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A B S T R A C T

Pain inhibition by additional somatosensory input is the rationale for the widespread use of Transcutaneous
Electrical Nerve Stimulation (TENS) to relieve pain. Two main types of TENS produce analgesia in animal models:
high-frequency (~50–100 Hz) and low-intensity ‘conventional’ TENS, and low-frequency (~2–4 Hz) and high-
intensity ‘acupuncture-like’ TENS. However, TENS efficacy in human participants is debated, raising the ques-
tion of whether the analgesic mechanisms identified in animal models are valid in humans. Here, we used a sham-
controlled experimental design to clarify the efficacy and the neurobiological effects of ‘conventional’ and
‘acupuncture-like’ TENS in 80 human volunteers. To test the analgesic effect of TENS we recorded the perceptual
and brain responses elicited by radiant heat laser pulses that activate selectively Aδ and C cutaneous nociceptors.
To test whether TENS has a long-lasting effect on brain state we recorded spontaneous electrocortical oscillations.
The analgesic effect of ‘conventional’ TENS was maximal when nociceptive stimuli were delivered homotopically,
to the same hand that received the TENS. In contrast, ‘acupuncture-like’ TENS produced a spatially-diffuse
analgesic effect, coupled with long-lasting changes both in the state of the primary sensorimotor cortex (S1/
M1) and in the functional connectivity between S1/M1 and the medial prefrontal cortex, a core region in the
descending pain inhibitory system. These results demonstrate that ‘conventional’ and ‘acupuncture-like’ TENS
have different analgesic effects, which are mediated by different neurobiological mechanisms.
1. Introduction

It is well-known that rubbing the skin over a bruised area inhibits
pain. Yet, the physiological mechanisms of touch-induced analgesia
remain unclear (Braz et al., 2014; Mendell, 2014). The analgesic effect of
tactile stimulation constitutes the rationale for using Transcutaneous
Electrical Nerve Stimulation (TENS) (Sluka and Walsh, 2003), the de-
livery of electrical stimuli that activate peripheral somatosensory affer-
ents, to relieve both acute and chronic pain (Inui et al., 2006; Rakel et al.,
2014). Despite being widely offered as a treatment for pain (Rakel et al.,
2014), there is no conclusive evidence that TENS is effective in a number
of clinical conditions, and a great deal of confusion about the efficacy of
TENS reigns (Bergeron-Vezina et al., 2015; Rakel et al., 2014).

The frequency and the intensity of electrical pulses has been
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suggested to be one of the crucial determinants of the duration and type
of analgesic effect provided by TENS (Johnson and Martinson, 2007).
TENS is typically delivered using two distinct sets of stimulus parameters:
(1) high frequency (~50–100 Hz) and low intensity “conventional”
TENS, evoking a comfortable, nonpainful tingling sensations (Leonard
et al., 2010), and (2) low frequency (~2–4 Hz) and high intensity “acu-
puncture-like” TENS, evoking tolerable but painful sensations (Han,
2003). Considering this diversity of stimulus parameters, it is evident
that despite being both labeled using the same acronym, the two types of
TENS have profoundly different effects on the nervous system. Perhaps
unsurprisingly, evidence from animal studies suggests that “conven-
tional” and “acupuncture-like” TENS engage different analgesic mecha-
nisms (Radhakrishnan et al., 2003). “Conventional” TENS is usually
related to the gate control theory that high-frequency and low-intensity
, Chinese Academy of Sciences, Beijing, 100101, China.

0 March 2019

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:huli@psych.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.03.077&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.03.077
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2019.03.077
https://doi.org/10.1016/j.neuroimage.2019.03.077


W.W. Peng et al. NeuroImage 195 (2019) 396–408
stimulation of large-diameter Aβ afferents results in a segmental inhibition
of the transmission of nociceptive information at the dorsal horn level
(Melzack and Wall, 1965). On the other hand, “acupuncture-like” TENS
(DeSantana et al., 2009; Kalra et al., 2001; Sluka and Walsh, 2003) is
more related to the diffuse noxious inhibitory control (DNIC) phenom-
enon (Le Bars et al., 1992): a strong noxious input causes the release of
endogenous opioids in the periaqueductal gray (PAG) and rostral ventral
medulla (RVM), which in turn results in a diffuse descending inhibition of
nociception.

Despite the evidence that the two types of TENS have analgesic effects
mediated by distinct mechanisms in animal pain models (Radhakrishnan
et al., 2003; Radhakrishnan and Sluka, 2003; Sluka and Walsh, 2003),
whether TENS produces analgesia in healthy participants (Barlas et al.,
2006; Bergeron-Vezina et al., 2015; Liebano et al., 2011) and chronic
pain patients (Ezzo et al., 2000; Oosterhof et al., 2008) remains contro-
versial. This question is particularly relevant when considering the
inherent differences between species, as well as the fact that animal TENS
effects are typically detected in anaesthetized or “spinal” preparations
(Blackburn-Munro, 2004; Garrison and Foreman, 1996; Hu et al., 2015a;
Mogil, 2009).

In this study we explored the neurophysiological and perceptual ef-
fects of sham and active TENS delivered at either high or low-frequency
in a population of 80 healthy human volunteers. While recording both
spontaneous and stimulus-evoked brain activities, we tested whether
TENS affected subjective ratings of pain intensity and unpleasantness
elicited by nociceptive stimulation, as well as whether TENS affected the
transient electrocotical responses elicited by the same nociceptive simuli.
We also explored whether TENS had a long-lasting effect on brain state,
indexed using ongoing electrocortical oscillations.

2. Materials and methods

2.1. Subjects

A total of 80 healthy, pain-free volunteers who never had TENS before
(all right-handed; 40 female; mean age 20.5� 1.8 years; age range 18–27
years) were recruited through local advertisement. Subjects were medi-
cally screened, and excluded if they had peripheral and central nervous
system disease, cardiac pacemaker, chronic pain, or if they were under
any type of pain medication. After the screening, subjects were told that
the aim of the study was “to investigate the neurophysiological and
perceptual effects of some electrical stimulation delivered to the skin”.
All subjects gave their written informed consent prior to testing and were
paid for their participation. Experimental procedures were approved by
the local ethics committee.

