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Abstract
Teleparallel gravity and its popular generalization f (T) gravity can be 
formulated as fully invariant (under both coordinate transformations and local 
Lorentz transformations) theories of gravity. Several misconceptions about 
teleparallel gravity and its generalizations can be found in the literature, 
especially regarding their local Lorentz invariance. We describe how these 
misunderstandings may have arisen and attempt to clarify the situation. In 
particular, the central point of confusion in the literature appears to be related 
to the inertial spin connection in teleparallel gravity models. While inertial 
spin connections are commonplace in special relativity, and not something 
inherent to teleparallel gravity, the role of the inertial spin connection in 
removing the spurious inertial effects within a given frame of reference is 
emphasized here. The careful consideration of the inertial spin connection 
leads to the construction of a fully invariant theory of teleparallel gravity 
and its generalizations. Indeed, it is the nature of the spin connection that 
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differentiates the relationship between what have been called good tetrads 
and bad tetrads and clearly shows that, in principle, any tetrad can be utilized. 
The field equations for the fully invariant formulation of teleparallel gravity 
and its generalizations are presented and a number of examples using different 
assumptions on the frame and spin connection are displayed to illustrate the 
covariant procedure. Various modified teleparallel gravity models are also 
briefly reviewed.

Keywords: teleparallel gravity, modified gravity, invariance
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1.  Introduction

Although Einstein’s general theory of relativity (GR) is well studied and tested in many set-
tings [1], alternative theories of gravity continue to be of considerable interest [2–6]. Potential 
explanations for dark energy and dark matter within the current cosmological paradigm based 
on general relativity may be investigated using an alternative theory of gravity, rather than 
changing the matter content of the theory. Furthermore, it is possible that the problems of find-
ing a quantum theory of gravity may be resolved within a theory of gravity that is not general 
relativity. Therefore, it becomes necessary to challenge our assumptions and assess whether 
an alternative theory of gravity will lead to different results.

One class of alternative theories of gravity assumes that the motion in the gravitational 
field is no longer geometrized, as in general relativity, but is encoded in a dynamic gravita-
tional force, as in teleparallel gravity. More specifically, in general relativity the gravitational 
interaction is realized via the curvature of a zero torsion Lorentz connection, which is used to 
geometrize the interaction; this means that the motion of a free-falling particle in the gravita-
tional field can be viewed as an inertial motion in the curved spacetime and hence gravity can 
be viewed as a purely geometric effect. On the other hand, in teleparallel gravity the gravita-
tional interaction is an effect of the torsion of a zero curvature Lorentz connection. Torsion in 
this case acts as a force, which similarly to the Lorentz force equation of electromagnetism, 
appears as an effective force term on the right-hand side of the equation of motion of a free-
falling particle. We see in this way that, even though torsion has a well defined geometrical 
meaning, this geometrical meaning is not relevant for the teleparallel description of the gravi-
tational interaction. Interestingly, teleparallel gravity and general relativity are found to be 
completely equivalent theories. For this reason one generally refers to it as the teleparallel 
equivalent of general relativity (TEGR). Although equivalent, however, they are conceptu-
ally quite different. For example, in contrast to general relativity, teleparallel gravity is nicely 
motivated within a gauge theory context and can be beautifully framed as the gauge theory 
for the translation group [7]. In fact, like all other gauge theories, its Lagrangian density is 
quadratic in the torsion tensor, the field strength of the theory. The notions of frame and iner-
tial spin connection are presented in section 2. The fundamentals of teleparallel gravity are 
described in sections 3 and 4.

The geometrical setting of any gravitational theory is the tangent bundle, in which spa-
cetime is the base space and the tangent space at each point of the base space (also known 
as internal space) is the fiber of the bundle. Spacetime is assumed to be a metric spacetime 
with a general metric gµν. The tangent space, on the other hand, is by definition a Minkowski 
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spacetime with tangent space metric ηab. Since spacetime and the fibers are both four-dimen-
sional spacetimes, the bundle is said to be soldered. This means that the metrics gµν and ηab 
are related by

gµν = ηab ha
µhb

ν ,

with ha
µ being the tetrad field, the components of the solder 1-form. It should be noted that 

this geometrical structure is always present, independent of any prior assumptions.
Teleparallel gravity, a gauge theory for the translation group, is built on this geometrical 

structure. Gauge transformations are defined as local translations in the tangent Minkowski 
spacetime, the fiber of the bundle. Of course, like any other relativistic theory, it must also be 
invariant under both general coordinate transformations and local Lorentz transformations. 
Whereas the former is performed in spacetime, the latter is performed in the tangent space.

Local Lorentz transformations define different classes of frames, each one characterized by 
different inertial effects represented by a purely inertial connection (which we define later). 
Within each class, the infinitely many equivalent frames are related by a global Lorentz trans-
formation. In the class of frames in which no inertial effects are present, the inertial Lorentz 
connection is naturally zero7. In all other classes of frames, however, their inertial spin con-
nection will be non-vanishing.

Although they produce physical effects and have energy and momentum, inertial effects 
cannot be interpreted as a field in the usual sense of classical field theory. For example, in 
TEGR there are no field equations whose solutions could yield the inertial Lorentz connec-
tion8. (Indeed, neither the field equations  of teleparallel gravity nor the field equations  of 
general relativity are able to determine this.) Since the use of the correct inertial Lorentz con-
nection is crucial for the Lorentz symmetry of any relativistic symmetry, it is then necessary 
to resort to a different method for retrieving the inertial Lorentz connection associated to a 
general frame. Such a method is presented in detail in section 5, and some concrete examples 
are discussed in section 6.

It is important to remark that in the usual metric formulation of general relativity no frame 
needs to be specified. In the tetrad formulation of general relativity, we do not face the prob-
lem of specifying the Lorentz connection because the Levi-Civita spin connection of general 
relativity can be fully expressed in terms of the dynamical tetrad and hence can be eliminated 
from the theory. Furthermore, the Levi-Civita connection includes both gravitational and iner-
tial effects, unlike teleparallel gravity where gravitation is represented by a translational gauge 
potential and inertial effects are represented by an inertial spin connection. In contrast to gen-
eral relativity, therefore, the question of specifying the inertial spin connection is part of the 
process of finding solutions for the teleparallel field equations.

Influenced perhaps by general relativity, in which one does not need to carefully consider 
the inertial spin connection, many authors have never scrutinized it when working in the con-
text of teleparallel gravity. As a consequence much of the work on the teleparallel gravity was 
done using the assumption that the spin connection can be always chosen to be zero, and the 
only variable being the frame field, or tetrad. Of course, owing to the disregard of the inertial 
spin connection, the resulting theory is not invariant under local Lorentz transformations. This 
non-covariant version of the theory was then later nick-named ‘pure tetrad teleparallel gravity’ 
due to the fact that the tetrad appears as the only field variable [8].

7 In the presence of gravitation, these frames are called ‘proper frames’. In the absence of gravitation they reduce to 
the class of inertial frames of special relativity.
8 The situation is more subtle in modified theories such as f (T), and we will discuss this later (e.g. see the com-
ments in the Final Remarks).
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In spite of this lack of Lorentz invariance, since the solutions of the field equations  of 
teleparallel gravity are independent of the inertial spin connection, the solutions provided 
by the ‘pure tetrad teleparallel gravity’ coincide with the solutions provided by the locally 
Lorentz invariant formulation of teleparallel gravity. Nevertheless, apart from this property, 
some other conclusions obtained from this theory, including the Lorentz non-invariance, are 
different from those obtained from the locally Lorentz invariant teleparallel gravity theory. 
A discussion on ‘pure tetrad teleparallel gravity’, as well as on its differences in relation to 
teleparallel gravity itself, is presented in section 7.

Recently there have been many proposals to generalize teleparallel gravity. This was 

motivated by the example of f (
◦
R) gravity, where the Lagrangian density is generalized 

from 
◦
R → f (

◦
R), where 

◦
R is the Ricci scalar of the Levi-Civita connection (see [9] and refer-

ences within for an overview of f (R) gravity9). Similarly, it was suggested to generalize the 

Lagrangian density of teleparallel gravity from 
•
T → f (

•
T), where 

•
T  is the so-called torsion 

scalar with respect to the teleparallel connection that we will define later (see [10] and refer-
ences within for an overview of f (T) teleparallel gravity). Unlike the generalization of general 
relativity, in which the resulting field equations are no longer second order in derivatives, in 
f (T) teleparallel gravity the field equations continue to be second order. Unfortunately, there 
appears to be some confusion in the literature with regards to the viability of f (T) teleparallel 
gravity and, in particular, to its invariance under local Lorentz transformations [11, 12]. In the 

generalization of the type 
◦
R → f (

◦
R), since the Ricci scalar is built from the metric, which is 

Lorentz invariant by definition, the Ricci scalar 
◦
R is naturally Lorentz invariant too, and there-

fore f (R) gravity is also Lorentz invariant. In generalizations of the type 
•
T → f (

•
T), since 

•
T  

is a combination of scalar invariants of the torsion, and since the torsion tensor is a Lorentz 
covariant object, the scalar 

•
T  is Lorentz invariant, and consequently so is f (T). It appears 

that the source of confusion is in the use of the ‘pure tetrad teleparallel gravity’, which is not 
invariant under local Lorentz transformations. In this case, the non-invariance of the ‘pure 
tetrad teleparallel gravity’ will of course propagate to the modified f (T) models.

Fortunately, provided the inertial spin connection is appropriately taken into account, 
teleparallel gravity can be seen to be fully invariant under local Lorentz transformations. In 
this case, provided the same care is used, a fully covariant f (T) theory can be obtained [13]. 
Details of this construction are presented in section 8. Using an analogous procedure, it is 
possible to extend teleparallel gravity to other modified gravity models. In section 9 we illus-
trate this possibility with a number of modified teleparallel theories of gravity, including new 
general relativity [14], conformal teleparallel gravity [15] and f (T , B) gravity [16].

1.1.  Notation

The notation used when formulating teleparallel theories of gravity resembles that used in 
general relativity. However, it is necessary to introduce some additional symbols for the vari-
ous quantities which naturally arise in this framework. Sometimes this notation is identical 
to the notation used in general relativity but actually denotes a slightly different object. In 
order to help the reader navigate this notational quagmire, we present a list of symbols used 
throughout this work.

9 The notation used in this paper is summarized in table 1 below.
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Table 1.  Notation employed in the description of teleparallel gravity, general relativity 
and other gravitational theories used in this paper.

Symbol Description

µ, ν, . . . Coordinate indices
a, b, . . . Tangent space indices
xµ Space-time coordinates
ea Trivial frame fields
ea Trivial coframe one-forms
ea

µ Trivial frame field components
ea

µ Trivial coframe one-form components
f c

ab Coefficients of anholonomy
ηµν Minkowski spacetime metric
gµν Arbitrary spacetime metric
ηab Minkowski tangent space metric
Λa

b(x) Local Lorentz transformation
εab Infinitesimal Lorentz transformation
•
ωa

bµ
Teleparallel spin connection

•
Dµ Covariant derivative associated with 

•
ωa

bµ

ωa
bµ General spin connection

•
Ra

bµν Riemann curvature tensor of 
•
ωa

bµ
•
Ta

µν Torsion tensor of 
•
ωa

bµ
•
Tµ Torsion vector defined by 

•
Tνµ

ν

ua Anholonomic 4-velocity
uµ Holonomic 4-velocity
dσ Minkowski interval

ds Arbitrary interval
•
γρ

µν Holonomic connection associated with 
•
ωa

bµ
•
∇µ Covariant derivative associated with 

•
γρ

µν

εa(xµ) Local tangent space translation

δε Change of quantity under translation
Ba

µ Gauge potential one-form components
hµ Gauge covariant derivative
ha Non-trivial frame field
ha Non-trivial coframe field
ha

µ Non-trivial frame field components

ha
µ Non-trivial coframe field components

ha
(r)µ

Reference tetrad field
h Determinant of the tetrad
•
Γρ

µν
Teleparallel linear (Weitzenböck) connection

•
Kc

ba
Contortion tensor

•
T Torsion scalar

•
B Boundary term

•
L Lagrangian density of teleparallel gravity

(Continued)
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2.  Spin connection in special relativity

2.1. Trivial frames and bundles

Trivial frames, or tetrads, represent observers in special relativity and hence exist only in the 
absence of gravity. They are denoted here by {ea} and {ea}, and are general linear bases on 
the Minkowski spacetime manifold, satisfying the relation

ea(eb) = δa
b .� (1)

The whole set of such bases constitutes the bundle of linear frames. A frame field provides, 
at each point p  of spacetime, a basis for the vectors on the tangent space. Of course, on the 
common domains they are defined, each member of a given basis can be written in terms of 
the members of any other. For example,

ea = ea
µ ∂µ and ea = ea

µ dxµ,� (2)

and conversely,

∂µ = ea
µ ea and dxµ = ea

µ ea.� (3)

On account of the orthogonality condition (1), the frame components satisfy

ea
µea

ν = δνµ and ea
µeb

µ = δa
b .� (4)

Notice that these frames, and their bundles, are constitutive parts of spacetime: they are pres-
ent as soon as spacetime is taken to be a differentiable manifold [17].

•
S Action of teleparallel gravity

κ = 8πG Gravitational coupling constant (c  =  1)
Ea

ρ Euler–Lagrange expression
•
Sa

ρσ Superpotential

•
a

ρ Gauge current or energy-momentum pseudo-current

Θa
ρ Matter energy-momentum tensor

•
Σa

ρ Gravitational energy-momentum tensor

•
tµρ Energy-momentum pseudo-tensor

•
ωµ Quantity defined by 

•
ωa

bνha
νhs

µηbs

◦
ωc

bµ
Spin connection of general relativity

◦
Γλ

µν
Christoffel symbol or general relativity connection

◦
Rµ

ν
Ricci tensor of general relativity

◦
R Ricci scalar of general relativity

◦
L Lagrangian density of general relativity

•
Lf

Lagrangian density of f (T) gravity

vµ, aµ, tλµν Irreducible pieces of the torsion tensor
Tvec, Tax, Tten Squares of irreducible torsion pieces

Table 1.  (Continued)

Symbol Description

Class. Quantum Grav. 36 (2019) 183001
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A general linear basis {ea} satisfies the commutation relation

[ea, eb] = f c
ab ec,� (5)

with f c
ab the so-called coefficients of anholonomy, which are functions of the spacetime 

points. The dual expression of the commutation relation above is the Cartan structure equation

dec = − 1
2 f c

ab ea ∧ eb = 1
2 (∂µec

ν − ∂νec
µ) dxµ ∧ dxν .� (6)

The coefficient of anholonomy represent the curls of the basis members:

f c
ab = ea

µeb
ν(∂νec

µ − ∂µec
ν).� (7)

A special class of frames is that of inertial frames, denoted e′a, for which

f ′acd = 0.� (8)

Notice that f ′cab  =  0 means that de′a = 0 which, in turn, implies that e′a is a closed differential 
form and, consequently, locally exact: e′a  =  dx′a for some x′a. The basis {e′a} is then said to 
be integrable, or holonomic. Of course, all coordinate bases are holonomic. This is not a local 
property in the sense that it is valid everywhere for frames belonging to this inertial class.

