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Clinical outcome in aneurysmal subarachnoid hem-
orrhage (aSAH) is significantly influenced by com-
plications such as rebleeding, cerebral vasospasm, 

delayed cerebral ischemia (DCI), secondary infarction, 
and hydrocephalus.3 To predict complications and clinical 
outcome after aSAH, several clinical grading systems, e.g., 
Hunt and Hess;10 World Federation of Neurosurgical Soci-
eties (WFNS);25 HAIR (Hunt and Hess, age, intraventricu-

lar hemorrhage, rebleed);14 and FRESH (Functional Re-
covery Expected after Subarachnoid Hemorrhage);28 and 
radiological scores to predict cerebral vasospasm, such 
as Fisher grade5 and Barrow Neurological Institute (BNI) 
score,27 have been developed. However, their predictive 
accuracy remains limited. The complex pathogenesis and 
pleomorphic nature of the aforementioned complications 
certainly contribute to this fact. Nevertheless, the possibil-
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OBJECTIVE  The aim of this study was to create prediction models for outcome parameters by decision tree analysis 
based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH).
METHODS  The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted 
to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly 
divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). 
The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventric-
uloperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral 
infarction on days 1, 3, and 7.
RESULTS  The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 
and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. 
Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-
6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 
68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data 
set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients 
(27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission.
CONCLUSIONS  The multiple variable analysis capability of decision trees enables exploration of dependent variables 
in the context of multiple changing influences over the course of an illness. The decision tree currently generated in-
creases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.
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ity of including prediction algorithms for specific compli-
cations in daily clinical assessments would allow crucial 
proactive decision making in the individual patient.

The multivariable analysis capability of decision trees 
makes it possible to go beyond simple cause and effect re-
lationships and to explore dependent variables in the con-
text of multiple influences over time.19,22 The aim of this 
study was to create prediction models for outcome param-
eters using decision tree analysis based on easily accessi-
ble clinical and, in particular, laboratory data. In a decision 
tree analysis, patients are split in a recursive manner based 
on the values of a statistically important variable. The first 
splitting of the entire patient population into subgroups is 
based on the most important variable. The splitting is re-
peated, and the subsequent subgroups are further divided 
on its most important variable until the subgroup is no lon-
ger subject to further splitting.

Methods
Database

The database consisted of prospectively collected data 
from 548 patients with confirmed aSAH who were admitted 
to the Neurocritical Care Unit, University Hospital Zurich 
(an academic tertiary care center) from January 2007 to De-
cember 2013. In brief, the diagnosis was based on CT and 
catheter or CT angiography findings. In addition to patient’s 
demographic characteristics, comorbidities were assessed 
(Table 1). The clinical severity at the time of admission was 
assessed according to the WFNS and Hunt and Hess grad-
ing systems.10,25 A neuroradiologist assessed the CT scans 
to determine the blood load (diameter of blood in a vertical 
cistern), Fisher grade, and BNI score, as well as the pres-
ence of infarcts. Delayed cerebral infarction was defined as 
radiologically or otherwise proven new infarcts, which did 
not occur within 48 hours of aneurysm coiling or clipping.4 
We explicitly decided to define delayed cerebral infarction 
as an outcome variable as opposed to the more commonly 
used delayed cerebral ischemia (DCI), as the definition and 
use of this abbreviation has been inconsistent.26

The database included laboratory data, from which the 
following parameters were selected for the decision tree 
analysis: glucose level at the time of admission, and inter-
leukin-6 (IL-6), procalcitonin (PCT), C-reactive protein 
(CRP) levels, and leukocyte counts on days 1, 3, and 7 af-
ter hemorrhage. Glucose level on admission was selected 
because it has previously been described as a predictor for 
poor outcome after SAH.13,21 Hyperglycemia on admission 
was defined as a blood glucose level greater than 8 mmol/L. 
IL-6, PCT, CRP levels, and leukocyte counts were collect-
ed, as these systemic inflammatory parameters have been 
reported to correlate with occurrence of ischemic compli-
cations and/or poor clinical outcome.9,12,15,16,18 Patients un-
derwent routine follow-up in the neurosurgical outpatient 
clinics 1 year after aSAH. The functional outcome was as-
sessed according to the Glasgow Outcome Scale (GOS).11 
The registry was approved by the ethics committee of Zu-
rich, Switzerland.

