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Thársis Tuani Pinto Souza

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

July 28, 2019



2
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Abstract

Assuming social media as a proxy for human activity, behavior and opinion, we aim

to test the extent to which financial dynamics can be explained by collective opinion

extracted from social media.

First, we present an analysis of Twitter sentiment extracted from U.S.-listed re-

tail brands. We investigate whether there is a significan causal link between Twitter

sentiment, and stock returns and volatility. The results suggest that social media is

indeed a valuable source in the analysis of financial dynamics, sometimes carrying

more prior information than mainstream news such as the Wall Street Journal and

Dow Jones Newswires.

Second, we provide empirical evidence that suggests social media and stock

markets have a nonlinear causal relationship. By using information-theoretic mea-

sures to cope with possible nonlinear causal effects, we point out large differences

in the results with respect to linear coupling. Our findings suggest that the signifi-

cant causal relationship between social media and stock returns is purely nonlinear

in most cases. Furthermore, social media dominates directional coupling with the

stock market, an effect that is not observable within linear modeling.

Finally, we propose a model that predicts future correlation structure, based on

a mechanism of link formation by triadic closure, that combines information from

social media and financial data in a multiplex structure. The results demonstrate

that the proposed model can achieve up to 40% out-of-sample performance im-

provement, compared to a benchmark model that assumes that correlation structure

is time invariant. Social media information leads to improved models for all settings

tested, particularly in the long-term prediction of a financial market structure.
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Our findings indicate that social media sentiment dominates directional cou-

pling with the stock market in the prediction of individual asset dynamics as well as

the overall market structure.
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the companies identified with nonlinear causality only, we tested
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Chapter 1

Introduction

1.1 Research Background and Context

Investors’ decisions are modulated not only by companies’ fundamentals but also

by personal beliefs, peer influence and informational impact from mainstream news

and the Internet [2, 3]. Investors rational and irrational behavior and their relation

to the market efficiency hypothesis [4] have been largely debated in economics and

financial literature [5]. However, the availability of vast amounts of data from on-

line systems have only recently paved the way for the large-scale investigation into

investors collective behavior in financial markets [6, 7].

It is known that news plays a key role in financial markets [8]. Therefore, col-

lecting and understanding the news announcements of private and public compa-

nies, macroeconomic news or even rumors have become essential to quickly adapt

trading strategies and portfolio optimization in general. News provides information

about an event and, as such, may be considered to be an event in itself [9]. The

arrival of news influences a market’s expectations of future price movements and it

has a significant effect on investors sentiment and behavior [10]. There is upcoming

and growing literature regarding the influence of news on financial markets, includ-

ing the analysis of the behavior of price, volatility, liquidity and risk [2, 11, 12, 13,

14, 9, 15, 16, 17, 18].

In addition to mainstream news, the analysis of digital traces of collective hu-

man behavior has been recently used as a novel tool to quantify and statistically val-
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idate hypotheses about financial dynamics in an ex-ante fashion. Sentiment, emo-

tions, and behavioral analytics can provide valuable information before the market

moves [19, 13, 20]. Examples range from the use of Google Trends [21, 22] and

Wikipedia [3, 23] to social media [6, 24, 7, 19, 25]. Social media, in particular,

has become an increasingly important source to describe financial dynamics, as it

provides a fine-grained, real-time information channel that includes not only major

news stories but also information on granular events.

While recent literature provides evidence that exogenous information gathered

from online social systems may be useful to describe financial dynamics, the litera-

ture still presents major gaps including the following:

• There are mixed results on the predictability of stock returns. On the one

hand, some evidence is provided in favor of the predictability of price move-

ments using news and social media [2, 11, 6, 26]. On the other hand, other

studies report weak results [27, 19] suggesting that social media analytics has

low predictive power when used alone.

• There is lack of evidence on the nature of the relationship between social

opinion and price movements. The use of ad hoc functional forms and as-

sumptions in different studies makes it difficult to draw general conclusions

about the nature of the relationship between collective opinion and stock mar-

kets.

• Empirical studies thus far have been limited to the investigation of individual

securities, often neglecting joint dependencies and the multi-asset case. There

is little evidence on the value of social media data in the prediction of financial

correlation structure.

1.2 Objectives
Assuming social media as a proxy for human activity, behavior and collective opin-

ion, the main objective of this work is to test whether and to what extent financial

dynamics can be better explained by collective opinion extracted from social media.
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The following research questions are addressed:

• Does social media sentiment cause stock prices movements?

• What is the nature of the relationship between social media sentiment and the

stock market?

• Can social media predict stock market structure?

In order to address the stated research questions, we test the following hypothe-

ses:

• H1: Social media sentiment has a significant causal relationship with stocks

returns and volatility;

• H2: Social media sentiment has a nonlinear impact in stock price returns;

• H3: Social media sentiment dominates directional coupling with the stock

market; i.e., information provided by social media contributes to the descrip-

tion of stock market dynamics more than the opposite;

• H4: Social media sentiment structure predicts stock market structure.

1.3 Relevance and Contribution
Financial analysts, traders and market professionals globally are increasingly us-

ing Twitter to stay abreast of the market and make critical decisions [1]. From the

launch of the first social media-based ETF in 2016 [28] to the release of several

alpha-seeking social media data feeds including those launched by the Nasdaq An-

alytics Hub in 2017 [29] and the event-driven Twitter feed released by Bloomberg

in 2018 [30], social media is poised to change how financial practitioners develop

financial products and models to gain an edge in the market. Hence, this thesis

advances academic research in the area and it also has timely and practical implica-

tions in the financial industry. We summarize the relevance and contribution of this

thesis as follows:
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• We provide evidence that social media sentiment has a significant causal re-

lationship with price movements by analyzing constituents of the Dow Jones

Industrial Average index. While analyzing retail brands, in particular, results

suggest that social media can be a complementary source in the analysis of

the financial dynamics to mainstream news such as the Wall Street Journal

and Dow Jones Newswires.

• Taking social media as a proxy for investor’s collective attention over the

stock market, we provide the first empirical evidence that characterizes social

media impact on market prices as nonlinear. This indicates that the impact of

social media on stock returns may be higher than those currently reported in

related studies. Our results serve as empirical guidance on model adequacy,

market efficiency, and predictability, in the investigation of causal relation-

ships between social and financial systems. Testing for nonlinear dependen-

cies is of great importance in financial econometrics due to its implications in

model adequacy, market efficiency, and predictability [31].

• Most of the related literature focuses on the investigation of the impact of

social opinion on individual stocks often neglecting the multi-asset case. To

the best of our knowledge, we provide the first empirical evidence that social

opinion structure is relevant to the prediction of future financial correlation

structures. This result has important consequences because of the fundamen-

tal importance of financial correlation structure in any study of portfolio risk,

capital allocation or hedging in trading strategies as well as fundamental lit-

erature in Modern Portfolio Theory (MPT) [32], Capital Asset Pricing Model

(CAPM) and Arbitrage Pricing Theory (APT) [33].

1.4 Thesis Content
This thesis is organized as follows. In Chapter 2, we provide the methodology

background. In Chapter 3, we present a literature review covering related work

that leverages news and social media analytics in financial markets applications. In

Chapter 4, we investigate whether there is a significant causal relationship between
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social media sentiment from retails brands and stock returns. The results reveal a

dependency structure between sentiment and financial variables for both traditional

newswires and social media. The findings suggest that social media sentiment plays

an important role in explaining the price dynamics of the retail sector, even when

compared to traditional newswires. In Chapter 5, we provide empirical evidence

indicating that social media and stock markets have a nonlinear causal relationship.

We observe that the significant causal relationship between social media and stock

returns is purely nonlinear in most cases. Furthermore, a transfer entropy analysis

reveals that more information is transferred from social media to the stock market

than the other way around. In Chapter 6, we combine social and financial network

information to predict a stock market correlation structure by assuming that finan-

cial links are formed through a mechanism of triadic closure, whereby triangles are

formed by social and financial links. The results suggest that social media opinion

structure can be used to better predict a future stock market structure, particularly

in the long term. Finally, in Chapter 7, we conclude the work, describe limitations

and suggest avenues for future research.
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Chapter 2

Methodology

2.1 Data

2.1.1 News Analytics

We consider news meta-data supplied by Ravenpack [34], which consists in 10,949

news stories from Dow Jones Newswires, the Wall Street Journal and Barrons. Each

news article receives scores for characteristics such as relevance, novelty and senti-

ment according to a related individual including the following:

• TIMESTAMP UTC: The date/time at which the news item was received in

Coordinated Universal Time (UTC).

• COMPANY: This field includes a company identifier in the format

ISO CODE/TICKER. The ISO CODE is based on the company’s original

country of incorporation and TICKER on a local exchange ticker or sym-

bol. If the company detected is a privately held company, there will be no

ISO CODE/TICKER information, COMPANY ID.

• ISIN: An International Securities Identification Number (ISIN) to identify

the company referenced in a story. The ISINs used are accurate at the time

of story publication. Only one ISIN is used to identify a company, regardless

of the number of securities traded for any particular company. The ISIN used

will be the primary ISIN for the company at the time of the story.
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• COMPANY ID: A unique and permanent company identifier. Every com-

pany tracked is assigned an unique identifier comprised of six alphanumeric

characters. The RP COMPANY ID field consistently identifies companies

throughout the historical archive.

• RELEVANCE: A score between 0 and 100 that indicates how strongly related

the company is to the underlying news story, with higher values indicating

greater relevance. A score of 0 means the company was passively mentioned

while a score of 100 means the company was predominant in the news story.

• CATEGORIES: An element or “tag” representing a company-specific news

announcement or formal event. Relevant stories about companies are classi-

fied in a set of predefined event categories following a pre-defined taxonomy.

When applicable, the role played by the company in the story is also detected

and tagged.

• ESS - EVENT SENTIMENT SCORE: A granular score between 0 and 100

that represents the news sentiment for a given company by measuring various

proxies sampled from the news. The score is determined by systematically

matching stories typically categorized by financial experts as having short-

term positive or negative share price impact. The strength of the score is de-

rived from training sets where financial experts classified company-specific

events and agreed these events generally convey positive or negative senti-

ment and to what degree. Their ratings are encapsulated in an algorithm that

generates a score range between 0 and 100 where higher values indicate more

positive sentiment while values below 50 show negative sentiment.

• ENS - EVENT NOVELTY SCORE: A score between 0 and 100 that repre-

sents how “new” or novel a news story is within a 24-hour time window. The

first story reporting a categorized event about one or more companies is con-

sidered to be the most novel and receives a score of 100. Subsequent stories

within the 24-hour time window about the same event for the same companies

receive lower scores.
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Table 2.1 shows a sample of the news-sentiment analytics data provided. The

relevance score of a news article ranges between 0 and 100 and indicates how

strongly related the company is to the underlying news story, whereby higher val-

ues indicate greater relevance. We filter the news stories with a relevance of 100.

This increases the likelihood that the story is related to the underlying company.

We also consider the event sentiment score (ESS). This measure indicates a short-

term positive or negative financial or economic impact of the news in the underlying

company; higher values indicate more positive impact.

Table 2.1: News sentiment analytics. Each row represents a news story related to a com-
pany. The meta-data considered consists of relevance and sentiment scores and
a timestamp.

Story ID Company Date Hour Relevance Event Sentiment Score
1 NIKE INC. 20140104 210130 33 64
2 MATTEL INC. 20140105 41357 100 50
3 NIKE INC. 20140105 145917 93 88
4 NIKE INC. 20140105 150523 100 61
5 GAMESTOP CORP. 20140105 193507 44 50
6 GAMESTOP CORP. 20140106 170040 99 44
7 MATTEL INC. 20140106 222532 100 61
8 GAMESTOP CORP. 20140107 32601 100 50
9 MATTEL INC. 20140107 172628 55 40
10 NIKE INC. 20140110 204027 100 67

2.1.2 Social Media Sentiment on Retail Brands

In Chapter 4, we conducted our analysis on a subset of listed retail brands with

stocks traded in the U.S. stock market, which we monitored from November 01,

2013 to September 30, 2014. The examined stocks and their Reuters Instru-

ment Codes (RIC) are as follows: ABERCROMBIE & FITCH CO. (ANF.N),

NIKE INC. (NKE.N), HOME DEPOT INC. (HD.N), MATTEL INC. (MAT.N) and

GAMESTOP CORP. (GME.N).

The choice of companies was given by data availability, which corresponds

to the companies analyzed in [35] that were also publicly-listed. The data was

extracted from the sentiment dataset that we created in [35], which was previously

used to predict sales of retail brands [36].
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For the Twitter sentiment data, we consider the number of positive, negative

and neutral English messages which are related to the underlying company on a

daily basis. We also take the total number of messages, regardless of their lan-

guage, as a proxy for volume. Table 2.2 shows an example of the Twitter sentiment

analytics for MATTEL INC. Table 2.3 offers a summary description of the selected

companies and the number of stories considered. The methodology for the Twitter

sentiment data is described in [35], where we proposed a new ensemble method

that combines a lexicon and machine-learning approaches to best estimate Twitter

sentiment analytics.

Table 2.2: Twitter Sentiment Analytics. Sample of meta-data information for MATTEL
INC. On a daily basis, we considered the number of positive, negative and neu-
tral English Twitter messages related to the company; we also considered the
total number of messages (regardless of the language) as a proxy for volume.

Date CompanyID Volume #Positive #Negative #Neutral
01/11/2013 MATTEL INC. 1,980 8 4 485
02/11/2013 MATTEL INC. 1,750 12 2 339
03/11/2013 MATTEL INC. 1,700 8 1 518
04/11/2013 MATTEL INC. 2,720 19 2 429
05/11/2013 MATTEL INC. 1,980 11 8 793
06/11/2013 MATTEL INC. 1,580 11 4 470
07/11/2013 MATTEL INC. 1,770 7 1 498
08/11/2013 MATTEL INC. 1,900 5 4 288
09/11/2013 MATTEL INC. 1,260 16 2 236
10/11/2013 MATTEL INC. 1,700 7 8 313

Table 2.3: Summary table of selected companies. Here we present the five retail brands
selected for the analysis along with their market capitalization. We show the
number of news and Tweets in the selected period.

Company Market Cap.* No. of News** No. of Tweets
ABERCROMBIE & FITCH CO. 2.86 174 1,352,643
NIKE INC. 67.39 178 38,033,900
HOME DEPOT INC. 111.57 241 1,593,204
MATTEL INC. 15.02 125 613,798
GAMESTOP CORP. 6.41 167 1,209,680
(*) Market Capitalization ($Billions) as of October 31, 2013. Source: Thomson Reuters Eikon.
(**) Number of news analyzed, i.e., filtered with relevance score equals to 100.
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2.1.3 Social Media Sentiment on U.S.-listed Companies

In Chapters 5 and 6, we expanded the scope of social media sentiment to companies

that were representative of the entire U.S. market. In Chapter 5, we considered

companies constituents of the Dow Jones Industrial Average Index while in Chapter

6, we considered social media sentiment on the top 100 most market capitalized

companies constituents of the S& P 500 index.