Consider now the Minkowski spacetime metric written in a holonomic basis {dxµ}. When 
{xµ} represents a set of Cartesian coordinates, it has the form

ηµν = diag(+1,−1,−1,−1).� (9)

In any other coordinates, ηµν will be a function of the spacetime coordinates. The linear frame 
ea = ea

µ ∂µ provides a relation between the tangent-space metric ηab and the spacetime metric 
ηµν, given by

ηab = ηµν ea
µeb

ν� (10)

with the inverse given by

ηµν = ηab ea
µeb

ν .� (11)

Independent of whether ea is holonomic or not, or equivalently, whether they are inertial or 
not, they always relate the tangent Minkowski space to a Minkowski spacetime. These are the 
frames appearing in special relativity, which are usually called trivial frames, or trivial tetrads.

2.2.  Spin connections and inertial effects

In special relativity, Lorentz connections represent inertial effects present in a given frame. In 
the class of inertial frames, for example, where these effects are absent, the Lorentz connec-
tion vanishes identically. To see how an inertial Lorentz connection shows up, let us consider 
an inertial frame e′aµ written in a general coordinate system {xµ}, in which case it has the 
holonomic form

e′aµ = ∂µx′a� (12)

with x′a a point-dependent Lorentz vector: x′a = x′a(xµ). Under a local Lorentz transformation,

xa = Λa
b(x) x′b,� (13)

the holonomic frame (12) transforms into the new frame

ea
µ = Λa

b(x) e′bµ.� (14)

As a simple computation shows, it has the explicit form

Class. Quantum Grav. 36 (2019) 183001
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ea
µ = ∂µxa +

•
ωa

bµ xb ≡
•
Dµxa� (15)

where
•
ωa

bµ = Λa
e(x) ∂µΛb

e(x)� (16)

is a Lorentz connection that represents the inertial effects present in the Lorentz-rotated frame 

ea
µ, and 

•
Dµ is the associated covariant derivative. Recalling that under a local Lorentz trans-

formation Λa
b(x) a general spin connection ωa

bµ changes according to [18]

ωa
bµ = Λa

e(x)ω′e
dµ Λb

d(x) + Λa
e(x) ∂µΛb

e(x),� (17)

the spin connection (16) is seen to be the connection obtained from a Lorentz transformation 

of a vanishing spin connection 
•
ω′e

dµ = 0:
•
ωa

bµ = Λa
e(x)

•
ω′e

dµ Λb
d(x) + Λa

e(x) ∂µΛb
e(x).� (18)

Starting from an inertial frame, in which the inertial spin connection vanishes, different classes 
of non-inertial frames are obtained by performing local (point-dependent) Lorentz transfor-
mations Λa

b(xµ). Within each class, the infinitely many frames are related through global 
(point-independent) Lorentz transformations Λa

b = constant.
Now, due to the orthogonality of the tetrads, transformation (14) can be rewritten in the 

form

Λa
b(x) = ea

µe′b
µ.� (19)

Using this relation, the coefficient of anholonomy (7) of the frame ea
µ is found to be

f c
ab =

•
ωc

ba −
•
ωc

ab� (20)

where we have identified 
•
ωa

bc =
•
ωa

bµ ec
µ. The inverse relation is

•
ωa

bc =
1
2 ( fba

c + fca
b − f a

bc) .� (21)

Of course, as a purely inertial connection, 
•
ωa

bµ has vanishing curvature:
•
Ra

bνµ ≡ ∂ν
•
ωa

bµ − ∂µ
•
ωa

bν +
•
ωa

eν
•
ωe

bµ − •
ωa

eµ
•
ωe

bν = 0.� (22)

For ea
µ a trivial tetrad, 

•
ωa

bµ has also vanishing torsion:
•
Ta

νµ ≡ ∂νea
µ − ∂µea

ν +
•
ωa

eν ee
µ − •

ωa
eµ ee

ν = 0.� (23)

2.3.  Example: equation of motion of free particles

In the class of inertial frames e′aµ, a free particle is described by the equation of motion

du′a

dσ
= 0,� (24)

with u′a the anholonomic particle four-velocity, and

dσ2 = ηµν dxµdxν� (25)

the quadratic Minkowski interval. Of course, since it is written in a specific class of frames, 
equation (24) is not manifestly covariant under local Lorentz transformations. This does not 
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mean, however, that it is not covariant. In fact, in the anholonomic frame ea
µ, related to e′aµ 

by the local Lorentz transformation (14), the equation of motion of a free particle assumes the 
Lorentz covariant form

dua

dσ
+

•
ωa

bµ ub uµ = 0,� (26)

where

ua = Λa
b(x) u′b� (27)

is the Lorentz transformed four-velocity, with uµ = ua ea
µ = dxµ/dσ the spacetime holo-

nomic four-velocity. In the tetrad version of special relativity, therefore, the Lorentz connec-

tion 
•
ωa

bµ represents inertial effects only, and are responsible for rendering relativistic physics 
invariant under local Lorentz transformations.

In terms of the holonomic four-velocity uρ, the equation of motion (26) assumes the form

duρ

dσ
+

•
γρ

νµ uνuµ = 0,� (28)

where

•
γρ

νµ = ec
ρ∂µec

ν + ec
ρ •
ωc

bµeb
ν ≡ ec

ρ
•
Dµec

ν� (29)

is the spacetime-indexed version of the inertial spin connection 
•
ωa

bµ. The inverse relation is

•
ωa

bµ = ea
ρ∂µeb

ρ + ea
ρ

•
γρ

νµeb
ν ≡ ea

ρ

•
∇µeb

ρ.� (30)

Connection 
•
γρ

νµ is sometimes referred to as the Ricci coefficient of rotation [19].

3.  Basics of teleparallel gravity

3.1.  Gauge structure

Teleparallel gravity can be interpreted as a gauge theory for the translation group [7, 20]. 
The reason for translations can be understood from the gauge paradigm, of which Noether’s 
theorem is a fundamental piece. Recall that the source of the gravitational field is energy and 
momentum. According to Noether’s theorem, the energy-momentum current is covariantly 
conserved provided the source Lagrangian is invariant under spacetime translations. If gravi-
tation is to present a gauge formulation with energy-momentum as the source, then it must be 
a gauge theory for the translation group.

A gauge transformation in teleparallel gravity is defined as a local translation of the tangent 
space coordinates,

xa → xa + εa(xµ) ,� (31)

with εa(xµ) the infinitesimal transformation parameter. Under such a transformation, a general 
source field Ψ = Ψ(xa(xµ)) transforms according to (see [7], page 42)

δεΨ = εa(xµ)∂aΨ ,� (32)

with ∂a the translation generators. For a global translation with parameter εa = constant, the 
ordinary derivative ∂µΨ transforms covariantly:

δε(∂µΨ) = εa∂a
(
∂µΨ

)
.� (33)
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For a local transformation with parameter εa(x), however, it does not transform covariantly:

δε(∂µΨ) = εa(x)∂a
(
∂µΨ

)
+

(
∂µε

a(x)
)
∂aΨ.� (34)

In fact, the last term on the right-hand side is a spurious term, which breaks the translational 
gauge covariance of the transformation. Similar to all other gauge theories [21], in order to 
recover gauge covariance it is necessary to introduce a (in this case translational) gauge poten-
tial Ba

µ, a 1-form assuming values in the Lie algebra of the translation group: Bµ = Ba
µ∂a. 

This potential can be used to construct the gauge covariant derivative

hµΨ = ∂µΨ+ Ba
µ ∂aΨ� (35)

which holds in the class of Lorentz frames in which there are no inertial effects. In fact, pro-
vided the gauge potential transforms according to

δεBa
µ = −∂µε

a(x) ,� (36)

the derivative hµΨ is easily seen to transform covariantly under gauge translations:

δε(hµΨ) = εa(x)∂a(hµΨ).� (37)

This is the output of the gauge construction applied to the translation group.
Owing to the soldered property of the tangent bundle10, on which teleparallel gravity is 

constructed, the gauge covariant derivative (35) can be rewritten in the form

hµΨ = ha
µ∂aΨ,� (38)

where

ha
µ = ∂µxa + Ba

µ� (39)

is a non-trivial tetrad field. By non-trivial we mean a tetrad with Ba
µ �= ∂µε

a, otherwise it 
would be just a translational gauge transformation of the trivial tetrad ea

µ = ∂µxa.
Similar to any relativistic theory, the equivalent expressions valid in a general Lorentz 

frame can be obtained by performing a local Lorentz transformation

xa → Λa
b(x) xb.� (40)

Considering that the translational gauge potential Ba
µ is a Lorentz vector in the algebraic 

index; that is,

Ba
µ → Λa

b(x)Bb
µ,� (41)

it is easy to see that, in a general Lorentz frame, the translational covariant derivative (35) 
assumes the form

hµΨ = ∂µΨ+
•
ωa

bµxb ∂aΨ+ Ba
µ∂aΨ� (42)

with 
•
ωa

bµ the purely inertial Lorentz connection (16). The tetrad components (38) of the 
derivative (42) can then be written as

ha
µ = ∂µxa +

•
ωa

bµ xb + Ba
µ.� (43)

The first two terms on the right-hand side make up the trivial tetrad

ea
µ ≡

•
Dµxa = ∂µxa +

•
ωa

bµ xb,� (44)

10 The presence of the tetrad field provides a relationship between tangent space (internal) tensors and spacetime 
(external) tensors, which is what is meant by the term ‘soldering’.
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which allows (43) to be rewritten in the form

ha
µ =

•
Dµxa + Ba

µ.� (45)

In a general class of frames, therefore, the gauge transformation of Ba
µ is

δεBa
µ = −

•
Dµε

a.� (46)

In the class of frames in which the inertial spin connection 
•
ωa

bµ vanishes, it assumes the 
form (36).

3.2. Translational field strength: torsion

As in any gauge theory, the field strength of teleparallel gravity can be obtained from the com-
mutation relation of gauge covariant derivatives. Using the translational covariant derivative 
(see equation (42))

hµΨ = ∂µΨ+
•
ωa

bµxb ∂aΨ+ Ba
µ∂aΨ ,� (47)

we obtain

[hµ, hν ] =
•
Ta

µν∂a ,� (48)

where
•
Ta

µν = ∂µBa
ν − ∂νBa

µ +
•
ωa

bµBb
ν − •

ωa
bνBb

µ� (49)

is the translational field strength, and ∂a stands for the translation generators. Adding the 
vanishing piece

•
Dµ

( •
Dνxa)− •

Dν

( •
Dµxa) ≡ 0

to the right-hand side of (49), it becomes
•
Ta

µν = ∂µha
ν − ∂νha

µ +
•
ωa

bµhb
ν − •

ωa
bνhb

µ.� (50)

Consequently, we see that the field strength of teleparallel gravity is just the torsion tensor. It 
should be noted that, using this construction, the spin connection appearing within the tetrad 
is the same as that appearing explicitly in the last two terms of the definition of torsion. In fact, 

if these connections are not the same, 
•
Ta

µν  can no be longer be interpreted as the translational 
field strength. In the class of frames in which 

•
ωa

bµ vanishes, torsion assumes the form
•
Ta

µν = ∂µha
ν − ∂νha

µ� (51)

with ha
ν  the tetrad (39). In section 7 we will return to discuss this point in connection to the 

so-called ‘pure tetrad teleparallel gravity’.
Through contraction with a tetrad, the torsion tensor can be written in the form

•
Tρ

µν ≡ ha
ρ
•
Ta

µν =
•
Γ
ρ
νµ −

•
Γ
ρ
µν ,� (52)

where
•
Γ
ρ
νµ = ha

ρ∂µha
ν + ha

ρ •
ωa

bµ hb
ν ≡ ha

ρ
•
Dµha

ν� (53)
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is the non-trivial spacetime-indexed connection corresponding to the inertial spin connection 
•
ωa

bµ, also known as the Weitzenböck connection. Its definition is equivalent to the identity

∂µha
ν +

•
ωa

bµ hb
ν −

•
Γ
ρ
νµ ha

ρ = 0.� (54)

In the class of frames in which the spin connection 
•
ωa

bµ vanishes, it reduces to

∂µha
ν −

•
Γ
ρ
νµ ha

ρ = 0.� (55)

In all other classes of frame, it assumes the general form (54).

3.3.  Gravitational coupling prescription

3.3.1. Translational coupling prescription.  As discussed in section  3.1, in the absence of  
gravitation the Lorentz covariant derivative in a general frame is written as

eµΨ = ea
µ∂aΨ ,� (56)

with ea
µ the trivial tetrad (44). In the presence of gravitation, on the other hand, it is given by

hµΨ = ha
µ∂aΨ ,� (57)

with ha
µ the non-trivial tetrad (43). The translational coupling prescription in a general class 

of frames can then be written in the form

ea
µ∂aΨ → ha

µ∂aΨ.� (58)

Such a coupling prescription actually amounts to the tetrad replacement

ea
µ → ha

µ ,� (59)

which, in turn, amounts to replacing the spacetime Minkowski metric by a general Riemanian 
metric:

ηµν = ηab ea
µeb

ν → gµν = ηab ha
µhb

ν .� (60)

As a consequence, the spacetime intervals change according to

dσ2 = ηµνdxµdxν → ds2 = gµνdxµdxν .� (61)

It is important to remark that in general relativity such replacement is implicitly assumed 
whenever applying the gravitational coupling prescription. In teleparallel gravity, on the 
other hand, it emerges naturally as a consequence of the translational coupling prescription. 
Furthermore, in contrast to general relativity, it provides an explicit expression for the tetrad 
field, as given by equation (43).