2.2. Sensory stimulation and experimental design

Electrical stimuli for both active and sham TENS were generated by a
constant current electrical stimulator (Sanxia technique Inc., China), and
delivered through a pair of surface round electrodes (diameter: 16mm;
inter-electrode distance: 3 cm) placed over the radial nerve at the wrist,
either on the left or on the right side. Four different sets of stimulus
parameters were used in four experimental groups, as follows. Group 1:
high-frequency active TENS; Group 2: low-frequency active TENS; Group
3: high-frequency sham TENS; Group 4: low-frequency sham TENS. Each
subject was randomly assigned to one of the four groups. Age and sex
were matched between groups. High-frequency (100Hz) and low-
frequency (4 Hz) TENS (both active and sham) consisted of a series of
succeeding constant-current square-wave pulses (0.2ms duration for
each pulse). The duration of the TENS session was the same in the active
and sham TENS. However, in the active TENS the stimulation lasted for
30min, whereas in the sham TENS the stimulation lasted for 45 s. In the
high-frequency active TENS the stimulus intensity was individually
adjusted to elicit a strong but non-painful tingling sensation. In the low-
frequency active TENS the stimulus intensity was individually adjusted to
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elicit a tolerable painful sensation (Bergeron-Vezina et al., 2015). In both
high-frequency and low-frequency sham TENS the stimulus intensity was
individually adjusted to the thresholds for detecting the electrical stim-
ulus. Importantly, given that the TENS sensation habituates after the first
occurrences of the stimulus (Pantaleao et al., 2011), in all conditions
(active and sham, high-frequency and low-frequency) the stimulus in-
tensity was determined as follows. First, the desired perceptual outcome
of each condition (the strong but non-painful tingling sensation in the
high-frequency TENS, the tolerable painful sensation in the
low-frequency TENS, and so on) was obtained in three consecutive at-
tempts. Second, the stimulus intensity used in the actual experiment was
the highest of the three attempts for each condition. Before the TENS,
participants were given the following instruction: “You will now receive
30min of TENS. This can result in sensations that vary greatly among
subjects, and range from intense sensations to much weaker sensations,
or even no sensation at all”.

Before and after the TENS procedure, we recorded the brain responses
elicited by nociceptive-specific radiant-heat stimuli generated by an
infrared neodymium yttrium aluminum perovskite laser with a wave-
length of 1.34 μm and a pulse duration of 4ms (Electronic Engineering,
Italy). At this wavelength and pulse duration, laser stimuli activate
directly nociceptive terminals in the most superficial skin layers in a
synchronized fashion (Iannetti et al., 2004). A He � Ne laser pointed to
the area to be stimulated. The laser beam was transmitted via an optic
fiber and its diameter was set at approximately 7mm by focusing lenses.
Laser pulses were delivered to a squared area (4� 4 cm2) on the dorsum
of each hand (i.e., both ipsilateral and contralateral to the TENS side).
After each stimulus, the beam target was shifted by at least 1 cm in a
random direction within the squared area, to avoid nociceptor fatigue or
sensitization. In a preliminary session, the laser energy was individually
determined by increasing the stimulus energy in steps of 0.25 J, until a
rating of 7 out of 10 was obtained on a numerical rating scale (NRS)
ranging from 0 (no pain) to 10 (pain as bad as it could be).

A placebo-controlled experimental design was used (Fig. 1). Subjects
were randomly assigned to one of the four experimental groups (20
subjects per group). The experiment consisted of three sessions, sepa-
rated by a 5-min break: Pre-TENS (~10min), TENS (~30min), and Post-
TENS (~10min). In both Pre-TENS and Post-TENS sessions, 20 noci-
ceptive laser stimuli of identical energy were delivered to the dorsum of
both hands (10 stimuli per hand). The inter-stimulus interval varied
randomly between 18 and 20 s. The order of stimulated hand was
pseudorandomized, with the constraint that no more than two stimuli
could be delivered to the same hand. In half of the subjects of each group
the first stimulus was delivered on the left hand; in the other half the first
stimulus was delivered on the right hand. Approximately 3 s after each
laser stimulus, subjects were asked to verbally report both pain intensity
(with the same NRS used in the preliminary energy determination) and
pain unpleasantness (using an NRS ranging from 0 [not unpleasant] to 10
[maximally unpleasant]).

It is important to mention that active and sham TENS induced
different sensations, and thereforea within-subject design would not
have been blinded with respect to the experimental conditions. Thus, we
decided to adopt instead a between-subject, placebo-controlled experi-
mental design, in which subjects were randomly assigned to one of four
experimental groups. In addition, data from different subjects were
collected at different time periods, and subjects were not able to
communicate with each other about the sensation felt during the
experiment. Still, the fact that active and sham TENS produced different
sensations does not allow us to completely rule out the possible influence
of unspecific stimulation effects on the observed results.

2.3. EEG data collection

Subjects seated in a comfortable chair in a silent room which tem-
perature was maintained between 24 and 26 �C. They were instructed to
focus on the stimuli, keep their eyes open, and gaze at a fixation point on



Fig. 1. Experimental design. 80 human participants were randomly assigned to four experimental groups (20 subjects per group), as follows. Group 1: high-frequency
active TENS; Group 2: low-frequency active TENS; Group 3: high-frequency sham TENS; Group 4: low-frequency sham TENS. High-frequency (100 Hz) and low-
frequency (4 Hz) TENS consisted of constant-current square-wave pulses (duration 200 μs) delivered transcutaneously to the radial nerve at the wrist, either on
the left or on the right side. Active and sham TENS lasted for 30min and 45 s respectively. Five minutes before (“Pre-TENS”) and after (“Post-TENS”) TENS, ongoing
brain activity was measured using 64-channel EEG. In addition, 20 nociceptive laser stimuli were delivered to participants' hand dorsum, on both sides (10 stimuli per
side). After each stimulus, subjects were instructed to rate the intensity and unpleasantness of the perceived pain using a 0–10 numerical rating scale.
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the screen. A curtain was used to block the subjects’ view of their fore-
arms. EEG data were collected using 64 Ag–AgCl scalp electrodes placed
according to the International 10–20 system (Brain Products GmbH; pass
band: 0.01–100Hz; sampling rate: 1000Hz). The nose was used as
reference, and electrode impedances were kept lower than 10 kΩ. Elec-
trooculographic signals were simultaneously recorded using two surface
electrodes, one placed ~10mm below the left eye and the other placed
~10mm from the outer canthus of the left eye.