The data were supplied by PsychSignal.com [37] and they were comprised of

volume and sentiment measures. In this dataset, a company is defined to be related

to a given message if its ticker-id is mentioned as a cashtag, i.e., with its name

preceded by a dollar symbol, e.g., $CSCO for the company CISCO SYSTEMS

INC. In Twitter, a cashtag is a standard way to refer to a listed security. Twitter

messages are classified according to their likelihood of bullishness and bearishness

toward a company. Fig. 2.1 shows the volume of bearish and bullish messages

for the selected companies. The dataset is based on English language content and

it ignores the source country. The information is aggregated in a daily fashion

within a 24-hour window that ends at 8AM EST and it is composed of the following

variables:

• symbol: the stock symbol (ticker) for which the sentiment data refers to,

• timestamp utc: date and time of the analyzed data in UTC format,

• bull scored messages: daily total count of bullish sentiment messages, and

• bear scored messages: daily total count of bearish sentiment messages.

Some messages may be classified as “neutral” or at least not having relevant bullish

or bearish tones. That type of messages does not affect the bull scored messages

and bear scored messages scores. It is also possible that no messages cite a com-

pany in a given day. In that case, the scores are zero.

Table 2.4 shows a summary description of the selected companies with the

number of bearish/bullish Twitter messages identified in the period. We have pro-

vided further descriptive analytics of the Twitter sentiment dataset used in related

literature [38, 39].
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Figure 2.1: Volume of bearish and bullish Twitter messages mentioning a ticker of a stock
component of the Dow Jones Industrial Average (DJIA) index monitored dur-
ing the two-year period from March 31, 2012 to March 31, 2014.

2.2 Methods

2.2.1 Granger-causality

We quantify causality by using the notion of the causal relation introduced by

Granger [40, 41] where a signal X is said to Granger-cause Y if the future real-

izations of Y can be better explained using the past information from X and Y rather

than Y alone.

The most common definitions of Granger-causality (G-causality) rely on the

prediction of a future value of the variable Y by using the past values of X and Y

itself. In that form, X is said to G-cause Y if the use of X improves the prediction

of Y . We follow the notation from [42, 43]. Let Xt be a random variable associated

at time t while X t represents the collection of random variables up to time t. We

consider Xt ,Yt and Zt to be three stochastic processes. Let Ŷt+1 be a predictor for

the value of the variable Y at time t + 1. We compare the expected value of a loss

function g(e) with the error e = Ŷt+1−Yt+1 of two models:
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Table 2.4: Summary table of the selected companies. It includes the DJIA index con-
stituents along with their total and daily mean numbers of bearish and bullish
tweets during the period from March 31, 2012 to March 31, 2014. The number
of total messages processed includes bullish, bearish and neutral messages.

Bullish messages Bearish messages
Ticker Total Daily mean Total Daily mean Total Messages
AAPL 151143 279.89 95819 177.443 800638
MSFT 16730 30.98 7062 13.078 139343
JPM 11259 20.85 6090 11.278 82265
GS 13971 25.87 8023 14.857 75578
IBM 7387 13.68 4284 7.933 53547
INTC 6808 12.61 3199 5.924 47653
GE 4888 9.05 1522 2.819 41271
CSCO 5919 10.96 2535 4.694 39665
WMT 4702 8.71 2438 4.515 39607
XOM 4495 8.32 1780 3.296 33194
CAT 5854 10.84 4035 7.472 31911
VZ 4101 7.59 1651 3.057 30936
BA 4432 8.21 1693 3.135 30421
JNJ 3575 6.62 1345 2.491 28392
MCD 3750 6.94 2157 3.994 28059
KO 3786 7.01 1385 2.565 26331
DIS 4170 7.72 1282 2.374 25863
PFE 3131 5.80 1091 2.020 24817
V 4436 8.21 1726 3.196 24118
CVX 2696 4.99 986 1.826 21322
NKE 3549 6.57 1461 2.706 20941
MRK 2623 4.86 929 1.720 20708
PG 2382 4.41 968 1.793 20226
HD 3262 6.04 1221 2.261 17550
MMM 1399 2.59 465 0.861 12382
AXP 1740 3.22 674 1.248 12072
UTX 1363 2.55 369 0.690 11255
DD 1498 2.78 559 1.037 10746
UNH 1348 2.50 532 0.987 9196
TRV 798 1.53 316 0.604 7990
TOTAL 287195 - 157597 - 1767997

1) The expected value of the prediction error given only Y t

R(Y t+1 |Y t ,Zt) = E[g(Yt+1− f1(X t ,Zt))] (2.1)
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2) The expected value of the prediction error given Y t and X t

R(Y t+1 |X t ,Y t ,Zt) = E[g(Yt+1− f2(X t ,Y t ,Zt))]. (2.2)

In both models, the functions f1(.) and f2(.) are chosen to minimize the expected

value of the loss function. In most cases, these functions are retrieved with linear

and, possibly, with nonlinear regressions. Typical forms for g(.) are the l1- or l2-

norms.

Definition 1. X does not Granger-cause Y relative to side information Z if and only

if R(Yt+1 | X t ,Y t ,Zt) = R(Yt+1 | Y t ,Zt).

A more general definition than Def. 1 that does not depend on assuming pre-

diction functions can be formulated by considering the conditional probabilities.

A probabilistic definition of G-causality assumes that Yt+1 and X t are independent

given the past information (X t ,Y t) if and only if p(Yt+1 |X t ,Y t ,Zt)= p(Yt+1 |Y t ,Zt),

where p(. | .) represents the conditional probability distribution. In other words,

omitting past information from X does not change the probability distribution of Y .

Definition 2. X does not Granger-cause Y relative to side information Z if and only

if Yt+1 ⊥⊥ X t | Y t ,Zt .

Def. 2 does not assume any functional form in the coupling between X and Y .

Nevertheless, it requires a method to assess the conditional dependency.

In Section 2.2.2, we define a parametric linear specification of G-causality

based on Def. 1; In Section 2.2.4, we define a non-linear specification of G-causality

based on Def. 2 using an information-theoretical framework.

2.2.2 Linear G-causality

Standard Granger-causality tests assume a linear relationship among the causes and

effects and are implemented by fitting autoregressive models [40, 41].
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Consider the linear vector-autoregressive (VAR) equations:

R(t) = α +
k

∑
∆t=1

β∆tR(t−∆t)+ εt , (2.3)

R(t) = α̂ +
k

∑
∆t=1

β̂∆tR(t−∆t)+
k

∑
∆t=1

γ̂∆tSM(t−∆t)+ ε̂t , (2.4)

where k is the number of lags considered. From Def 1, SM does not G-cause R

if and only if the prediction errors of R in the restricted Eq. (4.4) and unrestricted

regression models Eq. (4.5) are equal (i.e., they are statistically indistinguishable).

A one-way ANOVA test is utilized to test if the residuals from Eqs. (4.4) and

(4.5) differ from each other significantly. When more than one lag k is tested, a

Bonferroni correction is applied to control for multiple hypotheses testing. Finally,

a significant causal relationship can be reported only if the linear models from Eqs.

(4.4) and (4.5) are not misspecified. For that purpose, we utilize the BDS test [44]

for the model misspecification (see Section 2.2.3).

2.2.3 BDS Test for Linear Misspecification

The BDS test [44] is used to detect nonlinear dependence in time series. When

applied to the residuals of a linear model, the BDS tests the null hypothesis

that these residuals are independent and identically distributed. The BDS test is

a powerful test to detect linear misspecification and nonlinearity [44, 45]. Let

εt = (εt=1, . . . ,εt=n) be the residuals of the linear fitted model and define its m-

embedding as εm
t = (εt ,εt−1, . . . ,εt−m+1). The m-embedding correlation integral is

given by

Cm,n(∆ε) =
2

k(k−1)

t

∑
s=1

n

∑
t=s

χ(‖εm
s − ε

m
t ‖,∆ε),

and

Cm(∆ε) = lim
n→∞

Cm,n(∆ε),
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where χ is an indicator function where χ(‖εm
s − εm

t ‖,∆ε) = 1 if ‖εm
s − εm

t ‖ < ∆ε

and zero, otherwise. The null hypothesis of the BDS test assumes that εt is iid. In

this case,

Cm(∆ε) =C1(∆ε)m.

The BDS statistic is a measure of the extent that this relation holds in the data. This

statistic is given by the following:

Vm(∆ε) =
√

n
Cm(∆ε)−C1(∆ε)m

σm(∆ε)
,

where σm(∆ε) can be estimated as described in [44]. The null hypothesis of the

BDS test indicates that the model tested is not misspecified and it is rejected at the

5% significance level if ‖Vm(∆ε)‖> 1.96.

The parameter ∆ε is commonly set as a factor of the variance (σε ) of ε . We re-

port results for ∆ε = σε/2 and the embedding dimension m = 2. We also performed

tests for ∆ε = σε and m = 3 with no significant differences in the results.

2.2.4 Nonlinear G-Causality

To compute the nonlinear G-Causality, we use the concept of Transfer Entropy that,

since its introduction by Schreiber (2000) [46], has been recognized as an important

tool in the analysis of causal relationships in nonlinear systems [47].

Let us first introduce basic information theory concepts. Next, we define Trans-

fer Entropy and its estimation as a causality measure. Let X be a random variable

and PX(x) be its probability density function (pdf). The entropy H(X) is a measure

of the uncertainty of X and is defined in the discrete case as follows:

H(X) =−∑
x∈X

PX(x) logPX(x). (2.5)

Given a coupled system (X ,Y ), where PY (y) is the pdf of the random variable

Y and PX ,Y is the joint pdf between X and Y , the joint entropy between X and Y is
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given by the following:

H(X ,Y ) =−∑
x∈X

∑
y∈Y

PX ,Y (x,y) logPX ,Y (x,y). (2.6)

The conditional entropy is defined by the following:

H (Y |X) = H(X ,Y )−H(X). (2.7)

We can interpret H (Y |X) as the uncertainty of Y given a realization of X .

The Transfer Entropy can be defined as the difference between the conditional

entropies:

T E (X → Y |Z) = H
(
Y F ∣∣Y P,ZP)−H

(
Y F ∣∣XP,Y P,ZP) , (2.8)

where Y F is a forward time-shifted version of Y at lag ∆t relatively to the past time-

series XP, Y P and ZP. Within this framework we say that X does not G-cause Y

relative to side information Z if and only if H
(
Y F
∣∣Y P,ZP) = H

(
Y F
∣∣XP,Y P,ZP),

i.e., when T E
(
X → Y,ZP)= 0.

Empirically, we reject this null hypothesis of causality if the Transfer Entropy

from X to Y is significantly higher than the shuffled version of the original data. For

this we estimate 400 replicates of T E(XShu f f led → Y ), where XShu f f led is a random

permutation of X relatively to Y . We compute the randomized Transfer Entropy at

each permutation for each time-shift (∆t) from 1 to 10 days. We then calculated the

frequency at which the observed Transfer Entropy was equal or more extreme than

the randomized Transfer Entropy. The statistical significance was assessed using

p-value < 0.05 after Bonferroni correction.

The estimation of the empirical probability density distribution, which is re-

quired for the entropy estimation, was performed using the Kernel Density Es-

timation (KDE) method, which has several advantages over the frequently used

histogram-based methods (see Section 2.2.5 for more details).
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2.2.5 Kernel Density Estimation

In the entropy computation, the empirical probability distribution must be esti-

mated. Histogram-based methods and kernel density estimations are the two main

methods for that. Histogram-based is the simplest and most used nonparametric

density estimator. Nonetheless, it yields density estimates that have discontinuities

and vary significantly depending on the bin size choice.

Also known as the Parzen-Rosenblatt window method, the kernel density esti-

mation (KDE) approach approximates the density function at point x using neigh-

boring observations. However, instead of building up the estimate according to the

bin edges as in histograms, the KDE method uses each point of estimation x as the

center of a bin of width 2h and weight it according to a kernel function. Thereby,

the kernel estimate of the probability density function f (x) is defined as

f̂ =
1
nh ∑

x′∈X
K
(

x− x′

h

)
. (2.9)

A usual choice for the kernel K, which we use here, is the (Gaussian) radial

basis function:

K(x) =
1√
2π

exp−
1
2 x2

. (2.10)

The problem of selecting the bandwidth h in equation (2.9) is crucial in the

density estimation. A large h will oversmooth the estimated density and mask the

structure of the data. On the other hand, a small bandwidth will reduce the bias

of the density estimate at the expense of a larger variance in the estimates. If we

assume that the true distribution is Gaussian and we use a Gaussian kernel, the

optimal value of h that minimizes the mean integrated squared error (MISE) is

h∗ = 1.06σN−1/5,

where N is the total number of points and σ can be estimated as the sample standard

deviation. This bandwidth estimation is often called the Gaussian approximation

or Silverman’s rule of thumb for kernel density estimation [48]. This is the most
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commonly-used method and it is here employed. Other common methods are given

by Sheather and Jones [49] and Scott [50].

2.2.6 Quantifying Linear Granger-causality using Transfer En-

tropy

Barnett et al. (2009) [51] showed that linear G-causality and Transfer Entropy are

equivalent if all processes (X and Y ) are jointly Gaussian. In particular, by assuming

the standard measure (l2-norm loss function) of linear G-causality for the bivariate

case as

GCX→Y = log
(

var(εt)

var(ε̂t)

)
, (2.11)

the following can be proved [51]:

T EX→Y = GCX→Y/2. (2.12)

This result provides a direct mapping between the Transfer Entropy and the linear

G-causality implemented in the standard VAR framework. Hence, it is possible

to estimate the TE both in its general form and with its equivalent form for linear

G-causality.

2.2.7 Net Information Flow

Transfer-entropy is an asymmetric measure, i.e., TX→Y 6= TY→X , and it thus allows

the quantification of the directional coupling between systems. The Net Information

Flow is defined as

T̂ EX→Y = T EX→Y −T EY→X . (2.13)

One can interpret this quantity as a measure of the dominant direction of the infor-

mation flow. In other words, a positive result indicates a dominant information flow

from X to Y compared to the other direction or, similarly, it indicates which system

provides more predictive information about the other system [52].

For the nonlinear case, the Transfer Entropy was computed as defined in Eq.

(2.8). Conversely, to estimate the linear version of the Net Information Flow, we

computed the Transfer Entropy using Eq (2.12), i.e., we estimated the linear G-
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causality (2.11) and multiplied it by a factor of 1/2.

In the next section, we construct simulated systems and test the nonlinear and

linear formulations of the net information flow. We show that only the nonlinear

formulation of net information flow is able to capture the nonlinear relationships in

the simulated systems.

2.2.8 Empirical Experiment: Information Flow on Simulated

Systems

In this section, we simulate two systems: the first has purely linear dependencies,

and the second introduces nonlinear dependencies. We quantify the information

flow among the variables of each system using the linear and nonlinear methods

introduced in Section 2.2.6. We show that nonlinear interactions are captured only

with the nonlinear formulation of the information flow, i.e., the approach based on

the Transfer Entropy. The simulated systems were based on [53], which performed

similar analysis while comparing the linear and nonlinear dependencies of artifi-

cially created systems.

