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Background: Nearly 3 million people worldwide are coinfected with HIV ahHCV.

Affordable strategies for prevention are needed. We deveped a novel vaccination
regimen involving replication-defective and serologidgl distinct chimpanzee adenovirus
(ChAd3, ChAd63) vector priming followed by modi ed vaccira Ankara (MVA) boosts, for
simultaneous delivery of HCV non-structural (NSmut) and W1 conserved (HIVconsv)
region immunogens.

Methods: We conducted a phase | trial in which 33 healthy volunteers we sequentially
enrolled and vaccinated via the intramuscular route as follvs: 9 received ChAd3-NSmut
[2.5 1010 vp]and MVA-NSmut[2 108 pfu] at weeks 0 and 8, respectively; 8 received
ChAdV63.HIVconsv [5 1010 vp] and MVA.HIVconsv [2 108 pfu] at the same interval;
16 were co-primed with ChAd3-NSmut [2.5 100 vp] and ChAdV63.HIVconsy [5
100 vp] followed at week 8 by MVA-NSmut and MVA.HIVconsv [both 1 108 pful.
Immunogenicity was assessed using peptide pools irex vivo ELISpot and intracellular
cytokine assays. Vaccine-induced whole blood transcriptme changes were assessed
by microarray analysis.

Results:  All vaccines were well tolerated and no vaccine-related smus adverse
events occurred. Co-administration of the prime-boost vacine regimens induced high
magnitude and broad T cell responses that were similar to thee observed following
immunization with either regimen alone. Median (interquiéle range, IQR) peak responses
to NSmut were 3,480 (2,728-4,464) and 3,405 (2,307-7,804) pot-forming cells
(SFC)/1® PBMC for single and combined HCV vaccinations, respectivel(@ D 0.8).
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Median (IQR) peak responses to HIVconsv were 1,305 (1,095:967) and 1,005
(169-2,482) SFC/1® PBMC for single and combined HIV-1 vaccinations, respectaly
(0 D 0.5). Responses were maintained above baseline to 34 weeksgst-vaccination.
Intracellular cytokine analysis indicated that the respating populations comprised
polyfunctional CD4 and CD8® T cells. Canonical pathway analysis showed that in the
single and combined vaccination groups, pathways associad with antiviral and innate
immune responses were enriched for upregulated interferestimulated genes 24 h after
priming and boosting vaccinations.

Conclusions:  Serologically distinct adenoviral vectors encoding HCV ah HIV-1

immunogens can be safely co-administered without reducinghe immunogenicity of
either vaccine. This provides a novel strategy for targefinthese viruses simultaneously
and for other pathogens that affect the same populations.

Clinical trial registration:  https://clinicaltrials.gov, identi er: NCT02362217

Keywords: HIV-1, HCV (hepatitis C virus), vaccine, coadmini stration, clinical trial, conserved region, non-structur al
protein (NS), transcriptomics analysis

INTRODUCTION enables frequent immune escape. The tissue tropism of HCV
and the persistence of latent reservoirs of replication-caenue

Hepatitis C virus (HCV) and human immunode ciency virus H|v genomes each pose unique challenges forimmune clearance.
type 1 (HIV) are each responsible for signi cant global burdenFyrthermore, the immune correlates of resolution of HCV and
of disease and premature death. Between 50 and 80% peopfig-term control of HIV are not fully de ned.
with acute HCV develop chronic infection and an estimated 71 Co-administration of vaccines against multiple pathogens
million people are currently living with viraemic infectiomhich  js fundamental to the success of childhood and adolescent
is transmissible and carries the risk of long-term complieasi,  jmmunization programmes. As repeated doses are required
including brosis, cirrhosis and hepatocellular carcinoma, ( to achieve adequate immunity, many licensed vaccines are
2). Combinations of direct-acting antiviral agents now @  administered as mixtures to ensure maximal population
cure in >90% patients but their hlgh cost is prohibitive in coverage. The potentia] disadvantages are increased
both high and low resourced settings, with global treatmenteactogenicity and immune interference, with the latter
coverage currently at only 13% (). Re-infection after successful posing a risk of inadequate protection against one or more ef th
treatment is common in some populations)( targeted pathogenslf). However, several recent clinical trials

Nearly 37 million people are living with HIV (PLWH), of have shown no immune interference when vaccines for new
whom more than half are now aCCQSSing e ective antiretrdViraindicationS are co-administered with Expanded Programme on
therapy (ART). Scale up of access to ART and earlier initiatiofmmunization vaccines, for example, tuberculosis (M72/AS01)
of treatment have led to spectacular gains in life expectandy a and malaria (chimpanzee adenovirus 63 and modi ed vaccinia
reductions in new infections, even in high prevalence regiéh  Ankara encoding multiple epitope string thrombospondin-
However, therapy is life-long and does not provide a cure, paci related adhesion protein) vaccine candidates, nor with
a considerable burden on patients and healthcare systems. Cg-administration of rotavirus and measles-rubella vaesin
infection with HCV and HIV aects 2.6 million people and in infants and herpes zoster and in uenza vaccines in adults
the incidence of HCV infection in HIV-positive men who have (16-19).
sex with men is increasing49). Progression to end-stage liver ~ The development of vaccines for HCV and HIV has
disease (ESLD) is faster than in HCV mono-infection and ESL[POCUSGd on the induction of antibodiesy preferab|y with mt}a
is now the leading cause of death in PLWH)(11). neutralizing activity (bnAbs) and T cell respons&s,21). bnAbs