Statistical Analysis
Continuous variables are presented as mean ± standard 

deviation and categorical variables as frequency and percent-

ages. Statistical analysis was performed using IBM SPSS 
and IBM SPSS Modeler (versions 24 and 18, respectively).

Selection of Predictors
Univariable analysis was performed to screen candidate 

predictors regarding prediction of the following dependent 
variables: death, GOS score, occurrence of delayed cere-
bral infarction, and ventriculoperitoneal (VP) shunt de-
pendency. All aforementioned clinical, radiological, and 
laboratory data were evaluated (Table 1). GOS scores were 
dichotomized as 1–3 (unfavorable outcome) and 4 and 5 
(favorable outcome) for analysis. The importance of each 
variable was defined as (1 - p), with p being the p value of 
the appropriate statistical test of association between the 
candidate predictor and the target variable. The Pearson’s 
chi-square test was used for categorical predictors, and the 
continuous 1-way ANOVA F-test was used for continuous 
variables. To identify the most important predictors to be 
included in the model, the respective p values were subse-
quently ranked in ascending order.

Decision Tree Development and Internal Validation
To examine the model performance, the cohort was 

randomly divided into a derivation cohort (60% [n = 329], 
training data set) and a validation cohort (40% [n = 219], 
test data set). The classification and regression tree predic-
tion algorithm was applied to predict death, dichotomized 
functional outcome, and VP shunt dependency. Chi-square 
automatic interaction detection was applied to predict de-
layed cerebral infarction.2 The prediction model for each 
of the outcome parameters was adapted for the specific 
time points of days 1, 3, and 7 after aSAH.

Missing Values
If the dependent variable of a case was missing, the case 

was ignored in the analysis. If all predictor variables of a 
case were missing, the case was ignored. With the clas-
sification and regression tree algorithm, the surrogate split 
method was otherwise used to deal with missing data in 
predictor variables. With the chi-square automatic interac-
tion detection algorithm, missing values were treated as a 
predictor category. Based on the smallest p value, the algo-
rithm decided whether to merge the missing category with 
its most similar category or to keep the missing category 
as a separate category.2

Model Presentation
For each of the dependent variables, a risk chart was cre-

ated with regard to the absence or presence of the indepen-
dent variables. The group containing all patients is termed 
“root,” and the subgroups are termed “nodes.” Starting at 
the root, an appropriate primary split was selected, after 
which the data set was further divided into smaller subsets 
at each node up to the point where no further information 
could be gained or the stopping criterion was reached. The 
most significant independent variable tested is indicated 
below the root or node. In the branches to the next node, 
corresponding threshold values of this independent vari-
able can be found. The improvement of the model with 
each additional layer can be estimated by the numerical 
value below the label of the independent variable. The per-
formance of each model was assessed by comparing its 
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sensitivity and specificity in predicting a specific event in 
both the training and test data sets. The quality of predic-
tion was estimated to be good if the difference between 
the training and test data sets was < 5% and acceptable if it 
was < 10%. Based on the recorded factors of a new patient, 
risk can be predicted by following the decision tree path, 
beginning from the root to the nodes.

Results
The mean age of all patients was 54.7 ± 13.25 years 

(range 14–87 years); 368 patients (67.2%) were female and 
180 (32.8%) male. Of the population, 226 (41.2%) patients 
sustained a high-grade SAH (WFNS grades III–V), and 
320 (58.4%) a low-grade SAH (WFNS grades I and II). 
Two hundred eighty-eight (52.5%) patients were treated 
with clipping, 214 (39.0%) with coiling, 13 patients had 
a combination of coiling and clipping (2.4%), 2 patients 
received a bypass for trapping of the aneurysm (0.4%), and 
31 patients (5.7%) were treated conservatively. Patients’ 
baseline characteristics are shown in Table 1.