We first define a linear system composed of 5 variables with the dependencies

described in Eqs. 2.14-2.18 as following:

x1(n) = 0.95
√

2x1(n−1)−0.9025x1(n−1)+w1 (2.14)

x2(n) = 0.5x1(n−1)+w2 (2.15)

x3(n) =−0.4x1(n−1)+w3 (2.16)

x4(n) =−0.5x1(n−1)+0.25
√

2x4(n−1)+0.25
√

2x5(n−1)+w4 (2.17)

x5(n) =−0.25
√

2x4(n−1)+0.25
√

2x5(n−1)+w5, (2.18)

where w1,w2,w3,w4,w5∼N(0,1). To simulate this system we assume xi(0)= 0, i∈

(1,2, ...,5) as initial condition and then iteratively generate xi for n ∈ (1,2, ...,N)

with a total of N = 200,000 iterations by randomly sampling wi, i ∈ (1,2, ...,5)

from a normal distribution with zero mean and unit variance.

The Fig. 2.2 A) represents the dependencies of the simulated linear system.
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The Fig. 2.2 B) and Fig. 2.2 C) show the linear and nonlinear Information Flows

among the system’s variables, respectively. A cell (x,y) presents the information

flow from variable y to variable x. From Fig. 2.2, we observe that both the linear

and nonlinear approaches presented similar results, i.e., both methods captured the

system’s dependencies similarly. This result is expected as the system is purely

linear and the nonlinear information flow is able to capture both the linear and non-

linear interactions. We define a second system by introducing nonlinear interactions

in Eqs. 2.15 and 2.17 as defined in Eqs. 2.19-2.23 as following:

x1(n) = 0.95
√

2x1(n−1)−0.9025x1(n−1)+w1 (2.19)

x2(n) = 0.5x2
1(n−1)+w2 (2.20)

x3(n) =−0.4x1(n−1)+w3 (2.21)

x4(n) =−0.5x2
1(n−1)+0.25

√
2x4(n−1)+0.25

√
2x5(n−1)+w4 (2.22)

x5(n) =−0.25
√

2x4(n−1)+0.25
√

2x5(n−1)+w5, (2.23)

where w1,w2,w3,w4 and w5 ∼ N(0,1). To simulate this system we assume

xi(0) = 0, i ∈ (1,2, ...,5) as initial condition and then iteratively generate xi for

n ∈ (1,2, ...,N) with a total of N = 200,000 iterations by randomly sampling

wi, i ∈ (1,2, ...,5) from a normal distribution with zero mean and unit variance.

The Fig. 2.3 A) represents the dependencies of the simulated nonlinear system.

This system has two nonlinear interactions: the first is between variables x1 and x2

as defined by Eq. 2.20, and the second is between variables x1 and x4 as defined

by Eq. 2.22. From Fig. 2.3 B) and Fig. 2.3 C), we observe that the nonlinear

interactions introduced were not captured by the linear form of the information

flow. While all linear interactions presented similar linear and nonlinear information

flows, the two nonlinear interactions introduced in the system presented relatively

higher nonlinear information flow compared to the linear formulation.



2.2. Methods 44

Figure 2.2: Evidence that the linear and nonlinear formulations of the information
flow are able to capture the dependencies among the simulated system. The
panel A) represents the dependencies of the simulated linear system. The panel
B) shows the information flow among the variables using a linear formulation
based on the Granger-causality estimated with a linear vector autoregression
formulation. The panel C) shows the nonlinear information flow among the
system’s variables based on the Transfer Entropy. A cell (x,y) represents the
information flow from variable y to x.
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Figure 2.3: Evidence that only the nonlinear formulation of information flow was able
to capture the nonlinear dependencies introduced in the simulated sys-
tem. The panel A) represents the dependencies of the simulated system, which
presents nonlinear dependencies between variables x1 and x2, and between vari-
ables x1 and x4. The panel B) shows the information flow among the variables
using a linear formulation based on the Granger-causality estimated with a lin-
ear vector autoregression formulation. The panel C) shows the nonlinear infor-
mation flow among the system’s variables based on the Transfer Entropy. A
cell (x,y) represents the information flow from variable y to x.



Chapter 3

Literature Review

Different sources of exogenous information can impact financial markets [54] in-

cluding (i) News, (ii) Pre-News, (iii) Rumours and (iv) Social Media. Mitra and

Mitra (2011) [9] present the corresponding descriptions as following:

• News: this refers to mainstream media and comprises the news stories pro-

duced by reputable sources. These are broadcast via newspapers, radio and

television. They are also delivered to traders’ desks on newswire services.

On-line versions of newspapers may also exist.

• Pre-News: this refers to the source data that reporters research before they

write news articles. It comes from primary information sources such as,

Securities and Exchange Commission reports and filings, court documents

and government agencies. It also includes scheduled announcements such

as macro economic news, industry statistics, company earnings reports and

other corporate news.

• Rumours: these are blogs and websites that broadcast “news”, and are less

reputable than news and pre-news sources. The quality of these vary signifi-

cantly. Some may be blogs associated with highly reputable news providers

and reporters. At the other end of the scale some blogs may lack any sub-

stance and may be entirely fueled by rumour.

• Social Media: these websites fall at the lowest end of the reputation scale.

Barriers to entry are extremely low and the ability to publish “information” is
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easy. These can be dangerously inaccurate sources of information. However,

if carefully applied there may be some value to be gleaned from these.

Financial news can also be divided into two categories [9]: (i) regular syn-

chronous announcements (scheduled or expected news) and (ii) event driven asyn-

chronous announcements (unscheduled or unexpected news). Main-stream news,

rumors and social media normally arrive asynchronously in an unstructured textual

form. A substantial portion of pre-news arrive at pre-scheduled times and generally

in a structured form. Both categories have in common that the analyzed data is tex-

tual, non-numeric and qualitative in nature. We may wish to distinguish whether a

story’s informational content is positive or negative, that is, determine its sentiment.

For that we need to transform the data into quantitative information before it can be

considered in the financial decision making process. After this “pre-analysis” phase

of turning qualitative text into quantified metrics we can develop predictive mod-

els in order to update beliefs and provide ex-ante view of the market environment.

Figure 3.1 shows a summary of this news analytics information flow [8].

Figure 3.1: News analytics information flow architecture [8]. Stories from News and
Social Media are classified and transformed into quantitative scores. These
metadata are combined with market data to update ex-ante beliefs of the market.

3.1 Sentiment Analysis
Sentiment analysis is an area of research that investigates people’s opinions towards

different matters, e.g., products, events or organizations [55]. The role of sentiment

analysis has been growing significantly with the rapid spread of social networks,
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microblogging applications and forums. Mining this volume of opinions provides

information for understanding collective human behaviour and it is of valuable com-

mercial interest. For instance, an increasing amount of evidence points out that by

analyzing sentiment of social media content it might be possible to predict relevant

economic and financial indicators such as sales [36], stock prices [6] and unemploy-

ment rates over time [56].

The field of text categorization was initiated long time ago [57], however cat-

egorization based on sentiment was introduced more recently in [58, 59, 60]. The

main two approaches to implement sentiment analysis are the lexicon-based method

(unsupervised approach) and the machine learning based method (supervised ap-

proach). Both approaches rely on the bag-of-words method [61, 62], where a doc-

ument is represented as a vector of words in Euclidean space where each word is

independent from others.

In the lexicon-based method, the unigrams which are found in the lexicon are

assigned a polarity score, the overall polarity score of the text is then computed as

sum of the polarities of the unigrams. In the machine learning supervised method,

the classifiers are using the unigrams or their combinations (N-grams) as features.

In [35], we described several techniques to implement these approaches and dis-

cuss how they can be adopted for sentiment classification of Twitter messages. We

presented a comparative study of different lexicon combinations and showed that

enhancing sentiment lexicons with emoticons, abbreviations and social media slang

expressions increases the accuracy of lexicon-based classification for Twitter. We

discussed the importance of feature generation and feature selection processes for

machine learning sentiment classification. We presented a new ensemble method

that uses a lexicon based sentiment score as input feature for the machine learning

approach. The combined method proved to produce more precise sentiment classi-

fications. Later we leveraged this methodology to predict sales of retail brands [36].

In Chapter 4, we leverage the same dataset to investigate the interplay of Twitter

sentiment extracted from listed retail brands with stock returns and volatility.
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3.2 News Analytics
Major news announcements can have a high impact on financial markets and in-

vestors behaviour resulting in rapid changes or abnormal effects in financial portfo-

lios. Although the relevance of news is widely acknowledged, how to incorporate

this information channel effectively in quantitative models is a open question [9].

As human responsiveness is limited, automated news analysis has recently

been developed as a fundamental component to algorithmic trading. In this way,

traders can shorten the time of reaction in response to breaking stories. The basic

idea behind news analytics technologies is to quantify human sentiment and auto-

mate human behaviour systematically, so traders may be able to anticipate asset

movements before making an investment or risk management decision.

Das [18] presents a framework for news analytics techniques used in finance

and Banerjee [17] describes a general architecture for news analytics predictive

analysis (see Figure 3.2). Typically, a model is composed of endogenous and ex-

ogenous variables. The endogenous variables are comprised by market data such

as bid and ask prices. The exogenous variables include news metadata informa-

tion such as sentiment, news novelty and relevance or an event category. A news

predictive model can be constructed by combining endogenous and exogenous vari-

ables for the prediction of a target outcome variable such as asset prices, returns,

volatility or liquidity. The assumption is that news analytics can provide informa-

tion exogenous to the market that might not have been yet captured in the prices

hence providing information that can complement past market data information.

Figure 3.2: Architecture of predictive analysis model [17]. Market data are combined
with News meta-data in order to enhance the prediction of financial variables
such as stock price returns, volatility and liquidity.
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The investigation of the market impact of News has been long studied since

the seminal work of Cutler et al. [63], where the authors estimated for the first

time the explanatory power of economic news on stock returns while putting into

question the view that large stock price movements are preceded by news. Tetlock

[2] provides the first evidence that news media content can predict movements in

broad indicators of stock market activity. His findings suggested the presence of a

relationship between pessimism of media and high market trading volume. While

news volume is skewed to blue chip companies [64, 65], it has been shown that

news sentiment is widely linked to overall corporate earnings [11]. Since then, with

the availability of machine readable news and the use of sentiment analysis [35],

several works have found news as a significant source to explain financial dynamics.

For instance in [14] is has been shown that the rate of information arrival impacts

return volatility by analyzing both the S&P/ASX 200 Index and SPI 200 Futures.

The authors showed that there is a positive correlation between the frequency of the

incoming news and the volatility of the stock returns. Also, the systematic risk (or

beta) of individual stocks increases by an economically and statistically significant

amount on days of firm-specific news announcements [66].

Firm-specific news information flow has been shown to impact the systematic

risk of an individual firm, measured by its CAPM beta [15]. Findings indicated

that (i) betas increase on announcement days by a statistically and economically

significant amount; (ii) covariance of the announcing stock returns with the returns

of other stocks in the market index increases significantly on announcement dates.

News analytics have also been used to model volatility by extending GARCH mod-

els [67, 68, 69]. For instance, the “daily number of press releases on a stock” (news

intensity) has been considered as an exogenous variable in the traditional GARCH

model [68]. The results of the likelihood ratio test indicated that the GARCH(1,1)

model augmented with the news intensity performs better than the original GARCH

model.

When new information hits the market, investors may behave differently ac-

cording to its investment type, risk profile, regulatory constraints etc. Indeed, it has
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been shown [12] that households and companies are very sensitive to both endoge-

nous (return, volatility) and exogenous (news volume and sentiment) factors. On

the other hand, governmental and non-profit organization are weakly affected by

those factors. While the presence of news can impact the market in different forms,

the absence of news is also an important indicator. For instance, it has been found

that stocks with no media coverage earn, on average, higher returns than stocks with

high media coverage even after controlling for well-known risk-factors [70].

Positive correlation has been found [13] between the number of mentions of

a company in the Financial Times and its stock’s trading volume. News senti-

ment available from Thomson Reuters News Analytics (TRNA) were found to have

causality with stock volatility and liquidity [71]. Moreover, it has been shown that

news analytics can be a useful data source for commodity [72, 73], fixed-income

[74] and FX trading [75, 76] as well as used in high-frequency trading [77], short-

selling [78] and event detection [79].

3.3 Social Media Analytics

Twitter data have become an increasingly important source to describe financial dy-

namics. It provides a fine-grained real-time information channel that includes not

only major news stories but also minor events that, if properly modeled, can provide

ex-ante information about the market even before the main newswires. Recent de-

velopments have reflected this prominent role of social media in the financial mar-

kets; for instance, the U.S. Securities and Exchange Commission report allowing

companies to use Twitter to announce key information in compliance with Regu-

lation Fair Disclosure [80]. Another example is the so-called Hash Crash which

happened in 2013 when the Twitter account of American news agency Associated

Press was hacked and used to falsely disclose a message about an attack on the

White House causing a drop in the Dow Jones Industrial Average of 145 points in

minutes [81]. More recently on August 28, 2018, the stock price of the company

Tesla, Inc. surged 10% after its CEO, Elon Musk, shocked the marked with a tweet

indicating that the company would be considering going private.
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Some of research has shown that Twitter data contain relevant information re-

lated to financial indicators. As one of the first investigations analyzing Twitter in

the context of financial markets, the work in [6] analyzed the text content of daily

Twitter feeds to identify two types of mood: (i) polarity (positive vs. negative) and

(ii) emotions (calm, alert, sure, vital, kind, and happy). By using a non-linear model

based on self-organizing map (SOM), the authors were able to increase the accu-

racy in the prediction of the DJIA index when using social media analytics. Another

research [19] combined Information Theory with sentiment analysis to demonstrate

that Twitter sentiment can contain statistically significant ex-ante information on

individual securities prices including future prices of the S&P500 index. In Chapter

4 we provide evidence that suggests that social media analytics play an important

role in explaining the price dynamics of the retail sector even when compared to

mainstream news. J. Manfield, D. Lukacsko and T. T. P. Souza [38] later reported

broader results covering a large set of stocks from both the NYSE and NASDAQ

exchanges, which confirms a statistically significant coupling between social senti-

ment and stock prices volatility.

As a contribution to the field of event study research, market reactions to com-

binations of different types of news events have been studied [7] using Twitter to

identify which news are more important from the investor perspective. In a similar

way, sentiment analytics has been combined with the identification of Twitter peaks

in an event study approach [82] to imply directions of market evolution.

By utilizing a nonparametric formulation of statistical causality, in Chapter 4

we uncover that information flows from social media to stock markets, revealing

that tweets are causing markets movements through a nonlinear complex interac-

tion. Our findings thus question some current modeling and analytics that assume

linearity. The results also serve as empirical guidance on model adequacy, mar-

ket efficiency, and predictability in the investigation of causal relationships between

social and financial systems.
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3.4 News Analytics and Social Media Opinion: The

Portfolio Case
The relationship between social and financial systems is commonly modeled as a

univariate problem where single assets are isolated from the system when its dy-

namics are analyzed. In that way, only individual links are investigated and the

multi-asset case is often neglected. For instance, social media based polarity sig-

nals are utilized to predict stock returns of an individual stock and data on other

correlated assets and portfolio dynamics are neglected.

Harry Markowitz formulated the first portfolio theory, entitled of “Modern

Portfolio Theory” which was the first systematic financial theory [83]. Modern

portfolio theory evaluates the portfolio using a mean-variance pattern and repre-

sents a normative pattern for portfolio selection. Portfolio choice is made by solv-

ing an optimization problem, in which the portfolio risk is minimized and a desired

level of expected return is specified as a constraint. This theory assumes economic

equilibrium and was the basis for other financial theories such as the efficient mar-

ket hypothesis by Fama [84]. Further, the need to penalize different undesirable

aspects of the return distribution and the consideration of asymmetric risk led to

the proposal of alternative risk measures that penalize the downside return and not

its upside. These considerations constitute the basis of the Post Modern Portfolio

Theory (PMPT) [85]. Examples of such risk measures are lower partial moments,

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) [86].