E ective preventive vaccines would greatly strengthen therre required for sterilizing immunity but have so far proved
current primary prevention strategies of “test-and-treatida dicult to elicit with conventional immunogens. CD% and
pre- and post-exposure antiviral prophylaxis and would be costcDg® T cells contribute to spontaneous clearance of HCV
e ective for both HCV and HIV infections {2-14). Given and to long-term control of HIV £2-24). Non-human primate
the overlapping epidemiology of HIV and HCV, strategies tostudies have shown that live attenuated and replicatiorectafe
prevent co-infection are needed. However, signi cant obl&t®  viral vectors elicited the most potent virus-specic T cells in
have hampered progress: a common feature of these virusgg simian immunode ciency virus (SIV) model; furthermgre
is antigenic variability, which is driven by high rates ofali vaccine-induced T cells could abort infection at an earlgsta
replication and error-prone reverse transcription and whichpathogenic challenge models of SIV and HC#£28). The main
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constraints on their use are safety and tolerability and ptax 10 pfu) used in Groups 1 and 2 to maintain an equivalent

manufacturing requirements. total dose of MVA (2 1® pfu). Enrolment into Groups 2 and 3
We have developed candidate vaccines for HCV and HI\¢ommenced only after completion of priming immunizations in

employing a potent heterologous viral vector platform forthe preceding groups.

antigen delivery. Priming with replication-defective ctpanzee Vaccines were manufactured in compliance with

adenoviruses (ChAds) followed by boosting with modi ed Good Manufacturing Practice as described previously

vaccinia Ankara (MVA) has proved to be highly e cient for (32, 33). Vaccine vials were stored at 80 C until

induction of T cells to a wide range of transgene productsise and thawed 30min prior to administration. All

in diverse populations and age group89( 30). We have vaccinations were administered intramuscularly into

previously reported the safety and immunogenicity in humanthe deltoid region of the arm. Group 3 subjects were

volunteers of the novel immunogens, NSmut, comprisingadministered the HCV and HIV vaccines in separate

the entire non-structural region from an HCV genotype limbs.

1b isolate, BK, and HIVconsv, comprising highly conserved

regions from HIV-1 clades A-D Gag, Pol, Vif, Env sequencefAssessment of Primary Endpoints: Safety

(Supplementary Figure }, when delivered by ChAd and MVA gnd Reactogenicity

vectors §1-34). In the present study, we investigated the safety/olunteers were observed for up to 60min following

and immunogenicity of these two vaccine strategies when cGmmunization. A safety review of the rst three volunteers

administered to healthy volunteers at low risk of HCV or HIV 5 each group was conducted by the DSMC 48 h following each

infections. vaccination, before proceeding to further vaccinations eyaf
evaluations comprised the following: (i) solicited symptoms
METHODS recorded by the participants on diary cards for 3 days follayin
L each vaccination, (ii) unsolicited adverse events, (iii) gt
Participants examination and (iv) monitoring of laboratory parametert,cd

Healthy male and non-pregnant female volunteers aged 18-5@hich were recorded at follow-up visits on day 1, weeks 1, 2, 4
were invited to participate. All study visits and vaccinaomere 8 8C 1 (day 57), 9, 12, 14, 34. Local and systemic events were
performed at a single site in Oxford, UK. graded according to Grading Toxicity Tables given in theickh

. protocol (adapted from Division of AIDS 2004).
Ethics and Regulatory Approval
This study was carried out in accordance with theEx vivo IFN-g ELISpot Assay
recommendations of UK National Research Ethics Servick N-g ELISpot assays were performed with freshly isolated
(NRES Committee South Central—Oxford A 14/SC/0195) angeripheral blood mononuclear cells (PBMC) as described
the UK Medicines and Healthcare Products Regulatory Agengyreviously, using an established laboratory SOR§3). Peptide
(Eudract no. 2014-000730-30). All subjects gave writteorined  sets (15-mers overlapping by 11 amino acids) corresponding
consent in accordance with the Declaration of Helsinki. Theto the HCV NSmut immunogen r{ D 494, BEI Resources)
protocol was approved by the NRES Committee South Central-and the HIVconsv immunogenn(D 166, Genscript) were each
Oxford A. The study was registered with ClinicalTrials.govtested in 6 pools (NSmut: 80 peptides/pool; HIVconsv 20—
(NCT02362217) and conducted in accordance with ICH-GCP30 peptides/pool). The nal peptide concentration wasg@ml
ICH-GCP compliance was independently monitored by the(NSmut) or 2mg/ml (HIVconsv). PBMC were aliquoted at 2
University of Oxford Clinical Trials and Research Governance 1P cells/well for all time points; at week 9 both 1 1P
oce. A multinational independent data safety monitoring and 2 1P cells/well were tested in order to ensure that the

committee (DSMC) provided safety oversight. anticipated peak response could be accurately quanti ed. The
] o assay cut-o was set at 48 SFC/10 PBMC for HCV NSmut
Study Design and Vaccinations assays, as used previously)( for HIVconsv assays, a cut-o of

In this open-label study subjects were enrolled sequentiall >30 SFC/18 PBMC, based on the mea® 3 SD of all mock-
one of three groups. Group (D 9) received ChAd3-NSmut stimulated responses. Peptide-speci ¢ responses were desied a
(2.5 10'9vp) and MVA-NSmut (2 10° pfu) at weeks 0 and positive only if they exceeded the assay cut-o and were atlea
8, respectively; Group (D 8) received ChAdV63.HIVconsv 3-fold greater than the DMSO control value. The magnitude
(5 10 vp) and MVA.HIVconsv | (2 1C° pfu) at the same  of the response to each immunogen was obtained by summing
interval, respectively). The dose of ChAd3-NSmut was based ahe DMSO-subtracted responses to each peptide pool that met
data from a previous trial which showed that transgene-sgeci positivity criteria.
T cell responses reached a plateau at a higher dose of 7.5
10'° vp (31). ChAdV63.HIVconsv has been previously tested aintracellular Cytokine Assay
two doses, 5 10° and 5 10 vp; the latter was found to Intracellular cytokine secretion by antigen-specic T cell
be more immunogenic33). Group 3 fi D 16) were co-primed was analyzed using multiparameter ow cytometry. Briey,
with ChAd3-NSmut (2.5 10°vp) and ChAdV63.HIVconsv (5 cryopreserved PBMCs were thawed, washed and rested overnigh
10'° vp) at week 0 followed at week 8 by MVA-NSmut andin R10 medium at 37C in a humidi ed incubator. Cells were
MVA.HIVconsy, each of which were given at half the dose (Istimulated with HCV NSmut (Ing/ml), or HIVconsv peptide
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pools (2mg/ml), mock control (0.45% DMSO) and positive to the manufacturer's protocol. Following globin depletion
controls (SEB, Bg/ml; CMV pp65, 2ng/ml, NIH AIDS Reagent (GLOBINcleaf™ Kit, ThermoFisher SCIENTIFIC) total
Repository) at 37C for 6h in the presence of Golgiplug, RNA was quantied using a NanoDrop spectrophotometer.
Golgistop (BD Biosciences) and CD107a BV421. Followingranscription amplication and labeling  (llumin&®
viability and surface staining, cells were then xed usingTotalPreg"-96 RNA Ampli cation Kit, Ambion) was performed
BD cyto x/cytoperm solution according to the manufactuer' starting with 50 ng RNA per sample. After hybridization (Whole-
instructions and intracellularly stained using reagergsliated Genome Gene Expression Direct Hybridization, lllumina)eth