2.4. EEG data preprocessing

EEG data were preprocessed using EEGLAB (Delorme and Makeig,
2004), an open source toolbox running in the MATLAB environment.
Continuous EEG data were band-pass filtered between 1 and 30Hz. EEG
epochs were extracted using a window analysis time of 1500ms (500ms
pre-stimulus and 1000ms post-stimulus), and baseline corrected using
the pre-stimulus interval. Trials contaminated by eye-blinks and move-
ments were corrected using an Independent Component Analysis algo-
rithm (Delorme and Makeig, 2004). To compare the responses elicited by
laser stimulation delivered contralaterally and ipsilaterally to the TENS
side, the EEG data from participants receiving TENS on their right hand
were flipped along the medio-lateral axis (Peng et al., 2017).

2.5. Laser-evoked brain potentials (LEPs)

For each subject, session, and stimulated hand, single-trial LEP
waveforms in the time domain were averaged together. This procedure
yielded four average waveforms for each subject, time-locked to the
onset of laser stimulation. Peak latencies and amplitudes of N2 and P2
waves, defined as themost negative and positive deflections between 150
and 500ms after stimulus onset respectively, were measured from each
single-subject average waveform, at Cz. Peak latency and amplitude of
N1 wave, defined as the most negative deflection preceding the N2 wave,
were measured at the central electrode contralateral to the stimulated
side (Cc), referenced to Fz (Valentini et al., 2012; Hu et al., 2010).
Single-subject average LEP waveforms were subsequently averaged
across subjects composing each of the four experimental groups, to
obtain group-level LEP waveforms. Group-level scalp topographies at the
peak latency of N1, N2, and P2 waves were computed by spline
interpolation.

We used a time-frequency analysis to explore both phase-locked and
non-phase-locked brain responses elicited by laser stimuli. Time-
frequency distributions (TFDs) of EEG trials were estimated using a
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windowed Fourier transform (WFT) with a fixed 250-ms Hanning win-
dow. WFT yielded, for each trial, a complex time-frequency estimate
F(t,f) at each time-frequency point (t,f), extending from �500ms to
1000ms (in steps of 1ms) in the time domain, and from 1 to 30Hz (in
steps of 1 Hz) in the frequency domain. The resulting spectrogram,
P(t,f)¼ jF(t,f)j2, represents the signal magnitude as a joint function of
time and frequency at each time-frequency point. The spectrogram was
baseline-corrected (reference interval: from �400 to �100ms) at each
frequency using the subtraction approach (Hu et al., 2014). As described
in several previous studies (Mouraux et al., 2003; Schulz et al., 2011),
TFDs elicited by laser stimuli contain both phase-locked (event-related
potential, ERP) and non-phase-locked (event-related desynchronization
at alpha frequencies, α-ERD) responses. To extract the magnitude of
time-frequency brain responses, we used region-of-interests (ROIs)
defined on the basis of previous observations (Hu et al., 2015b; Iannetti
et al., 2008): ERP (100–500ms, 1–10 Hz) and α-ERD (500–1000ms,
8–12 Hz). Magnitudes of each time-frequency feature were calculated by
computing the mean of the top 20% time-frequency points displaying the
highest increase (for ERP) or decrease (for α-ERD) for each subject in
each experimental condition (Mouraux and Iannetti, 2008).
2.6. Ongoing EEG oscillations

2.6.1. Scalp-level analysis
Prestimulus EEG signals were extracted from a time window ranging

from �4000 ms to 0 ms relative to laser stimulus onset. For each subject
and session, prestimulus EEG signals were transformed to the frequency
domain using a discrete Fourier transform, yielding an EEG spectrum
ranging from 1 to 30 Hz. Single-subject EEG spectra were averaged
across subjects composing each of the four experimental groups, to
obtain group-level prestimulus EEG spectra. Since prestimulus alpha
oscillations have been showed to influence both perception and brain
responses elicited by subsequent sensory stimuli (Babiloni et al., 2006;
Tu et al., 2016), we tested the a priori hypothesis that possible pain
modulation caused by TENS was mediated by the effect of prestimulus
alpha oscillations on subsequent laser-evoked pain ratings and EEG
responses.

2.6.2. Source-level analysis
To localize the sources of TENS-induced changes of brain oscilla-

tions we used a beamforming algorithm known as dynamic imaging of
coherent sources (Gross et al., 2001), implemented in the open-source
Matlab toolbox FieldTrip (Oostenveld et al., 2011). This algorithm
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computes a spatial filter based on a leadfield matrix (i.e., the matrix of
coefficients that maps current sources to potential differences at the
scalp) and a cross-spectral density matrix, where (1) the leadfield ma-
trix was computed for a three-dimensional grid with a 1-cm resolution,
using a realistically shaped three-shell boundary-element volume con-
duction model based on the Montreal Neurological Institute template
brain, and (2) the cross-spectral density matrix was computed for each
of four frequency bands (i.e., delta: 1–4 Hz, theta: 4–8 Hz, alpha:
8–12 Hz, beta: 12–30 Hz) using a multitaper frequency transformation.
Time courses of oscillation power for each grid point in source space
were computed through multiplying scalp-level time-frequency data by
the spatial filter. The estimated power in source space yielded an esti-
mate of the neural sources responsible for each oscillation band, for
each session and experimental group. TENS-induced changes of power
for each grid point were evaluated as the percentage changde of alpha
power in the post-TENS session relative to the pre-TENS session.

To test statistically whether TENS had an effect on ongoing brain
oscillations at bilateral primary sensorimotor cortices (S1/M1), we per-
formed the following ROI-based analysis. Source-level ROIs were first
defined using the Automated Anatomical Labeling (AAL) brain template
(Tzourio-Mazoyer et al., 2002). Specifically, the S1/M1 ipsilateral to
TENS was identified using the regions labeled as “Precentral_L” and
“Postcentral_L” in the AAL template. The S1/M1 contralateral to TENS
was identified using the regions labeled as “Precentral_R” and “Post-
central_R” in the AAL template. For each subject and ROI, the changes of
alpha oscillations were obtained by calculating the percentage change of
mean alpha power across all voxels of the ROI in the post-TENS session
relative to the pre-TENS session. Statistical comparisons were performed
on these percentage changes of alpha oscillations, separately for each
ROI.