Prediction of Outcome
Prediction of Death

A total of 101 of 548 patients died, resulting in an over-
all mortality of 18.4% (Table 2). The decision tree models 
predicting death or survival on days 1, 3, and 7 after aSAH 
are shown in Figs. 1–3. The most important differentiat-
ing factor on day 1 was the IL-6 level. The pathway with 

CONTINUED IN NEXT COLUMN »

TABLE 1. Patients’ clinical and radiological characteristics 
(independent variables)

Variable Value

Sex
  Female 368 (67.2)
  Male 226 (32.8)
Age, mean ± SD in yrs 54.7 ± 13.3
Comorbidities, n (%)
  Arterial hypertension 193 (35.2)
  Hypercholesterolemia 52 (9.5)
  Diabetes mellitus 21 (3.8)
  Heart disorder 46 (8.4)
  Neurological disorder 32 (5.8)
  Liver disorder 61 (11.1)
  Migraine 34 (6.2)
  Smoking 252 (46.0)
  Recreational drug use 20 (3.7)
  Malignancy 4 (0.7)
Prior medication, n (%)
  Anticoagulation 17 (3.1)
  Antiplatelet drugs 79 (14.4)
Clinical baseline characteristics
  WFNS grade, n (%)
    I 144 (26.1)
    II 178 (32.5)
    III 81 (14.8)
    IV 77 (14.1)
    V 68 (12.4)
Radiological baseline characteristics
  Fisher grade, n (%)
    1 13 (2.6)
    2 9 (1.8)
    3 378 (74.6)
    4 107 (21.1)
  BNI score, n (%)
    1 13 (2.6)
    2 42 (8.3)
    3 123 (24.3)
    4 227 (44.8)
    5 102 (20.1)
Blood diameter in vertical cistern, mean ± SD in mm 11.6 ± 6.0
Ruptured aneurysm location, n (%)
  Internal carotid artery 64 (11.7)
  Middle cerebral artery 124 (22.6)
  Anterior cerebral artery 4 (0.7)
  Anterior communicating artery 178 (32.5)
  Pericallosal artery 24 (4.4)
  Posterior cerebral artery 9 (1.6)
  Posterior communicating artery 75 (13.7)
  Posterior inferior cerebellar artery 19 (3.5)
  Anterior inferior cerebellar artery 2 (0.4)
  Basilar artery 32 (5.8)

TABLE 1. Patients’ clinical and radiological characteristics 
(independent variables)

Variable Value

Ruptured aneurysm location, n (%) (continued)
  Vertebral artery 13 (2.4)
  Anterior choroidal artery 3 (0.5)
  Superior cerebellar artery 1 (0.2)
Multiple aneurysms, n (%) 132 (24.1)
Aneurysm treatment modality, n (%)
  Aneurysm clipping 288 (52.5)
  Aneurysm coiling 214 (39.0)
  Combination of clipping & coiling 13 (2.4)
  Conservative 31 (5.7)
  Bypass & trapping 2 (0.4)
Occurrence of rebleeding 43 (7.8)

» CONTINUED FROM PREVIOUS COLUMN

TABLE 2. Outcome characteristics (dependent variables)

Characteristic No. of Patients (%)