in Supplementary Table 1At least 10,000 viable singlet CB3 slides were scanned on the Illumina iScan system (Wellcome
CD4° or CD& lymphocyte events were acquired using a BDTrust Centre for Human Genetics, University of Oxford).
Fortessa X20 cytometer. Data were analyzed using FlowJ8v9.9

(FlowJo, US) and GraphPad Prism v7.0. Host Transcriptome Analysis

HLA Class I-Peptide Pentamer Staining The raw lllumina microarray_ prob_e _d_ata were annotau_ad
PE-labeled pentamers comprising HLA-@2:01-bound into probe  sets representllng deVIdu?l _genes, using
HCV NS3u06 1415 (KLSALGINAV) and HLA-A 01:01- readBeadSummaryData. O.utl|ers were ehmmatgd from the
bound HCV NS3435 1443 (ATDALMTGY) were used to stain data set anql gene expression data were normalized using the
HCV NSmut-speci c CD& T cells (Proimmune). The speci city NEQC function @6). Two volunteers from Group 2 and one

of pentamers was con rmed on HLA-matched pre-vaccinationvomnteer from Group 3 were Subsequently. eliminated. The
samples from healthy individuals3f). Thawed PBMC (1—2 array weight was calculated (Limma arrayWeight) to de ne th

1P) were coincubated with pentamers and antibodie§ninimal ”.‘at”_x tq re ect_ the experimental settings (pre- and
speci ¢ for cell surface or intracellular proteins, as listed postt-\faccl[nilg‘c))/n tlTﬁlp0|nts).rhe probeitha;hagalu% 0.05 .
Supplementary Table 2 Stained samples were xed using 105" & f€as o of the samples were Tered. 5ene expression

paraformaldehyde and, where applicable, permeabilised usi CI;Jels d(Iog) at time pomtts dptos;-\@cc;]natlon (Say 1btandt_we(irli
10 permeabilisation bu er (eBioscience). Data were collecte ay) were converted to fold changes by subtracting the

with BD FACS DIVA software (San Jose, CA, USA) and analyzer spective pre-vaccination (days 0 and 56) expression vajues f

with Flow Jo software (Flowjo LLC, Ashland, OR, USA). the same genes. L@gxpres.smn values were tested for statlstlpal
signi cance by ANOVA adjusted to false discovery rates using

HLA Typing the Benjamini-Hochberg False Discovery algorithm. Genes we
de ned as di erentially expressed post-vaccination if the fold

ratio was 1.5 andp-value 0.001. Gene networks and their

functional interactions were analyzed with Gene OntoloG¥(

Chimpanzee Adenovirus Neutralization enrichment analysis and visualization tool (http://cbl-dler.cs.
Assay technion.ac.il/), STRING (https://string-db.org) and RStudio

. . . Group 1 samples were not analyzed for this study because a
ChAd3 and ChAd§3 neutrallzmg antlbpdy (NAD) titres were similar analysis had been performed previously on 6 healthy
assayed as previously described using a secreted alkal

. iunteers who had received the same vaccine regimen (ChA3-
phosphatase (SEA_P) assay)(Briey, 8 10*HEK293 cells per NSmut 2.5 10 vp on day 0 followed by MVA-NSmut (2
well were seeded in a 96-well-plate for 1 day. SEAP-expressifgs pfu) on day 56 (week 8) and bleed schedule in the HCV003
;rftﬂi;’f{igﬁr;;x’:é % fs(,)(;rir?w ?rt)?njtilzln\?oﬁjrn\:g:ahmjzggl trial (NCT01296451 (L. Swadling, personal communication).
fo the 80-90% con uent HEK293 cells for 1h at &7 after Instead, we made a comparison of the data from Group 2 and

. . ' 3 subjects with corresponding whole blood transcriptomicadat
which the.s.up(.arnatant was replaced with 10% FBS in DMEM‘rom the HCVO003 subjects, as this had been generated using the
SEAP activity in the supernatant was measured after 22h

. L thods.
using the chemiluminescent substrate (CSPD) from Phosphsf’-ame methods

Light kit (Tropix) following the manufacturer's instructics.

Light signal output expressed as relative light units (RLU) wa&afety and Immunological Data Analysis

measured 45 min after the addition of the CSPD substrategusinSafety and clinical laboratory data were entered on Opefdzlin

a luminometer (Envision 2102 Multilabel reader, Perkin Efjne software and checked by two sta members. For continuous
The neutralization titer was de ned as the reciprocal of seraariables, the mean with standard deviation was used to
dilution required to inhibit SEAP expression by 50% compaied t summarize hematological parameters; median with IQR were
the SEAP expression of virus infection alone. The lowestiditu  used to summarize the immunogenicity data. Dierences in
tested was 1:18, therefore, a neutralization titer ©f18 was used hematological parameters over time were tested for signicea

HLA typing was performed by ampli cation refractory mutation
system (ARMS) PCR using sequence-speci ¢ primers.

as the negative cut-o . by 1-way ANOVA. Di erences between groups in the magnitude
) _ and breadth of ELISpot responses over time were tested by
RNA Isolation and Microarray multiple t-tests with correction for multiple comparisons using