2.6.3. Functional connectivity analysis
To assess the effect of TENS-induced changes of ongoing brain state

on the descending pain inhibitory system, we characterized the func-
tional connectivity between bilateral sensorimotor cortices (S1/M1, i.e.,
the brain areas where TENS induced changes of alpha oscillations) and
the medial prefrontal cortex (mPFC, which is a core region in the
descending pain inhibitory system, anatomically connected with the
brainstem periaqueductal gray, PAG (Kucyi and Davis, 2015)) within the
alpha frequency range. The S1/M1 ROIs were identified as described in
the previous paragraph. The mPFC ROI was identified by the regions
labeled as “Frontal_Med_Orb_L”, “Frontal_Med_Orb_R”, “Frontal_Sup_-
Medial_L”, and “Frontal_Sup_Medial_R” in the AAL template (Tzour-
io-Mazoyer et al., 2002). For each of these ROIs, we calculated the time
courses of prestimulus alpha oscillations from �4000ms to 0ms relative
to laser stimulus onset, by averaging the source-level data across all
voxels within the ROI. Their functional connectivity was quantified using
the estimation of the linear time-invariant relationship between time
series (i.e., their coherence (Gross et al., 2001)). Specifically, the
coherence was computed as the squared cross-spectrum of two time se-
ries, divided by the power spectra of both time series (Gross et al., 2001).
This analysis yields a value between 0 (indicating no linear relationship)
and 1 (indicating perfect linear relationship). Moreover, we used the
directed transfer function (DTF) method (Kaminski and Blinowska,
1991) to investigate the relationship between bilateral S1/M1 andmPFC.
This allowed us to verify the coherence results and to test more
comprehensively the research hypothesis. DTF is derived from the
Granger causality concept (Granger, 1969; Kaminski et al., 2001) and has
been demonstrated to quantify effectively the strength of directed func-
tional connectivity between brain regions (Astolfi et al., 2005; Babiloni
et al., 2005; Lu et al., 2012; Xu et al., 2015). TENS-induced changes of
functional connectivity were estimated by subtracting both the coher-
ence and DTF measures of the Pre-TENS session from those of the
Post-TENS session.
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2.7. Statistical analysis

The possible effect of TENS on both perceptual and electrophysio-
logical responses elicited by nociceptive stimulation was evaluated by
calculating the difference of each measure between sessions (Post-TENS
minus Pre-TENS). The resulting differences were compared using a three-
way analysis of variance (ANOVA), with two between-subjects factors
(“TENS frequency”: high-frequency and low-frequency; “condition”:
active and sham TENS) and one within-subject factor (“side”: laser
stimulation of the hand dorsum ipsilateral and contralateral to the TENS
side). When there was a significant three-way interaction, we performed
a post hoc two-way ANOVA separately for high-frequency and low-
frequency TENS. When there was a significant two-way interaction be-
tween “condition” and “side”, we performed a further post hoc paired-
sample t-tests to compare the changes elicited by laser stimuli deliv-
ered to hand ipsilateral and contralateral to the TENS side, separately for
active and sham TENS conditions.

To test whether TENS had an effect on the ongoing brain state, we
performed a two-way ANOVA with two between-subject factors (“TENS
frequency”: high-frequency and low-frequency; “condition”: active and
sham TENS) on (1) the amplitude of the ongoing alpha oscillations
measured both at scalp and source levels, and (2) the functional con-
nectivity (estimated using both coherence and DTF measures) between
bilateral S1/M1 andmPFC.When the interaction between the two factors
was significant, we performed post hoc independent-sample t-tests to
compare the active TENS with the sham TENS condition, separately for
high-frequency and low-frequency TENS.

3. Results

3.1. Effect of TENS on subjective pain reports

TENS induced consistent changes in ratings of both intensity and
unpleasantness of the pain elicited by nociceptive laser stimulation
(Fig. 2, top panel). Results of the three-way ANOVA are summarized in
Table 1. For both pain intensity and unpleasantness, three-way ANOVAs
showed strong evidence for a main effect of “condition” (intensity:
F(1,76)¼ 27.37, p< 0.001, ɳ2p¼ 0.27; unpleasantness: F(1,76)¼ 35.87,
p< 0.001, ɳ2p¼ 0.32) and moderate evidence for a main effect of “side”
(intensity: F(1,76)¼ 10.41, p¼ 0.002, ɳ2p¼ 0.12; unpleasantness:
F(1,76)¼ 10.71, p¼ 0.002, ɳ2p¼ 0.12). These two main effects indicate
that both pain intensity and unpleasantness were reduced in the active vs
sham TENS, as well as when pain was elicited by laser stimuli delivered
ipsilaterally vs contralaterally to the TENS side. There was also weak
evidence for a significant three-way interaction (intensity: F(1,76)¼ 5.90,
p¼ 0.02, ɳ2p¼ 0.07; unpleasantness: F(1,76)¼ 4.32, p¼ 0.04,
ɳ2p¼ 0.05).