3.3.2.  Lorentz coupling prescription.  Like any other classical field theory, since local Lorentz 
invariance is a fundamental symmetry of the nature, teleparallel gravity must also be invari-
ant under local Lorentz transformations. It should be emphasised that Lorentz invariance by 
itself is empty of dynamical content in the sense that any relativistic equation can be written 
in a Lorentz covariant form. Although not a dynamic symmetry, however, the local Lorentz 
invariance introduces an additional coupling prescription, which is a direct consequence of the 
strong equivalence principle.
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The explicit form of the Lorentz gravitational coupling prescription can be obtained from 
the so-called general covariance principle (see [22], section 4.1). In its frame version [23], 
this principle states that, by writing a special-relativistic equation in a Lorentz covariant form 
and then using the strong equivalence principle, it is possible to obtain its form in the presence 
of gravitation. The general covariance principle can be thought of as an active version of the 
usual (or passive) strong equivalence principle, which says that, given an equation valid in the 
presence of gravitation, the corresponding special-relativistic equation  is recovered locally 
(that is, at a point or along a trajectory).

Let us start with the situation in special relativity and consider the ordinary derivative of a 
general field Ψ. The first step of the general covariance principle is to perform a local Lorentz 
transformation, such that all ordinary derivatives ∂µΨ assume the Lorentz covariant form,

∂µΨ → DµΨ = ∂µΨ+ 1
2 ea

µ ( fbc
a + fac

b − f c
ba) Sc

bΨ,� (62)

where f c
ab is the coefficient of anholonomy (7) of the trivial tetrad in the Minkowski space-

time, and Sc
b are Lorentz generators written in the representation to which Ψ belongs. The last 

term in the right-hand side is an inertial compensating term that enforces the Lorentz covari-
ance of the derivative in the new Lorentz frame.

In the presence of gravitation, according to the translational coupling prescription (59), 
the trivial tetrad ea

µ is replaced by the nontrivial one ha
µ, and the coupling prescription (62) 

assumes the form

∂µΨ → DµΨ = ∂µΨ+ 1
2 ha

µ ( fbc
a + fac

b − f c
ba) Sc

bΨ� (63)

with the coefficient of anholonomy now given by

f c
ab = ha

µhb
ν(∂νhc

µ − ∂µhc
ν).� (64)

In the specific case of teleparallel gravity, where torsion is non-vanishing, relation (20) 
assumes the form

•
ωc

ba −
•
ωc

ab = f c
ab +

•
Tc

ab,� (65)

where 
•
Tc

ab is the torsion of the purely inertial connection 
•
ωc

ab. Use of this equation for three 
different combinations of indices gives

1
2 ( fbc

a + fac
b − f c

ba) =
•
ωc

ba −
•
Kc

ba,� (66)

with the contortion tensor
•
Kc

ba = 1
2

( •
Tb

c
a +

•
Ta

c
b −

•
Tc

ba
)
.� (67)

The coupling prescription in the presence of gravitation is then obtained by replacing the iner-
tial compensating term of (63) with that given by (66):

∂µΨ → ∂µΨ+ 1
2

( •
ωc

bµ −
•
Kc

bµ
)

Sc
bΨ,� (68)

which defines the full (translational plus Lorentz) gravitational coupling prescription in tele-
parallel gravity.

Now, due to the fundamental identity of the theory of Lorentz connections [18],

•
ωc

bµ −
•
Kc

bµ =
◦
ωc

bµ,� (69)
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with 
◦
ωc

bµ the Levi-Civita spin connection, the teleparallel coupling prescription (68) is found 
to be equivalent to the general relativity coupling prescription

∂µΨ →
◦
DµΨ = ∂µΨ+ 1

2
◦
ωc

bµ Sc
bΨ.� (70)

Since both coupling prescriptions were obtained from the general covariance principle, both 
are consistent with the strong equivalence principle.

3.3.3.  Separating inertial effects from gravitation.  As is well-known, the spin connection 
◦
ωc

bµ  

of general relativity includes both gravitation and inertial effects. Considering that 
•
ωc

bµ rep-

resents inertial effects only, and that 
•
Kc

bµ represents gravitation only, identity (69) provides 

an elegant view of the strong equivalence principle. In fact, in a local frame in which the spin 

connection of general relativity vanishes, 
◦
ωc

bµ
.
= 0, that identity reduces to

•
ωc

bµ
.
=

•
Kc

bµ,� (71)

from which we see that, in this local frame, inertial effects 
•
ωc

bµ exactly compensates for 
gravitation 

•
Kc

bµ.
As an illustration, let us consider a free particle in Minkowski spacetime, whose equa-

tion of motion has the form

uµ∂µua = 0.� (72)

Since the four-velocity ua is a Lorentz vector, we use the vector representation of the Lorentz 
generators, which is given by the matrix [24]

(
Sc

b)a
d = δb

d δ
a
c − ηcd η

ab.� (73)

In this case, the general relativity coupling prescription (70) assumes the form

∂µua →
◦
Dµua = ∂µua + 1

2
◦
ωc

bµ (Sc
b)a

d ud.� (74)

When applied to the equation of motion (72) describing a free particle, it yields the geodesic 
equation

uµ
(
∂µua +

◦
ωa

bµub) = 0.� (75)

The vanishing of the right-hand side means that in general relativity there is no gravitational 
force. In this theory, gravitation and inertial effects are described by the geometry of space-
time, and are included in the spin connection in the left-hand side of the equation. In a similar 
way, applying the teleparallel coupling prescription (68) to the free equation of motion (72) 
yields the teleparallel force equation

uµ
(
∂µua +

•
ωa

bµub) = •
Ka

bµubuµ,� (76)

which is, of course, equivalent to the geodesic equation (75). In this description, however, the 

inertial effects, represented by the inertial spin connection 
•
ωa

bµ, remain geometrized in the 
left-hand side of the equation, whereas gravitation, represented by the contortion tensor 

•
Ka

bµ, 

plays the role of a gravitational force on the right-hand side [25]. This separation of gravitation 
and inertial effects, beautifully evinced by identity (69), is one of most prominent properties 
of teleparallel gravity.
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4.  Lagrangian and field equations

4.1. Teleparallel gravity Lagrangian

Similar to any gauge theory, the Lagrangian density of teleparallel gravity is quadratic in the 
torsion tensor, the field strength of the theory (we use units in which c  =  1)

•
L =

h
16πG

(
1
4

•
Tρ

µν

•
Tρ

µν + 1
2

•
Tρ

µν

•
Tνµ

ρ −
•
Tρ

µρ

•
Tνµ

ν

)
� (77)

with h = det(ha
µ).

The first term corresponds to the usual Lagrangian of internal gauge theories. The existence 
of the other two terms is related to the soldered character of the bundle, which allows internal 
and external indices to be treated on the same footing, and consequently new contractions turn 
out to be possible. Since torsion is a tensorial quantity, each term of this Lagrangian is invari-
ant under both general coordinate and local Lorentz transformations. As a consequence the 
whole Lagrangian is also invariant, independently of the numerical value of the coefficients.

Introducing the notation κ = 8πG, we note the crucial property of the teleparallel 
Lagrangian (77) is its equivalence (up to a divergence) to the standard Einstein–Hilbert 
Lagrangian

•
L ≡

◦
L − 1

κ
∂µ

(
h
•
Tµ

)
� (78)

where 
•
Tµ = Tνµ

ν  is the vector torsion. Due to this property teleparallel gravity is often 
called the teleparallel equivalent of general relativity since the dynamical content of the field 
equations derived from both Lagrangians must be the same. We remark that the equivalence 
with general relativity is achieved only for the specific combination of numerical coeffi-
cients appearing in the Lagrangian (77). We mention in passing that those parameters can be 
obtained directly from the gauge paradigm, without resorting to general relativity [7]. This is 
an important property in the sense that it renders teleparallel gravity a self-consistent theory.

4.2. Teleparallel gravity field equations

To derive the field equations of teleparallel gravity, let us consider the Lagrangian

L =
•
L+ Ls,� (79)

with Ls the Lagrangian of a general source field. Variation with respect to the gauge potential 
Ba

ρ , or equivalently, with respect to the tetrad field ha
ρ, yields the teleparallel gravitational 

field equations

E ρ
a = κ hΘa

ρ,� (80)

where on the left-hand side we have defined the Euler–Lagrange expression

E ρ
a ≡ κ

δ
•
Lf

δha
ρ

= ∂σ

(
h
•
Sa

ρσ
)
− κ h

•
a

ρ� (81)

and we have introduced the superpotential

•
S ρσ

a =
1
2

( •
Tσρ

a +
•
T ρσ

a −
•
Tρσ

a

)
− h σ

a
•
Tθρ

θ + h ρ
a

•
Tθσ

θ� (82)

and the gauge current
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•
a

ρ =
1
κ

ha
λ
•
Sc

νρ
•
Tc

νλ − h ρ
a

h
•
L+

1
κ

•
ωc

aσ
•
Sc

ρσ ,� (83)

which in this case represents the Noether energy-momentum pseudo-current of gravitation [26].
The right-hand side of the field equations (80) is the matter energy-momentum tensor

Θa
ρ = −1

h
δLs

δha
ρ

.� (84)

We note that the anti-symmetric part of Θ[µν] = ha
[µgν]ρΘ

ρ
a = 0 due to the invariance of the 

action under local Lorentz transformations [7].

4.3.  Alternative forms of teleparallel gravity field equations

There are many equally valid ways to write the field equations (80) that can be useful in dif-
ferent situations. One of them is to write the field equations using the teleparallel covariant 
derivative as

•
Dσ

(
h
•
Sa

ρσ
)
− κ h

•
Σa

ρ = κ hΘa
ρ,� (85)

where we have defined the gravitational energy-momentum tensor

•
Σa

ρ =
•
a

ρ − 1
κ

•
ωc

aσ
•
Sc

ρσ .� (86)

The advantage of this form of the field equations is that 
•
Σa

ρ is a proper tensor under both dif-
feomorphisms and local Lorentz transformations. Moreover, it can be shown to be trace-free:

•
Σρ

ρ ≡ ha
ρ

•
Σa

ρ = 0,� (87)

as is appropriate for a massless field. Alternatively, the field equations (80) can be rewritten in 
terms of spacetime-indexed quantities as

Eµ
ρ ≡ ∂σ

(
h
•
S ρσ
µ

)
+ κh

•
t ρ
µ = κ hΘµ

ρ,� (88)

where

h
•
t ρ
µ =

1
κ

h
•
Γ
α
σµ

•
S σρ
α + δ ρ

µ

•
L,� (89)

is the energy-momentum pseudotensor. Due to the fact that h
•
t ρ
µ  is conserved with ordinary 

derivative, it straightforwardly leads to spacetime conserved charges [8]. Moreover, the left-
hand side Eµ

ρ of (88) is symmetric, which allows an easy comparison with the field equa-
tions of general relativity in the metric formulation.

4.4.  Variations with respect to the spin connection

From the point of view of the gauge approach to teleparallel gravity discussed in section 3—in 
particular, from the fact that the tetrad can be written in terms of the translational potential 
and the spin connection, as can be seen from (43)—it is clear that the spin connection is not 
an independent variable from the tetrad. However, if we decide to use as a starting point, not 
the gauge paradigm but the Lagrangian (77) written as a function of the tetrad and the spin 
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connection, we need to address the problem of the variation of the Lagrangian with respect to 
the spin connection.

As we will show shortly, it turns out that the variation with respect to the spin connection is 
identically satisfied for an arbitrary teleparallel spin connection, and hence there are no extra 
field equations that would determine it. This is consistent with our interpretation of the spin 
connection as representing inertial effects only, and hence should not have their own dynamics 
governed by extra field equations11. The problem of how to determine the spin connection will 
be discussed in detail in section 5.

There are multiple methods to compute the variations of the Lagrangian with respect to the 
spin connection. Let us first introduce the method developed in [27]. We consider a teleparal-
lel Lagrangian corresponding to a vanishing spin connection and a Lagrangian for an arbitrary 
spin connection: i.e.

•
L(ha

µ, 0) and
•
L(ha

µ,
•
ωa

bµ).� (90)

Then we use the equivalence of these Lagrangians with the Einstein–Hilbert Lagrangian, as 
given by equation (78). Since both Lagrangians (90) correspond to the same tetrad, the same 
Einstein–Hilbert Lagrangian can be associated with both of them. Their equivalence can then 
be written in the form

◦
L(ha

µ) ≡
•
L(ha

µ,
•
ωa

bµ) + ∂µ

[
h
κ

•
Tρµ

ρ(ha
µ,

•
ωa

bµ)

]

=
•
L(ha

µ, 0) + ∂µ

[
h
κ

•
Tρµ

ρ(ha
µ, 0)

]
.� (91)

On the other hand, contracting the torsion tensor (50) with h ν
a  yields

•
Tρµ

ρ(ha
µ,

•
ωa

bµ) =
•
Tρµ

ρ(ha
µ, 0)− •

ωµ,� (92)

where we have used the notation 
•
ωµ =

•
ωa

bνh ν
a hbµ. Plugging (92) into (91), the two teleparal-

lel Lagrangians are found to be related by [27]:

•
L(ha

µ,
•
ωa

bµ) =
•
L(ha

µ, 0) +
1
κ
∂µ

(
h
•
ωµ

)
.� (93)

This relation shows that the inertial spin connection 
•
ωa

bµ enters the Lagrangian as a total 
derivative, and hence the variation with respect to the spin connection vanishes identically

δ
•
L

δ
•
ωa

bµ

= 0.� (94)

Moreover, relation (93) implies that the spin connection does not contribute to the field 
equations.

An alternative method to vary the action is to straightforwardly vary the action and restrict 
the variations to those that preserve the local flatness and the teleparallel form of the spin 
connection [28]. Since the teleparallel connection (16) is entirely given by the local Lorentz 
transformation matrix Λa

b, it is sufficient to consider only its changes under infinitesimal local 
Lorentz transformations

11 However, as we will show later in section 8.1, this changes in the case of modified teleparallel theories of gravity 
when the spin connection becomes dynamical with non-trivial field equations—albeit not independent from the 
field equations for the tetrad.