Blood samples for transcriptomic analysis of the innateahe Holm-Sidak method (alph® 0.05). Other analyses were
immune response were collected in PaxgBnetubes at performed using non-parametric tests. Statistical analy$is o
weeks 0 (days 0 and 1), 7 and 8 (days 56 and 57). RNA waafety and immunological data was performed using GraphPad
isolated using the PAXgene Blood RNA kit (Qiagen) according’rism version 7.
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RESULTS only one in Group 1, possibly re ecting the di erent doses of
. . . . viral vector that were administered. Co-administration tbie
Co-admlnlstratlon of Serologically Distant two MVA-vectored vaccines at half the dose used in the single
Adenoviral Vectors Is Safe and regimen groups was as well-tolerated as vaccination witteeith
Well-Tolerated alone, likely re ecting the equivalent total dose of recanamt
Forty-eight subjects were screened for eligibility and 33ewe MVAs across the three groupBigures 2A,B.
enrolled (19 females and 14 males). Vaccine allocation is The only abnormal laboratory parameter of note was
shown in Figure 1L Mean age at enrolment was 29 yearsa transient fall in total lymphocyte count within 24h of
(range 19-48 years). One volunteer in Group 1 withdrewadministration of ChAd3-NSmut and ChAdV63.HIVconsv
consent after receiving the ChAd3-NSmut vaccination ang wavaccines. This became apparent in 24 volunteers after
replaced. All other volunteers completed the immunizationimplementation of a protocol amendment to perform a full
schedule. One volunteer in Group 3 withdrew consent afteblood count estimation on day 1 post-vaccination as an
receiving all vaccinations (week 12) but before completiomdditional safety evaluation. Three episodes were classied
of follow-up (Participant ow chart, Figure1). There as grade 1 (0.8-0.91 1 cells/L), 11 were grade 2 (0.5—
were no suspected unexpected serious adverse reactidh8 1C° cells/L), one was grade 3 (0.2-0.51C° cells/L);
or serious adverse events. There were 301 solicited locdldid not meet grading criteria. Mean (SD) counts (10
and systemic adverse events in total: 137 after primingells/L) at day O and 1 were 1.99 (0.4) and 0.84 (0.3) for
vaccinations and 164 after boosting vaccinations. Overalolunteers who received a single vaccine regimen and 1.95
the majority of events related to vaccination were mild(0.5) and 0.94 (0.3) for volunteers given the combined veeci
(grade 1) in severity (178/301, 59%) and resolved withimiegimen p < 0.0001 for bothFigure 20). These changes were
48 h. not associated with any symptoms and lymphocyte counts
The most frequently reported solicited events were paimeturned to normal by week 4 in all cases. Other hematological
at the injection site, myalgia, fatigue, headache and mlai parameters did not change signi cantly between days 0 and
ChAd-vectored vaccines were less reactogenic (38/137, 28% except for a slight increase in monocyte countsl@
grade 2 or3) than MVA vectored vaccines (85/164, 52% gradecells/L) from a mean (SD) of 0.52 (0.2) to 0.7 (0.2) in the
or 3) (Figures 2A,B. ChAdV63.HIVconsv appeared to be more combined vaccination armp( D 0.01). Unsolicited adverse
reactogenic than ChAd3-NSmut, with four volunteers in Gpou events including abnormal laboratory parameters are listed
2 reporting at least one symptom of grade 2 or 3 compared witisupplementary Tables 3, 4

Assessed for eligibility:
n=48
15 ineligible
(screen failure, withdrew |
consent) ¥
Enrolled
n=33
Group 1 Group 2 Group 3
n=9 n=8 n=16
| l '
ChAd3-NSmut prime ChAdV63.HIVconsv prime ChAd3-NSmut + ChAdV63.HIVconsv
(2.5x10°vp) n=9 (5x10°vp)n=8 co-prime
l (total ChAd 7.5x10%° vp) n = 16
! v ¥
withdrew MVA-NSmut boost MVA.HIVconsv boost MVA-NSmut + MV.HIVconsv boost
n=1 (2x108 pfu)n=8 (2x108 pfu)n=8 (total MVA 2x108 pfu ) n = 16
| week 9 follow up |
completed completed completed withdrew
n=8 n=8 n=15 n=1
FIGURE 1 | Consort ow diagram showing enrolment and follow-up in the PRACHI 04 trial.
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FIGURE 2 | Frequency of local and systemic adverse events recorded byolunteers on diary cards. The proportion of volunteers repting symptoms at any time
during 72 h following(A) ChAd- and (B) MVA-vectored vaccines is shown on the y axis. Color code indates maximum severity of the reaction reported:
green—Grade 1 (mild); yellow—Grade 2 (moderate); red—Grad (severe).(C) Peripheral blood lymphocyte counts were measured on day 1 i23 subjects (two in
Group 1 and ve in Group 2, shown as single ChAd prime; 16 in Grop 3, combined ChAd primes). Respective lymphocyte counts ordays 0 and 28 are shown for
comparison. By day 28, counts had returned to baseline valug

Magnitude and Breadth of Transgene
Product-Speci ¢ T Cell Responses
Induced by Combined Vaccine Regimens
Are Similar to Those of Each When Given
Alone

to ChAdV63.HIVconsv/MVA.HIVconsv were detected at week

9 in 5/7 volunteers in Group 2 and 9/14 volunteers in Group

3. Median (IQR) responses at week 9 were 1,305 (1,095-4,967)
and 1,005 (169-2,482) SFCY1BBMC for Groups 2 and 3,
respectively Figure 3B). Responses at the nal visit (week 34)
remained elevated above baseline in all groups (NSmut, Groups