To interpret the three-way interaction, we performed a post hoc two-
way ANOVA using “condition” and “side” as factors, which showed the
following results. (1) For high-frequency TENS, there was moderate to
strong evidence for a main effect of “condition” (intensity:
F(1,38)¼ 15.09, p< 0.001, ɳ2p¼ 0.28; unpleasantness: F(1,38)¼ 18.02,
p< 0.001, ɳ2p¼ 0.32) and “side” (intensity: F(1,38)¼ 9.87, p¼ 0.003,
ɳ2p¼ 0.21; unpleasantness: F(1,38)¼ 13.21, p¼ 0.001, ɳ2p¼ 0.26), as
well as moderate evidence for a two-way interaction (intensity:
F(1,38)¼ 13.21, p¼ 0.001, ɳ2p¼ 0.26; unpleasantness: F(1,38)¼ 7.05,
p¼ 0.01, ɳ2p¼ 0.16). Post hoc paired-sample t-tests showed that the
active TENS decreased pain more when laser stimuli were delivered to
the hand ipsilateral to the TENS side (intensity: p¼ 0.004; unpleasant-
ness: p¼ 0.003; Fig. 2, top panel). (2) For low-frequency TENS, there was
only a strong main effect of “condition” (intensity: F(1,38)¼ 12.30,
p¼ 0.001, ɳ2p¼ 0.25; unpleasantness: F(1,38)¼ 17.91, p< 0.001,
ɳ2p¼ 0.32).
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Fig. 2. Effects of different TENS type on laser-elicited pain perception and brain responses. Effects of TENS on laser-evoked pain intensity and unpleasantness (top
plots) and brain responses (middle and bottom plots) are evaluated as difference between Pre-TENS and Post-TENS sessions (Post-TENS minus Pre-TENS, normalized by
subtracting the respective sham data for displaying purpose; statistical results from non-normalized data are reported in the main text). For both TENS types, the
decrease of laser-elicited pain perception and brain responses was significantly larger in the active condition than that in the sham condition. High-frequency TENS
induced a larger decrease of both pain perception and brain responses when laser stimuli were delivered to the hand ipsilateral to the TENS side than that contralateral
to the TENS side (*: p < 0.05; **: p < 0.01; ***: p < 0.001). In contrast, the decrease in pain perception and brain responses induced by low-frequency TENS was
similar when laser stimuli were delivered to the hand ipsilateral and contralateral to the TENS side (ns: not significant). Data are mean � SEM.
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3.2. Laser-evoked brain responses

Group-level LEP waveforms and scalp topographies of N1, N2, and P2
waves in the time domain are shown in Fig. 3. In line with previous
studies (Mouraux and Iannetti, 2009; Valentini et al., 2012), scalp to-
pographies of the N1 wave were maximal at central electrodes contra-
lateral to the stimulated hand, scalp topographies of the N2 wave were
maximal at the vertex and extended bilaterally towards temporal regions,
and scalp topographies of the P2 wave were more centrally distributed.

We observed strong evidence for an effect of TENS on LEP amplitudes
(Fig. 2, middle and bottom panels). Results of the three-way ANOVA are
summarized in Table 1. For both N1 and N2 amplitudes, there was strong
evidence for a main effect of “condition” (N1: F(1,76)¼ 42.79, p< 0.001,
ɳ2p¼ 0.36; N2: F(1,76)¼ 29.56, p< 0.001, ɳ2p¼ 0.28) and weak-to-
moderate evidence for a main effect of “side” (N1: F(1,76)¼ 8.16,
p¼ 0.006, ɳ2p¼ 0.10; N2: F(1,76)¼ 4.33, p¼ 0.04, ɳ2p¼ 0.05), indicating
that N1 and N2 amplitudes were reduced in the active vs sham TENS (N1:
�5.13 μV; N2: �8.90 μV), as well as when they were evoked by laser
stimuli delivered ipsilaterally vs contralaterally to the TENS side (N1:
�1.47 μV; N2: �2.45 μV). For the P2 amplitude, three-way ANOVA
showed a strong main effect of “condition” (F(1,76)¼ 40.94, p< 0.001,
ɳ2p¼ 0.35), indicating that P2 amplitudes were significantly reduced in
the active vs sham TENS (�9.23 μV). For both N1 and P2 amplitudes,
there was weak evidence for a three-way interaction (N1: F(1,76)¼ 5.48,
p¼ 0.02, ɳ2p¼ 0.07; P2: F(1,76)¼ 4.34, p¼ 0.04, ɳ2p¼ 0.05).

To interpret the three-way interaction of the N1 and P2 amplitudes,
we performed a post hoc two-way ANOVA using “condition” and “side”,
which showed the following results. (1) For high-frequency TENS, there
was strong evidence for main effect of “condition” (N1: F(1,38)¼ 29.93,
p< 0.001, ɳ2p¼ 0.44; P2: F(1,38)¼ 28.90, p< 0.001, ɳ2p¼ 0.43) and
weak evidence for a main effect of “side” (N1: F(1,38)¼ 5.93, p¼ 0.02,
ɳ2p¼ 0.13; P2: F(1,38)¼ 6.99, p¼ 0.01, ɳ2p¼ 0.16), as well as a weak
two-way interaction (N1: F(1,38)¼ 7.17, p¼ 0.01, ɳ2p¼ 0.16; P2:
F(1,38)¼ 5.29, p¼ 0.03, ɳ2p¼ 0.12). Post hoc paired-sample t-tests
showed that active TENS decreased N1 and P2 amplitudes more when
laser stimuli were delivered to the hand ipsilateral to the TENS side (N1:
p¼ 0.006; P2: p¼ 0.01) (Fig. 2, middle and bottom panels). (2) For low-
frequency TENS, there was only strong evidence for a significant main
effect of “condition” (N1: F(1,38)¼ 15.39, p< 0.001, ɳ2p¼ 0.29; P2:
F(1,38)¼ 13.69, p¼ 0.001, ɳ2p¼ 0.27).

Group-level time-frequency distributions, together with the scalp to-
pographies of the ‘ERP’ and ‘α-ERD’ responses are shown in Fig. 4.
Consistently with previous studies (Mouraux et al., 2003; Schulz et al.,
2011), laser stimuli elicited a large phase-locked response (ERP:
100–500ms, 1–10Hz, maximal at central midline electrodes) and a clear
non-phase-locked response (α-ERD: 500–1000ms, 8–12 Hz, maximal at
parietal-occipital electrodes, bilaterally).

We found strong evidence for an effect of active TENS on ERP
magnitude, but not on α-ERD magnitude (Fig. 4). For ERP magnitude,
three-way ANOVA showed a strong main effect of “condition” (F(1,
76)¼ 33.02, p< 0.001, ɳ2p¼ 0.30), indicating that ERP was reduced in
the active TENS vs sham (�14.94 μV2/Hz). There was weak evidence for
a two-way interaction between “condition” and “side” (F(1, 76)¼ 4.34,
p¼ 0.04, ɳ2p¼ 0.05), and for a three-way interaction between all factors
(F(1, 76)¼ 6.47, p¼ 0.01, ɳ2p¼ 0.08). In contrast, α-ERD magnitude was
not modulated by experimental factors, as indicated by the lack of main
effects or their interactions. Results of the three-way ANOVA are sum-
marized in Table 1.
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To interpret the three-way interaction on the ERP magnitude, we
performed a post hoc two-way ANOVA using “condition” and “side” as
factors, which showed the following results. (1) For high-frequency
TENS, there was strong evidence for a main effect of “condition” (F(1,
38)¼ 23.85, p< 0.001, ɳ2p¼ 0.39) and moderate evidence for a two-way
interaction (F(1, 38)¼ 8.19, p¼ 0.007, ɳ2p¼ 0.18). Post hoc paired-
sample t-tests showed that active TENS decreased ERP magnitude more
when laser stimuli were delivered to the hand ipsilateral to the TENS side
(p< 0.001; Fig. 2, bottom right panel). (2) For low-frequency TENS,
there was only moderate-to-strong evidence for a main effect of “condi-
tion” (F(1, 38)¼ 11.20, p¼ 0.002, ɳ2p¼ 0.23).