Traditional portfolio selection and risk models have taken historic asset prices

as fundamental data in order to predict future behaviors of the financial market.

These traditional approaches have the disadvantage that they provide ex-post retro-

spective strategies. They generally do not take sudden market changes into account

and fail to account changes in the investor sentiment. Classical VaR calculation

assumes that only the risk of single assets and their correlation (or dependence)

matters. As a consequence, this makes VaR inflexible and unresponsive with regard

to abnormal market conditions. By incorporating news, social media and investor

opinion into the portfolio risk calculation, sudden impactful events can help esti-
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mate the probability of emerging abnormal market conditions.

It has been found that updating portfolio risk estimates using news data can

provide dynamic (adaptive) measures that account for the market environment [16].

Further these measures may be useful in identifying and giving early ex-ante warn-

ing of extreme risk events. Incorporating recent sentiment of the market environ-

ment within the estimation of portfolio risk is important, since the market condi-

tions are likely to vary from historic observations. This is particularly important

when there are sudden major changes in the market. In these cases, risk measures,

calibrated using historic data alone, fail to capture the true level of risk [16, 87].

The evidence that social media is a valuable source of information about the

future evolution of the stock market supports the idea that, apart from pure economic

and fundamental factors, there is an emotional component that drives these systems.

Nonetheless, empirical studies thus far have been limited to the investigation of in-

dividual securities, often neglecting joint dependencies and the multi-asset case.

Financial markets and, ultimately, human interactions are complex systems that

need to be handled as such to explain financial dynamics in a realistic way.

As one of the first studies to model the collective behavior of news senti-

ment with a network approach, the authors in [88] defined a financial (network)

community in order to model multi-variate structure of stock market and its rela-

tionship with on-line boards collective opinion. The authors use on-line message

boards/forums to uncover the number and structure of these communities and in-

vestigate the empirical relationship of these financial communities with return co-

variation patterns amongst stocks in the U.S. market. They found that (i) the greater

the connectedness in a financial community, the greater the covariance of returns

within the community; (ii) highly connected stocks, on average, have lower return

variance and higher mean returns; (iii) stocks with high centrality scores tend to

have greater average covariance with other stocks than those with low scores.

Further, a model [89, 90] has been proposed to evaluate the impact of news

on portfolio return through a Corporate Network. The network is created comput-

ing the co-occurrence of company names in blog posts. Nodes represent compa-
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nies whereas edges represent their co-occurrence frequencies. The authors perform

Granger-causality tests between centrality measures and financial variables. They

found that the average eigenvector centrality of companies in the corporate news

network has a two-way Granger-causality on return and volatility with the STOXX

50 index.

In Chapter 5, we model the collective behavior of market prices as a financial

network, where nodes represent stocks and edges measure the co-movement of asset

prices returns. In an analogous manner, we measure the structure of social opinion

as the co-movement of social media opinion on those same assets. We demonstrate

that future market correlation structure can be predicted with high out-of-sample

accuracy using a multiplex network approach that combines information from so-

cial media and financial data. In agreement with the results obtained in Chapter

4, we observe that social media is the dominant information source, indicating that

the information provided by social media contributes more to predict stock market

structure than stock returns contribute to the prediction of social opinion structure

on the same assets.



Chapter 4

Twitter Sentiment Analysis Applied

to Finance: A Case Study in the

Retail Sector

Social media and news analytics bring a new possibility to quantify and statistically

validate hypotheses in financial dynamics in an ex-ante fashion. In this way, senti-

ment, emotions, and behavioral analytics can provide valuable information before

the market moves [19, 13, 20]. Here, we take advantage of a unique dataset of so-

cial media and news analytics to investigate the interplay between market sentiment

and stocks returns. We ask whether social media sentiment from retail brands has

significant causal links with respect to stock returns. Results reveal a dependency

structure between sentiment and financial variables for both traditional newswires

and social media. Surprisingly, Twitter’s sentiment of selected retail brands exhib-

ited a relatively stronger relationship with stock returns than does that of traditional

newswires. Results suggest that social media analytics play an important role in ex-

plaining the price dynamics of the retail sector.

4.1 Introduction
In [35] we developed a new methodology to derive sentiment analytics from Twit-

ter messages which we later used to predictive sales of retail brands [36]. In this

Chapter, we leverage the data available from this previous work [35] to investigate
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the interplay of Twitter sentiment extracted from listed retail brands with stock re-

turns and volatility. We also compare results with a corresponding analysis that

uses sentiment from traditional newswires. We consider volatility and log-returns

as financially endogenous variables, and we take Twitter sentiment and volume as

an exogenous explanatory variable. We also consider traditional newswires as data-

sources for comparative purposes.

The results presented in this Chapter suggest that social media sentiment ana-

lytics can be a complementary proxy of market’s sentiment compared to news in the

analysis of financial dynamics for the retail brands analyzed. Surprisingly, Twitter’s

sentiment presented a relatively stronger relationship with the stock returns com-

pared to traditional newswires. Results suggest that social media can be a relevant

source to explain stock price dynamics in the retail sector.

4.2 Dataset
We conducted our analysis on a subset of listed retail brands with stocks traded in

the U.S. stock market, which we monitored from November 01, 2013 to Septem-

ber 30, 2014. The examined stocks and their Reuters Instrument Codes (RIC)

are as follows: ABERCROMBIE & FITCH CO. (ANF.N), NIKE INC. (NKE.N),

HOME DEPOT INC. (HD.N), MATTEL INC. (MAT.N) and GAMESTOP CORP.

(GME.N). As discussed in Section 2.1.2, the choice of companies was given by data

availability from previous work [35].

Given the companies selected, we consider three streams of time series data:

(i) market data, which is given at the daily stock price; (ii) news meta-data (see

Section 2.1.1); and (iii) social media sentiment (see Section 2.1.2).

4.3 Financial and Sentiment Variables
In this section, we define both the financial variables derived from market data and

the sentiment variables extracted from news and social media.

Let P(t) be the closing price of an asset at day t and R(t) = logP(t)−

logP(t−1) its daily log-return. We consider the excess of log-return of the asset
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over the return of the market benchmark R̂ as follows:

ER(t) = R(t)− R̂(t), (4.1)

where we consider the S&P 500 index as the market benchmark. As a proxy of the

daily volatility of a stock we define:

VOL(t) = 2
Phigh(t)−Plow(t)
Phigh(t)+Plow(t)

∈ [−1,1], (4.2)

where Phigh(t) and Plow(t) are the highest and the lowest price of the stock at day t,

respectively.

In terms of Twitter analytics, we count the number of positive (G(t)) and neg-

ative (B(t)) English messages at day t which mention a given company, and we

define the following variables [12]:

SA(t) = G(t)−B(t), SR(t) =
G(t)−B(t)
G(t)+B(t)

∈ [−1,1] (4.3)

as the absolute and relative sentiments of that company on a given day, respectively.

Notice that SR(t0) = +1, represents a day t0 with the highest positive sentiment

for the company considered; conversely SR(t0) =−1 indicates the highest negative

sentiment, whereas we consider neutrality when SR(t0) = 0. We also define V (t) as

the total number of stories observed at day t regardless of their language.

For the news analytics, we consider the event sentiment score of each news

story. This score ranges between 0 and 100. High values indicate more positive

sentiment while values below 50 represent negative sentiment. We then normalize

this score so that it ranges between -1 and 1, and we consider its daily mean as the

relative sentiment for news SR(t) ∈ [−1,1]. We label a news story as positive if

SR(t)> 0 and as negative if SR(t)< 0. We then count the daily number of positive

G(t) and negative B(t) stories per company to obtain the relative news sentiment

score defined as SA(t) = G(t)−B(t). The news volume V (t) of a given company is

defined as the total number of news stories observed at day t that are related to the
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company, where a company is assigned to a news story if the news storys relevance

score relative to that company is equal to 100. It is important to mention that the

news dataset considered here contains only English stories whereas the Twitter data

has no such limitation.

Fig. 4.1 shows a sample of the variables calculated from Twitter for Home-

Depot Inc. Furthermore, Fig. 4.2 shows the distribution of values of the relative

sentiment obtained from Twitter and news. We observe that both Twitter and news

present skewed distributions; news has a more neutral-centered distribution than

Twitter. It is important to note that the sentiment provided by the Twitter analytics

presents a distinct proxy for sentiment compared to news, as each company ana-

lyzed depicts different positive/negative sentiment tones: E.g., NIKEs Twitter sen-

timent is highly positive while the news sentiment exhibits a mean around a neutral

point.

Figure 4.1: Descriptive Analysis for the company Home-Depot Inc. Variables: Excess
of log-return ER, Volatility VOL, SA,G and B.
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Figure 4.2: Twitter and news sentiment present skewed sentiment distributions. Dis-
tribution of relative sentiment SR(t) from Twitter and news for the following
companies: ABERCROMBIE & FITCH CO. (ANF.N), GAMESTOP CORP.
(GME.N)., HOME DEPOT INC. (HD.N), MATTEL INC. (MAT.N) and NIKE
INC. (NKE.N)

4.4 Methods

4.4.1 Granger Causality

We investigate the statistical causality of social media and news sentiment on the fi-

nancial variables analyzed, i.e., stock returns and volatility. For this purpose, we uti-

lize Granger-causality as a concept of cause-effect dependence (see Section 2.2.1).

We test the Granger-causality of the excess of log-return ER and the number

of positive stories G, the number of negative stories B, the relative sentiment SR

and the absolute sentiment SA. For the volatility VOL of a given stock, we will

also consider the total volume of stories V in addition to previously mentioned vari-
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ables. Furthermore, we will perform the Granger-causality test over the normally

standardized versions of the time series analyzed such as they have zero mean and

standard deviation 1.

To visualize the Granger-causality results, we created a Granger-causality

graph G= [V,E], where V is a node set and E is an edge set. A node u∈V represents

a variable in the causality test and an edge e = (u,v) indicates that u Granger-causes

v within a pre-defined significance level. Furthermore, we define p(e) as an attribute

of the edge. If C is the set of companies in which we see causality between u and v,

then we set p(e) =C. Fig. 4.3 shows an example of a Granger-causality graph that

indicates that u Granger-causes v for the set of companies C.

vu C

Figure 4.3: Granger-causality graph. The variable u Granger-causes the variable v for
the set of companies C.

4.4.2 Predictive Analysis

To evaluate the predictive power of sentiment, we consider two auto-regressive

models with and without sentiment. We then conduct a one-step-ahead prediction

analysis:

M0 : X(t) = α +
k

∑
τ=1

βτX(t− τ)+ εt , (4.4)

M1 : X(t) = α +
k

∑
τ=1

βτX(t− τ)+
k

∑
i=1

γiY (t− τ)+ ε̂t (4.5)

where,

X(t) ∈ {ER(t),VOL(t)}, (4.6)

Y (t) ∈ {G(t),B(t),SR(t),V (t)}. (4.7)

As SA(t) is a linear combination of G(t) and B(t), we will not consider it in the

linear regression for any dataset. G(t) and B(t) are already considered in the model.

Moreover, we consider only one day of lag for the sentiment variables and a lag of
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two days for the financial variables1. Again, we will consider the normally stan-

dardized versions of the time series analyzed.

Hence, we will consider the following regression model for the excess of log-

return prediction:

M0 : ER(t) = α +β1ER(t−1)+β2ER(t−2)+ εt , (4.8)

M1 : ER(t) = α +β1ER(t−1)+β2ER(t−2) (4.9)

+ γ1G(t−1)+ γ2B(t−1)+ γ3SR(t−1)+ ε̂t

For the volatility prediction using news as a data source, we will not include the

volume time series V (t) as an explanatory variable in the regression because of its

high correlation with the amount of positive and negative news already considered

by the model. Notice that, for the Twitter case, the volume time series considers

also non-English messages, which are not considered by the time series given by

G(t) and B(t). Therefore, we keep V (t) as an explanatory variable in the Twitter

model. As a result, we have the following for news:

M0 : VOL(t) = α +β1VOL(t−1)+β2VOL(t−2)+ εt , (4.10)

M1 : VOL(t) = α +β1VOL(t−1)+β2VOL(t−2) (4.11)

+ γ1G(t−1)+ γ2B(t−1)+ ε̂t

and the corresponding model for Twitter:

M0 : VOL(t) = α +β1VOL(t−1)+β2VOL(t−2)+ εt , (4.12)

M1 : VOL(t) = α +β1VOL(t−1)+β2VOL(t−2) (4.13)

+ γ1G(t−1)+ γ2B(t−1)+ γ3V (t−1)+ ε̂t .

Forecasting accuracy is measured by comparing the two residuals εt and ε̂t in

1A model-selection approach can also be used to find an optimal lag for the explanatory variables.
Examples of selection criteria include the following: the Akaike information criterion (AIC), the
Bayesian information criterion (BIC) and Mallow’s Cp. See [91].
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terms of residual standard error:

σ̂ =

√√√√√ T
∑

i=1
(yi− ŷi)

2

n
=

√√√√√ T
∑

i=1
ε̂2

i

n
(4.14)

where T is the total number of points, n is the number of degrees of freedom of the

model, ŷi is the predicted value and yi is the observed one.

4.5 Results and Discussion
We present the results from the Granger-causality tests and the predictive analysis

of the financial variables and sentiment data from Twitter and news. The sentiment

predictive power and its Granger-causality tests are fulfilled in a one-step-ahead

fashion. We investigate the statistical significance of the sentiment variables with

respect to movements in returns and volatility, and we compare the Twitter results

with news. We provide empirical evidence that Twitter is moving the market in

respect to the excess of log-returns for a subset of stocks. Also, Twitter presents a

stronger relationship with stock returns than with news for the selected retail com-

panies. On the other hand, Twitter sentiment analytics showed a weaker relationship

with volatility compared to news.

4.5.1 Excess of Log-Returns

We analyze the dynamics of the excess of log-returns of the stocks considered in

relation to absolute and relative sentiments and with the number of positive and

negative stories.

Fig. 4.4 shows a Granger-causality graph that summarizes the significant

Granger-causalities (p-value < 0.05) between the excess of log-return and the sen-

timent variables for both news and Twitter. See Table 4.2 for detailed results. We

observe that Twitter’s sentiment analytics presents more significant causal relation-

ships than news. Twitter’s relative sentiment and its number of positive messages

Granger-cause log-returns for GAMESTOP CORP. and MATTEL INC. Twitter’s

absolute sentiment also Granger-causes log-returns for MATTEL INC. with a two-
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way significant (p-value < 0.01) Granger-causality for HOME DEPOT INC. The

number of negative stories alone has no significant relationship with returns; how-

ever, combined with the number of positive stories in the form of relative and ab-

solute sentiment, it constitutes an important measure. The news analytics exhibit

only one significant relationship, which is observed in the number of positive news

Granger-causing the excess of log-returns for GAMESTOP CORP.