Ex vivolFN-g ELISpot assays were performed in a.II volunteerg and 3—p D 0.008 and 0.002, respectively; HIVconsv, Groups
at weeks 0, 1, 2, 4, 8, 9, 12, 14, and 34. One subject from egtland 3—p D 0.06 and 0.001, respectively, Wilcoxon matched
of Groups 2 and 3 was excluded from the ELISpot analysis dygairs test). Co-administration of HCV and HIV vaccines did

to mock-stimulated values exceeding the assay cut-o atétor

more time-points.
Peak responses

to ChAd3-NSmut/MVA-NSmut

not have a signi cant impact on the magnitude of responses to
NSmut (Group 1 vs. Group 3) or HIVconsv (Group 2 vs. Group
were3d) at any time point (FDRQ D 1%) (Figures 3A,B. Cumulative

observed at week 9 in 6/8_ volunteers in Group 1 and 14/14esponses in Group 3 (sum of NSmut- and HIVconsv-speci ¢
volunteers in Group 3. Median (IQR) responses at week 9 werg cells) exceeded responses to either immunogen alone after

3,480 (2,728-4,464) and 3,405 (2,307-7,804) SEGBMIC

boosting vaccinations (multiplé-tests:p D 0.008 and 0.0006

for Groups 1 and 3, respectivelfFigure 3A). Peak responses for NSmut and HIVconsy, respectively). Taken together, ¢hes
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FIGURE 3 | Frequency of antigen-speci ¢ T cells as determined by frestex vivolFN-g ELISpot assays. Mock-subtracted values are shown. Summed gponses to
peptide pools spanning(A) NSmut in Group 1 (green) and Group 3 (blue) volunteers an@) HIVconsv in Group 2 (purple) and Group 3 (light blue) voluntese Black
horizontal bars indicate median values(C) Cumulative responses (sum of NSmut and HIVconsv) in Group 3 bjects are compared with responses to the same
immunogens when administered as a single regimer(D) Breadth (number of peptide pools eliciting a positive respuse) at the time of the peak response to priming
and boosting vaccinations. Group 3 (G3) values in right handolumns indicate the sum of HCV and HIV pools recognized. FAiC,D), red bars indicate median values.

data indicate that there was no immune interference wherin prime-boost regimens achieved similarly broad responees t

the vaccines were co-administered. Furthermore, all v@as those observed after single vaccinations. It should be ndtad t

responded to transgene products at one or more time pointthis may be a conservative estimate of the response breamith si

during follow-up (Figure 30). the response to any given pool may have been targeted to more
The minimum breadth of responses to each immunogerthan one epitope.

was determined from the number of peptide pools that gave a

positive response, as de ned in Materials and Methods. AfteSpeci city and Immunodominance of
priming vaccinations, the median breadth was 4/6 NSmut p°°'§/accine-lnduced T Cell Responses Is

for both Groups 1 and 3, 6/6 HIVconsv pools for Groups 2 and_ =~ . .
4/6 HIVconsv pools for Group 3. After boosting vaccinations,Ma'nta'ned When the HCV and HIV

the median breadth was 6/6 pools for all groups, with mosiVaccines Are Co-administered

volunteers in Group 3 developing T cell responses to all 1Analysis of the targets of vaccine-induced T cells showetl tha
HCV and HIV peptide pools Figure 3D). Cumulative breadth responses to both immunogens were broad but were dominated
in Group 3 (sum of NSmut and HIVconsv pools recognized)by HCV NS3 helicase (pool G) and HIV-1 Pol (pool 3), after
also exceeded the breadth of responses in Groups 1 and 2 affgiming and boosting vaccinations with single regimens. Séhe
boosting vaccinations (multiplé-tests:p < 0.0001 for both), immunodominance hierarchies were maintained when HCV
con rming that co-administration of the HCV and HIV vaccire  and HIV vaccines were co-administered, irrespective of whiet
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the responses in Group 3 subjects were HCV-dominant (12/18ntigen-speci ¢ marker expressed by CBg cells after IFN-
subjects) or HIV-dominant (3/15 subjectdyigure 4). Although g was CD107a: median peak frequencies of NSmut-specic
responses were not mapped to individual peptides in this trialgells in Groups 1 and 3 were 0.19 and 0.17%, respectively;
the immune response hierarchies were consistent with thetien corresponding frequencies of HIVconsv-speci ¢ cells in Groups
background of the volunteers: HLA-R2 alleles were highly 2 and 3 were 0.07 and 0.02%, respectively. The dominant
represented in all groups (4/9 in Group 1, 5/8 in Group 2 andsignal in CD& T cells after IFNg was CD154 (CD40 ligand,
10/16 in Group 3; several HLA-®2-restricted epitopes have which is upregulated on activated CB4T cells), with median
previously beenidenti ed in both NS3 pool G and HIVconsv pool peak frequencies of NSmut-speci ¢ cells in Groups 1 and 3 of
3(37,39). 0.15 and 0.18%, respectively and of HIVconsv-speci c cells in
Groups 2 and 3 of 0.06 and 0.05%, respectively. In all groups,
we detected transgene product-speci c QDA cells that co-

Induction of Muiti-Functional expressed IFNy, CD154, TNFa and IL-2 and CD§ T cells

. . C C
Ar}tlgen-Speu c CD4 _ and CD_8 T Cells that co-expressed IFN; CD107a, and TNR (SPICE analysis,
With Single and Combined Vaccine Supplementary Figure 3
Regimens The phenotype of NSmut-specic CI8 T cells was