Overall mortality 101 (18.4)
Outcome after 1 yr
GOS scores 1–3 (unfavorable) 137 (31.4)
GOS scores 4 & 5 (favorable) 300 (68.6)
Delayed infarction 127 (23.2)
VP shunt dependency 148 (27.0)
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FIG. 1. Decision tree models on day 1 for the occurrence of death. Lc = leukocytes.
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FIG. 2. Decision tree models on day 3 for the occurrence of death.
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the best prediction of death was as follows: IL-6 on day 1 
greater than 10.35 ng/L (node 2), leukocyte counts on day 
1 greater than 11.7 × 109/L (node 6), and glucose on admis-
sion greater than 9.4 mmol/L (node 14). The model had the 
greatest accuracy on day 1. The sensitivity to predict death 
was 83.1% in the training and 60% in the test data set, and 

the specificity was 75.3% and 71.0%, respectively (Table 
3). The most important differentiating factor on days 3 and 
7 was the leukocyte count on day 1. The specificity was 
83.0% in the training and 76.7% in the test data set on day 
3, and 78.2% in the training and 71.6% in the test set on 
day 7.

FIG. 3. Decision tree models on day 7 for the occurrence of death.
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Prediction of Functional Outcome
The outcome data regarding GOS score after 1 year 

were available in 437 patients. Favorable functional out-
come, defined as GOS scores 4 and 5, was observed in 
68.6% of patients (Table 2). For the dichotomized outcome 
(GOS scores 4 and 5 as favorable outcome; GOS score ≤ 
3 as unfavorable outcome), the decision tree demonstrated 
the same prognostic subgroups and ranking order at all 
time points (Fig. 4). The pathway with the best prediction 
of unfavorable outcome was PCT on day 1 of greater than 
0.23 mg/L and of favorable outcome PCT on day 1 of 0.23 
mg/L or lower, as the most important differentiating factor 
(node 1), followed by WFNS grade II or lower (node 3). 
At each time point, the prediction accuracy for favorable 
outcome was 71.1% in the training and 66.7% in the test 
data set (Table 3), and the prediction accuracy for unfavor-
able outcome was 82.9% in the training and 75.4% in the 
testing data set.

Prediction of Delayed Cerebral Infarction
A total of 127 patients (23.2%) developed delayed cere-

bral infarction. The decision tree revealed the same prog-
nostic subgroups and ranking order at all time points (Fig. 
5). A CRP level on day 1 of 23 mg/L or lower was the most 
important differentiating factor. The pathway with the best 
prediction of absent delayed cerebral infarction was CRP 
level on day 1 of less than 23 mg/L (node 1), CRP level on 
day 1 of 11 mg/L or lower (node 3), no present comorbidi-

FIG. 4. Decision tree models for the dichotomized outcome were the 
same on days 1, 3, and 7. GOS scores of 1–3 were defined as “unfavor-
able” and GOS scores of 4–5 as “favorable.”

TABLE 3. Performance of the models for death, dichotomized 
functional outcome, delayed cerebral infarction, and VP shunt 
dependency on days 1, 3, and 7

Outcome Parameter
Training 
Data Set

Test Data 
Set

Death
  Model on day 1
    Correct prediction of death, n 

(sensitivity)
51 (83.1%) 24 (60.0%)

    Correct prediction of survival, n 
(specificity)

204 (75.3%) 125 (71.0%)

  Model on day 3
    Correct prediction of death, n 

(sensitivity)
46 (75.4%) 20 (50.0%)

    Correct prediction of survival, n 
(specificity)

225 (83.0%) 135 (76.7%)

  Model on day 7
    Correct prediction of death, n 

(sensitivity)
52 (85.3%) 22 (55.0%)

    Correct prediction of survival, n 
(specificity)

212 (78.2%) 126 (71.6%)

Dichotomized functional outcome
  Model on days 1, 3, & 7
    Correct prediction of favorable 

outcome, n (sensitivity)
128 (71.1%) 80 (66.7%)

    Correct prediction of unfavorable 
outcome, n (sensitivity)

63 (82.9%) 46 (75.4%)

Delayed cerebral infarction
  Model on days 1, 3, & 7
    Correct prediction of occurrence 

of delayed cerebral infarction 
(sensitivity)

37 (52.1%) 25 (44.6%)

    Correct prediction of absence 
of delayed cerebral infarction 
(specificity)

208 (79.7%) 111 (69.4%)

