µN
logN group

exponentiations and fewer than 3N
2µ

logN field multiplications. The verifier’s cost is

dominated by 2µN
logN group exponentiations and O(N) field multiplications.

Logarithmic Communication. By increasing the number of iteration of the inner

product argument we can further reduce the communication complexity.
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To minimize the communication, we set µ = logN−1, n = N
2 , m = mi = 2 in

the above argument gives us 2 logN+1 moves. The total communication amounts to

approximately 4 logN group elements and 2logN field elements. The prover compu-

tational cost is dominated by 12N group exponentiations, and O(N) multiplications

in Zp.The main verification cost is bounded by 4N group exponentiations and O(N)

multiplications in Zp.



Appendix C

Exposition of an Efficient

Multi-Exponentiation Algorithm

This chapter explains a special case of Pippenger’s algorithm [124] for efficient multi-

exponentiation, which explains why the cost of computing a Pedersen commitment

of length N is O(N/ logN) group operations rather than O(N).

C.1 Goal

Let G be a group of prime order p≈ 2λ . Let g0, . . . ,gN−1 be elements of G and let

e0, . . . ,eN−1 be elements of Zp. Assume that λ ≥ N.

Let G = ∏
N−1
i=0 gei

i .

Problem Given g0, . . . ,gN−1, and e0, . . . ,eN−1, compute G.

C.2 Reduction to Multi-Products

We call the case where e0, . . . ,eN−1 ∈ {0,1} a multi-product rather than a multi-

exponentiation. The first step will be to reduce the computation of G to the computa-

tion of many multi-products.

Set s≈
√

λ

N and t ≈
√

λN. Let ei,l be the binary digits of ei.
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G = ∏
N−1
i=0 gei

i

= ∏
N−1
i=0 ∏

λ−1
l=0 g

ei,l2l

i

= ∏
N−1
i=0 ∏

s−1
j=0 ∏

t−1
k=0 g

ei, j+sk2 j+sk

i

= ∏
t−1
k=0

(
∏

N−1
i=0 ∏

s−1
j=0 g

ei, j+sk2k

i

)2sk

Set g′i, j = g2 j

i for 0≤ j ≤ s−1.

Set e′i, j,k = ei, j+sk.

Set G′k = ∏
N−1
i=0 ∏

s−1
j=0 g

ei,sk+ j2 j

i for 0≤ k ≤ t−1.

Then, we have

G = ∏
t−1
k=0 G′2

sk

k

G′k = ∏
N−1
i=0 ∏

s−1
j=0 g′

ei, j+sk
i, j

We will now consider the new multi-product problem:

New Problem Given {g′i, j}, {e′i, j,k}, compute {G′k}.

The new problem has Ns = t input group elements g′i, j and t output group

elements G′k.

C.2.1 Visualisation

This approach to computing G can be visualised by arranging the binary digits in a

matrix.
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e0

e1

...

eN−1



e0,0 e0,s e0,2s · · · e0,(t−1)s

e0,1 e0,s+1 e0,2s+1 · · · e0,(t−1)s+1
...

...
... . . . ...

e0,s−1 e0,2s−1 e0,3s−1 · · · e0,λ−1

e1,0 e1,s e1,2s · · · e1,(t−1)s

e1,1 e1,s+1 e1,2s+1 · · · e1,(t−1)s+1
...

...
... . . . ...

e1,s−1 e1,2s−1 e1,3s−1 · · · e1,λ−1

...
...

...
...

...

eN−1,0 eN−1,s eN−1,2s · · · eN−1,(t−1)s

eN−1,1 eN−1,s+1 eN−1,2s+1 · · · eN−1,(t−1)s+1
...

...
... . . . ...

eN−1,s−1 eN−1,2s−1 eN−1,3s−1 · · · eN−1,λ−1



g0

g2
0

...

g2s−1

0

g1

g2
1

...

g2s−1

1

...

gN−1

g2
N−1

...

g2s−1

N−1

G′0 G′1 G′2 · · · G′t−1

The input values for the new problem are shown to the right of the matrix in the

same row as the binary digits that they correspond to. The output values are shown

below the matrix in the same column as the binary digits that they correspond to.

Computing the multi-exponentiation of the inputs with a column of the matrix

gives the output below that column.

C.2.2 Efficiency

The simplest method of computing the new inputs g′i, j is using s squarings of gi, for

each 0≤ i≤ N−1, which gives a cost of
√

λN group operations.
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C.3 Computing the Multi-Products

The new problem has the same number of inputs and outputs, so we relabel to

simplify notation. Set M =
√

λN = sN = t.