(a) TWITTER

ER

G

SRSA

MAT.N

GME.NHD.N, MAT.N

HD.NHD.N

(b) NEWS

ER

G

GME.N

Figure 4.4: Granger-causality graph for (a) Twitter and (b) news. It shows significant
causal relationships in the Granger-causality test between excess of log-returns
(ER) and the sentiment analytics: number of positive stories (G), number of
negative stories (B), absolute sentiment (SA) and relative sentiment SR. Sen-
timent variables that present no significant causal links are not shown in the
graph.

The solution of the multiple regression analysis presented in Table 4.3 agrees

with the Granger-causality tests, as it shows Twitter to have a larger number of sig-

nificant sentiment coefficients than news. MATTEL INC. particularly presents all

sentiment coefficients with high significance (p-value < 0.01), thus suggesting that

the Twitter sentiment analytics is indeed relevant to the prediction of the next-day

excess of log-return. The companies HOME DEPOT INC. and GAMESTOP CORP.

have also presented significant sentiment coefficients. For the news analytics, the

sentiment was significant only for GAMESTOP CORP. Furthermore, analysis of

the residual standard error (RES) of the models with and without sentiment vari-

ables in Table 4.1 shows that use of the Twitter sentiment variables reduced the

error of the model with market data only for MATTEL INC., HOME DEPOT INC.

and GAMESTOP CORP. while the news sentiment improved the prediction only



4.5. Results and Discussion 65

for the company GAMESTOP CORP.

Table 4.1: Difference between the residual standard error of the model that considered mar-
ket data only and the model that considered the sentiment variables G(t), and
B(t) in the prediction of excess of log-return ER(t)

Error Reduction (%)
Company NEWS TWITTER
NIKE INC. -2.41 -0.58
ABERCROMBIE & FITCH CO. -1.26 -0.60
HOME DEPOT INC. -0.99 1.23
MATTEL INC. -0.48 2.82
GAMESTOP CORP. 8.34 1.10
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4.5.2 Volatility

In this section, we analyze the interplay of Twitter, news volumes and sentiment

with stock-returns volatility. As volume measures we consider the following: the

number of positive G and negative B English stories and the total volume V of

stories regardless of its language. As daily sentiment analytics, we consider the

absolute sentiment SA and the relative sentiment SR.

Fig. 4.5 shows the significant causal relationships (p-value < 0.05) of the

Granger-causality test between the volatility and the sentiment variables. See Ta-

ble 4.5 for detailed results. Overall, there are more significant causal links for the

news sentiment analytics than for Twitter in respect to volatility. We observe that

the number of positive stories and the total volume both Granger-cause volatility for

Twitter and for news but more companies are affected for news. The absolute sen-

timent Granger-causes volatility only for news, in the case of ABERCROMBIE &

FITCH CO. (ANF.N). The relative sentiment and the number of negative stories do

not Granger-cause volatility; on the other hand, volatility Granger-causes negative

news for the company GAMESTOP CORP. (GME.N).

The solution of the multiple regression analysis in Table 4.6 shows that the

number of positive stories is a significant variable for both news and Twitter. It is

more significant for the former than for the latter. The number of negative stories

exhibits no relevance in either regression. The total volume of Twitter messages

is relevant only for NIKE (NKE.N). Moreover, analysis of the residual standard

error of the models with and without the sentiment variables in Table 4.4 shows that

both Twitter and news are able to reduce the error in prediction for a subset of the

companies. In cases where the model was improved with sentiment, news provides

a higher reduction of error than Twitter.
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(a) TWITTER

VOL

G

V

HD.N

HD.N, MAT.NMAT.N

(b) NEWS

VOL

G

V

SA B

GME.N, ANF.N

HD.N, GME.N, ANF.N

ANF.N GME.N

Figure 4.5: Granger-causality graph for (a) Twitter and (b) news. Figure shows the
significant causal relationships in the Granger-causality test between volatility
(VOL) and sentiment analytics: total number of stories (V ), number of positive
stories (G), number of positive stories (B), absolute sentiment (SA) and relative
sentiment (SR). Sentiment variables that present no significant causal links are
not shown in the graph.

Table 4.4: Difference between the residual standard error of the model that considered mar-
ket data only and the model that considered the sentiment variables G(t), and
B(t) in the prediction of volatility VOL(t).

Error Reduction (%)
Company NEWS TWITTER
NIKE INC. 1.36 1.08
ABERCROMBIE & FITCH CO. 4.03 -0.52
HOME DEPOT INC. 2.46 1.10
MATTEL INC. -2.21 -0.36
GAMESTOP CORP. 14.99 0.20
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4.6 Conclusion
We showed that measures of the Twitter sentiment extracted from listed retail brands

exhibit a significant causal relatioship with stock returns and volatility. While ana-

lyzing the interplay of the excess of log-return and the Twitter sentiment variables,

we concluded that, (i) Twitter presents a stronger Granger-causality than news with

respect to the stock returns compared, (ii) positive tweets and Twitter’s sentiment

Granger-cause an excess of stock returns for a subset of companies, and (iii) Twit-

ter’s sentiment analytics is indeed relevant to the prediction of the next-day excess

of log-return - even when compared to traditional newswires.

Moreover, in the volatility analysis we found that, (i) Twitter’s analytics re-

veals a weaker relationship with volatility than the one observed with returns, (ii)

number of positive tweets and total volume both Granger-cause volatility for some

companies but present reduced Granger-causality compared to news, and (iii) the

number of positive tweets is a significant variable for the one-step-ahead prediction

of volatility while the number of negative messages shows no relevance.

It is also important to remark that the asset and content universes of the present

work are limited. Social media data are often sparse and of difficult acquisition.

The results presented in this Chapter were limited to 5 retail companies that the au-

thors had access to social media sentiment data within a 2-year period. J. Manfield,

D. Lukacsko and T. T. P. Souza [38] later reported a broader study, which results

suggested that social media can be informative of financial dynamics for a large set

of stocks across 500 stocks from both NYSE and NASDAQ exchanges. In the next

Chapter, we expand the universe of companies considered and we show that DJIA

index constituents have a significant causal relationship with financial returns when

nonlinear dynamics are considered.



Chapter 5

A Nonlinear Impact: Evidence of

Causal Effects of Social Media On

Market Prices

In this Chapter, we expand the asset universe of retail companies studied in the

Chapter 4 to a broader set of companies representative of the US stock market by

analyzing social media messages related to the DJIA index’s constituents. We also

leverage a non-parametric framework, instead of assuming linear coupling as pre-

viously studied in the Chapter 4 to evaluate to what extent the assumption of linear

coupling affects the quantification of causality between social media sentiment and

stocks’ returns. Two main conclusions are drawn. First, social media’s significant

causal relationship on stocks’ returns is purely nonlinear in most cases. Second,

social media dominates the directional coupling with the stock market, which is an

effect that is not observable when using linear modeling. The results also serve as

empirical guidance on models’ adequacy in the investigation of social and financial

systems.

5.1 Introduction
Recent research provides evidence that the exogenous information gathered from

on-line social systems may be useful to describe financial dynamics [27, 19] . How-

ever, to date, there are mixed results on the capability to predict stock returns with
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social media analytics. On the one hand, some evidence is provided in favor of

the predictability of price movements using news and social media [2, 11, 6, 26].

On the other hand, other studies report weak results [27, 19] suggesting that social

media analytics have low predictive power when used alone. Moreover, the use

of ad hoc functional forms and assumptions in different studies makes it difficult to

draw general conclusions regarding the nature of the relationship between collective

opinions and stock markets.

In this Chapter, we test Granger-causality of social media sentiment on stock

returns using linear and non-linear frameworks. We analyze an extensive dataset

comprising both the time series of Twitter sentiment and the stock market returns

related to the stocks components of the DJIA index. By comparing the results from

the linear and nonlinear frameworks, we detected interactions that are purely non-

linear. We also estimate the information flow between these two systems further

providing useful information regarding which system is leading the other or whether

a bidirectional coupling is observed.

To the best of our knowledge, our results provide the first empirical evidence

that suggests that social media and stock markets not only have a significant causal

relationship but also this relationship is dominated by nonlinear interactions. Fur-

thermore, we highlight that common approaches, which assume linear interactions,

can hide significant information that is revealed in this study under a nonlinear

framework. In particular, we show that the evidence that net information is flowing

from social media (Twitter) to markets is revealed only by using the nonlinear ap-

proach. Our findings call into question certain current modeling and analytics that

assume linearity.

5.2 Data

Our analysis was conducted on the 30 components of the Dow Jones Industrial

Average (DJIA) index as of March 31, 2012, which we monitored over the 500

trading days during the two-year period from March 31, 2012 to March 31, 2014.

The choice of these stocks was made due to their representativeness for the stock
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market (see Table 2.4 for the list of stock tickers and Appendix A.1 for the complete

list of selected companies). We consider two streams of time series data: (i) daily

stock prices, and (ii) social media sentiment analytics based on 1,767,997 Twitter

messages.

We considered the closing price Pi(t) of stock i= 1...30 on day t = 1...500. The

financial variables that we considered were the stocks’ daily log-returns, which were

defined as Ri(t) = logPi(t)− logPi(t−1). These financial variables were compared

with the Twitter data measured during the same period of time.

We considered Twitter sentiment data [35] as a proxy for the collective opinion

regarding a stock (see Section 2.1.3). In our analysis, we take the daily total number

of bullish tweets related to a company as the social media time series SM(t). This

measure is indicative of how positive the messages are toward the mentioned stock.

5.3 Results and Discussion

5.3.1 Social Media and Stocks Returns: Linear and Nonlinear

Causality

We test the null hypothesis that social media does not cause stocks returns. First,

we test this hypothesis with a standard G-causality test under a linear vector-

autoregressive framework. Second, we test this hypothesis with a nonlinear, non-

parametric Transfer Entropy approach. We interpret the Transfer Entropy as the

information flow between the social media opinion and future outcomes of stocks

returns at lag ∆t controlled by the current information on stocks returns.

Fig. 5.1 shows the significant causal links between social media and stocks re-

turns considering both cases: nonlinear (TE) and linear G-causality. With the linear

analysis, we discover only three stocks with significant causality: INTEL CORP.,

NIKE INC. and WALT DISNEY CO. Conversely, with the nonlinear approach, in

addition to the 3 stocks identified with significant causal linear relationship, we also

discover 8 other stocks with purely nonlinear causal relationships.

The low level of causality obtained under linear constraints is in-line with some

of the results found in the literature, where it has been shown that stocks returns
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Figure 5.1: Demonstration that the causality between social media and stocks returns
is mostly nonlinear. The linear causality test indicated that social media caused
stocks returns only for 3 stocks. The nonlinear analysis showed that almost 1/3
of the stocks that were rejected in the linear case have significant nonlinear
causality. In the nonlinear case, the Transfer Entropy was used to quantify the
causal inference between the systems with randomized permutations test for
the statistical significance estimation. In the linear case, a standard linear G-
causality test was performed under a linear vector-autoregressive framework.
A significant linear G-causality was accepted if its linear specification was not
rejected by the BDS test. The p-values were adjusted with the Bonferroni cor-
rection. Significance is noted at p-values < 0.05.

have weak causality links [13, 92] with social media sentiment analytics result-

ing in small or no predictive power [27] and no significant lead-time information

about stock’s movements for the majority of the stocks [19]. Conversely, the results

from the nonlinear analyses unveiled a much higher level of causality, thus indicat-

ing that linear constraints may be neglecting the nature of the relationship between

social media and stock markets. We also analyze the number of stocks with signif-

icant causal relationships aggregated by lag of interaction. Social media causality

on stocks return is mostly nonlinear in the next-day period. The causality between

social media and next-day stocks returns presents a large difference when the linear

and nonlinear cases are compared. From the linear G-causality there is a significant
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Figure 5.2: The social media causality on stocks return is mostly nonlinear in the next-
day period. Figure shows the number of companies with significant causal re-
lationships aggregated by lag. Nonlinear analysis identify the highest number
of causal relationships in the first lag. Hence, linear-constraints may be ne-
glecting social media causality over stocks returns, especially in the next-day
period. Further lags present a lower number of significant causal relationships
in both methods. Statistical significance is noted at p-values < 0.05.

causal relationship between social media and next-day stocks movements for one

stock only. Conversely, nonlinear measures indicate that 10 companies have sig-

nificant causal links in this direction. Higher delays show a drop on this number.

These results suggest that linear constraints are neglecting social media causality

over stocks returns especially in the short-term.

For the companies identified with nonlinear causality only, we tested whether

the common functional forms and transformations that have been used in the liter-

ature can explain the observed nonlinearities. We checked the model’s adequacy

and causality significance for the various functional forms listed in Table 5.1 and

reported the results. We observe that the linear functional form is adequate for 5
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companies but none presented significant causal relationships. The second-order

differencing ∇2x makes a linear functional adequate for the company VISA Inc.

(V), but it turns out that Microsoft is mis-specified. GARCH and ARIMA filtering

were tentatively applied to separate signal from noise and to linearize the original

time series. Nonetheless, no significant causal relationships were observed. Other

functional forms performed no better than the original linear specification a part

from the absolute value transformation (|x|). It is indeed known that social media

and news analytics predict absolute changes in market prices [19, 13] better than

stocks returns. The absolute value of stock log-returns is a proxy for stock returns’

volatility and therefore it has higher predictability than stock returns. However, half

of the companies still had an unexplained nonlinear causality.

Table 5.1: Demonstration that the nonlinearities found are nontrivial. For the companies
identified with nonlinear causality only, we tested whether common functional
forms and transformations can explain the nonlinearities found. The test for mis-
specification is performed using the BDS test. x represents the standard linear re-
gression of returns on the social media time series. ∇x and ∇2x are, respectively,
the first and second differencing taken in both time series. f (x,vol) represents
a linear regression of returns on social media controlled by the stocks returns’
daily volatility. In the log-transformation we apply the function log(1+ x) in
both time series. The module |x| is applied in the returns time-series, which
is then regressed over the original social media data. The GARCH(1,1) and
ARIMA(1,1,1) transformations were applied on the returns. Then, we regressed
the resulting residuals on the original social media time series. See Appendix
A.2 for the formal definition of the functional forms that were used.

Ticker x (linear) ∇x ∇2x f (x,vol) log(1+ x) |x| GARCH(1,1) ARIMA(1,1,1)
CSCO ◦ ◦ ◦ ◦ • ◦ ◦
MSFT ◦ ◦ ◦ • ◦ ◦
AXP ◦ ◦ ◦ ◦ ◦ ◦ ◦
JPM ◦ ◦ ◦ ◦ • ◦ ◦
IBM ◦ ◦ ◦ ◦ ◦
V ◦
JNJ
AAPL

◦: Not misspecified; •: Not misspecified and with significant G-causality.

It is clear from the results that are reported in Table 5.1 that naive transfor-

mations, which are often applied to linearize nonlinear interactions, were unable to

fully explain the observed causal relations. This indicates that the nonlinear causal-

ity observed is nontrivial and that there is a forecastable structure that cannot be
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explained by commonly used functional forms. Therefore, the impact of social me-

dia on market prices may be higher than what is currently reported in related studies

since the frequently used functional forms are hiding significant causal relationships

that are instead revealed here with a nonlinear analysis.

