UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Investigating Tissue Heterogeneity using MRI in Prostate Cancer

Devine, William; (2019) Investigating Tissue Heterogeneity using MRI in Prostate Cancer. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Devine thesis.pdf]
Preview
Text
Devine thesis.pdf

Download (11MB) | Preview

Abstract

Multi-parametric MRI, a promising new technique for grading prostate cancer using MRI, classifies a high number of regions as indeterminate. This is a symptom of the wider problem that clinical usage of MRI in prostate cancer only includes basic techniques and does not directly categorise tissue microstructure. This work provides insight into the microstructure of the prostate using a combination of new tissue models and acquisition schemes. Each is tested with the aim of producing a method that is better at detecting and grading prostate cancer. The first section utilises microstructural diffusion models to better quantify tissue heterogeneity in the prostate. The two models investigated provided more information about the heterogeneous nature of the prostate that ADC and showed significant difference between lesions and normal tissue. The next section looks into combining multi-echo T2 (ME-T2) sequences with quantitative tissue modelling called Luminal Water Imaging (LWI). This work produced an optimal LWI fitting technique and acquisition. Then the ability of LWI to detect the PI-RADS v2.0 score of regions of interest was examined, showing that it was able to differentiate between scores better than ADC. This work also showed that LWI can differentiate between tumour and normal tissue with an AUC of 0.81 (p<0.05) when compared to ADC with an AUC of 0.75 (p<0.05) in this dataset. The next section further improves the acquisitions using larger datasets. It showed that correcting for imperfect pulse refocusing could improve on the performance of LWI in detecting PCa. This work also showed that fewer echoes could be used in the acquisition. Neural networks were then used to detect and grade prostate cancer using the data points from both multiple b-value diffusion and ME-T2 decay curves. The neural network’s ability to distinguish between different PIRADS scores was shown to have an AUC of 0.87 (p<0.05) using 32-echo data.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Investigating Tissue Heterogeneity using MRI in Prostate Cancer
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10079055
Downloads since deposit
65Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item