Class. Quantum Grav. 36 (2019) 183001



Topical Review

19

Λa
b = δa

b + εa
b, εab = −εba.� (95)

The variation of the spin connection is then given by

δ
•
ωab

µ = δε
•
ωab

µ =
•
Dµε

ab = ∂µε
ab +

•
ωa

cµε
cb +

•
ωb

cµε
ac.� (96)

We can then vary the action with respect to the spin connection

δω
•
L =

δ
•
L

δ
•
ωab

µ

δ
•
ωab

µ =
h

2κ
•
Sab

µδ
•
ωab

µ =
h

2κ
•
Sab

µ
•
Dµε

ab.� (97)

Integrating by parts, taking into account that the total derivative does not contribute to the field 
equations, and using the antisymmetry of εab, we find the condition

•
Dµ

(
h
•
S[ab]

µ
)
= 0.� (98)

Using the identity [29]

h
•
S[ab]

µ =
•
Dν

(
hh[aνhb]

µ
)

,� (99)

and the fact that the teleparallel covariant derivatives commute with each other (on account of 
the zero curvature), we find that the field equations for the spin connection (98) are identically 
satisfied.

Therefore, both methods of variation presented here lead to the same result, namely that 
the spin connection trivially satisfies the field equations. It is also possible to show that the 
constrained variational principle, where the teleparallel condition is implemented using the 
method of Lagrange multipliers, leads exactly to the same result [28].

4.5.  Solving the teleparallel gravity field equations

We discuss now a method for solving the teleparallel field equations [8]. To begin with, let us 
recall that the gravitational field equations are intricate nonlinear differential equations, for 
which there is not a general constructive method for obtaining solutions. One has to resort 
to some ad hoc procedure in which some hand work is necessary. Typically one relies on the 
symmetries of the solution to propose an ansatz for the metric or tetrad, thereby obtaining sim-
pler differential equations that are easier to solve. The important point is that upon proposing 

some ansatz, one is most likely choosing a tetrad whose associated inertial connection 
•
ωa

bµ 
is non-vanishing.

However, as follows from the relation (93), the spin connection enters the action only 

through a surface term and hence the field equations obtained from 
•
L(ha

µ,
•
ωa

bµ) and from 
•
L(ha

µ, 0) are the same. This means that the field equations can be solved independently of 
the spin connection, which is left undetermined in the process. It should be noted that the 
teleparallel field equations determine only the equivalence class of tetrads with respect to the 
local Lorentz transformations Λa

b(x). In other words, tetrads related through local Lorentz 
transformations

ha
µ and h′a

µ = Λa
bhb

µ,� (100)

are indistinguishable as far as the teleparallel field equations are concerned. This is a direct 
consequence of the fact that the teleparallel spin connection (16) is not determined by the field 
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equations. Therefore, the field equations do not determine Λa
b(x), which means that the tetrad 

is determined up to a local Lorentz transformation. Namely, the field equations effectively 
determine only the metric tensor. In the next section we show that the same situation occurs in 
the tetrad formulation of general relativity.

4.6.  Comparison with the tetrad formulation of general relativity

It is useful at this point to make a comparison with general relativity. As is well-known, gen-
eral relativity has both a metric and a tetrad formulation [22]. In the metric formalism we 
straightforwardly calculate the Riemannian curvature using Christoffel symbols from the met-
ric tensor. The dynamics of the metric tensor is described by the Einstein field equations,

◦
Rµ

ν − 1
2
δµν

◦
R = κΘµ

ν ,� (101)

which is essentially a set of ten field equations for the ten components of the metric tensor.
On the other hand, in the tetrad formulation the ten-components of the metric tensor are 

replaced by the sixteen-components of the tetrad field. The Einstein field equations in this case 
take the similar form

◦
Ra

ν − 1
2

ha
ν

◦
R = κΘa

ν ,� (102)

where 
◦
Ra

ν  is the Ricci curvature calculated directly from the tetrad, and is related to the 
spacetime-indexed Ricci curvature by

◦
Ra

ν = ha
µ

◦
Rµ

ν .� (103)

From this we can see that the tetrad form of the Einstein field equations (102) is just a pro-
jection of their spacetime form (101) along the tetrad components. Therefore, the dynamical 
content of both forms of field equations is the same and they determine only the metric tensor. 
This is also clear from the fact that Einstein’s field equations (102) are covariant under local 
Lorentz transformations:

Λc
a(x)

(
◦
Ra

ν − 1
2

ha
ν

◦
R
)

= κΛc
a(x)Θa

ν .� (104)

This covariance eliminates six of the sixteen equations (102), which means that the tetrad is 
determined by the field equations (102) only up to a local Lorentz transformation. This means 
that we actually determine only the metric tensor. Naturally, this is an expected result since 
both the metric and the tetrad formulations are just two equivalent formulations of the very 
same theory.

5. Tetrad and its associated spin connection

To each tetrad ha
µ there is an associated inertial spin connection 

•
ωa

bµ that describes the inertial 
effects present in the frame. This is clear from the fundamental form of the tetrad in teleparal-
lel gravity, as given by equation (43). There is a class of frames known as proper frames char-
acterized by a vanishing spin connection: {ha

µ, 0}. In any other class of frames related to the 
proper frames by a local Lorentz transformation, the spin connection will be non-vanishing, 

which means that there are infinitely many pairs {ha
µ,

•
ωa

bµ}. Each pair defines a different 
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class of frames, characterized by a different inertial spin connection 
•
ωa

bµ. However, in all 
practical cases, it is not immediately possible to identify the spin connection of a given tetrad 
ha

µ. It is then necessary to provide a method to retrieve such a spin connection from a general 
tetrad.

We display here the simplest method of determining the spin connection introduced in [8], 
which is based on specifying the inertial effects present in the frame ha

µ, and then finding a 
spin connection that precisely compensates for those effects. It should be mentioned that this 
is not the only way to compute the spin connection; see, e.g. the method based on the space-
time symmetries, introduced in [30].

5.1.  Determining the inertial spin connection

We begin by defining a ‘reference tetrad’, h a
(r)µ, as a tetrad in which gravity is switched-off. It 

is, of course, a trivial tetrad in the sense that it relates two Minkowski metrics written in differ-
ent coordinate systems. This can be done by setting the gravitational constant G equal to zero:

h a
(r)µ ≡ ha

µ

∣∣
G→0

.� (105)

In such a tetrad, the gravitational potential Ba
µ does not appear and the reference tetrad can 

be written formally as

h a
(r)µ = ∂µxa +

•
ωa

bµxb.� (106)

Furthermore, considering that this tetrad represents a trivial frame (see section 2), the torsion 

tensor of the spin connection 
•
ωa

bµ vanishes identically:
•
Ta

µν(h
a
(r)µ,

•
ωa

bµ) = 0.� (107)

The coefficients of anholonomy f c
ab of the general tetrad ha

µ, according to equation (7), 
are given by

f c
ab = ha

µhb
ν(∂νhc

µ − ∂µhc
ν).� (108)

Using equation (65), where the torsion is written in terms of f c
ab as

•
Ta

bc = −f a
bc + (

•
ωa

cb −
•
ωa

bc) ,� (109)

we find that the condition (107) for the reference tetrad assumes the form
•
Ta

bc(h a
(r)µ,

•
ωa

bµ) =
•
ωa

cb −
•
ωa

bc − f a
bc(h(r)) = 0,� (110)

with f a
bc(h(r)) the coefficients of anholonomy of the reference tetrad h a

(r)µ. Using (110) for 
three different combination of indices, we can solve for the spin connection [8]:

•
ωa

bµ = 1
2 h c

(r)µ

[
fba

c(h(r)) + fca
b(h(r))− f a

bc(h(r))
]
.� (111)

This is the inertial spin connection naturally associated to the reference tetrad h a
(r)µ. Since the 

reference tetrad h a
(r)µ and the original tetrad ha

µ differ only by their gravitational content—the 
inertial content of both tetrads are the same—the spin connection (111) is the inertial spin 
connection naturally associated to the original tetrad ha

µ as well. Notice, in addition, that the 
expression for the teleparallel spin connection (111) coincides with the Levi-Civita spin con-
nection for the reference tetrad, and hence we can write
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•
ωa

bµ(ha
µ) =

◦
ωa

bµ(h a
(r)µ).� (112)

We would like to stress that the Levi-Civita connection is calculated for the reference tetrad 
corresponding to the Minkowski spacetime and consequently it is guaranteed to have a vanish-
ing curvature; it is hence in the class of teleparallel connections (16).

The crucial point is that the torsion tensor
•
Ta

µν(h
a
µ,ωa

bµ)� (113)

constructed from the ‘full’ tetrad and the spin connection represents purely gravitational tor-
sion in the sense that the spurious contribution from the inertial effects are removed.

5.2. The regularizing role of the inertial spin connection

Let us begin by considering an action for the reference tetrad (105), which represents only 
inertial effects. If we naively associate a vanishing spin connection to the reference tetrad 
h a
(r)µ, the gravitational action assumes the form

•
S(h a

(r)µ, 0) =
∫

M

•
L(h a

(r)µ, 0).� (114)

In general this action does not vanish, and is even typically divergent. The reason for this is 
that it is an action for inertial effects, which in general do not vanish at infinity [31]. If, instead 
of a vanishing spin connection, we choose the appropriate inertial spin connection (111), then 
from equation (107) we have

•
S(h a

(r)µ,
•
ωa

bµ) = 0.� (115)

We now see that the role of spin connection 
•
ωa

bµ is to remove all inertial effects of the action, 
in such a way that it now vanishes—as it should because it represents only inertial effects.

From the point of view of inertial effects, the full and reference tetrads are equivalent in the 
sense that their inertial content are the same. This consequently means that the spin connection 
associated with the full tetrad (or reference tetrad) is able to remove the inertial contributions, 
not only from the inertial action, but from the full action as well. This yields an action that 
represents gravitational effects only. Considering that the inertial effects are responsible for 
causing the divergences, the purely gravitational action with the appropriate spin connection,

•
S ren =

∫

M

•
L(ha

µ,
•
ωa

bµ),� (116)

will always be finite for any solution of the gravitational field equations. It can consequently 
be viewed as a renormalized action [8].

We note that it is possible to achieve the same results in a simpler way. In fact, relation (93) 
shows that the divergences are removed from the action by adding an appropriate surface term 
to the action, which is analogous to the process of holographic renormalization. However, in 
teleparallel gravity it can be interpreted as the removal of the spurious inertial effects from 
the theory. Of course, once the spurious inertial contribution to the Lagrangian is removed, all 
quantities computed using this Lagrangian, such as for example energy and momentum, will 
also be finite [32].

Furthermore, there is an important difference in relation to other renormalization methods: 
the inertial effects in teleparallel gravity are removed locally at each point of spacetime and 

Class. Quantum Grav. 36 (2019) 183001



Topical Review

23

not from the whole integral, as it happens to be the case in other formalisms. It is then pos-
sible to define at each point the energy and momentum densities of the gravitational field [8]. 
However, it should be kept in mind that this can be achieved only with the help of the reference 
tetrad [33].

6.  Example: the spherically symmetric vacuum solution

6.1.  Setting up the problem

Let us now illustrate with an explicit example the whole process of solving the field equa-
tions  and determining the spin connection within the framework of teleparallel grav-
ity. The example chosen is the static spherically symmetric problem with the well-known 
Schwarzschild solution. The starting point of obtaining the spherically symmetric solution in 
teleparallel gravity is the same as in general relativity: based on the symmetry of the problem, 
one proposes the ansatz metric

ds2 = A(r)2dt2 − B(r)2dr2 − r2dθ2 − r2 sin2 θdφ2,� (117)

where A = A(r) and B = B(r) are arbitrary functions to be determined from the field equations.
As we have already discussed, there are infinitely many tetrads corresponding to the metric 

ansatz (117). We consider here two tetrads: the diagonal tetrad

ha
µ = diag (A, B, r, r sin θ)� (118)

and the off-diagonal tetrad

h̃a
µ =




A 0 0 0
0 B cosφ sin θ r cosφ cos θ −r sinφ sin θ

0 −B cos θ r sin θ 0
0 B sinφ sin θ r sinφ cos θ r cosφ sin θ


 .� (119)

These two tetrads are related by

h̃a
µ = Λ̃a

b(x) hb
µ,� (120)

where Λ̃a
b(x) is the local Lorentz transformation

Λ̃a
b =




1 0 0 0
0 cosφ sin θ cosφ cos θ − sinφ

0 − cos θ sin θ 0
0 sinφ sin θ sinφ cos θ cosφ


 .� (121)

Obviously both tetrads represent the same metric (117) because, as is well known, the metric 
is invariant under local Lorentz transformations.

6.2.  Solving the field equations

We choose to solve the field equations in the spacetime form (88), and we assume a zero spin 
connection initially. We proceed then to obtain all geometrical objects for both the diagonal 
and the non-diagonal tetrads.

6.2.1.  Using the diagonal tetrad ha
µ.  For the case of the diagonal ansatz, the non-vanishing 

components of the superpotential 
•
Sµ

ρσ =
•
Sµ

ρσ(ha
µ, 0) are found to be
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•
St

tr = − 2
rB2 ,

•
St

tθ =
•
Sr

rθ = −cot θ

r2 ,
•
Sθ

rθ =
•
Sφ

rφ =
1

rB2 +
A′

AB2 ,
�

(122)

where we do not explicitly display the antisymmetric components 
•
Sµ

ρσ = −
•
Sµ

σρ. The non-
vanishing components of the energy-momentum pseudotensor 

•
tµρ =

•
tµρ(ha

µ, 0) are

•
t t

t = −
•
tr

r =
•
tθθ =

•
tφφ =

1
κ

A + 2rA′

r2AB2 ,

•
tr
θ = − 1

κ

BA′ + AB′

r2AB
cot θ,

•
tθr = − 1

κ

A + rA′

rAB2 cot θ.