VP shunt dependency
  Model on day 1
    Correct prediction of VP shunt 

dependency (sensitivity)
137 (78.3%) 43 (62.3%)

    Correct prediction of absence of VP 
shunt dependency (specificity)

159 (62.8%) 89 (60.5%)

  Model on day 3
    Correct prediction of VP shunt 

dependency (sensitivity)
62 (78.5%) 43 (62.3%)

    Correct prediction of absence of VP 
shunt dependency (specificity)

159 (62.9%) 89 (60.5%)

  Model on day 7
    Correct prediction of VP shunt 

dependency (sensitivity)
53 (67.1%) 2 (30.4%)

    Correct prediction of absence of VP 
shunt dependency (specificity)

22 (87.3%) 119 (80.9%)
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ties (node 7), and PCT level on day 1 of 0.26 mg/L or lower 
(node 13). The prediction accuracy for the absence of cere-
bral infarction was 79.7% in the training and 69.4% in the 
test data set at each time point (Table 3).

Prediction of Shunt Dependency
A total of 148 patients (27%) developed VP shunt de-

pendency. The same decision tree fit best for the first 2 time 
points (Fig. 6). The best prediction was achieved with the 
decision tree on day 7 (Fig. 7). The most important dif-

ferentiating factor was hyperglycemia on admission (root), 
followed by the localization of the aneurysm (node 1) and 
WFNS grade (node 2). Overall, 89.8% of the patients with 
absence of hyperglycemia on admission, ruptured aneu-
rysm in the anterior circulation, and no concomitant ma-
lignant disease did not develop VP shunt dependency. Re-
garding the absence of VP shunt dependency, the model 
was most accurate on day 7 with a prediction accuracy 
of 87.3% in the training set and 80.9% in the test data set 
(Table 3).

FIG. 5. Decision tree models for occurrence of delayed cerebral infarction were the same on days 1, 3, and 7.
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Discussion
The accuracy of the decision tree models was good 

for survival on day 1 and for favorable functional out-
come at all 3 time points, with a difference between the 
training and test data set of less than 5%. Prediction ac-
curacy for survival on day 1 was 75.3% in the training 
data set. The most important differentiating factor was 
the IL-6 level on day 1. Systemic IL-6 levels have previ-
ously been reported to correlate with the clinical severity 
grade, occurrence of delayed neurological deficits, and 
outcome after aSAH.16,17 However, in those studies, se-
rial measurements over the course illness were averaged 
and analyzed. Less is known about the predictive value 
of early (≤ 24 hours) levels. The IL-6 level on day 1 might 

reflect the severity of the initial stress response in a selec-
tive manner.

Favorable functional outcome at all time points had a 
prediction accuracy of 71.1% in the training data set, with 
PCT on day 1 being the most important differentiating fac-
tor at all time points. PCT, as an acute-phase protein, is el-
evated under various other acute stress conditions, such as 
polytrauma, cardiac arrest, and burns.1 It can be assumed 
that PCT levels in aSAH patients reflect an acute systemic 
stress response to the hemorrhage. Of further interest, early 
(≤ 24 hours) PCT levels have been reported to accurately 
predict unfavorable neurological outcome after transient 
global cerebral ischemia due to cardiac arrest.6,8 In severe 
aSAH, it is known that comparable transient global cere-
bral ischemia occurs.7

FIG. 6. Decision tree models for VP shunt dependency on days 1 and 3.
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For survival, the prediction accuracy was acceptable 
on days 3 and 7 (difference between training and test data 
set < 10%). The prediction accuracy for survival on day 3 
was 83% and 78.2% on day 7. In both cases, a high leuko-
cyte count on day 1 was the most important differentiating 
factor. Leukocytosis during the course of the illness has 
been linked with occurrence of vasospasm, DCI, and/or 
outcome.15,23 More recently, initial (≤ 24 hours) leukocyte 
counts have been reported to be predictive for DCI and 
poor neurological outcome.24