In summary, both psychophysical and electrophysiological results
showed that the antinociceptive effects of high-frequency TENS were
maximal when nociceptive stimuli were given homotopically, i.e., to the
same hand where TENS had been delivered. In contrast, low-frequency
TENS produced a more spatially diffuse analgesia, also present when
nociceptive stimuli were given heterotopically, i.e., to the hand opposite
to the TENS side.

3.3. Effect of TENS on brain state

When ongoing brain activity was measured at scalp level, two-way
ANOVA showed strong evidence for an interaction between the factors
“condition” and “TENS frequency” (Fig. 5, top right panel). A false dis-
covery rate procedure was used to correct the significance level (p value)
to account for multiple comparisons across electrodes (Benjamini and
Hochberg, 1995). This interaction was maximal at the central electrodes
contralateral to the TENS side (C2, C4, CP2, and CP4). Fig. 5 (top left
panel) shows the group-level spectral power of the prestimulus EEG
measured at these electrodes, in the Pre-TENS and Post-TENS sessions of
each group. While scalp topographies of alpha oscillations were, as ex-
pected, maximal at parietal-occipital regions for all sessions and groups
(Capotosto et al., 2017), there was a strong “condition”� “TENS fre-
quency” interaction at bilateral central regions, showing a maximum
over central electrodes contralateral to TENS side (Fig. 5, top right panel;
F(1,38)¼ 10.88, p¼ 0.001, ɳ2p¼ 0.13). To interpret this two-way inter-
action we performed post hoc independent-sample t-tests, which showed
that the increase of alpha amplitude (Post-TENS minus Pre-TENS) was
larger in the active TENS condition than in the sham condition for the
low-frequency TENS (p¼ 0.001), but not for the high-frequency TENS
(p¼ 0.87).

When ongoing brain activity was estimated in source space (Fig. 5,
middle panel), two-way ANOVA of the change of alpha oscillations at
contralateral S1/M1 revealed moderate-to-strong evidence for an inter-
action between the factors “condition” and “TENS frequency”
(F(1,38)¼ 10.05, p¼ 0.002, ɳ2p¼ 0.12), indicating that the alpha
enhancement was greater in the active TENS than in the sham condition
of the low-frequency TENS (p< 0.001), but not of the high-frequency
TENS (p¼ 0.68). In contrast, two-way ANOVA of the change of alpha
oscillations at ipsilateral S1/M1 revealed moderate evidence for a main
effect of “condition” (F(1,38)¼ 6.78, p¼ 0.01, ɳ2p¼ 0.08), indicating that
active TENS induced greater enhancement of alpha power than sham
TENS.

The analysis of functional connectivity demonstrated that TENS-
induced changes in alpha oscillations in S1/M1 affected the ongoing
activity of mPFC, a key area of the descending pain inhibition system
(Fig. 5, bottom panel). Two-way ANOVA showed weak evidence for a
significant interaction between factors “condition” and “TENS
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frequency” (F(1,38)¼ 4.65, p¼ 0.03, ɳ2p¼ 0.06), suggesting that the in-
crease of functional connectivity indexed by coherence between
contralateral S1/M1 and mPFC was larger in the active TENS condition
than in the sham condition of the low-frequency TENS (p< 0.001), but
not of the high-frequency TENS (p¼ 0.49).

When assessing the information flow from the contralateral S1/M1 to
the mPFC, we observed weak evidence for a significant interaction be-
tween factors “condition” and “TENS frequency” (F(1,38)¼ 4.60,
p¼ 0.035, ɳ2p¼ 0.057), suggesting that the TENS-induced increase of
information flow (indexed by the DTF measure) was larger in the active
TENS condition than in the sham condition for low-frequency TENS
(p< 0.001), but not for high-frequency TENS (p¼ 0.72). In contrast, no
significant main effect or interaction was observed when assessing the
information flow from ipsilateral S1/M1 to mPFC, as well as from mPFC
to either contralateral or ipsilateral S1/M1.

These results show that low-frequency TENS induced a clear change
in the ongoing brain state, namely a sustained increase of the magnitude
of alpha oscillations in the primary sensorimotor cortex contralateral to
the hand where the low-frequency TENS was delivered. This TENS-
induced change of state of the contralateral S1/M1 cortex resulted in
an increased functional connectivity between S1/M1 and mPFC.

4. Discussion

In the present study, we used a sham-controlled design to investigate
the neurobiological and analgesic effects of the two most common types
of TENS used in animal models and human clinical studies (Fig. 1).

We obtained three main results. First, both ‘conventional’ (low-fre-
quency and high-intensity) and ‘acupuncture-like’ (high-frequency and
low-intensity) TENS produced an analgesic effect stronger than in the
sham condition. However, the analgesic effect of high-frequency and
low-intensity TENS was maximal when nociceptive stimuli were deliv-
ered homotopically, i.e., to the same hand that received the TENS. In
contrast, low-frequency and high-intensity TENS produced a spatially
diffuse analgesic effect, equally strong regardless of whether nociceptive
laser stimuli were delivered to the hand ipsilateral or contralateral to the
TENS side (Fig. 2). Second, the recording of transient laser-evoked brain
responses provided a physiological support to the modulation of sub-
jective pain ratings: after high-frequency and low-intensity TENS, the
amplitude reduction of the N1, N2, and P2 waves was maximal when
stimuli were delivered homotopically to the TENS; in low-frequency and
high-intensity TENS, instead, their amplitude was similarly reduced
regardless of which hand was stimulated (Figs. 2–4). Third, only low-
frequency and high-intensity TENS resulted in long-lasting changes of
ongoing brain activity, namely an enhancement of ongoing alpha oscil-
lations in the primary sensorimotor cortex, maximally contralateral to
the side of TENS application, and an increased functional connectivity
between the primary sensorimotor cortex contralateral to the TENS and
the mPFC (Fig. 5). This TENS-induced modulation of ongoing brain state
might be the neurobiological basis for the more diffuse analgesic effect of
low-frequency and high-intensity TENS.