�

(123)

Combining them, the nontrivial components of the field equations (88) are found to be

Et
t =

(
−B + B3 + 2rB′

r2B3

)
h,� (124)

Er
r =

(
−A + AB2 − 2rA′

r2AB2

)
h,� (125)

Eθ
θ = Eφ

φ =

(
B′(A + rA′)− B(A′ + rA′′)

rAB3

)
h.� (126)

One verifies that the third equation is not an independent equation. Using then the first two 
equations, we find the same solution as in general relativity; that is,

A(r) =
1

B(r)
=

√
1 − c1

r
.� (127)

Matching the solution to the Newtonian limit, the integration constant c1, as in general relativ-
ity, is found to be c1  =  2GM.

6.2.2.  Using the off-diagonal tetrad h̃a
µ.  It is an interesting exercise to derive the field  

equations  for the off-diagonal ansatz h̃a
µ, which explicitly illustrates that the field equa-

tions determine the tetrad up to a local Lorentz transformation. In this case the non-vanishing 

components of the superpotential 
•
Sµ

ρσ =
•
Sµ

ρσ(h̃a
µ, 0) are:

•
St

tr =
2(B − 1)

rB2 ,
•
Sθ

rθ =
•
Sφ

rφ =
−A(B − 1) + rA′

rAB2 .� (128)

Similarly, the non-vanishing components of the energy-momentum pseudotensor 
•
tµρ =

•
tµρ(h̃a

µ, 0) are:

•
t t

t =
1
κ

(B − 1)(A(B − 1)− 2rA′)

r2AB2 ,
•
tr

r =
1
κ

A(B2 − 1)− 2rA′

r2AB2

•
tθθ =

•
tφφ = − 1

κ

A(B − 1) + r(B − 2)A′

r2AB2 ,
•
tθr =

1
κ

A(B − 1)− rA′

rAB2 cot θ.
�

(129)

Note that both the superpotential and the energy-momentum pseudotensors for the diagonal 
tetrad (118) and for the off-diagonal tetrad (119) are completely different, due to the fact that 
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when we assumed a vanishing spin connection for both tetrads both quantities 
•
Sµ

ρσ and 
•
tµρ 

become non-tensorial in nature. In the next section we are going to compute the spin connec-

tion associated to each tetrad, and then show how the corresponding tensorial quantities 
•
Sµ

ρσ 
and 

•
tµρ will indeed transform properly.

6.2.3.  Determining the associated spin connection.  We use the method introduced in sec-
tion 5 to find the components of the spin connection associated with the tetrads (118) and 
(119). The starting point is to define the reference tetrad, which for the diagonal tetrad (118) is

h a
(r)µ ≡ ha

µ

∣∣
G→0

= diag (1, 1, r, r sin θ) .� (130)

Using (111), we find that the non-vanishing components of the spin connection are
•
ω1̂

2̂θ = − •
ω2̂

1̂θ = −1,
•
ω1̂

3̂φ = − •
ω3̂

1̂φ = − sin θ,
•
ω2̂

3̂φ = − •
ω3̂

2̂φ = − cos θ.
� (131)

These components represent the inertial effects present in the diagonal tetrad (118). We can 
analogously define the reference tetrad for the off-diagonal tetrad (119) as

h̃ a
(r)µ ≡ h̃a

µ

∣∣∣
G→0

=




1 0 0 0
0 cosφ sin θ r cosφ cos θ −r sinφ sin θ

0 − cos θ r sin θ 0
0 sinφ sin θ r sinφ cos θ r cosφ sin θ


 .� (132)

Using (111), we find that the corresponding connection vanishes

•̃
ωa

bµ = 0.� (133)

This means that the off-diagonal tetrad (119) is indeed the proper tetrad, and as such it rep-
resents gravitation only. On the other hand, the diagonal tetrad (118) is not proper since the 
associated inertial effects, represented by the spin connection (131), do not vanish.

We can now check that both tetrads with their associated spin connections do lead to the 
same prediction for all geometric quantities, that is,

•
Sµ

ρσ(h̃a
µ, 0) =

•
Sµ

ρσ(ha
µ,

•
ωa

bµ),
•
tµρ(h̃a

µ, 0) =
•
tµρ(ha

µ,
•
ωa

bµ).� (134)

Such quantities transform covariantly under both diffeomorphisms and local Lorentz transfor-
mations. Furthermore, they now represent only gravitation, to the exclusion of the spurious 
inertial effects.

6.3.  Regularization of the action

To see how the spurious inertial effects come into play and why we need to compute the 
associated spin connection, we consider the action and the corresponding conserved charges 
[8]. If we compute the action using the diagonal tetrad (118) and vanishing spin connection, 
we find that

•
S(ha

µ, 0) =
1
κ

∫

M
d4x sin θ,� (135)

which is obviously a divergent quantity and consequently leads to divergent conserved 

charges. This is precisely due to the fact that the torsion scalar 
•
L(ha

µ, 0)—and hence the action 
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(135)—in addition to gravitation, also includes the spurious inertial effects, which means it 

does not vanish at infinity. The overall integral then leads to a divergent action. However, if 
we remove the inertial effects by taking into account the associated spin connection (131), or 
equivalently use the proper tetrad (119), then we find the well-behaved renormalized action

•
S ren(ha

µ,
•
ωa

bµ) =
•
S ren(h̃a

µ, 0) =
2
κ

∫

M
d4x

[
1 +

(GM − r)
rA

]
sin θ =

∫
dtM.

� (136)
The conserved charges obtained from this action are finite, and represent the correct physical 
conserved charges.

7.  Some remarks on the pure tetrad teleparallel gravity

As already discussed, to any tetrad ha
µ there is associated a specific inertial spin connection 

•
ωa

bµ that represents the inertial effects present in that frame:

ha
µ = ha

µ(
•
ωa

bµ).� (137)

On the other hand, torsion is defined as the covariant derivative of the tetrad:
•
Ta

µν = ∂µha
ν − ∂νha

µ +
•
ωa

bµhb
ν − •

ωa
bνhb

µ.� (138)

Note that the spin connection is essential for torsion (138) to be a tensorial quantity; that is, 
an object that transforms covariantly under both local Lorentz and general coordinate trans-
formations. As a consequence, the action of teleparallel gravity, which similarly to the action 
of any gauge theory is quadratic in the field strength (in this case, torsion), will be invari-
ant under both local Lorentz and general coordinate transformations. Of course, the corre
sponding field equations will transform covariantly under those transformations.

The crucial observation of teleparallel gravity is that the spin connection associated with 
the tetrad (137) and the one used in the torsion (138) are the very same spin connection. This 
is particularly clear within the approach to teleparallel gravity as a gauge theory for the trans-
lation group. As can be seen in section 3.2, the torsion tensor is explicitly constructed in a 

such way that the spin connection 
•
ωa

bµ appearing in the covariant derivative is the same spin  

connection associated to the given tetrad ha
µ according to (43).

Nevertheless, it is important to note that in practical calculations, we typically start with 
some ansatz tetrad that suits the symmetry of the problem under consideration, and for which 
we do not know a priori its associated spin connection. Due to the peculiar structure of the 
teleparallel action discussed in section 4.4, we can first solve the problem for the tetrad and 
then determine the spin connection according to the method discussed in section 5. Only then 
do the physical quantities computed from the torsion tensor, such as for example the action 
of the gravitational field or the gravitational conserved charges, give the correct, finite, physi-
cally relevant results. Therefore, the requirement of the finiteness of the action and conserved 
charges motivates the necessity to associate to each tetrad a spin connection according to the 
method discussed in section 5.

Now, there is in the literature a different approach to teleparallel gravity, known as pure 
tetrad teleparallel gravity (see [34] for a review). Its name stems from the fact that torsion is 
defined not as the covariant derivative of the tetrad [18], but instead as an ordinary derivative,

•
T a

0 µν = ∂µha
ν − ∂νha

µ,� (139)
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with the subscript zero denoting the ‘torsion’ of the pure tetrad theory. In other words, the spin 
connection appearing explicitly in the torsion definition (138) is always assumed to vanish, 
although to each tetrad there is associated a (generally) non-vanishing spin connection (137). 
The pure tetrad formulation ignores the this fact and treats the tetrad and the spin connection 
as genuinely independent variables. Due to the pure gauge form (16), the teleparallel spin con-
nection can be transformed to zero independently of transformations of the tetrad and hence 
the vanishing spin connection can be associated with each tetrad.

There are multiple problems with this approach. First, even though (139) is mathematically 
and physically meaningful, it is not the torsion tensor since it does not transform as a tensor 
under local Lorentz transformations. As a matter of fact, it is minus the coefficient of anho-
lonomy f c

ab of the frame ha
µ, whose components, according to equation (108), are given by

•
T c

0 ab ≡ −f c
ab = ha

µhb
ν (∂µhc

ν − ∂νhc
µ) .� (140)

Only in the class of frames in which the inertial spin connection 
•
ωa

bµ vanishes will the coef-
ficient of anholonomy coincide with the torsion tensor. In all other classes of frames, they will 
not coincide.

In spite of this problem, it is still possible to use the pure tetrad teleparallel gravity for some 
specific purposes. The Lagrangian of the pure tetrad teleparallel gravity is obtained from the 
Lagrangian (77) by setting the spin connection to zero and replacing torsion by the coefficient 
of anholonomy

•
L =

h
16πG

( 1
4 f a

bcfabc + 1
2 f a

bc f cb
a − f a

ba f cb
c
)

.� (141)

Despite the fact that f a
bc is not a tensor, the field equations derived from this Lagrangian are 

the same as those derived from (77) and it then follows, as discussed in section 4.4, that the 
spin connection does not contribute to the field equations. Therefore, as far as we are inter-
ested in the solutions of the field equations, both approaches, our invariant approach and the 
pure tetrad one, lead to the same result.

Second, the Lagrangian (141) is not invariant with respect to local Lorentz transformations, 
but only quasi-invariant; i.e. changes by the surface term [35]. Nevertheless, these contrib
utions through the surface term do play an important role when the total value of the action 
is considered and in derivation of the conserved charges. It is then found that only for certain 
preferred class of the frames do we obtain finite, physically relevant results.

Third, local Lorentz symmmetry is a fundamental symmetry of general relativity. 
Considering that the invariant formulation of teleparallel gravity discussed here preserves this 
symmetry, it is the only theory that can be interpreted as the teleparallel equivalent of general 
relativity.

In the literature, properties of this pure tetrad formulation are often erroneously attributed 
to teleparallel gravity itself. For example, it is quite common to find statements that in telepar-
allel gravity torsion is not a tensor, or that the theory is not invariant under local Lorentz trans-
formations, or still that there are preferred frames. Obviously all of these statements apply to 
the pure tetrad formulation, but not to the invariant formulation of the theory.

This confusion can be easily understood from a modern perspective where the pure tetrad 
teleparallel gravity can be viewed as teleparallel gravity written in the specific class of proper 
frames, in which the spin connection vanishes. After fixing the class of frames, the theory is 
no longer manifestly invariant under local Lorentz transformations, though it remains invari-
ant under global Lorentz transformations. The whole discussion of local Lorentz invariance 
in pure tetrad formulation can then be viewed as rather misguided and not an indicator of any 
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problem of teleparallel gravity. The analogous situation in electromagnetism would be to dis-
cuss gauge invariance after fixing a specific class of gauge (the Coulomb gauge, for example), 
which obviously does not make sense.

8.  Modification of teleparallel gravity: f (T ) gravity

The discovery of the accelerated expansion of the Universe has motivated the study of various 
extensions of general relativity. A very popular extension is the so-called f (R) gravity where 
the Lagrangian is taken to be a function of the Ricci scalar. This relatively simple model has a 
number of interesting features and rich phenomenology [9].

In a similar fashion to f (R) gravity, Ferraro and Fiorini [36–39] have proposed the f (T) 
gravity model, where the Lagrangian is given by

•
Lf =

h
2κ

f (
•
T),� (142)

where 
•
T  is the so-called torsion scalar representing the same quadratic torsion pieces appear-

ing in the Lagrangian of teleparallel gravity (77); i.e.12

•
T =

1
2
•
Sa

µν
•
Ta

µν =
1
4

•
Tρ

µν

•
Tρ

µν + 1
2

•
Tρ

µν

•
Tνµ

ρ −
•
Tρ

µρ

•
Tνµ

ν .� (143)

Following the equivalence between the teleparallel and Einstein–Hilbert Lagrangians (78), we 
can obtain the relation between the torsion and curvature scalars

◦
R = −

•
T +

•
B,� (144)

where

•
B = −2

h
∂µ(h

•
Tµ),� (145)

is the so-called boundary term.
The boundary term does not contribute to the field equations  in the case of teleparallel 

gravity. However, modified gravity models based on the idea of replacing the actions linear in 
◦
R or linear in 

•
T  with arbitrary non-linear functions, f (R) and f (T) respectively, are no longer 

equivalent. This simply follows from the fact that an arbitrary function of a boundary term 
is, in general, no longer a boundary term. As we discuss later in section 9.6, it is possible to 
relate f (R) gravity and f (T) gravity if we consider teleparallel gravity theories with higher 
derivative terms in torsion.

8.1.  Field equations and variations of the action in f (T ) gravity

The Lagrangian of f (T) gravity is a function of both the tetrad and the spin connection, and 
hence we should consider variations with respect to both variables. We remind the reader 
about the situation in the ordinary teleparallel gravity discussed in section 4, where the varia-
tion with respect to the spin connection turned out to be trivial (94). This led us to the conclu-
sion that the field equations do not determine the spin connection and, instead, it needed to be 
calculated using the reference spacetime as discussed in section 5.

12 Note that here we follow the notation used in teleparallel gravity where the superpotential is defined as (82), 
while in f (T) gravity the superpotential is usually defined as one half of this quantity. To bridge this difference we 
include this one half in the definition of the torsion scalar.
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The situation is rather different when we consider modified teleparallel gravity models 
such as f (T) gravity. As we will show shortly, we find that the variations with respect to both 
the tetrad and the spin connection are non-trivial. However, the two variations are closely 
related since the variation with respect to the spin connection leads to the identical field equa-
tions as the antisymmetric part of the field equations for the tetrad.