The most important differentiating factor for shunt de-
pendency was hyperglycemia on admission. This corre-
sponds to the evaluation of the Columbia University data-
base (published in 2010). Glucose values of at least 126 mg/
dl (7 mmol/L) were found to be associated with long-term 
shunt dependency.20

The present study first analyzed predictors for outcome 

parameters in a time-dependent manner on days 1, 3, and 
7. Interestingly, laboratory parameters obtained on day 1 
were the most important differentiating factors in our sta-
tistical model and thereby surpassed conventional scoring 
systems, such as the Hunt and Hess and WFNS grading 
systems. This might be explained by the fact that these 
grades are assigned by humans and thus are subject to in-
terrater variability, whereas laboratory parameters are ab-
solute values. The results underline the significance of the 
very initial systemic stress response, reflecting the impact 
of the hemorrhage on the entire organism, for the overall 
mortality and morbidity.

In clinical practice, decision making is required on a 
daily and continuous basis. Even more, critical threshold 
values of laboratory parameters are not static but change 
frequently during the course of a disease, as can be seen 

FIG. 7. Decision tree models for VP shunt dependency on day 7. ACA = anterior cerebral artery; AcomA = anterior communicating 
artery; AICA = anterior inferior cerebellar artery; BA = basilar artery; ICA = internal carotid artery; MCA = middle cerebral artery; 
PcomA = posterior communicating artery; PericalA = pericallosal artery; VA = vertebral artery.
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in our data set regarding survival prediction on days 3 
and 7. In our survival prediction model, leukocyte count 
on days 1, 3, and 7 was consistently the most important 
differentiating factor, but the threshold varied from 12.33 
× 109/L or lower on day 3 to 13.02 × 109/L or lower on 
day 7. Especially after aSAH, secondary inflammatory as 
well as reparatory processes change the requirements of 
the organism over the course of time. Threshold values ac-
cording to which a patient is treated have to be adapted on 
a daily basis. Prediction scores have to take into account 
continuous changes in a patient’s requirements depending 
on the patient’s characteristics and current laboratory and 
clinical parameters, as well as complications that arise 
during the course of the disease, while providing an ac-
curate prediction of the outcome variable of interest.

Our study has some limitations. Decision tree analy-
sis is of limited use when missing data are present, which 
commonly occurs in medical studies. As our data set 
contained variables with missing values, only algorithms 
with well-defined criteria regarding the handling of miss-
ing values could be used. Another drawback regarding a 
decision tree is its difficult application on multifactorial, 
complicated diseases such as aSAH, as the more nodes 
there are, the less accurate the expected outcome is. Also, 
decision trees are based on expectations, which can lead to 
errors. A further clear limitation of the current study is the 
relatively low number of patients, and the fact that an exter-
nal validation has not been performed. This is reflected in 
the restricted sensitivity for the specific event and the large 
differences between the training and test data sets as in the 
prediction of delayed cerebral infarctions. Therefore, it is 
of great interest to target these limitations with a harmo-
nized large multicenter database to 1) perform an external 
validation and 2) increase the power and sensitivity of the 
analysis.

Despite the stated limitations, we have created a start-
ing point for future large, multicenter studies to develop 
more sensitive and specific prognostic scores in patients 
with aSAH.

Conclusions
Prediction scores are powerful tools regarding the man-

agement and decision-making process in general and es-
pecially in patients with complex, multifactorial diseases, 
such as aSAH. The current study demonstrates the poten-
tial benefit of decision tree analysis in patients with aSAH. 
The necessity to handle an increasing amount of infor-
mation calls for tools that can process and analyze large 
amounts of data, i.e., from continuously measured param-
eters over the course of an illness. Decision tree analysis is 
an interesting tool that can be used in data mining to gen-
erate new information based on an existing database, such 
as the one presented. The decision tree currently generated 
increases awareness of the early systemic stress response, 
which is seemingly pertinent for prognostication. To in-
crease its power, sensitivity, and specificity, its accuracy 
needs to be validated in future studies of large cohorts.
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