Altogether, these results indicate that the two types of TENS act
through different neurobiological mechanisms, which determine the
different spatial features of the analgesic effect. These results can guide
clinicians in choosing the appropriate set of TENS parameters to maxi-
mize the analgesic effect in different patients. Obviously, the application
of these results in clinical routine will require testing their validity in
different populations of patients with acute and chronic pain.

4.1. Neurobiological mechanisms of TENS induced analgesic effects

Evidence from animal studies demonstrates that high- and low-
frequency TENS produce analgesic effects via different neurobiological
mechanisms (DeSantana et al., 2010; Radhakrishnan et al., 2003). Ac-
cording to the gate control theory of pain, high-frequency and
low-intensity TENS activates large-diameter Aβ fibers, which at dorsal



Fig. 3. Group-level laser-evoked responses in the time domain. Group-level waveforms and scalp topographies of N2 and P2 waves (Cz-nose, top panel), as well as N1
wave (Cc-Fz, bottom panel), are displayed for each experimental group. In each experimental group, LEPs elicited by stimulation of the hand ipsilateral and
contralateral to the TENS side in the Pre-TENS and Post-TENS sessions are superimposed. Scalp topographies are plotted at the peak latency of the N1,N2, and
P2 waves.
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Fig. 4. Group-level laser-elicited time-frequency responses. Left panel: Group-level time-frequency distributions and scalp topographies of ERP and α-ERD responses,
averaged across experimental groups and conditions. The color scale represents the increase or decrease of the oscillatory magnitude, relative to a prestimulus interval
(�400 to �100ms). The displayed time-frequency distributions contain both phase-locked (ERP: 100–500ms, 1–10 Hz) and non-phase-locked brain responses (α-ERD:
500–1000ms, 8–12 Hz), highlighted by the dashed lines. ERP and α-ERD magnitudes were measured at central (top left) and parietal-occipital (bottom left) electrodes
respectively. Electrodes showing the maximal response for each time-frequency feature are highlighted in white in the scalp topographies. Right panel: The effect of
active TENS on the magnitude of the ERP (top right) and α-ERD response (bottom right) was expressed as difference between Pre-TENS and Post-TENS sessions (Post-
TENS minus Pre-TENS, normalized by subtracting the respective sham data for displaying purpose; statistical results from non-normalized data are reported in the main
text). Data are mean� SEM.
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horn level inhibit the incoming nociceptive volley transmitted via
small-diameter, slow-conducting Aδ and C fibers innervating
spatially-adjacent skin areas (Melzack and Wall, 1965). In line with this,
we observed that high-frequency and low-intensity TENS produced a
clear analgesic effect to homotopical nociceptive stimulation: the
decrease of subjective ratings of pain intensity and unpleasantness, as
well as laser-evoked brain responses, was significantly larger when
nociceptive stimuli were delivered to the same hand where TENS was
delivered (Figs. 2–4). Importantly, high-frequency and low-intensity
TENS had a minimal analgesic effect even when nociceptive stimuli
were delivered to the hand contralateral to the TENS side (pain intensity,
on the 0–10 NRS: �1.82� 0.28 vs �0.22� 0.29, p¼ 0.0001; pain un-
pleasantness, on the 0–10 NRS: �1.57� 0.24 vs �0.61� 0.27,
p< 0.001; Fig. 2). Thus, the analgesic effect of high-frequency and
low-intensity TENS cannot be fully explained by a homotopical inhibition
404
mechanism, and the concomitant contribution of a supraspinal
descending inhibition mechanism remains a possibility, as suggested by
several animal findings (Kalra et al., 2001; Sluka et al., 1999, 2005;
Woolf et al., 1980). For example, it has been shown that the analgesic
effect of high-frequency and low-intensity TENS can be reduced by
spinalization (Woolf et al., 1980): although this high-frequency TENS
delayed the response to the noxious stimulus in rats with complete spinal
transection at the level of the 10th and 11th thoracic vertebrae, this
antinociceptive effect was still present, but reduced compared to that
observed in intact animals. In addition, the analgesic effect of
high-frequency TENS was blocked by microinjection of the δ-opioid re-
ceptor antagonist naltrindole in both the spinal cord (Sluka et al., 1999,
2005) and RVM (Kalra et al., 2001).