5.3.2 Quantifying the Direction of Information Flow

We quantified the Net Information Flow from social media to stocks returns using

both the nonlinear and linear frameworks (see Section 2.2.7). We investigated which

coupling direction is the strongest and to what extent the consideration of nonlinear

dynamics affects the results compared to a linearly constrained analysis. Fig. 5.3

A) shows the results for the linear case. We observe an asymmetry of information,

i.e., the systems are not coupled with the same amount of information flow in both

directions. The stocks are clearly divided in two groups of approximately the same

size. One group shows the stocks with a positive Net Information Flow, indicating

that social media provides more predictive information about the stock market than

the opposite. A second group of stocks indicates the opposite, i.e., information

flows more from stocks returns to social media rather than in the other direction. In

both cases, the absolute value of the Net Information Flow decreases with the lag.

Surprisingly, the consideration of nonlinear dynamics unveils a considerably

different scenario. Fig. 5.3 B) shows the results of the same analysis without linear

constraints, i.e., using the Transfer Entropy to estimate the information flow. We

observe that the Net Information Flow becomes positive for all stocks that are an-

alyzed. This result suggests that social media is the dominant information source

and indicates that the information provided by social media contributes more to the

description of the stock markets’ dynamics than the opposite.

5.4 Conclusions
The main outcome of the present study is the evidence that social media, namely,

Twitter sentiment, has a significant nonlinear causal relationship on stocks returns.

This discovery is demonstrated by analyzing an extensive dataset comprising both

the time series of Twitter sentiment and the stock market returns related to the stocks
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Figure 5.3: Evidence that the linear constraints greatly change the direction of Infor-
mation Flow between social media and the stock market. The figure shows
the Net Information Flow from social media to stocks returns: T̂ ESM→R =
T ESM→R− T ER→SM. In A), the Net Information Flow is estimated with lin-
ear constraints. Positive values (blue) indicate that T ESM→R > T ER→SM, thus
providing evidence that information flows from social media to stock returns.
Conversely, negative values (red) indicate that the stock market provides more
information about social media movements than the opposite. In B), the esti-
mation of the Net Information Flow considers nonlinear dynamics. Differently
from the linear case, all companies show a positive information flow from social
media to stocks’ returns. This indicates that information flows predominantly
from social media to the stock market with a nonlinear causality relation. We
observe a change of the direction of the information flow in about half of the
companies compared to the same analysis with linear constraints. Stocks on
the Y-axis are ranked (top to bottom) by their total Net Information Flow con-
sidering all lags, i.e., ∑

10
∆t=1 T̂ ESM→R

components of the DJIA index. Linear and nonlinear tests for causality reveal three

major empirical findings.

1. Social media and stocks’ returns have a significant causal relation that is

purely nonlinear in most cases. Specifically, we observed that the consid-

eration of nonlinear causal relations increased the number of stocks with a

relevant social media causal effect on stock price from 1/10, in the linear

case, to more than 1/3 in the nonlinear case.
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2. The functional forms of nonlinear interactions are non-trivial and cannot be

explained by common functional forms used in the literature. This indicates

that the impact of social media on stocks’ returns may be higher than cur-

rently reported in related studies.

3. Net Information Flow analysis indicates that social media dominates the di-

rectional coupling with stock market, an effect not observable within linear

modeling.

From a methodological point of view, the results indicate that a nonlinear ap-

proach is highly preferable for the investigation of causal relationships between

social and financial systems. A better understanding of the nature of these non-

linear relations and assessing whether these nonlinear relations are common across

different systems will be the focus of future research. The fact that social media is

a valuable source of information regarding the future evolution of the stock market

supports the idea that there is an emotional component that drives these systems

beyond pure economic and fundamental factors. This predictive power of social

media on future prices has started to be exploited by market players and the effects

we have uncovered with this work could fade away in the future when speculation

erodes arbitrage opportunities. However, its nonlinear nature might indicate that

there are causal effects that might not be trivially incorporated in trading strategies.



Chapter 6

Predicting Future Stock Market

Structure by Combining Social and

Financial Network Information

In the previous Chapters, we demonstrated that social sentiment can inform the

description of financial dynamics. Related research has focused in the analysis

of individual stock returns. In this Chapter, instead, we test whether social senti-

ment can predict the entire market structure. We demonstrate that future market

correlation structure can be predicted with high out-of-sample accuracy using a

multiplex network approach that combines information from social media and fi-

nancial data. Market structure is measured by quantifying the co-movement of as-

set prices returns, while social structure is measured as the co-movement of social

media opinion on those same assets. Predictions are obtained with a simple model

that uses link persistence and link formation by triadic closure across both financial

and social media layers. Results demonstrate that the proposed model can predict

future market structure with up to a 40% out-of-sample performance improvement

compared to a benchmark model that assumes a time-invariant financial correla-

tion structure. Social media information leads to improved models for all settings

tested, particularly in the long-term prediction of financial market structure. Sur-

prisingly, financial market structure exhibited a higher predictability than social

opinion structure.
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6.1 Introduction

Financial markets can be regarded as a complex network in which nodes represent

different financial assets and edges represent one or many types of relationships

among those assets. Filtered correlation-based networks have successfully been

used in the literature to study financial markets structure particularly from observa-

tional data derived from empirical financial time series [93, 94, 95, 96, 97, 98]. The

underlying principle is to use correlations from empirical financial time series to

construct a sparse network representing the most relevant connections. Analyses on

filtered correlation-based networks for information extraction [99, 96] have widely

been used to explain market interconnectedness from high-dimensional data. Ap-

plications include asset allocation [100, 101], market stability assessments [102],

hierarchical structure analyses [95, 96, 97, 103, 104] and the identification of lead-

lag relationships [105].

The majority of literature so far has focused on the analysis of financial time se-

ries. However, in recent years a large amount of information about financial markets

has become available from exogenous sources such as social media. It is reasonable

to conceive that changes in social media sentiment [35] and changes in asset prices

might be related. Some previous studies have indeed demonstrated the existence of

relationships which in some cases indicated that social media can be used to predict

changes in asset prices [38, 106, 19, 2, 13, 26]. When new information hits the mar-

kets, investors may react either rationally or irrationally [107, 5]. They may express

opinions on social media that can later become market actions, thus enabling op-

portunities to forecast future asset prices. However, as demonstrated in the Chapter

5 not all assets behave in the same way. Some are more influenced by social media

sentiment, while others, on the contrary, are more influential on the social media

sentiment. Besides each single financial asset, we address in this Chapter whether

the entire stock market structure is related to the structure constructed from social

media sentiment and whether there exist lead-lag relationships exist that can be used

for forecasting one structure in terms of the other.

We use dynamical Kendall correlations computed over rolling windows to take
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into account possible non-linear coupling in the investigation of the temporal evo-

lution of market structure represented by filtered correlation-based networks con-

structed from stock market prices and from Twitter sentiment signals. We generate

two networks: one from log-returns of stock prices and the other from Twitter sen-

timent. The two networks are treated as a multilayer problem with two layers of

networks that share the same nodes but have different edge sets. We investigate

whether financial market structure can be better predicted by combining past finan-

cial information with past social media sentiment information. The market structure

forecasting problem is formulated as a link prediction problem where we estimate

the probability of addition or removal of a link in the future based on information

about the structure of the financial and social networks in the past.

6.2 Methods

6.2.1 Financial and Social Networks

We selected N = 100 of the most capitalized companies that were part of the

S&P500 index from 09/05/2012 to 08/25/2017. The list of these companies’ ticker

symbols is reported in the Appendix B.1. For each stock i the financial variable was

defined as the daily stock’s log-return Ri(τ) at time τ . The social media variable

was defined as the the social media opinion Oi of stock i which was estimated as

the total number of bullish daily tweets related to the stock i at time τ (see Section

2.1.3).

Stock returns Ri and social media opinion scores Oi each amounted to a time

series of length equals to 1251 trading days. These series were divided time-wise

into M = 225 windows t = 1,2, . . . ,M of width T = 126 trading days. A window

step length parameter of δT = 5 trading days defined the displacement of the win-

dow, i.e., the number of trading days between two consecutive windows. The choice

of window width T and window step δT is arbitrary, and it is a trade-off between

having analysis that is either too dynamic or too smooth. The smaller the window

width and the larger the window steps, the more dynamic the data are.

To characterize the synchronous time evolution of assets, we used equal time
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Kendall’s rank coefficients between assets i and j, defined as

ρi, j(t) = ∑
t ′<τ

sgn(Vi(t ′)−Vi(τ))sgn(Vj(t ′)−Vj(τ)), (6.1)

where t ′ and τ are time indexes within the window t and Vi ∈ {Ri,Oi}.

Kendall’s rank coefficients takes into account possible nonlinear (monotonic)

relationships. It fulfill the condition −1 ≤ ρi, j ≤ 1 and form the N×N correlation

matrix C(t) that served as the basis for the networks constructed in this work. To

construct the asset-based financial and social networks, we defined a distance be-

tween a pair of stocks. This distance was associated with the edge connecting the

stocks, and it reflected the level at which they were correlated. We used a sim-

ple non-linear transformation di, j(t) =
√

2(1−ρi, j(t)) to obtain distances with the

property 2≥ di, j ≥ 0, forming a N×N symmetric distance matrix D(t).

We extracted the N(N − 1)/2 distinct distance elements from the upper tri-

angular part of the distance matrix D(t), which were then sorted in an ascending

order to form an ordered sequence d1(t),d2(t), . . . ,dN(N−1)/2(t). Since we require

the graph to be representative of the market, it is natural to build the network by

including only the strongest connections. This is a network filtering procedure that

has been successfully applied in the construction of asset graphs for the analyses

of market structure [108, 109]. The number of edges to include is arbitrary, and we

included those from the bottom quartile, which represented the 25% shortest edges

in the graph (largest correlations), thus giving E(t) = {d1(t),d2(t), . . . ,dbN/4c(t)}.

We denoted EF(t) and ES(t) as the set of edges constructed from the distance

matrices derived from stock returns R(t) and social media opinion O(t), respec-

tively. Two networks were considered as two layers of a multiplex structure [110]

G = {GF ,GS} where GF = (V,EF), GS = (V,ES) and V is the vertex set of stocks

which is common to both layers.

6.2.2 Persistence

The state of an edge between vertices u and v in the financial layer at time t was

represented with the corresponding adjacency matrix element EF
u,v(t): a binary vari-
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able with EF
u,v(t) = 1 indicating the existence of the edge and EF

u,v(t) = 0 its ab-

sence. Analogously, the variable ES
u,v(t) accounted for the presence or absence of

edge (u,v) in the social (S) layer. The variable Eu,v(t) = EF
u,v(t)∨ES

u,v(t) = 1 indi-

cates instead the presence of at least one edge between u and v in the two layers;

Eu,v(t) = 0 indicates that no edges are present between u and v in any layer.

6.2.3 Triadic Closure

Let Nuv be the set of nodes that are common neighbors to vertices u and v. We

defined the triadic closure T F
u,v(t) of an edge (u,v) at layer F and time t as the mean

of the clustering coefficients of vertices in Nuv:

T F
u,v(t) =

1
|Nuv| ∑

i∈Nuv

CF
i (t), (6.2)

where term CF
i is the clustering coefficient of node i which accounts for the fraction

of triads in the neighbors of i that are closed in triangles. This is defined as

CF
i = 2

Number of triangles with a vertex on i
ki(ki−1)

=
∑ j,k∈Ni EF

j,k

ki(ki−1)
, (6.3)

where ki is the degree of vertex i and Ni is the neighborhood of i.

In the multiplex case, we kept the same definition but allowed triangles to form

across several layers [110, 111]. For the multiplex case, we used the symbol Tu,v(t).

6.2.4 Link Prediction

We aim to predict the probability that an edge is inserted or removed in the financial

network, GF(t + h), at a future time t + h by using the information about the past

structures of the financial and social networks at previous times t ′ ≤ t. For this

purpose we considered two mechanisms:

1) the tendency of an edge present at a previous time to persist in the future (edge

persistence);

2) the propensity of triangles within or across layers to close (triadic closure).
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A)

Financial Layer F

B)

Financial Layer F

Social Layer S

Figure 6.1: Triads on a single layered network (Panel A) and on a multiplex network
(Panel B). The clustering coefficient of node i accounts for the fraction of triads
in the neighborhood of i that are closed in triangles. The triadic closure of an
edge (u,v) at layer F is a function of the clustering coefficients of the common
neighbors of the vertices u and v. Triangles can be formed in a single layer or
across layers.

The mechanism of growth by triadic closure is based on a principle of transitivity,

often observed in real-world networks, where there is a tendency to form triangles

[111]. Under this principle, two nodes tend to be connected if they share common

neighbors with high transitivity, i.e., propensity to close triangles.

The probability that an edge will be inserted in the future is computed by means

of a logistic regression of the edge persistence and the triadic closure coefficients.

We estimated regression coefficients by best fitting on a training set which was com-

posed of rolling windows of 126 trading days that initially ranged from 09/05/2012

to 09/10/2014. Predictions concerning the presence of edges in the financial net-

work were made at h = 1 to h = 20 weeks ahead of the end of the training set. The

test set initially ranged from 09/17/2014 to 08/25/2017. The procedure was repeated

by moving the training window forward in 1-week steps.

The probability pu,v(t+h) to observe vertices u, v connected by an edge at t+h

can be inferred in terms of the set of previous triadic closure coefficients, Tu,v(t),

and edge persistence scores Eu,v(t). We first considered a restricted model that used
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financial information only, which is given by the following:

log
pF

u,v(t +h)
1− pF

u,v(t +h)
= β̃

h
0 + β̃

hT F
u,v(t)+ γ̃

hEF
u,v(t). (6.4)

For this restricted model, we performed a 1-step ahead prediction for h ∈

(1,2, . . . ,19,20) weeks.

To calibrate the parameters in Eq. 6.4, we considered a training window of

W = 126 days which ends at time t. The log-likelihood function [112] over the

training window for the logistic model from Eq. 6.4 is given by

L F(t) =
t

∑
t ′=t−W+1

∑
uv∈EF (t ′+h)

− log(1+ eβ̃ h
0 +β̃ hT F

u,v(t
′)+γ̃hEF

u,v(t
′))+

t

∑
t ′=t−W+1

∑
uv∈EF (t ′+h)

(1−EF
uv(t
′+h))(β̃ h

0 + β̃
hT F

u,v(t
′)+ γ̃

hEF
u,v(t

′)).

(6.5)

We differentiated the log-likelihood function given by Eq. 6.5 in order to find

maximum log-likelihood estimates for the coefficients of Eq. 6.4.

To test whether the multiplex information is relevant in the prediction of links

in the financial network compared to past a financial network alone, we consid-

ered a full regression model that takes the set of previous triadic closure coeffi-

cients and edge persistence from the financial layer (T F
u,v(t),E

F
u,v(t)), social layer

(T S
u,v(t),E

S
u,v(t)) and the multiplex network (T F

u,v(t),E
F
u,v(t)). The full model is

log
pu,v(t +h)

1− pu,v(t +h)
=β

h
0 +β

h
1 T F

u,v(t)+β
h
2 EF

u,v(t)+

γ
h
1 T S

u,v(t)+ γ
h
2 ES

u,v(t)+θ
h
1 Tu,v(t)+θ

h
2 Eu,v(t).

(6.6)

The log-likelihood function L (t) of the full model in Eq. 6.6 and the model

fitting can be obtained in an analogous manner to the previously performed proce-

dure for the restricted model from Eq. 6.4.