Let us consider the f (T) Lagrangian (142) and a general source field

L =
•
Lf + Ls,� (146)

and vary the action with respect to the tetrad. This leads to the field equations for the tetrad

E µ
a = κhΘ µ

a ,� (147)

where the Euler–Lagrange expression on the left-hand side (see [13] for details) is given by

E µ
a ≡ κ

δ
•
Lf

δha
µ

= fT∂ν
(

h
•
S µν

a

)
+ h

(
fTT

•
S µν

a ∂ν
•
T − fT

•
Tb

νa
•
S νµ

b + fTωb
aν

•
S νµ

b +
1
2

fh µ
a

)
,� (148)

where f T and f TT denotes first and second order derivatives of the f -function with respect to the 
torsion scalar.

In order to analyze the symmetric and antisymmetric part of the field equations, it is useful 
to define the fully Lorentz-indexed Euler–Lagrange expression

Eab = ηbchc
µE µ

a ,� (149)

which can be explicitly written as

Eab = h
(

fTT
•
Sab

ν∂ν
•
T + fT

◦
Gab +

1
2
ηab( f −

•
T fT)

)
,� (150)

where 
◦
Gab  is the symmetric Einstein tensor of the Levi-Civita connection calculated from the 

tetrad only. In this form it is straightforward to see that the last two terms are symmetric and 
hence the antisymmetric part of the Euler–Lagrange expression is given by

E[ab] = hfTT
•
S[ab]

ν∂ν
•
T .� (151)

Given that the energy-momentum tensor has vanishing anti-symmetric part, Θ[ab] = 0, the 
antisymmetric part of the field equations is

fTT
•
S[ab]

ν∂ν
•
T = 0.� (152)

We can now consider the variation with respect to the spin connection and show that it leads to 
the same equations as (152). We follow here the method introduced in [33], but it is possible 
to derive the same result using alternative methods [28, 40].

The relation (93) for the torsion scalar can be re-expressed as

•
T(ha

µ,ωa
bµ) =

•
T(ha

µ, 0) +
2
h
∂µ

(
h

•
ωa

bνha
νhc

µηbc
)

.� (153)

We then find that the variation of δω
•
Lf  with respect to the spin connection is given by

δω
•
Lf =

1
2κ

h h µ
a h ν

b (∂ν fT)δ
•
ωab

µ.� (154)
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We can then use (96) and integrate by parts to find the condition

fTT ∂ν
•
T

•
Dµ

(
hh[a

µhb]
ν
)
= 0,� (155)

where we have used ∂ν fT = fTT∂ν
•
T . Using the identity (99), we find that the field equations for 

the spin connection (155) coincide with the antisymmetric part of the field equations for the 
tetrad (152).

We notice that a very special situation occurs when we have 
•
T = T0 = const. In this case 

the spin connection field equation (155) is automatically satisfied and the tetrad field equa-
tions  (150) reduce to the ordinary Einstein equations with the effective cosmological con-
stant ( f (T0)− T0fT(T0))/2. This means that if we are able to construct a constant torsion 
scalar 

•
T = T0 for some solution in general relativity, then this solution remains a solution of 

f (T) gravity for an arbitrary function f . Using this method it was shown that the well known 
Schwarzschild [41], Kerr [42] and McVittie [43] solutions of general relativity solve f (T) 
gravity as well.

8.2.  Local Lorentz symmetry in f (T ) gravity

The issue that has caused a lot of attention and raised some doubts about the consistency of 
f (T) gravity and other modified teleparallel gravity models is the question of local Lorentz 
invariance [9, 12]. We will now explain the origins of this problem and how it is avoided in the 
covariant formulation of the theory that we use here.

In section 7 we have mentioned the so-called pure tetrad approach to teleparallel gravity, 
where the only variable is the tetrad. This originates from the fact that the teleparallel con-
nection (16) is a pure gauge connection and hence it is always possible to perform a local 
Lorentz transformation such that the connection is transformed to zero. This is then equivalent 
to choosing a specific frame in which the spin connection vanishes and hence formulating the 
theory in this very specific class of frames. Strictly speaking, the question of local Lorentz 
invariance is ill-defined in this case since we choose the specific frame and hence we are not 
allowed to perform local Lorentz transformations.

Nevertheless, in the case of the ordinary teleparallel gravity with Lagrangian density (77) this 
approach gained some popularity not only because it was originally used in Einstein’s teleparal-
lelism [44, 45] but also since it can be justified in some cases. Particularly, on account of prop-
erty (93), the spin connection does not dynamically affect the field equations (80) and hence 
setting it to zero can be used to obtain solutions. In fact, as we have explained in section 4.5, in 
our covariant approach to ordinary teleparallel gravity, for the sake of convenience we can also 
set the spin connection to zero as an intermediate step in our calculations. The issue of local 
Lorentz invariance manifests itself only when problems beyond the solutions are considered; 
i.e. the total value of the action and its renormalization, definition of the energy-momentum, etc.

The problem of the original formulation of f (T) gravity with Lagrangian density (142) is 
due to the fact that the theory was originally formulated as a modification of the pure tetrad 
teleparallel gravity. The problem of local Lorentz symmetry violation was then inherited by 
the f (T) gravity in a more serious way since it also affects the solutions of the field equations. 
In particular, this leads to the situation where only some frames in the same equivalence class 
(i.e. corresponding to the same metric), were able to solve the field equations. Such frames 
were referred to as good tetrads [46], while the so-called bad tetrads-related to good tetrads 
by a local Lorentz transformation-were solutions only in the limit of the ordinary teleparallel 
gravity. For example, in the case of spherical symmetry, the diagonal tetrad (118) was consid-
ered to be a bad tetrad, while the off-diagonal (119) was a good tetrad.
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It is easy to understand this problem of the original f (T) gravity from the viewpoint of our 
covariant formulation. As we have argued in the previous section 8.1, the field equations of 
f (T) gravity determine both the tetrad and the spin connection, and hence the solution is 

always a pair of variables {ha
µ,

•
ωa

bµ}. Since these variables are not independent, a trans-
formation of the spin connection must be always accompanied by a transformation of the 
corresponding tetrad. In particular, if we transform the spin connection to zero, then we must 
perform a simultaneous transformation on the tetrad; i.e.

{ha
µ,

•
ωa

bµ} −−−→ {h̃a
µ, 0}.� (156)

We can then identify the class of frames h̃a
µ which corresponds to the zero connection within 

the class of good frames. However, we can see that there is nothing fundamentally special 
about these frames. All other frames related by local Lorentz transformation are equally via-
ble; we just need to use the corresponding spin connections with them.

At least in principle, it is possible to write down the field equations  directly in terms 

of the good frames h̃a
µ, which are obtained by using the transformation (156) on the field 

equations (147). As a result, we will obtain 16 field equations that completely determine the 
tetrad, including the local Lorentz degrees freedom of the tetrad. This is in contrast with the 
situation in the ordinary teleparallel gravity discussed in section 4.5 where the field equa-
tions determined only the equivalence class of the tetrads. The tetrad that solves the f (T) field 
equations after the transformation (156) is completely fixed.

However, this does not imply that local Lorentz symmetry is violated in f (T) gravity 
because we need to keep in mind that we have obtained this solution using the transformation 
(156) and hence we work only in this class of frames. If we want to discuss local Lorentz 
symmetry we need to act with local Lorentz transformations on both variables which neces-

sarily generates a new spin connection. We can picture this as having h̃a
µ that solves the field 

equations with a zero spin connection, and then we perform an inverse of a local Lorentz 

transformation (156) with an arbitrary Λa
b. This will then generate for each tetrad ha

b a corre

sponding spin connection 
•
ωa

bµ.

8.3.  Examples: solutions in f (T ) gravity

8.3.1.  Example: Minkowski spacetime.  A rather trivial but very illustrative example of the 
relevance of the spin connection and the problems of the original formulation of f (T) grav-
ity is the simple Minkowski spacetime. We consider two different tetrads representing the 
Minkowski spacetime. The first one is the diagonal tetrad in the Cartesian coordinate system:

ha
µ = diag (1, 1, 1, 1) ,� (157)

which-if we set the spin connection to zero-leads to zero torsion and hence for any function 
f (T) with f (0) = 0  then the field equations are trivially satisfied. Therefore, the tetrad (157) 
is a proper tetrad to which corresponds a vanishing zero connection or, in the terminology of 
[46], a good tetrad.

On the other hand, if we consider a Minkowski diagonal tetrad in the spherical coordinate 
system

ha
µ = diag (1, 1, r, r sin θ) ,� (158)

and use it with the vanishing zero spin connection, we find that the corresponding torsion 
scalar is non-zero. Additionally, we observe that one of the field equations,
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E θ
2̂ =

4hfTT cot θ

r5 = 0,� (159)

has a solution only if we set f TT  =  0. This reduces the theory back to the ordinary teleparallel 
gravity and hence (158) is, in the terminology of [46], a bad tetrad.

The problem of the original formulation of f (T) gravity was that in order to be able to 
use the spherical coordinate system in f (T) gravity to describe Minkowski spacetime we had 

to use the tetrad h̃a
µ = Λ̃a

bha
µ with Λ̃a

b given by (121) and ha
µ given by (158), which yields 

the equivalent of the reference tetrad in equation (132). Since gravity is absent in Minkowski 
spacetime, this demonstrates very well that the nature of the Lorentz invariance problem is not 
related to the modification of gravity but is just a matter of the consistent formulation of the 
theory. On the other hand, in the covariant formulation of f (T) gravity, the problem is absent 
and we are able to use all tetrads in arbitrary coordinate systems. In the case of Minkowski 
spacetime, for instance, we are free to use the diagonal tetrad (158) but we need to use it along 
with its corresponding spin connection (131).

8.3.2.  Example: FLRW spacetime.  We now move on to the more non-trivial example of the 
FLRW spacetime with zero spatial curvature describing the evolution of the Universe. Using 
the Cartesian coordinate system we can choose a diagonal tetrad as,

ha
µ = diag(1, a(t), a(t), a(t)),� (160)

with a(t) being the scale factor. This tetrad leads to the torsion scalar
•
T = −6H2,� (161)

where H = ȧ/a is the Hubble parameter, and gives rise to the Friedmann equations

κρM = 6H2fT +
1
2

f ,� (162)

κ( pM + ρM) = 2Ḣ(12fTTH2 − fT),� (163)

where ρM  and p M are the energy density and pressure of the matter fluid, respectively. These 
are the correct f (T) modified Friedmann equations  capable of explaining the accelerated 
expansion of the Universe, as shown originally in [36–39] and later extensively studied in 
[47–71]. For a complete list of references see the review [72].

The observation that the tetrad (160) leads directly to some interesting dynamics means that 
this tetrad is already in the proper form and hence leads to symmetric field equations using the 
zero connection. Let us mention that at the perturbative level one has to consider perturbations 
to all components of the tetrad (160) and solve the antisymmetric part of the field equations, 
which are non-trivial even for the Cartesian tetrad (160) at the perturbative level, in order to 
obtain the correct cosmological perturbation theory [73].

Similar to the case of Minkowski spacetime, if we would like to use instead of the Cartesian 
diagonal tetrad (160) the diagonal tetrad in the spherical coordinate system

ha
µ = diag(1, a(t), a(t) r, a(t) r sin θ),� (164)

we have to either use the spin connection corresponding to (164), which is given by (131), or 
make the tetrad (164) proper by the local Lorentz transformation given by (121). Both meth-
ods will lead to the same set of Friedmann equations (162) and (163) as when working with 
the Cartesian tetrad (160).
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It is also interesting to consider spatially non-flat FLRW spacetimes represented by the 
tetrad in the spherical coordinate system

ha
µ = diag

(
1,

a(t)
√
χ

, a(t) r, a(t) r sin θ
)

, ,� (165)

where χ = 1 − kr2.
For the positively spatially curved FLRW spacetime, k  =  +1, the teleparallel spin connnec-

tion is given by [30]
•
ω1̂
±2̂θ = − •

ω2̂
±1̂θ = −χ,

•
ω1̂
±2̂φ = − •

ω2̂
±1̂φ = ±r sin θ,

•
ω1̂
±3̂θ = − •

ω3̂
±1̂θ = ∓r,

•
ω1̂
±3̂φ = − •

ω3̂
±1̂φ = −χ sin θ,

•
ω2̂
±3̂r = − •

ω3̂
±2̂r = ± 1

χ
,

•
ω2̂
±3̂φ = − •

ω3̂
±2̂φ = − cos θ,

�
(166)

where ± represents two possible sign choices.
In the case of the negatively spatially curved FLRW spacetime, the teleparallel spin con-

nection is given by [30]

•
ω0̂

1̂r =
•
ω1̂

0̂r =
1
χ

,
•
ω0̂

2̂θ =
•
ω2̂

0̂θ = r,
•
ω0̂

3̂φ =
•
ω3̂

0̂φ = r sin θ,

•
ω1̂

2̂θ = − •
ω2̂

1̂θ = −χ,
•
ω1̂

3̂φ = − •
ω3̂

1̂φ = −χ sin θ,
•
ω2̂

3̂φ = − •
ω3̂

2̂φ = − cos θ.
�

(167)

Both results (166) and (167) can be transformed using the corresponding local Lorentz tran-
formations to the proper tetrad-form where the spin connection is zero and the tetrad (165) 
takes a non-diagonal form, see [30]. Moreover, in the case of the negatively spatially curved 
FLRW spacetime, there seems to exist also a complex spin connection [30] corresponding to 
the complex tetrad first examined in [74].

8.3.3.  Example: spherically symmetric vacuum spacetime.  The spherically symmetric solu-
tions of the field equations in any gravitational theory are of the crucial importance since they 
describe the gravitational field outside a massive spherical body which is important for under-
standing the dynamics of the solar system and the dynamics of more exotic objects such as 
black holes. In the framework of f (T) gravity, this problem was considered in [41, 46, 75–85].