Problem Given {g′i}
M−1
i=0 , {e′i, j}

M−1
i, j=0, compute G′j = ∏

M−1
i=0 g′

e′i, j
i .

Let b be some parameter to be determined later. We partition the input group ele-

ments into sets S0, . . . ,SM/b−1, each consisting of at most b elements. Then, for each

set Si, we compute the set Ti, containing all possible multi-products of elements in Si.

For example, if S0 = {g0,g1,g2}, then T0 = {g0,g1,g2,g0g1,g0g2,g1g2,g0g1g2}.

Now, we use the elements of the Ti to compute the G′j. Note that in order to

compute the G′i, we only need to use one element from each Ti.

C.3.1 Visualisation

S0 S1 · · · SM/b−1

g′0 g′1 · · · g′b−1 g′b · · · g′2b−1 · · · g′M−b−1 · · · g′M−1

T0 T1 · · · TM/b−1

g′0 g′1 · · · ∏
b−1
i=0 g′i g′b · · · ∏

2b−1
i=b g′i · · · g′M−b−1 · · · ∏

M−1
i=M−b−1 g′i

G′0 G′1 · · · G′M−1

C.3.2 Efficiency

Given Si, which contains b elements, we can compute all possible multi-products

using 2b group operations. There are M/b sets Si, so computing all of the Ti costs at

most 2bM/b group operations.

Given all of the Ti, each G′j uses at most one element from each, so it costs at

most M/b group operations. There are M of the G′j, so computing all of them costs

at most M2/b group operations.
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C.4 Recombining Inputs
Given the outputs of the multi-product step, we can now compute the final output G.

Recall that G = ∏
t−1
k=0 G′2

sk

k

This can be done using st = λ squarings.

C.5 Efficiency Analysis
This approach can be used to compute ∏

N−1
i=0 gei

i using λ +M + 2b M
b + M2

b , where

M =
√

λN.

Set b = logM− log logM. This becomes

λ +M+
M2

(logM− log logM)(logM)
+

M2

logM− log logM

which is

λ +
M2

logM
+o
(

M2

logM

)
Since M =

√
λN, we arrive at a cost of

λ +
2λN

logλN
+o
(

λN
logλN

)
C.5.1 Generalisation

In general, one can obtain a multiexponentiation algorithm which uses

λ +
2λMN

logλMN
+o
(

λMN
logλMN

)

group operations to compute M multiexponentiations from N group elements.



Appendix D

Computing Sums from [2] and [3] for

Low-Depth Circuit Protocols

We give an explicit method for computing the sum in 8.3.4.1, used by the verifier,

for a zero-knowledge proof that a committed value lies in a public list. The task is to

compute ∑
N−1
i=0 λi ∏

m−1
j=0 f j,i j , with N = nm.

First, rewrite the index i in terms of its n-ary digits i0, . . . , im−1, where i =

∑
m−1
j=0 i jn j.

n−1

∑
i0,...,im−1=0

λi0,...,im−1

m−1

∏
j=0

f j,i j =
n−1

∑
im−1=0

fm−1,im−1

[
∑

i0,...,im−2

λi0,...,im−1

m−2

∏
j=0

f ji j

]

Observe, that in brackets on the right hand side, we have n copies of the original

sum, but with m− 1 digits i j instead of m. This suggests a recursive method for

computing the sum. The base case is

n−1

∑
i0=0

λi0 f0i0

which costs n multiplications to compute. Denoting by M(m) the number of

multiplications required with m digits, we have M(1) = n and M(m)≤ n+n M(m−

1). From this, it is easy to see that M(m)≤ n
n−1N ≤ 2N.

Now, to compute ∑
N−1
i=0 λi ∏

m−1
j=0 f j,i j(X), with N = nm used by the prover in the

same protocol, note that since each f ji j(X) is a linear polynomial, the result has
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degree m. This means that if we evaluate each f ji j(X) at m+1 points, and compute

the sum for each evaluation point, we can interpolate to get the resulting polynomial.

When we choose the points to be roots of unity, the dominant cost for computing

this polynomial is O(mN) multiplications using fast Fourier transform techniques.

The techniques used to compute expressions like the sums appearing in 8.3.4.2,

in arguments for polynomial evaluation using our low-depth circuit argument, are

very similar.
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