The likelihood ratio statistic is

λ (t) =−2(Lmax(t)−L F
max(t)), (6.7)
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where Lmax(t) and L F
max(t) are,respectively, the maxima of the log-likelihood func-

tions of the full and restricted models in the training set window. The likelihood

ratio statistic λ (t) can be assumed to follow a χ2 distribution [112] with 4 degrees

of freedom where a value of λ > 18.47 is assumed to be statistically significant at

p = 0.001. In that case, there is evidence to accept the full model that considers

social and financial information over the restricted model that considers financial

information only.

The model performance was estimated by counting both the true positives

(edges predicted to be there and indeed present in the future network) and the false

positives (edges predicted to be there but not present in the future network) and mea-

suring of AUC (area under the receiver operating characteristic curve) in the test set

that originally ranged from 09/17/2014 to 08/25/2017. AUC ranges from 0.50 to

1.00, with higher values indicating that the model discriminates better between the

two categories of edge-present and edge-absent.

6.3 Results

6.3.1 Market structure dynamics

We first investigated financial network persistence by comparing the financial net-

work GF(t) at time t with a future financial network, GF(t +h) at h steps ahead. To

quantify the changes in the correlation network structure, we used two measures:

A) the fraction of new edges in GF(t + h) that were not present in GF(t); B) the

Jaccard Distance, defined as

Jaccard(GF(t ′),GF(t)) =
‖GF(t ′)∩GF(t)‖
‖GF(t ′)∪GF(t)‖

.

Results are reported in Fig. 6.2, panels A) and B), respectively.

Fig. 6.2 panel A) shows the mean percentage of new edges in the financial

network at time t + h with respect to the edge set at time t (1 ≤ h ≤ 20 trading

weeks). We observe that edges change considerably in the financial network with

almost 40% of edges in financial networks changing after a period of h = 20 trading
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Figure 6.2: Evidence that financial correlation structure changes considerably with
time. Panel A) shows the mean percentage of new edges in the financial net-
work at time t + h with respect to the edge set at time t (1 ≤ h ≤ 20 trading
weeks). We observe that edges change considerably in the financial network
with almost 40% of edges in financial networks changing after a period of
h = 20 trading weeks. Panel B) shows the cross-similarity among financial
networks measured as the Jaccard Distance between GF(t ′) and GF(t) with t
and t ′ ranging from 09/05/2012 to 21/02/2017. We observe that edge changes
(persistence) are quite stable overtime, i.e., the number of edges that change
is similar throughout the period. Network GF(t) are constructed at each time
t from a correlation structure estimated from a sliding window of 126 trading
days starting at time t. The windows move with time step of 1 trading week.
Error bars in Panel A) indicate standard error.

weeks. Fig. 6.2 panel B) shows the cross-similarity among financial networks

measured as the Jaccard Distance between GF(t ′) and GF(t) with t and t ′ ranging

from 09/05/2012 to 21/02/2017. We observe that edge changes (persistence) are

quite stable overtime, i.e., the number of edges that change is similar throughout

the period. Hence, results indicate that the constructed financial networks are time-

variant across the entire period studied, with a stable rate of edge changes over time.

6.3.2 Prediction of Stock Market Structure

We used Eq. 6.6 to predict a the financial network GF(t+h) at a future time t+h by

using the information about the past structures of the financial and social networks

at previous times t ′ ≤ t. Fig. 6.3 panel A) shows the performance obtained in

the prediction of out-of-sample edges for h ∈ (1,5,10,15,20) trading steps ahead.
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We achieved an overall high out-of-sample performance in financial network link

prediction, with performances in the range of 73% to 95% depending on time-lag

and time-period. Prediction power improved with a smaller time lag.

Figure 6.3: Evidence of high out-of-sample performance in financial network link pre-
diction. Models were trained in an expanding window with initial start and
end dates 09/05/2012. and 09/10/2014, respectively. Test period ranges from
09/17/2014 and 08/25/2017. Plots display the performance results (AUC) of a
model to predict edges in a financial network at time t + h trained with infor-
mation up to date t. Panel A) shows the performance obtained in the prediction
of out-of-sample edges for h ∈ (1,5,10,15,20) trading weeks. Panel B) shows
the performance improvement (AUC∗) compared to a naive benchmark that as-
sumes that the correlation structure is time-invariant, i.e., GF(t +h) = GF(t).

We compared our results to those obtained using a benchmark model that as-

sumes that correlation structure is time-invariant, i.e., GF(t +h) = GF(t). The per-

formance improvement against the benchmark is estimated as AUC∗ = (AUC−

0.5)/(ÂUC− 0.5)− 1, where AUC represents the performance of the proposed

model and ÂUC is the performance of the benchmark. From Fig. 6.3 panel B),
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we observe that the higher the time lag, the higher the performance improvement

over the benchmark. Let us note that performance improvement over the naive

benchmark reached values as high as 40% for a long-term prediction with a lag of

20 trading weeks.

Fig. 6.4 reports an aggregate overview of the previous results for the out-of-

sample prediction in terms of the number of weeks ahead. We observe that as the

lag increases, the prediction performance declines (panel A). However, the improve-

ment in performance over the naive benchmark improves (panel B).

Figure 6.4: The effect of time-lag on out-of-sample predictive performance. Panel A)
shows the mean performance (AUC) of the prediction of out-of-sample edges of
the full financial network GF . Panel B) shows the performance improvement
(AUC∗) against a naive benchmark that assumes that correlation structure is
time-invariant, i.e., GF(t +h) = GF(t). Error bars indicate standard error.

In Appendix B.2, we report the results obtained by using an expanding window

rather than a rolling window as a training set. We observe that expanding the train-

ing set does not necessarily lead to better performance. In fact, the rolling window

analysis yielded better performance overall.

To test whether the multiplex network provides additional information to that

from the financial network only, we re-computed the same out-of-sample edge pre-

diction by using the financial network only and compared this to the results from

the full model that considers both the financial and social information layers. A

comparison between the two models was performed by comparing their respective

likelihoods. We have also disaggregated the prediction of the insertion of new edges

E+ and the prediction of edge deletions E−. We report the likelihood values and
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AUC performance obtained for the fit of each model in Table 6.1.

We observed that the model that includes both financial and social informa-

tion better fit the data compared to the model that considers financial data only,

particularly for the case of the prediction of insertion of new edges. The likeli-

hood ratio increases with prediction lag indicating that full models (i.e. those that

consider both financial and social networks) are particularly important in long-term

link prediction. Results confirm that the multiplex network is distinctly better than

the single financial layer with all likelihood ratios having p-value < 0.001 for all

configurations tested.

6.3.3 Prediction of Social Opinion Structure

We have so far established that social opinion structure can provide statistically

significant information about the future financial market structure. In this section,

we investigate the opposite relationship of whether financial market structure can

also significantly improve the prediction of future social opinion structure, and we

determine if this effect is larger or smaller.

The comparison between performance results is summarized in Fig. 6.5, where

the prediction of social opinion structure GS is plotted together with the results for

the prediction of financial market structure GF that was discussed previously. Sur-

prisingly, results suggest that financial market structure has a higher predictability

than social opinion structure. We also observe that both the financial network and

social opinion network predictions lead to an improvement compared to the naive

benchmark that considers time invariance in social network structure. As previ-

ously observed, the relative performance improvement increases with time lag. In

this case, the relative improvement in prediction is higher for the social opinion

structure than for the financial network as observed in Fig. 6.5 panel B).

One of the possible reasons why social opinion structure is less predictable

compared to financial network structure is the higher structural variability of the

former compared to the latter. Fig. 6.6 provides evidence that social media structure

is less stable than financial market structure in terms of the number of edge changes

over time. More edges changed in the social opinion network than in the financial
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Table 6.1: Financial Link Prediction Performance Results. High out-of-sample AUCs ob-
tained indicate that the model has high performance balancing both false posi-
tives and false negatives predictions relative to true positive and negative values.
Log-likelihood ratios (λ ) increase with prediction lag indicating that social me-
dia features are particularly important for long-term prediction. The table reports
mean AUC values and log-likelihood ratios λ over the test period with corre-
sponding standard deviations in parentheses. Results are reported for the predic-
tion of new edges E∗ and edge deletions E−. We also report the average perfor-
mance AUC obtained in the prediction of the full-graph GF , as well as, the per-
formance improvement AUC∗ over the benchmark that assumes that correlation
structure is time-invariant, i.e., GF(t +h) = GF(t). Models were trained with a
rolling window with initial start and end dates of 09/05/2012 and 09/10/2014,
respectively. The test period ranged from 09/17/2014 to 08/25/2017.

E+ E− GF

Lag AUC λ AUC λ AUC AUC∗ (%)
1 87 (0.33) 21 (0.76) 93 (0.11) 34 (1.2) 97 (0.064) 4 (0.091)
2 87 (0.37) 33 (1.2) 93 (0.1) 45 (1.5) 95 (0.092) 6 (0.14)
3 86 (0.39) 48 (1.5) 93 (0.11) 60 (1.6) 94 (0.11) 8 (0.17)
4 86 (0.39) 65 (2) 93 (0.11) 65 (1.9) 93 (0.13) 10 (0.21)
5 85 (0.41) 85 (2.6) 93 (0.11) 66 (1.9) 92 (0.15) 11 (0.24)
6 85 (0.41) 100 (3.2) 93 (0.1) 74 (2) 91 (0.16) 12 (0.27)
7 84 (0.42) 120 (3.5) 93 (0.1) 70 (2.2) 90 (0.18) 13 (0.3)
8 84 (0.43) 150 (4.3) 93 (0.1) 72 (1.9) 89 (0.19) 15 (0.33)
9 83 (0.44) 180 (5.7) 93 (0.1) 74 (2.2) 88 (0.21) 16 (0.37)

10 83 (0.43) 220 (6.3) 93 (0.096) 79 (1.9) 87 (0.21) 17 (0.4)
11 82 (0.43) 260 (7.2) 93 (0.094) 78 (2) 87 (0.22) 18 (0.43)
12 82 (0.42) 300 (7.9) 93 (0.09) 86 (2.4) 86 (0.22) 19 (0.45)
13 82 (0.43) 330 (7.9) 93 (0.09) 95 (2.1) 85 (0.22) 20 (0.49)
14 81 (0.43) 360 (9.2) 93 (0.084) 100 (2.4) 84 (0.23) 21 (0.51)
15 81 (0.43) 390 (9.9) 93 (0.083) 110 (2.3) 84 (0.24) 22 (0.55)
16 81 (0.43) 410 (10) 93 (0.08) 120 (3) 83 (0.24) 23 (0.58)
17 80 (0.43) 440 (11) 94 (0.079) 130 (2.6) 82 (0.25) 24 (0.62)
18 80 (0.44) 470 (12) 94 (0.076) 150 (3) 82 (0.25) 25 (0.67)
19 80 (0.46) 500 (12) 94 (0.072) 160 (3.6) 81 (0.27) 26 (0.71)
20 80 (0.48) 510 (12) 94 (0.068) 170 (3.7) 80 (0.28) 27 (0.79)

*A likelihood ratio of λ > 18.47 indicates statistical significance at p = 0.001.

network for all lags tested. We observed that more than 50% of the edges in the

social media opinion structure changed compared to 40% in the financial network

over a time lag of 20 trading weeks.
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Figure 6.5: Evidence that financial market structure has higher predictability than
social media structure. Panel A) shows mean performance (AUC) in the pre-
diction of out-of-sample edges of the full financial network GF and the social
opinion network GS. Panel B) shows the performance improvement (AUC∗)
against a naive benchmark that assumes that the correlation structure is time-
invariant. Error bars indicate standard error.

Figure 6.6: Evidence that social media structure is less stable than financial market
structure in terms of number of edge changes in time. We observe that
almost 40% of edges in Financial Networks changed after a period of 20 trading
weeks while the social media structure changed more than 50% of its edges
over the same time lag. A network at time t is constructed from a correlation
structure estimated from a sliding window of 126 trading days starting at time
t that moves with time step of 1 trading week. The financial network measures
co-movement of stock returns while the social network measures co-movement
of opinion over the same stocks. Error bars indicate standard error.

6.4 Discussion and Conclusions
We investigated whether financial market structure can be better predicted by com-

bining past financial information with past social media sentiment information. We
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considered the N = 100 most capitalized companies that were part of the S&P500

index in the period between May 2012 and August 2017. We generated two net-

works: A financial network constructed from log-returns of equity prices and a

social network constructed from Twitter sentiment analytics. We constructed fil-

tered correlation-based networks by keeping the strongest top quartile correlations

only that considered a rolling window of T = 126 trading days. The two networks

were treated as a multiplex problem with two layers of networks that share the same

nodes (stocks) but have different edge sets.

The financial market structure forecasting problem was formulated as a link

prediction problem where we estimated the probability of the addition or removal

of a link in the future on information about the past structure of financial and social

opinion networks.

We proposed that financial network links were formed by a combination of

the two mechanisms of triadic closure and edge persistence. The first mechanism

assumes that two stocks have a propensity to be correlated if they share common

neighbors. The edge persistence mechanism assumes that two connected stocks

tend to remain connected in the future. A logistic model was trained over a set

of data between 09/05/2012 and 09/10/2014 and then results were reported for the

validation set over the following period from 09/17/2014 and 08/25/2017.

Our results indicate that financial market structure is considerably time variant,

which invalidates the commonly used assumption of time invariance in the deter-

mination of stock correlation structure. The proposed model exhibited high out-

of-sample performance in financial network link prediction, particularly in the case

of long-term predictions where we observed a performance improvement of up to

40% over a naive benchmark that assumed that the correlation structure of the finan-

cial market was time invariant. Likelihood ratio analysis demonstrated that models

that considered both financial and social information better fit the data when com-

pared to a restricted model that considers financial information only. This provides

evidence that supports the use of social information in the prediction of financial

market structure.
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Finally, our findings indicate that social opinion structure is less stable than

financial market structure. Surprisingly, the prediction of financial market structure

using past social and financial information presented higher performance compared

to the problem of predicting social opinion structure using past social and financial

information.

Let us note that network link formation can occur due to mechanisms beyond

the ones we studied here. For instance, networks can form links as a result of a

growth process that adds new nodes in the network, e.g., IPOs can generate growth

in a financial network. Among other possible mechanisms, link formation can occur

due to preferential attachment, a phenomenon widely observed in real networks

where new nodes tend to link to the more connected ones [113].

In summary, this study indicates that social opinion structure is relevant to the

prediction of future financial correlation structures. This result has important con-

sequences because of the fundamental importance of financial correlation structure

in Modern Portfolio Theory (MPT) [32], Capital Asset Pricing Model (CAPM) and

Arbitrage Pricing Theory (APT) [33]. Future work should focus on the investigation

of further mechanisms of financial link formation and on applications in portfolio

allocation strategies.



Chapter 7

Conclusion

The opinions of traders, analysts and other professionals, along with laypeople’s

opinions, can be widely expressed in the form of news articles, research reports,

company transcripts and blogs, among many other sources available on the inter-

net. Social media is an information channel of particular interest due to the high

volume and velocity of activity of an ever-evolving network that is constantly pro-

viding and creating information. In this work, we provide evidence that supports

the use of social media opinion as a relevant signal in the prediction of stock market

movements.