The functional capacity of antigen-specic CB4and cD&  investigated further using HLA-A02:01- and HLA-A01:01-
T cell populations was analyzed in all volunteers aftePeptide pentamers. The median frequencies of pentamer-positive
priming, boosting and at the end of the trial. The gatingCells after ChAd3-NSmut priming were 0.014% and 0.49%
strategy used to identify antigen-specic T cells is showCD& T cells for Groups 1 and 3, respectively. These
in Supplementary Figure 2 As responses were dominated byincreased to 3.78 and 4.4%, respectively after the MVA-
IFN-g production, comparisons between single and combinedNSmut boost (week 9) and were still detectable at the end
vaccine regimens in the frequencies of IBNproducing cells Of the trial (0.27 and 0.42%)SUpplementary Figures 4A,1B
in each subset are showrFigure 5. The median NSmut- Pentamer-positive populations were dominated by e ector
specic responses post-boost were similar for Groups memory T cells (Ew, CD45RA- CCR7-) that were
and 3 and were 0.15 and 0.12%, respectively for €04 highly —activated (CD38/HLA-DRC) following prime
cells and 0.15 and 0.26%, respectively for €D8 cells and boost vaccinations, whereas by the end of the trial,
(Figure 5 Supplementary Table s The median HIVconsy- @ substantial proportion of these had been replaced by
speci ¢ responses post-boost were also comparable for Groupd@rminally di erentiated e ectors (Evra, CD45RA CCR7 )
and 3 and were 0.035 and 0.04%, respectively forCD4ells ~ (Supplementary Figure 4. The vast majority of pentamer-
and 0.06 and 0.06%, respectively for €D8 cells fFigure5 ~ Positive cells expressed granzymes A and B, apart from at
Supplementary Table § Overall, the frequencies of antigen- the end of trial, when frequencies of Granzyme A-positive
speci ¢ responses detected by intracellular staining for N cells were signi cantly lower in Group 3 than Group 1
were lower than predicted by the ELISpot assay data, which maupplementary Figures 4D,
re ect di erences in the assay sensitivitiez. Collectively, these results indicate that the function and
These observations extended to the frequencies of oth&henotype of vaccine-induced HCV- and HIV-specic T cell
cytokine-producing populations in the single and combinedpopulations were maintained when the respective vaccines were
vaccination groups§upplementary Tables 5,)6 The dominant  co-administered.

FIGURE 4 | Breadth and speci city of antigen-speci ¢ T cell responses asdetermined by ex vivoIFN-g ELISpot assays: each bar shows the contribution of individua
peptide pools to the total response to the NSmut (red shadesind HIVconsv (blue shades) immunogens at the peak of the respse after boosting vaccinations.
Although the peak response was most frequently observed atay 63, the day 84 or 98 response is shown for the few individualwith a later peak, to illustrate the
maximal breadth of individual responses(A) Individual subjects are shown, indicated by trial identi er o x axis; (B) mean values per group.
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4 HIVconsv SFC/1DPBMC,r D 0.05,p D 0.8) Figures 6E,F,
suggesting that pre-existing nAbs at the titres observeed det
not signi cantly inhibit vector uptake into target cells.

Whole Blood Transcriptome Signatures
24 h Post-vaccination Are Similar for Single

and Combined Vaccine Groups

Innate gene expression after vaccination has been shown to
determine functional adaptive immune responses, therefane,
unbiased analysis of whole blood transcriptomes was undentak
to investigate this40-42). The global view of gene expression
analysis in total blood cells following each vaccine adniai®n
showed that days 1 and 57 clustered together in both Groups
2 and 3 Gupplementary Figure . Comparison of the gene
expression proles on day 1 with day O revealed that 1,773
and 1,633 genes were di erentially expressed in Groups 2 and
3, respectively, of which 1,261 genes (59%) were common to
these groupsKigure 7A). Group 1 subjects were not analyzed
as subjects in the HCV003 trial received the same vaccimatio
regimen (see Methods; L. Swadling, personal communication)
and had already been subjected to the same transcriptional
analysis. This showed that 1,332 genes were dierentially
expressed, of which 492 (19%) were shared with Group 3

FIGURE 5] Fr;quency of t_otal gntigen-speci_c IFNgC cells within (left) CD% (Figure 7A). Gene expression pro les were also substantially
and (right) CDE" T populations in volunteers in Groups 1 and 3 (NSmut a ected by booster vaccinations, with di erential expressidn o
vaccines, top panels) and Groups 2 and 3 (HIVconsv vaccines,ditom panels) d R d f which 0
after priming, boosting and at the end of trial (EOT) as deterined by 1,450 and 2,307 genes in Groups 2 and 3, of whic 1:1_55 (44 A’)
intracellular cytokine staining of cryopreserved PBMC. Ze values were were shared between Groups 2 and 3. In HCV003 participants,
arbitrarily assigned a value of 0.001 to enable display on ado scale. 1,899 genes were di erentially expressed after boosting, aftwhi
Horizontal lines indicate median values. Groups were compad using 949 (21%) were shared with GroupFagure 7A) The number of

Kruskall-Wallis test; no statistically signi cant diffeneces were found.

di erentially expressed genes (DEGS) strati ed by up- and down-
regulation after priming and boosting vaccinations is alsovgo

: ) : - for Groups 2 and 3 as volcano plotBigure 7B). Comparison
Adenovirus Type-Speci ¢ Neutralizing of Groups 2 and 3 showed that the proportions of both down-

Activities Were not Affected by Adenoviral and upregulated genes were similar after priming and also after

Vector Co-administration boosting.
ChAd-speci ¢ nAb titres were measured pre-vaccination and Canonical pathway analysis was used to identify pathways
at weeks 4 and 34 in all Group 1 and Group 2 subjects anghat are enriched within the set of DEGs that were signi dgnt
10/16 Group 3 subjects. At baseline, neutralizing act@gginst upregulated. In the three vaccine groups the major pathways
ChAd3 and ChAd63 was detectable in 9/18 and 6/18 subjectgcluded the antiviral response, IFN-I and IFN-II signaling
respectively, although titres were200 in the majority. AN and response, regulation of IL4i-secretion, in ammatory
increase in ChAd3 or ChAd63 titer of at least 4-fold was obsdr responses, negative regulation of viral life Cycle and mgm'i of
in 8/18 Group 1 and 3 subjects and in 10/18 Group 2 andr_ce|| activation, after both priming and boosting vaccirats
3 subjects by week &igures 6A-D. Geometric mean values (Figure 8A; Supplementary Table . However, some di erences
for ChAd3-speci ¢ nAbs were 479 and 171 for Groups 1 andwvere observed with each vaccine regimen: 24 h post-priming,
3, respectivelyg D 0.9). Geometric mean values for ChAd63-pathways such as neutrophil and leukocyte activation, TLR
speci ¢ nAbs were 298 and 234 for Groups 2 and 3, respectivesignaling and regulation of IL-6 and IL-12 were only enridhie
(p D 0.9). Although we could not discern a clear relationshipChAd63 (Group 2) and combined ChAd3/ChAd63 vaccine
between baseline and post-vaccination neutralizatiorsitdue recipients (Group 3), whereas the cytoplasmic pattern
to the small numbers of subjects analyzed these resultestiggrecognition receptor signaling and regulation of IL-10 patys
that co-administration did not aect the nAb titer to the were only enriched in HCV003 vaccineeBigure 8A). After
reciprocal vector at peak or 8 months after priming. boosting vaccinations, this group also showed enrichment
We also investigated whether pre-existing ChAd-speci of TRIF- and MyD88-dependent TLR signaling pathways
humoral immunity impacted on priming of transgene-speci ¢ (Figure 8 Supplementary Table Y.
T cell responses. No correlations between the baseline ChAd- In view of the transient fall in peripheral blood lymphocyte
speci ¢ nAb titer and the magnitude of the respective T cellcounts following administration of ChAd-vectored vaccings
response post-prime were observed (ChAd3 nAb vs. week ekamined the association between lymphocyte count reductio
NSmut SFC/19PBMC,r D 0.01pD 1.0; ChAd63 nAb vs. week and DEGs. Groups 2 and 3 were combined since there
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FIGURE 6 | Neutralizing antibody titres to ChAd3A,B) and ChAd63 (D,E) measured in serum on day 0, week 4, and week 34 (end of trial) imolunteers receiving
single (left) and combined (middle) vaccination regimenblorizontal dotted line indicates assay cut-off (titer of 18 Correlation analysis (Spearman) for pre-vaccination
vector-speci ¢ nAb titres and magnitude of the respective tdal transgene-speci c T cell responses at W4 are shown if(C,F).