The spherically symmetric metric (see also equation (117)) has the form

ds2 = A(r)2dt2 − B(r)2dr2 − r2dθ2 − r2 sin2 θdφ2.� (168)

The most natural choice of the tetrad corresponding to this metric has the simple diagonal 
form (see also in equation (118)), the same choice as in the ordinary teleparallel gravity,

ha
µ = diag (A, B, r, r sin θ) .� (169)

Same as in the case of Minkowski vacuum in the spherical coordinate system (158), this diag-
onal tetrad leads to the field equations that can be satisfied only in the case when f (T) gravity 
reduces to the ordinary teleparallel gravity. To see this, we can straightforwardly check that 
the diagonal tetrad (118) with a trivial spin connection ωa

bµ = 0, gives us the torsion scalar

•
T =

2(A + rA′)

r2AB2 ,� (170)

where the prime denotes the derivative of the torsion scalar (173) with respect to the coordi-
nate r. One of the field equations is then given by
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E θ
2̂ =

hfTT cot θ

Br
•
T ′ = 0,� (171)

which can be satisfied only if f TT  =  0, and hence restricts the theory to the ordinary teleparallel 
gravity. Due to this fact, the diagonal tetrad (169) was considered to be not a consistent solu-
tion in the original (non-covariant) formulation of f (T) gravity.

We now demonstrate that this issue is not present in the covariant formulation and that it 
is possible to obtain non-trivial solutions using an arbitrary tetrad corresponding to the metric 
(168) provided that it is accompanied by the corresponding spin connection. The most straigh-
forward method to determine the spin connection is to solve its field equations (155), but this it 
is a difficult task to achieve in practice. Therefore, we can use the method of reference tetrads 
described in section 5. The only difference compared to the ordinary teleparallel gravity is that 
we do not know the solution for the tetrad and hence we cannot straightforwardly determine 
the reference tetrad using (105). Nevertheless, it is reasonable to assume that in the absence of 
gravity, the diagonal tetrad (169) should reduce to the tetrad (158) representing the Minkowski 
spacetime in spherical coordinates and hence the corresponding spin connection is given by 
(see also equation (131))

•
ω1̂

2̂θ = − •
ω2̂

1̂θ = −1,
•
ω1̂

3̂φ = − •
ω3̂

1̂φ = − sin θ,
•
ω2̂

3̂φ = − •
ω3̂

2̂φ = − cos θ.
�

(172)

We can check that the field equations for the spin connection (155) are indeed satisfied for the 
tetrad (169) and the spin connection (172). We find then that the torsion scalar

•
T(ha

µ,ωa
bµ) = −2(B − 1) (A − AB + 2rA′)

r2AB2 ,� (173)

and the field equations (147) are given by

E t
0̂ ≡ h

(
1

2A
f + 2fT

(
−AB + AB2 + AB′r + A′B2r − A′Br

)
A2B3r2 + 2fTT

•
T ′ (B − 1)

AB2r

)
,

�
(174)

E r
1̂ ≡ h

(
1

2B
f + 2fT

(−2A′r + AB + A′Br − A)
AB3r2

)
,� (175)

E θ
2̂ ≡ h

(
1
2r

f + fT

(
2B2A′r − AB − AB3 + 2AB2 − A′′Br2 + AB′r − 3A′Br + B′A′r2

)
AB3r3

+ fTT
•
T ′ (AB − A − A′r)

AB2r2

)
,

�

(176)

E φ

3̂
≡ 1

sin θ
E θ

2̂ .� (177)

We can observe that the field equations  (174)–(177) do not restrict the form of the 
f (T)-function, in contrast with (171), and hence generally lead to new solutions distinct 
from the ordinary teleparallel gravity. Moreover, we can now use any tetrad corresponding 
to the metric (168) provided that the corresponding spin connection is calculated. We can 
check that the off-diagonal tetrad (119) with the zero spin connection lead to the same field 
equations (174)–(177). However, the tetrad (119) does not have any priviliged position in the 
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covariant formulation of f (T) gravity; it is just a specific tetrad in which the corresponding 
spin connection happens to be zero.

9.  Other modified teleparallel models

The most popular modified teleparallel gravity model in the recent decade is f (T) gravity and 
much of the attention has been focused on this particular model. However, the teleparallel 
structure allows us to formulate a plethora of other interesting modified teleparallel gravity 
models. We briefly review here some of the more popular models and provide a classification 
scheme based on their essential features and/or the purpose for which they were proposed.

9.1.  New general relativity

The so-called new general relativity, introduced in 1979 by Hayashi and Shirafuji [14, 86], 
is the oldest modified teleparallel gravity model where the teleparallel Lagrangian (77) is 
straightforwardly generalized by considering arbitrary coefficients of the quadratic scalar tor-
sion terms. We follow here the original approach used in [14, 86], which will be also useful 
later in section 9.3, and decompose the torsion tensor into irreducible parts with respect to the 
Lorentz group

•
Tλµν =

2
3
(tλµν − tλνµ) +

1
3
(gλµvν − gλνvµ) + ελµνρaρ,� (178)

where

vµ =
•
Tλ

λµ,� (179)

aµ =
1
6
εµνσρ

•
Tνσρ,� (180)

tλµν =
1
2
(
•
Tλµν +

•
Tµλν) +

1
6
(gνλvµ + gνµvλ)−

1
3

gλµvν ,� (181)

are known as the vector, axial, and purely tensorial torsions, respectively. We can then con-
struct three parity preserving quadratic invariants

Tten = tλµν tλµν =
1
2

( •
Tλµν

•
Tλµν +

•
Tλµν

•
Tµλν

)
− 1

2
•
Tλ

λµ

•
Tν

νµ,� (182)

Tax = aµaµ =
1
18

( •
Tλµν

•
Tλµν − 2

•
Tλµν

•
Tµλν

)
,� (183)

Tvec = vµvµ =
•
Tλ

λµ

•
Tν

νµ.� (184)

The action of the teleparallel gravity (77) in terms of these quadratic invariants takes the form

•
LTG =

h
16πG

(
3
2

Tax +
2
3

Tten −
2
3

Tvec

)
.� (185)

New general relativity is a straightforward generalization of the teleparallel Lagrangian 
where the coefficients in front of the quadratic invariants take arbitrary values; i.e.

Class. Quantum Grav. 36 (2019) 183001



Topical Review

36

•
LNGR =

h
2κ

(
a0 + a1Tax + a2Tten + a3Tvec

)
,� (186)

where the four ai are arbitrary constants and a0 can be interpreted as the cosmological con-
stant. Since, up to a divergence,

−3
2

Tax −
2
3

Tten +
2
3

Tvec = −
◦
R,� (187)

with 
◦
R the scalar curvature of the Levi-Civita connection, Hayashi and Shirafuji rewrote the 

Lagrangian (186) in the form

•
LNGR =

h
2κ

(
a0 −

◦
R + b1Tax + b2Tten + b3Tvec

)
,� (188)

with the new coefficients given by

b1 = a1 +
3
2

, b2 = a2 +
2
3

, b3 = a3 −
2
3

.� (189)

In this theory, torsion would represent additional degrees of freedom relative to the curvature, 
which would thus produce deviations in relation to general relativity, or equivalently, in rela-
tion to teleparallel gravity. In the original new general relativity by Hayashi and Shirafuji  
[14, 86], only the b1 parameter was considered to be non zero since solar system experiments 
put strong constraints on b2 and b3. Further problems and limitations of this model were dis-
cussed in [87–89].

9.2.  Conformal teleparallel gravity

Recently there has been increased interest in gravitational theories with conformal invariance, 
which is expected to be recovered as a fundamental symmetry at the Planck scale [90–93]. In 
the standard Riemannian framework the Lagrangian is usually assumed to be quadratic in the 
Weyl tensor and hence leads to a theory with fourth order field equations.

Within the teleparallel framework we can use the fact that the torsion contains only first 
derivatives of the tetrad and construct a conformally invariant theory of gravity with second 
order field equations [15]. The most general Lagrangian of the teleparallel conformal gravity 
is then given by

•
LTCG = hL1L2,� (190)

where L1 is a generalization of the torsion scalar (143) given by

L1 = a1
•
Tρ

µν

•
Tρ

µν + a2
•
Tρ

µν

•
Tνµ

ρ + a3
•
Tρ

µρ

•
Tνµ

ν� (191)

where a1, a2, a3 are three constants satisfying the relation

2a1 + a2 + 3a3 = 0,� (192)

and L2 is defined analogously to (191) with generally three different constants a′
1, a′2, a′3 satis-

fying the analogous constraint to (192).
Using the quadratic invariants of the irreducible parts of the torsion tensor (182)–(184), it 

is possible to write the torsion scalar (191) in a simpler form

L1 = b1Tax + b2Tten,� (193)
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where b1, b2 are arbitrary constants [94]. The second scalar L2 can be written analogously 
with different constants b′

1, b′2. Since the overall normalization fixes one of the constants, the 
teleparallel conformal model (190) has 3 free parameters that can be chosen arbitrarily.

See [95] for a recent generalization of conformal teleparallel gravity. Alternatively, telepar-
allel conformal gravity can be realized by coupling a conformal scalar field to the generalized 
torsion scalar (191) [15, 96, 97], or using Kaluza-Klein reduction [98, 99].

9.3.  f (Tax, Tten, Tvec) gravity

A natural generalization combining elements of both f (T) gravity and new general relativity 
is f (Tax, Tten, Tvec) gravity [94], where the Lagrangian is taken to be an arbitrary function of 
quadratic invariants of the irreducible parts of the torsion tensor (182)–(184)

•
LATV =

h
2κ

f (Tax, Tten, Tvec).� (194)

This model includes other models discussed in previous sections as special cases and is par
ticularly suitable to study the behavior of teleparallel models under conformal transforma-

tions of the metric ĝµν = Ω2(x)gµν, or equally of the tetrad ĥa
µ = Ω(x)ha

µ, where Ω(x) is 
the conformal factor. The quadratic invariants of the irreducible parts of the torsion tensor 
(182)–(184) transform as

Tax = Ω2T̂ax, Tten = Ω2T̂ten, Tvec = Ω2T̂vec + 6Ωv̂µ∂̂µΩ+ 9ĝµν(∂̂µΩ)(∂̂νΩ).� (195)

Analyzing these transformation properties it can then be concluded, unlike the situation in 
f (R) gravity [9], that it is not possible to find an ‘Einstein frame’ where the theory reduces to 
ordinary general relativity and a minimally coupled scalar field [94]. This is a generalization 
of the result previously obtained in f (T) gravity [100, 101]. Moreover, we can also quickly 
confirm the observation that (193) transforms properly under conformal transformations and 
hence the Lagrangian (190) is, indeed, conformally invariant.

9.4.  Gravity models inspired by axiomatic electrodynamics

A novel approach to teleparallel theories was recently proposed by Itin et al [102] that utilizes 
the similarities between electromagnetism and teleparallel gravity. The field equations of elec-
tromagnetism can be written as

dF = 0,� (196)

dH = J,� (197)

where F is the electromagnetic field strength 2-form, H is the excitation 2-form and J the 
current 3-form. The specific case of Maxwell electrodynamics is then defined by the relation 
between the excitation form and the field strength form using the Hodge dual map

H = �F.� (198)

The crucial observation of the so-called axiomatic electrodynamics is that the field equa-
tions (196) and (197) describe a consistent theory of electrodynamics even if the relation (198) 
is generalized to a more general constitutive relation H = κ(F). Using this generalization we 
can then describe various effects in media and non-linear theories of electrodynamics in one 
unified language [103].
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Teleparallel gravity can be cast into a similar form by writing the Lagrangian in the lan-
guage of differential forms as

L =
•
Ta ∧

•
Ha,� (199)

where 
•
Ha is the gravitational excitation 2-form related to the superpotential (82) through

•
Ha(hb, Tb) =

1
4

hεµνρσ
•
Sa

ρσdxµ ∧ dxν .� (200)

The Bianchi identities and the field equations of teleparallel gravity then take a form that 
closely resembles the equations of electrodynamics (196) and (197):

D
•
Ta = 0,� (201)

D
•
Πa −

•
Υa =

•
Σa,� (202)

where D is the teleparallel covariant exterior derivative, and 
•
Υa and 

•
Σa are the gravitational 

and matter energy-momentum 3-forms defined in [40]. In the case of ordinary teleparallel 

gravity we have that 
•
Πa =

•
Ha, and using the so-called generalized Hodge dual [104] the exci-

tation form 
•
Ha can be related to a torsion form in a similar way as in the Maxwell case (198).

In [102] it was demonstrated that the same generalization to that in the case of axiomatic 
electrodynamics can be realized in teleparallel gravity by replacing the constitutive relation 
(200) by a general constitutive relation

•
Ha =

•
Ha(hb,

•
Tb),� (203)

where 
•
Ha(hb,

•
Tb) is a function of the tetrad and the torsion. It was shown that the most 

general local and linear constitutive relation defines new general relativity discussed in 
section 9.1 [102, 105, 106]. In [40] this approach was generalized to include arbitrary non-
linear constitutive relations and it was shown that all previously studied modified teleparal-
lel gravity models with second order field equations can be naturally realized by finding 
corresponding constitutive relations. For example, f (T) gravity can be realized through the 
constitutive relation

•
Ha(ha, Ta) =

1
4

h
f (

•
T)
•
T

εµνρσ
•
Sa

ρσdxµ ∧ dxν .� (204)

The advantage of such an axiomatic approach is that the field equations of all modified tele-
parallel theories then take the same form (201) and (202), which allows us to analyze them in 
full generality and better understand their generic features. For instance, in [40] it was shown 
that the result from f (T) gravity, discussed in section 8.1, that the field equations for the spin 
connection coincide with the antisymmetric part of the field equations for the tetrad, applies 
to all modified gravity models with second order field equations. Moreover, we obtain also a 
new framework where modified gravity theories are viewed analogously to various non-linear 
electrodynamics theories. Using such analogies we can then construct new modified gravity 
models inspired by electrodynamics theories [40].
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9.5. Teleparallel dark energy and scalar-torsion models

Another popular way to modify gravity is by introducing scalar fields. In the standard curva-
ture-based approach, the earliest such model was Brans–Dicke gravity [107], and more recent 
models include various quintessence and scalar–tensor gravity models [108–111].

In the teleparallel framework, we can follow the same path and formulate modified grav-
ity theories with scalar fields. The first model introduced by Geng et al [112] under the name 
teleparallel dark energy considers the torsion scalar (143) non-minimally coupled to the sca-
lar field with kinetic and potential terms for the scalar field:

•
LTDE = h

[ •
T
2κ

+
1
2
ξ
•
Tφ2 +

1
2
(∂µφ)(∂

µφ)− V(φ)
]
.� (205)

It was shown that such a model leads to interesting cosmological dynamics consistent with 
observations yet distinct from f (T) gravity or curvature-based analogues [51, 113–119]. Note 
that this model, in the same way as f (T) gravity discussed in section 8, was originally pre-
sented as violating local Lorentz invariance, but it can be reformulated in a covariant way 
using the non-trivial spin connection [120].