Investors may react either rationally or irrationally [107, 5] in the presence of

new information. Irrational behavior and investment opinions can influence mar-

ket actions, thus enabling opportunities to predict asset prices. Therefore, better

understanding the nature of the relationship between market opinion and financial

dynamics can benefit current financial modeling, which is mostly focused on finan-

cial time-series data only.

Assuming social media as a proxy for human activity, behavior and collective

opinion, the main objective of this work was to provide evidence on whether and

to what extent financial dynamics can be better explained by collective opinion

extracted from social media. The following hypotheses were evaluated:

• H1: Social media sentiment has statistically significant causal relation-

ship with stocks returns and volatility. In Chapter 5, we provide evidence

that social media sentiment has a significant causal relationship with price
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movements by analyzing constituents of the Dow Jones Industrial Average

index. While analyzing retail brands, in particular, results suggested that so-

cial media can be a complementary source in the analysis of the financial

dynamics to mainstream news such as the Wall Street Journal and Dow Jones

Newswires.

• H2: Social media sentiment has a nonlinear impact in stock price returns.

In Chapter 5, we provided empirical evidence that indicates that social me-

dia and stock markets have a nonlinear causal relationship. Our results serve

as empirical guidance on model adequacy, market efficiency, and predictabil-

ity, in the investigation of causal relationships between social and financial

systems.

• H3: Social media sentiment dominates directional coupling with the

stock market; i.e., information provided by social media contributes to

the description of stock market dynamics more than the opposite. By

analyzing a sentiment dataset composed of social media messages related to

DJIA index components, in Chapter 5, we uncovered that information flows

predominantly from social media to stock markets. Results from Chapter 6

were aligned with those from Chapter 5, while showing that social media

opinion structure dominated the directional coupling with stock market struc-

ture; i.e., the prediction of the stock market structure using past social and

financial information presented higher performance, compared to the predic-

tion of social opinion structure using past social and financial information.

• H4: Social media sentiment structure predicts stock market structure. In

Chapter 6, we demonstrated that social media mood can be used to predict not

only individual asset prices but also overall market structure. We quantified

the collective behavior of asset returns by constructing filtered correlation-

based networks, and we showed that social media opinion structure predicts

stock market structure. The proposed model exhibited high out-of-sample

performance in the prediction of future market correlations among a subset
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of the most market capitalized S&P500 index constituents. This result has

important consequences in any study of portfolio risk, capital allocation or

hedging in trading strategies, which typically depend on the estimation of an

expected asset correlation structure.

The study of how social mood can impact the stock market is an area of re-

search on its early stages, and while promising, it imposes many challenges. This

thesis has many limitations, which include the following:

• Limitation in the asset universes and data sample. Social media data are

often sparse and of difficult acquisition. Results provided in Chapter 4 were

limited to a small number of retail companies within a two-year period; thus,

those results might differ if a different analysis were made in a different time

period, or if it included a broader selection of companies. While Chapters 5

and 6 expanded the asset universe to a broader segment of the US market, the

availability of longer history and expanded number of assets would greatly

improve robustness of the results.

• Limitation in the content universe. We considered Twitter as main content

source that served as a proxy for social opinion. Many other social networks

can also be considered such as Facebook and Linkedin.

• Other mechanisms can take place in financial link formation. We demon-

strated that stock market structure can be better predicted using social me-

dia opinion structure by assuming link formation mechanisms based on link

persistence and triadic closure. Nonetheless, market dynamics can often be

unpredictable; also, links between assets can be formed by a combination of

many other reasons beyond those studied in Chapter 6. Other mechanisms

can take place in financial link formation such as network growth and pref-

erential attachment, which are two mechanisms among many that are widely

observed in real networks [113].

• Limitations in the quantification of causality. The quantification of true

causality is an open research problem. We approached the problem of mea-



101

suring causality under a notion of statistical Granger-causality. Nonetheless,

it is important to note that many other confounding factors could have con-

tributed to the Granger-causality tests performed, which were limited to the

variables here considered (i.e. social sentiment, news sentiment, stock returns

and volatility). Moreover, the limitations in the sample data size limited the

robustness of the tests performed.

• Past evidence is not indicative of future performance. Market players have

already begun to exploit the predictive power of social media over future

prices, and the effects we have uncovered with this work could fade in the

future when speculation erodes arbitrage opportunities.

We consider many future research avenues including the following:

• Multi-asset class investment. Future research should investigate the im-

pact of social opinion in multiple asset classes beyond equity. Evidence that

supports the use of social opinion in fixed income, FX, indices, commodi-

ties, equity among other asset classes can allow for the construction of well-

diversified portfolio strategies.

• Modeling multiple information channels. Future research should consider

multiple information channels that could measure crowd option captured from

additional social networks (e.g. Instagram, Facebook and Linkedin), as well

as information channels that could capture expert opinion such as Traders

chat rooms. Each information channel can be modeled as a network, whereby

nodes represent assets and links represent co-movement of opinion. This mul-

tiplex framework allows for the investigation of how collective opinion affects

financial markets while handling high dimensional data.

• Portfolio optimization. In Chapter 6, we provided evidence that market

structure can be inferred from social opinion structure. Future research should

consider the incorporation of collective opinion into traditional portfolio op-

timization models, which currently rely in the estimation of financial correla-

tion structure.
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In summary, we argue that social opinion is a relevant exogenous signal, com-

pared to traditional market data in the prediction of stock market prices and struc-

ture. We observed that social media sentiment can be a complementary signal to

mainstream news, when analyzing a subset of US retail brands. We demonstrated

that the significant causal relationship between social opinion and stock returns are

purely nonlinear for most of the DJIA index constituents. We also provided evi-

dence that suggests that social media predicts stock market structure for S&P500

index constituents. Finally, our findings suggest that social media sentiment domi-

nates the directional coupling with the stock market in the prediction of individual

asset dynamics, as well as in the prediction of the overall market structure.



Appendix A

Supporting Information to Chapter 5

A.1 List of Companies Analyzed

The names with their respective Reuters Instrument Codes (RIC) of the stocks in-

vestigated in Chapter 5 are the following: INTEL CORP. (INTC.O), VISA INC.

(V.N), NIKE INC. (NKE.N), E.I. DUPONT DE NEMOURS & CO. (DD.N), JP-

MORGAN CHASE & CO. (JPM.N), BOEING CO. (BA.N), MERCK & CO.

INC. (MRK.N), PFIZER INC. (PFE.N), MICROSOFT CORP. (MSFT.O), COCA-

COLA CO. (KO.N), GOLDMAN SACHS GROUP INC. (GS.N), MCDONALD’S

CORP. (MCD.N), GENERAL ELECTRIC CO. (GE.N), 3M CO. (MMM.N),

UNITED TECHNOLOGIES CORP. (UTX.N), VERIZON COMMUNICATIONS

INC. (VZ.N), CISCO SYSTEMS INC. (CSCO.O), HOME DEPOT INC. (HD.N),

INTERNATIONAL BUSINESS MACHINES CORP. (IBM.N), AMERICAN

EXPRESS CO. (AXP.N), PROCTER & GAMBLE CO. (PG.N), APPLE INC.

(AAPL.O), UNITEDHEALTH GROUP INC. (UNH.N), CATERPILLAR INC.

(CAT.N), EXXON MOBIL CORP. (XOM.N), JOHNSON & JOHNSON (JNJ.N),

WAL-MART STORES INC. (WMT.N), WALT DISNEY CO. (DIS.N), CHEVRON

CORP. (CVX.N) and THE TRAVELERS COMPANIES INC. (TRV.N).
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A.2 Functional Forms Tested in Table 5.1.

Differencing: ∇x. The first differencing is taken in both social media and returns

time series.

∇(R(t),1) = α̂ +
k

∑
∆t=1

β̂∆t∇(R(t−∆t),1)+
k

∑
∆t=1

γ̂∆t∇(SM(t−∆t),1)+ ε̂t . (A.1)

The second differencing ∇2x was tested in analogous way.

Linear regression: f (x,vol). Represents a linear regression of returns on social

media controlled by the stocks’ returns daily volatility.

R(t) = α̂ +
k

∑
∆t=1

β̂∆tR(t−∆t)+
k

∑
∆t=1

γ̂∆tSM(t−∆t)+
k

∑
∆t=1

θ̂∆tvol(t−∆t)+ ε̂t ,

(A.2)

where we consider

vol(t) = 2
Phigh(t)−Plow(t)
Phigh(t)+Plow(t)

(A.3)

as an approximation of the daily returns volatility. Phigh and Plow are the highest and

lowest intraday price value, respectively.

Log-transformation: log(x+1).

log(R(t)+1) = α̂ +
k

∑
∆t=1

β̂∆t log(R(t−∆t)+1)+
k

∑
∆t=1

γ̂∆t log(SM(t−∆t)+1)+ ε̂t .

(A.4)

Absolute value: |x|.

|R(t)|= α̂ +
k

∑
∆t=1

β̂∆t |R(t−∆t)|+
k

∑
∆t=1

γ̂∆tSM(t−∆t)+ ε̂t . (A.5)
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GARCH(1,1). A GARCH filtering was applied in the original returns time series as

follows:

R(t) = α +
p

∑
∆t=1

β∆tR(t−∆t)+
q

∑
∆t=1

γ∆tεt−∆t , (A.6)

with p = 1, q = 1 and

εt ∼ N(0,R(t)). (A.7)

The resulting residuals εt were then used instead of the original stock returns time

series R(t).

ARIMA(1,1,1). ARIMA filtering was applied in the original returns time series as

follows:

R(t) = R(t−1)+α(SM(t−1)−SM(t−2))+βεt−1. (A.8)

The resulting residuals εt were then used instead of the original stock returns time

series R(t).



Appendix B

Supporting Information to Chapter 6

B.1 Ticker Codes of Selected Companies
The list of companies used in the experiment performed in Chapter 6 follows:

AAPL, AMZN, NFLX, MSFT, GS, GOOGL, BAC, JPM, IBM, DIS, GILD, INTC,

YHOO, WMT, GE, XOM, SBUX, CSCO, WFC, NVDA, PCLN, JNJ, MCD, NKE,

BA, VZ, ES, PFE, KO, CVX, CAT, MU, MRK, CELG, EBAY, MS, CRM, FCX,

QCOM, TGT, HD, CHK, BMY, AMGN, PG, HPQ, ORCL, FSLR, WFM, COST,

BIIB, PEP, EA, AXP, WYNN, CMCSA, CL, AIG, DOW, NEM, MA, BBY, COP,

LOW, TWX, ADBE, HAL, LLY, UNH, LUV, MMM, CVS, MO, FDX, DD, ED,

KR, MON, UTX, ABT, SLB, YUM, MCO, AMAT, EXPE, AET, DE, GPS, UPS,

VLO, CBS, HAS, COH, ALL, WDC, JWN, TXN, PM, UNP, EOG.

B.2 Stock Market Structure Prediction Results Using

an Expanding Window Training Set
In this section, we report results using models that were trained in an expanding win-

dow, instead of a rolling window, using initial start and end dates of 09/05/2012 and

09/10/2014, respectively. The test period ranges from 09/17/2014 to 08/25/2017.

B.3 Model parameters t-statistic
Plot shows in log scale the mean of t-statistic of triadic closure variables for social

layer (triadic[SM]), financial layer (triadicF ) and multiplex (triadic[G ]) in the link
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Figure B.1: Link prediction results using an expanding window training set. Evidence
of high out-of-sample performance in financial network link prediction.
Models were trained in an expanding window with initial start and end dates
09/05/2012. and 09/10/2014, respectively. Test period ranges from 09/17/2014
and 08/25/2017. Plots display the performance results (AUC) of a model to
predict edges in a financial network at time t + h trained with information up
to date t. Panel A) shows the performance obtained in the prediction of out-of-
sample edges for h ∈ (1,5,10,15,20) trading weeks. Panel B) shows the per-
formance improvement (AUC∗) compared to a naive benchmark that assumes
that the correlation structure is time-invariant, i.e., GF(t +h) = GF(t).

prediction of financial networks across the multiple lags tested. Panel A) shows the

t-statistics obtained for the problem of predicting new edges in future financial net-

works. We observe that statistical significance of social media and multiplex triadic

closure variables increase with lag. Panel B) shows the t-statistics obtained for the

problem of predicting edge removals. We observe a lower statistical significance of

social media and multiplex triadic closure variables compared to a corresponding

prediction of new edges in the financial network. All the autocorrelation variables

presented insignificant t-statistic values.
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Figure B.2: Link prediction results using an expanding window training set. The ef-
fect of time-lag on out-of-sample predictive performance. Panel A) shows
the mean performance (AUC) of the prediction of out-of-sample edges of the
full financial network GF . Panel B) shows the performance improvement
(AUC∗) against a naive benchmark that assumes that correlation structure is
time-invariant, i.e., GF(t +h) = GF(t). Error bars indicate standard error.

Figure B.3: Expanding Window - Likelihood ratio demonstrates that models that con-
sider both financial and social media features fit the data significantly
better than the restricted model that considers financial network features
only. Likelihood ratio increases with prediction lag indicating that full models
(i.e. those that consider both financial and social networks) are particularly im-
portant in long-term link prediction. Likelihood ratios in the prediction of new
edges are higher than the likelihood ratios in the prediction of edge deletions
indicating that social features are specialily important in the formation of new
financial links.
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Figure B.4: Expanding Window - Evidence that social and multiplex triadic closure
variables are statistically significant in the prediction of links of financial
networks, particularly for the case of prediction of newly added edges.
Figure shows. in log scale, the mean of t-statistic of triadic closure variables for
social layer (triadic[SM]), financial layer (triadicF ) and multiplex (triadic[G ]) in
the link prediction of financial networks across the multiple lags tested. Panel
A) shows the t-statistics obtained for the problem of predicting new edges in fu-
ture financial networks. We observe that statistical significance of social media
and multiplex triadic closure variables increase with lag. Panel B) shows the
t-statistics obtained for the problem of predicting edge removals. We observe
a lower statistical significance of social media and multiplex triadic closure
variables compared to a corresponding prediction of new edges in the financial
network.
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Figure B.5: Evidence that social and multiplex triadic closure variables are statisti-
cally significant in the prediction of links of financial networks, partic-
ularly for the case of prediction of newly added edges. Plot shows. in
log scale, the mean of t-statistic of triadic closure variables for social layer
(triadic[SM]), financial layer (triadicF ) and multiplex (triadic[G ]) in the link
prediction of financial networks across the multiple lags tested. Panel A) shows
the t-statistics obtained for the problem of predicting new edges in future fi-
nancial networks. We observe that statistical significance of social media and
multiplex triadic closure variables increase with lag. Panel B) shows the t-
statistics obtained for the problem of predicting edge removals. We observe
a lower statistical significance of social media and multiplex triadic closure
variables compared to a corresponding prediction of new edges in the financial
network.
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Figure B.6: Link prediction results using an expanding window training set. Evidence
that social media structure is less stable than financial market structure
in terms of number of edge changes in time. We observe that almost 40%
of edges in Financial Networks changed after a period of 20 trading weeks
while the social media structure changed more than 50% of its edges over the
same time lag. A network at time t is constructed from a correlation structure
estimated from an expanding window of 126 trading days starting at time t that
moves with time step of 1 trading week. The financial network measures co-
movement of stock returns while the social network measures co-movement of
opinion over the same stocks. Error bars indicate standard error.
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