were no signi cant between-group di erences in lymphocyte As adenovirus-vectored vaccines targeting several gjoball
counts pre- and post-vaccination (unpaireéetest for day 0— distributed pathogens advance to phase 2/3 trials in overlappin
p D 0.9; day 1o D 0.5). This analysis revealed that apopulations, the possibility of anti-vector immunity and
total 289 of the upregulated genes were correlated with thantigenic competition, which may each adversely aect the
observed lymphopenia. Thirty-one of these genes were founelcacy of existing immunization programmes and competing
to be associated with regulation of locomotion (GO:004Q012%/accine candidates, is a legitimate concern. We have shown
Figure 8B). Furthermore, 329 of downregulated genes wer¢hat the magnitude, breadth, durability and quality of T
correlated with lymphopenia post-ChAd vaccination. Many ofcell responses to the HCV and HIV immunogens were not
these are involved with biological functions other than thesigni cantly a ected by co-administration, and that respass
immune response (e.g., initiation of RNA translation, elotiga measured in this trial were similar to those reported in
and termination), while only 16 are associated with the immau previous trials in all these respects. There was, however,
response, e.g., regulation of lymphocyte activation (data n@a trend toward lower magnitude of HIVconsv-specic T

shown). cell responses when given in combination with the HCV
vaccines. The optimal boosting dose of MVA.HIVconsv has
DISCUSSION not been de ned and we cannot exclude the possibility that

the lower dose of MVA.HIVconsv tested in Group 3 was

This trial has demonstrated that co-administration of vimec Suboptimal.
candidates comprising serologically distant simian adénses We did not nd evidence that transgene-specic T cell
and MVA vectors that each encoded sequences from HCVesponses were impacted by pre-existing anti-vector immunity
and HIV-1 was safe, well-tolerated and did not impair theas the majority of study participants had ChAd-specic nAb
immunogenicity of either vaccine regimen. titres below the level of detection, possibly re ecting thgea

The frequency and severity of local and systemic reactiorf the study population45, 46). However, vector-speci ¢ nAbs
following dual immunizations with either ChAd- or MVA- were induced or boosted in the majority of vaccinees by week
vectored vaccines were similar to those observed following and were maintained to week 34 at titre00. Given that
administration of each vaccine regimen alone. The highe@denovirus-speci c nAbs were shown to dampen responses to
frequency of moderate or severe reactions after priming witi@ heterologous Ad boost when these were administered after
ChAdV63.HIVconsy, whether alone or in combination with & 20 week interval 1), our results support the notion that
ChAd3-NSmut, could re ect the higher doses of the ChAdé3administration of serologically related Ad in combinatioather
vector that were used4@, 44). The dose of each MVA vectored than sequentially is a useful strategy to minimize the pagfior
vaccine, on the other hand, was halved for the co-admirtistna unwanted e ects of anti-vector immunity.
arm to avoid unacceptable reactogenicity. Overall, the wafet This study enabled a direct comparison of responses to the
and tolerability pro le of the four vaccines was similar toath HCV and HIV vaccine regimens, which revealed di erences in
reported previously32, 34). the magnitude of induced T cell responses. NSmut-specic T
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FIGURE 7 | (A) Venn diagrams showing the proportion of genes that were sigrcantly differentially expressed on days 1 and 57, i.e., 24 Ipost-prime and post-boost
vaccination, respectively, with data from the HCVO003 trigdarticipants (ChAd3-NSmut/MVA-NSmut, L. Swadling, persoal communication) included for comparison
with Groups 2 and 3. (B) Volcano plots illustrate the numbers of the differentiallyxpressed genes 24 h after vaccination. Red dots—genes sigrcantly
downregulated; blue dots—signi cantly upregulated).

