UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease

den Haan, J; Csinscik, L; Parker, T; Paterson, RW; Slattery, CF; Foulkes, A; Bouwman, FH; ... Yong, KXX; + view all (2019) Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease. Alzheimer's Research and Therapy , 11 , Article 62. 10.1186/s13195-019-0516-x. Green open access

[thumbnail of s13195-019-0516-x.pdf]
Preview
Text
s13195-019-0516-x.pdf - Published Version

Download (3MB) | Preview

Abstract

BACKGROUND: Retinal thickness can be measured non-invasively with optical coherence tomography (OCT) and may offer compelling potential as a biomarker for Alzheimer's disease (AD). Retinal thinning is hypothesized to be a result of retrograde atrophy and/or parallel neurodegenerative processes. Changes in the visual pathway are of particular interest in posterior cortical atrophy (PCA), the most common atypical AD phenotype predominantly affecting the parietal-occipital cortices. We therefore evaluated retinal thickness as non-invasive biomarker of neurodegeneration in well-characterized participants with posterior cortical atrophy (PCA) and typical Alzheimer's disease (tAD). // METHODS: Retinal thickness measures were acquired from 48 patient participants (N = 25 PCA; N = 23 tAD) fulfilling consensus diagnostic criteria and 70 age-matched controls. Participants were recruited between 2014 and 2016. All participants underwent optical coherence tomography (OCT) imaging, including measurement of peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular thickness (mRT). Participants did not show evidence of any significant ophthalmological conditions. Subgroup analyses were performed in participants with available MRI and CSF measures, providing evidence of neurodegeneration and underlying AD pathology respectively. // RESULTS: There was no evidence of overall between-group differences in pRNFL thickness (mean PCA 98.7 ± 12.2; tAD 99.9 ± 8.7; controls 99.6 ± 10.0 μm, one-way analysis of variance (ANOVA) p = 0.92) or total mRT (mean PCA 266.9 ± 16.3; tAD 267.8 ± 13.6; controls 269.3 ± 13.6 μm, one-way ANOVA p = 0.75). Similarly, subgroup analysis with MRI biomarkers (PCA = 18, tAD = 17, controls = 31) showing neurodegeneration, and CSF biomarkers (PCA = 18, tAD = 14, controls = 13) supporting underlying AD pathology did not provide evidence of overall between-group differences in pRNFL or mRT measures (all p > 0.3). // CONCLUSIONS: Retinal thickness did not discriminate tAD and PCA from controls or from one another despite unequivocal differences on standard clinical, neuro-imaging and CSF measures. Findings from this well-characterized sample, including cases with PCA, do not support the hypothesis that retinal neurodegeneration, measured using conventional OCT, is a useful biomarker for AD or PCA.

Type: Article
Title: Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s13195-019-0516-x
Publisher version: https://doi.org/10.1186/s13195-019-0516-x
Language: English
Additional information: © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creative commons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Keywords: Alzheimer’s disease, Biomarker, MRI, Optical coherence tomography, Posterior cortical atrophy, Retinal thickness
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10078873
Downloads since deposit
93Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item