Following this example other modified gravity models with a scalar field were proposed, 
including the possibility of coupling the gradient of the scalar field with the trace of the tor-
sion tensor [121], and a tachyonic scalar field [122]. Recently, the most general extension was 
proposed as f (T , X, Y ,φ), where X is the kinetic term for the scalar field, and Y is the term 
representing the coupling between the torsion and gradient of the scalar field [123–125]. A 
similar yet distinct model is f (T , T ) gravity [126], where the scalar T = Θµ

µ is the trace of 
the energy-momentum of matter (84).

9.6.  Higher derivative models: f (T , B) and others

All of the previous teleparallel models considered the Lagrangian to be a function of the tor-
sion scalar only and did not include its derivatives; as a result the equations of motion were 
always second order. However, it is possible to include derivatives of torsion and deal with 
fourth (or possibly higher) order equations. Among such higher derivative type models, the 
best motivated one is perhaps f (T , B) gravity,

•
LfTB =

h
2κ

f (
•
T ,

•
B)� (206)

where we include the ‘boundary’ term 
•
B = (2/e) ∂µ(evµ) (see equation(145)).

Interestingly, for a particular form of the arguments, we can obtain the usual f (R) gravity:

f (
•
T ,

•
B) = f (−

•
T +

•
B) = f (

◦
R).� (207)

It is precisely the boundary term 
•
B that can be used to link both f (R) and f (T) theories to the 

larger class of modified gravity theories f (T , B) gravity, where f (R) and f (T) are now limit-
ing cases. A side result which emerges from studying f (T , B) gravity models is that there is 
no direct link between f (R) gravity and f (T) gravity.

The case (207) is particularly interesting in light of the discussion of the previous sec-
tions where we have addressed the issue of determining the spin connection corresponding 
to the tetrad and the pure tetrad formulation of teleparallel theories. From the equivalence 
with f (R) gravity, it is obvious that we do not face these problems as the only variable in 
f (R) gravity is the metric tensor. Nevertheless, it is illustrative to understand this fact within 
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the teleparallel framework. As it turns out, the spin connection entering the boundary term in 

(207) exactly cancels out the boundary term contribution of the spin connection to the 
•
T -term 

from the relation (93). This provides us with a f (−
•
T +

•
B) term entirely independent of the 

spin connection and hence leads to symmetric field equations. Therefore, the case (207) is a 
teleparallel theory that is locally Lorentz invariant even in the pure tetrad formulation dis-
cussed in section 7.

Recently, a number of other teleparallel theories with higher order field equations were pro-
posed. These include, for instance, the so-called teleparallel Gauss–Bonnet gravity [127, 128] 
inspired by analogous work in the curvature approach [129], where the following Lagrangian 
was considered

•
LfTTG =

h
2κ

f (
•
T ,

•
TG).� (208)

Here 
•
TG is the so-called teleparallel Gauss–Bonnet term related to the usual curvature Gauss–

Bonnet by a boundary term in a similar fashion to the relationship of curvature and torsion 
scalars in equation (145). Considering a f -function of such a teleparallel Gauss–Bonnet term 
in (208) leads then to a distinctive gravity model to curvature Gauss–Bonnet gravity. It is also 
possible to introduce derivatives of torsion in other ways (see [130]).

10.  Final remarks

Teleparallel gravity and its generalizations can be formulated as fully invariant (both coordi-
nate and local Lorentz) theories of gravity. Nevertheless, it is often suggested in the literature 
that torsion is not a tensor in teleparallel gravity or likewise that the local Lorentz symmetry is 
violated and teleparallel gravity theories are frame dependent. These notions originated from 
the fact that the teleparallel spin connection is of a pure-gauge form and hence it is always 
possible to choose a special gauge in which it vanishes. This is similar to choosing a specific 
gauge in gauge theories. This non-covariant approach where one restricts the analysis to a 
vanishing connection is what has been coined pure tetrad teleparallel gravity. One of the 
primary goals of this paper is to distinguish between what happens in the pure tetrad and the 
invariant formulations of teleparallel gravity and their generalizations, clearly illuminating the 
properties of the Lorentz connections and their pivotal role in understanding and determining 
the equations in Lorentz invariant gravitational theories.

In the invariant framework described here for teleparallel theories of gravity, the torsion 
tensor is a covariant object under both diffeomorphisms and local Lorentz transformations. 
However, unlike the familiar situation in general relativity where the curvature tensor depends 
only on the metric tensor, the torsion tensor of teleparallel gravity is a function of both the 
tetrad and the spin connection. The teleparallel spin connection is independent of the metric 
tensor and represents only the inertial effects associated with the choice of the frame. This is 
the crucial difference when comparing teleparallel theories with general relativity and other 
curvature-based theories of gravity, which introduces the very pressing practical problem of 
how to determine both the tetrad and the teleparallel spin connection.

In the teleparallel equivalent of general relativity the teleparallel spin connection does not 
enter the field equations for the tetrad, and the field equations for the spin connection turn out 
to be identically satisfied. Both of these properties can be easily understood as a consequence 
of the spin connection contributing to the teleparallel action through the surface term only. 
Therefore, as far as the solutions of the field equations are concerned, the spin connection can 
be chosen arbitrarily in order to solve the field equations. In particular, this allows us to set 
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the spin connection to zero and effectively obtain the purely tetrad formulation of teleparallel 
gravity.

However, in revealing the underlying problem of the pure tetrad formulation, the crucial 
point is that the spin connection can be chosen arbitrarily only when we are interested in solu-
tions of the field equations. The spin connection still plays an important role as it contributes 
to the action through the surface term which manifests itself in many situations where the 
total value of the action is of interest; e.g. calculations of the energy-momentum and black 
hole thermodynamics. As was shown in [8], in order to determine the spin connection corre
sponding to the tetrad, we can use the fact that the spin connection regularizes the action and 
hence we can define it by the requirement of the finiteness of the action. From a physical 
perspective, this amounts to the removal of spurious inertial contributions causing divergences 
of the action and obtaining a purely gravitational action. In practice, this can be achieved by 
introducing a reference tetrad which represents the same inertial effects as the full tetrad. This 
leads to the procedure described in section 5, which was demonstrated explicitly for the spher-
ically symmetric solution in section 6. It should be mentioned that this is the simplest, but not 
the only method to determine the spin connection. For example, see the recently developed 
method of determining the spin connection using the spacetime symmetries [30].

Note that the problem of how to determine the spin connection corresponding to the tetrad 
arises only if our starting point is the Lagrangian (77) depending on both the tetrad and the 
spin connection as a priori independent variables. The procedure discussed above can then 
be viewed as a method of determining their mutual relation. However, if we follow the gauge 
construction reviewed in section 3.1, we naturally avoid this problem. We start with an inertial 
frame together with a gauge translational potential and a gauge covariant derivative which can 
be naturally introduced. The spin connection appears when we pass to the general frame by 
performing a local Lorentz transformation, in a similar fashion to how it appears in special 
relativity. We can then see that the general tetrad (43) is given by a combination of the spin 
connection and the translational gauge potential and that the translational field strength (49) 
coincides with the torsion tensor (50) for the general tetrad. In this construction, it is obvious 
that the tetrad is not an independent variable from the spin connection and that, in fact, to each 
tetrad corresponds some teleparallel spin connection.

It is useful to remember that the field equations of teleparallel gravity are non-linear coupled 
PDEs that can only be solved analytically in certain highly symmetric situations. Therefore, as 
in the case in general relativity, a starting point of many explicit calculations is a certain ansatz 
which respects the assumed symmetry. From this ansatz metric we then choose an ansatz tet-
rad and solve the field equations. This is the reason why in all practical calculations we start 
with the tetrad and the spin connection as a priori independent variables instead of construct-
ing the tetrad from the translational gauge potential and the spin connection. This approach of 
solving the field equations is very much within the spirit of general relativity and it remains an 
open question as to whether one could fully follow the gauge construction in practice and use 
translational gauge potentials instead of the tetrad (and whether there would be any advantage 
to such an approach).

The situation is radically different in the case of modified teleparallel theories of gravity 
where the teleparallel spin connection contributes to the action in a more intricate way. The 
variation with respect to the tetrad and the spin connection results in a system of coupled field 
equations that depend on both variables in a non-trivial way. However, it turns out that the 
resulting field equations for the spin connection are equivalent to the antisymmetric part of the 
field equations for the tetrad. This means that, unlike in the case of the ordinary teleparallel 
gravity, there is no freedom to choose the spin connection when solving the field equations; 
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instead the spin connection is determined by the field equations. Therefore, the solution to 

the problem in modified teleparallel theories is always the pair ha
µ and 

•
ωa

bµ. It is interesting 
to note that in many highly symmetric situations, such as spherically symmetric spacetimes 
or isotropic cosmologies, the antisymmetric and symmetric parts of the field equations  for 
the tetrad do decouple from each other [13, 131]. As a result, it is often possible to solve the 
antisymmetric part of the field equations, and hence determine the spin connection, indepen-
dently from obtaining the solution for the symmetric part of the field equations that determines 
the full tetrad and the metric tensor.

We can now clearly understand the problem of the pure tetrad formulation in the modi-
fied case and why these theories can easily be misunderstood regarding their local Lorentz 

invariance. Since the solution of the field equations is always the pair ha
µ and 

•
ωa

bµ, the field 
equations in the pure tetrad formulation are non-trivially satisfied only in the case when the 
tetrad corresponds to a vanishing spin connection. These tetrads were originally nicknamed 
good tetrads in the case of f (T) gravity, since they lead to non-trivial solutions of the field 
equations; this is in contrast with the so-called bad tetrads, in which case f (T) gravity reduces 
trivially to ordinary teleparallel gravity [46]. We now see that this concept of good and bad 
tetrads is just the result of neglecting the role of the teleparallel spin connection and one can-
not draw any conclusions about the preferred frames in teleparallel theories. Nevertheless, we 
should mention that despite these conceptual and fundamental flaws, the pure tetrad form
ulation—if one properly uses good tetrads only—can be utilized to successfully solve the 
field equations. Therefore, most of the results found in the literature—obtained using the pure 
tetrad formulation—are correct.

In section 9, we reviewed the covariant formulation of other modified teleparallel theories 
and classified various models based on their essential features. With the exception of higher 
derivative theories, equivalent to some curvature based models as discussed in section 9.6, 
much of the previous discussion about the tetrad and the spin connection from f (T) gravity 
generally applies to all modified teleparallel models [40].

It is worth noting that alternatively one could set up an action for teleparallel theories and 
through the use of Lagrange multipliers ensure that the curvature of the spin connection is zero 
via a metric affine gauge approach [132, 133]. In this case the action would be a functional of 
both the frame field and the spin connection. The result of varying with respect to the frame 
field will yield a set of equivalent field equations to the covariant version presented here and 
in [13]. The result of varying with respect to the spin connection could, of course, result in a 
difference in the matter sector of the theory unless additional assumptions are placed on the 
nature of the matter Lagrangian (such as, for example, independence from the spin connec-
tion). Assuming that there is no hyper-momentum or spin current matter source [133], the 
zero curvature constraint results in a Lorentz connection as in the covariant representation of 
the theory.

An interesting and very fundamental open problem is the question of the propagating 
degrees of freedom in modified teleparallel theories of gravity. In the case of f (T) gravity it 
was shown that there are no propagating extra degrees of freedom at the linear level [47, 59, 
134]. However, the Hamiltonian analysis revealed that there are five propagating degrees of 
freedom [135]. It was then argued that the presence of these extra non-perturbative degrees of 
freedom poses a serious problem for the causality of f (T) gravity [136], and these claims were 
then further discussed in [137–139]. Recently, these results were questioned and it was argued 
that f (T) gravity has only one extra propagating degree of freedom [140, 141], the same num-
ber as f (R) gravity. Most of these results were obtained using the non-covariant pure tetrad 
teleparallel gravity, and therefore their applicability within the invariant framework presented 
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here is not yet clear, see also the interesting discussion in [142]. However, the recent analysis 
of the covariant formulation of new general relativity, discussed in section 9.1, implies that 
the presence of the spin connection does not influence the total number of degrees of free-
dom [143]. Similarly, a general analysis of teleparallel theories using the method of Lagrange 
multipliers led to the same conclusion [144]. Nevertheless, this is clearly an important open 
question for future consideration.

We can mention here also a distinct class of theories introduced by Nester and Yo [145], 
where gravity is attributed to the non-metricity of spacetime. Since the teleparallel condition 
of zero curvature is satisfied and the connection is symmetric due to vanishing torsion, this 
approach was named symmetric teleparallel gravity. Within this framework it is possible to 
formulate the symmetric teleparallel equivalent of general relativity [145–149], which can 
be understood also as a gauge theory for translations [150, 151], and construct new modified 
gravity models [95, 152–155].

Let us conclude with the statement that teleparallel theories of gravity, which have experi-
enced a renaissance recently, are an intriguing approach to understand gravity. In the case of 
ordinary teleparallel gravity, we are able to obtain a number of fundamental insights into the 
nature of gravity, which are not readily available (or are, at least, more hidden) in standard 
general relativity. Among those which we have reviewed here include the manifest gauge 
nature of gravity, and new approaches to understand the problems of the definition of the 
gravitational energy-momentum and regularization of the gravitational action. There are a 
number of other areas where teleparallel gravity can improve our understanding of gravity. For 
instance, it has been argued that coarse graining of the gravitational field equations of general 
relativity might be more naturally achieved within a teleparallel frame formulation of gravity 
[156, 157]. The ability to parallelly transport in a path independent manner facilitates an inte-
gration procedure useful for the development an averaged theory of gravity.

We have also discussed a number of modified teleparallel gravity models within the covari-
ant formulation. Since these theories are distinct new models of gravity, it is ultimately up to 
observations to discriminate between them. Nevertheless, a number of theoretical challenges 
arise. In particular, we have focused on the question of local Lorentz invariance, and we have 
clearly demonstrated that the question is resolved due to the existence of the inertial Lorentz 
connection.
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