cell frequencies were generally of higher magnitude. V&io many more that are restricted by other class | and HLA class
mechanisms may be implicated. ChAd3 was found to be mor# alleles, in particular, HLA-DR-restricted T cell epitopesath
potent than ChAd63 (and also rare human adenovirus serotypegye frequently recognized by people who spontaneously resolved
for induction of SIV-specic CD§ T cells in a mouse model, HCV infection (48-50). Furthermore, many of these epitopes
therefore, it may be expected that di erences in T cell primingare immunodominant. The HIVconsv immunogen, on the other
e ciency would be evident in humans4/). More plausibly, hand, was specically designed to minimize the targeting of
the NSmut and HIVconsv immunogens di ered considerably inimmunodominant regions, or “hotspots,” in which viral escape
length (1,985 and 777 aa, respectively) and this is likelyeta b frequently occurs, as was observed with native protein sempse
determinant of the number of potential T cell epitopes. Althbug in Ad5-vectored vaccine$(, 52). Instead, the aim was to direct
the breadth of induced T cell responses was not precisely de nedesponses to regions that are subdominant in natural inéecti
the NS3-5 region of the HCV proteome is known to contain atA mapping study in healthy volunteers in the rst HIVconsv
least 12 epitopes that are restricted by HLAGR alleles, which vaccine trial con rmed this: while responses to at least two
were highly represented in the study population, along withknown HLA-A 02-restricted Pol epitopes in 3/12 subjects were
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FIGURE 8 | (A) Canonical pathway analysis modulated by differentially exessed genes (DEGs) that were upregulated 24 h post each vamne administration: left
panels—ChAd-vectored vaccines; right panels—MVA-vect@d vaccines. The biological processes are depicted from DESIn whole blood. The pathways are
indicated on the y axis, and the x axis shows the signi cance sore (negative logg of p-value calculated using Fisher exact test)B) Heatmap depicting expression of
genes involved in locomotion (GO: 0040012), which are cortated with lymphocyte count decline on day 1. Groups 2 and 3 & shown separately but were pooled for
statistical analysis as the change in lymphocyte count wasisilar in the two groups.

observed, many new epitopes in HIVconsv were identi ed, yea non-persistent virus; however, a majority of these cells had
with a high degree of heterogeneity in responses acrossullg st switched to a Emra phenotype with high levels of granzymes
population 38). being expressed. This is suggestive of ongoing antigen eiqnes
Multiparameter ow cytometric analysis indicated that which has been reported previously in the context of repliagatio
responses to both the NSmut and HIVconsv immunogens werde cient adenovirus vectors and was attributed to persisteoic
balanced with respect to the contribution of CB4nd CD&  transcriptionally active viral genomes at the site of immuatian
T cells and that these comprised sub-populations expressirand in secondary lymphoid organSs7{, 59).
combinations of IFNg, TNF-a, IL-2, CD107a, and CD154.  We observed transient lymphopenia 24 h post-administration
This was more evident in the HCV vaccine recipients dueof ChAd-vectored vaccines, which was of similar severity in
to the higher magnitude of NSmut-specic T cell responsesthose receiving single or combined vaccinations. This was
Nonetheless, the functional pro les observed in both HCV andikely due to migration to secondary lymphoid tissues, as the
HIV vaccinees were similar in the single and combined vaecinwhole blood transcriptome showed signi cant up- and down-
groups and were consistent with data from previous trials ofegulation of genes involved in locomotion and regulatioh o
these vaccines3p, 33). The cytokine prole of CD& and lymphocyte activation, respectively. Although we did nootes
CDS8F T cells was re ective of a state of cleared or limited viralthe lymphocyte subset changes, preliminary data indicateaha
antigen expression, which has been described in other healtleduction in absolute numbers of NK cells occurred during the
vaccinated populations and in HIV controller8%, 33 50, 53 54). rst 24 h (C. M. Gardiner, personal communication). Transient
Furthermore, pentamer staining showed a similar kinetic of Tlymphopenia has been reported previously in a clinical trial of
cell activation and expansion of NSmut-speci c CD8 cellsto  a ChAd63-vectored Leishmania vaccine; however, in thidystu
that described following administration of yellow fever,aipox it was attributed to a predominant reduction in the frequency
and other recombinant MVA vaccines%, 56). Interestingly, of CD4® T cells £9. We also observed that lymphopenia
although the majority of pentamer—positive populations inducedvas temporally associated with the upregulation of CCR2,
following prime and boost vaccinations were ofgfiphenotype, LYN, PAK1, PTK2B, SRC, STAT3, which are involved in the
these had had contracted by the end of the trial, as wouldhemokine signaling pathway. This may have accounted for
be expected in the context of vaccination or infection withthe concomitant increase in monocyte counts in the peripheral
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blood, which was more pronounced in Group 3 subjects. AFUNDING

the same time, genes involved in in ammation and interferon

signaling were signi cantly upregulated, as has been reporteThis work was supported by funding from the European Union
in other vaccine studies including those involving ademasi ~ Seventh Framework Programme (FP7/2007-2013) under the
vectored vaccinestp, 59). The observed changes were broadlygrant agreement for PEACHI (number 305632). The study was
similar in Groups 2 and 3 and HCV003 (equivalent to Groupalso supported in part by UK National Institute for Health
1), suggesting that dual administration of adenovirus sext Research (NIHR) infrastructure through the NIHR Oxford
did not amplify the eects of either alone. However, the Biomedical Research Centre. TH is supported by the UK
antigen processing and presentation via MHC class | pathwdyki‘dica' Research Council (MR/N023668/1). EB is funded by the
was upregulated in Groups 2 and 3 and not in HCVvoo3Medical Research Council UK, the Oxford NIHR Biomedical
subjects. Furthermore, many of the genes involved in theepatt Research Centre and is an NIHR Senior Investigator. The
recognition receptor signaling pathway (elYD88 CD36 CD  Views expressed in this article are those of the author and not
86, TANK, and TLR8, and in the T cell receptor signaling necessarily those of the NHS, the NIHR, or the Department
pathway(HLA-DRA, HLA-DQB1, HLA-DRB3 HLA-DPAY, and  of Health. The ChAdV63.HIVconsv vaccine GMP manufacture
HLA-DB1) were not di erentially expressed following ChAd3- was jointly funded by the UK Medical Research Council and
NSmut vaccination. These observations suggest that threre ghe UK Department for International Development (DFID)
some subtle di erences in the ChAd3 and ChAd63 vectors and/ofnder the MRC/DFID Concordat agreements (MRC G0701669)
the design of the inserts that may impact on the quality ooy award to TH and LD. TH, EB, and LD are Jenner
immune responses to encoded antigens, although no subatantinvestigators.

di erences in magnitude or functionality were evident frormet

assays performed in this trial. The transcriptomic signasure

induced by the ChAd-vectored vaccines showed some overlé%CKNOWLEDGMENTS
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