In contrast to high-frequency and low-intensity TENS, which elicits
non-painful tingling sensation, low-frequency and high-intensity TENS
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Fig. 5. Effects of different TENS type on ongoing brain state.Top left panel: Broadband ongoing EEG oscillations in the four experimental groups. Green waveforms
show the difference between the Pre-TENS (blue) and Post-TENS (purple) conditions. Only in the low-frequency active TENS group there was a significant difference in
the amplitude of alpha oscillations (8–12 Hz, gray area). Scalp maps show the topographical distribution of alpha oscillation amplitude in the four groups. Top right
panel: Changes of ongoing alpha oscillations (Post-TENS minus Pre-TENS) were compared across-groups using two-way ANOVA with two between-subject factors
(‘TENS frequency’ and ‘condition’). There was a significant ‘TENS frequency’ � ‘condition’ interaction at bilateral central electrodes (electrodes with FDR-corrected p
< 0.05 are shown in white), maximal on the electrodes overlying the primary sensorimotor cortex (S1/M1) contralateral to the TENS side. Ongoing alpha oscillations
were increased in the post-TENS period only in the low-frequency active TENS group (ns: not significant; ***: p < 0.001). Data are mean � SEM. Middle panel: Source-
level percentage changes of alpha oscillations in the four experimental groups. Only low-frequency active TENS significantly enhanced alpha power in the bilateral S1/
M1. Two-way ANOVA revealed a significant ‘TENS frequency’ � ‘condition’ interaction in the S1/M1 contralateral to the TENS side (p ¼ 0.002, middle right; ns: not
significant; *: p<0.05; ***: p < 0.001). Note that the source-level plots displayed in the left part are descriptive: they show the voxels whose absolute percentage
change of alpha oscillations (alpha power in the post-TENS session relative to the pre-TENS session) was >10%. Bottom panel: Changes of functional connectivity
between S1/M1 and mPFC, in the four experimental groups (Post-TENS minus Pre-TENS). Two-way ANOVA revealed that low-frequency TENS caused a significant
enhancement of functional connectivity (indexed by both coherence and DTF measures) between the contralateral S1/M1 and mPFC (ns: not significant; ***: p
< 0.001).
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activates small-diameter Aδ and C nociceptive afferents, and therefore
elicits tolerable but painful sensations. The tonic activation of Aδ and C
afferents does not only elicit painful sensations, but also activates central
nervous system structures resulting in analgesia (Bouhassira et al., 1987;
Chung et al., 1984). Specifically, low-frequency and high-intensity TENS
is thought to produce analgesia through the recruitment of descending
pain inhibition system, via the activation of the PAG-RVM network (Kalra
et al., 2001; Liebano et al., 2011; Zhao, 2008). Our observation that
low-frequency and high-intensity TENS produced a spatially diffuse
analgesic effect, not limited to the site of TENS application, agrees with
this piece of knowledge. Indeed, subjective ratings of pain intensity and
unpleasantness, as well as laser-evoked brain responses, were strongly
reduced in the active TENS vs the sham condition when nociceptive
stimuli were delivered both to the hand ipsilateral and contralateral to
the TENS side (Figs. 2–4).

The differential effect of the two types of TENS on ongoing brain
activity (Fig. 5) provides important mechanistic information. Only low-
frequency and high-intensity TENS altered the ongoing brain state,
and, specifically, significantly enhanced the amplitude of ongoing alpha
oscillations at bilateral central electrodes (Fig. 5). That the amplitude of
ongoing alpha oscillations influences the perceptual outcome of
subsequently-delivered sensory stimuli has been consistently observed in
several human studies (Kayser et al., 2016; Minami and Amano, 2017):
the larger the alpha amplitude, the smaller the intensity of subjective
perception and neural responses evoked by sensory stimuli (Tu et al.,
2016). An important aspect is that the modulation of ongoing alpha os-
cillations was localized on bilateral central electrodes overlying the hand
area of the primary sensorimotor cortex (Fig. 5). Given that alpha oscil-
lations reflect the excitability of neuronal ensembles (Palva and Palva,
2007; Sadaghiani and Kleinschmidt, 2016), it follows that the analgesic
effect of low-frequency TENS, consequent to the descending inhibition of
nociception through the μ-opioid receptors in the PAG-RVM network
(Zhang et al., 2014; Zhao, 2008), is likely to be triggered by the
TENS-induced modulation of the functional state of the primary senso-
rimotor cortex, which could play an active role for the top-down inhib-
itory control of the nociceptive information (Ploner et al., 2017; Wutz
et al., 2018). In support of this possibility, we observed an increase in
functional connectivity between the primary sensorimotor cortex
contralateral to the TENS and the mPFC, a core region of the descending
pain inhibitory system, anatomically connected to the PAG (Fig. 5). This
observation matches the increased activity in multiple cortical regions
projecting to the PAG during the analgesia caused by DNIC, which is
triggered by intense somatosensory stimuli similar to the low-frequency
and high-intensity TENS used in the present study (Da Silva et al., 2018).
In addition to the recruitment of the PAG-RVM network, low-frequency
and high-intensity TENS could recruit the DNIC system, through the
activation of neurons in the subnucleus reticularis dorsalis (SRD) in the
caudal-dorsal medulla (Villanueva et al., 1996; Youssef et al., 2016b).
Interestingly, the DNIC analgesic effect in humans is modulated by the
strength of functional connectivity between SRD circuitry and prefrontal
cortices (Youssef et al., 2016a). This observation provides an alternative
406
explanation of the present results: the increased functional connectivity
between the primary sensorimotor cortex contralateral to the TENS and
the mPFC could lead to an enhanced descending inhibition through the
connection between the mPFC and the SRD circuitry. However, given
that the mPFC is involved in multiple functions, it is difficult to pinpoint a
specific physiological mechanism for the observed effect.

4.2. Clinical implications

Once the results observed in this study, and particularly the spatially
distinct effect of the two types of TENS, are replicated in clinical pop-
ulations, their bedside application would be immediate. Indeed, most
clinical studies of TENS have investigated the effect of different in-
tensities and frequencies of stimulation while largely ignoring the
possible influence of the body territory where TENS was applied, often
assuming that the TENS electrodes should be placed in the proximity of
the painful area (Baeumler et al., 2015). This assumption obviously
limits the applicability of TENS in clinical practice, as in some condi-
tions (e.g., patients with skin damage or visceral pain) placing the TENS
electrodes close to the site of injury is problematic. The clear interaction
between stimulation site and the type of TENS indicates that the
maximal analgesic effect of high-frequency and low-intensity TENS is
obtained only if the electrodes are placed near the painful area, whereas
low-frequency and high-intensity TENS has an analgesic effect much
less influenced by where the electrodes are located. Thus, our study
provides important information to guide the selection of the best
combination of stimulus parameters – intensity, frequency, and spatial
location – to maximize the analgesic effect of TENS in clinical practice.
Together with recent developments of neural markers for pain sensi-
tivity across individuals (Hu and Iannetti, 2019), the current results
make a step forward towards the implementation of personalized
pain-relieving treatments.

In addition to provide an empirical basis for setting TENS parameters
in future clinical studies, and potentially in clinical routine, our study
helps explaining the conflicting data in previous animal and human re-
ports. As already cogently highlighted (Mogil, 2009), inherent
across-species differences make it difficult to explain the analgesic effect
of TENS observed in humans using mechanisms inferred from animal
models. Our observation of a significant analgesic effects consequent to
the TENS-induced alteration of the state of the primary sensorimotor
cortex is a mechanism that can be hardly recruited in animal studies,
especially when using anaesthetized or “spinal” models (Garrison and
Foreman, 1996).
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