Characterisation of ashes from waste biomass power plants and phosphorus recovery

Lijian Leng^a, Anna A. Bogush^b, Amitava Roy^c, Julia A. Stegemann^{b*}

^a School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education,

Nanchang University, Nanchang, 330031, China

^b Centre for Resource Efficiency & the Environment, Department of Civil,

Environmental & Geomatic Engineering, University College London, Chadwick

Building, Gower Street, London WC1E 6BT, UK

^c J. Bennett Johnston, Sr., Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806, USA

* *Corresponding author. Tel.:* +44 (0)2076797370

E-mail address: j.stegemann@ucl.ac.uk (J.A. Stegemann)

Response to reviewers' comments

Reviewer #1:

Manuscript Number: STOTEN-D-19-07294

Characterisation of ashes from waste biomass power plants and phosphorus recovery. The manuscript is dealing with a very interesting and important topic related to using of ashes as P nutrient. It is still quite few papers written on the topic on characterization and P recovery, and more knowledge is needed. The overall impression is that the manuscript is well organized and written. The title is adequate and covers the content of the manuscript. The objectives are well defined and the tables and the figure are well formed and arranged. The result and discussion is very comprehensive and in depth discussed. The literature referred to is relevant and show that the authors have good overview of what is published on the topic. Some written papers on phosphorus in waste products not refereed to could however give important input to the paper. The results are worth to be published.

Response: We appreciate the reviewer's positive comments.

I have only a very few comments to this manuscript:

Line 103-108: A comprehensive work on characterization of ashes, meat/bone meal and manures has been done by Brod et al. (2015) and should be referred to as work done on ashes.

Brod, E., Øgaard, A.F., Hansen, E., Wragg, D., Haraldsen, T.K. & Krogstad,
T. (2015). Waste products as alternative phosphorus fertilisers.
Part I: Characterised inorganic P species affect fertilization effects dependent on soil pH. Nutr Cycl Agroecosyst. 103 (2):167-185.

- Brod, E., Øgaard, A.F., Haraldsen, T.K. & Krogstad, T. (2015). Waste products as alternative phosphorus fertilisers. Part II: Predicting P fertilization effects by chemical extraction. Nutr Cycl Agroecosyst. 103 (2):187-199.
- Line 242: In addition to Rajendran et al. (2013) a reference to Brod et al. (2015) can be added.

Response: We have included the references mentioned by the reviewer to improve the manuscript.

Reviewer #2:

The paper is about characterization of ashes of incinerated meat and bone meal (MBM) and poultry litter, as well as phosphorus leaching from the ashes using sulfuric acid or nitric acid. I believe that the information can be of interest for the readers and should be published. *Response: We appreciate the reviewer's positive comments.*

My comments are as follows:

Page 3, line 37: "Thermal or biological processing disposes of biomass" - consider another formulation of the text

Response: We have revised the text to make the description clearer. See Page 3, line 37 in the revised manuscript.

Page 4, line 73: the forecast for phosphorus reserves lifetime of 50-100 year is not updated. After upgrading the reserves of Morocco and West Sahara in 2010, the estimated static life time has expanded to around 350 years, ignoring any increase in phosphorus demand. See for example: IFDC (2010). World Phosphate Rock Reserves and Resources. International Fertilizer Development Centre. Technical Bulletin T-75. Please incorporate this information into the paper.

Response: We have updated the forecast for phosphorus reserves lifetime according to the information provided by the reviewer. See Page 4, Lines 72-74 in the revised manuscript.

Page 4, line 75: "around 90%" is not correct. 71% of the reported global reserves are under the control of Morocco and West Sahara according to USA Geological Survey 2019. *Response: We have updated the data and description according to the information provided by the reviewer. See Page 4, Lines 75-76 in the revised manuscript.*

Page 9, line 193: the text refers to table S1. I don't find the table in the paper Page 17, line 400: the text refers to Fig S2(a). I don't find the figure in the paper Page 17, line 401: the text refers to Fig S2(b). I don't find the figure in the paper Page 17, line 405: the text refers to Fig S3(a). I don't find the figure in the paper Page 17, line 410: the text refers to Fig S4. I don't find the figure in the paper Page 17, line 410: the text refers to Fig S4. I don't find the figure in the paper It is not clear if the experiments were performed in replications.

Response: We have indicated the replication of experiments in figure captions where applicable and in Page 9, line 200, and Page 10, Line 216 in the revised manuscript.

1	Characterisation of ashes from waste biomass power plants
2	and phosphorus recovery
3	
4	Lijian Leng ^a , Anna A. Bogush ^b , Amitava Roy ^c , Julia A. Stegemann ^{b*}
5	
6	^a School of Resources, Environmental & Chemical Engineering and Key Laboratory
7	of Poyang Lake Environment and Resource Utilization, Ministry of Education,
8	Nanchang University, Nanchang, 330031, China
9	^b Centre for Resource Efficiency & the Environment, Department of Civil,
10	Environmental & Geomatic Engineering, University College London, Chadwick
11	Building, Gower Street, London WC1E 6BT, UK
12	^c J. Bennett Johnston, Sr., Center for Advanced Microstructures & Devices, Louisiana
13	State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806, USA
14	
15	[*] Corresponding author. Tel.: +44 (0)2076797370
16	E-mail address: j.stegemann@ucl.ac.uk (J.A. Stegemann)
17	

Abstract: Biowastes, such as meat and bone meal (MBM), and poultry litter (PL), are 19 used as energy sources for industrial combustion in the UK. However, the biomass 20 ashes remaining after combustion, which contain nutrients such as phosphorus, are 21 22 landfilled rather than utilised. To promote their utilisation, biomass ashes from industries were characterised in terms of their elemental and mineral compositions, 23 phosphorus extractability, and pH-dependent leachability. These ashes were highly 24 25 alkaline (pH as high as 13), and rich in calcium and phosphorus. The P bioavailabilities in the ash evaluated by Olsen's extraction were low. Hydroxyapatite and 26 27 potassium sodium calcium phosphate were identified by X-ray powder diffraction (XRD) as the major phases in the MBM and PL ashes, respectively. The leaching of P, 28 29 Ca, and many other elements was pH dependent, with considerable increase in 30 leaching below about pH 6. P recovery by acid dissolution (e.g., with H₂SO₄) seems feasible and promising; the optimized acid consumption for ~90% P recovery could 31 be as low as $3.2-5.3 \text{ mol H}^+/\text{mol P}$. 32 33 **Keywords**: incineration; fertiliser; phosphorus recovery; acid neutralisation capacity; animal manure 34

36 **1. Introduction**

Thermal or biological processing of biomass produces heat, electricity, or 37 liquid/gas/solid bioenergy with low net greenhouse gas emissions (Ragauskas, 2006). 38 39 Wood and wood wastes, agricultural crops and their waste byproducts, animal wastes, wastes from food processing, aquatic plants, and algae are the most widely used 40 biomass energy resources (Bogush et al., 2018; Demirbas, 2004; Huang and Yuan, 41 42 2015; Leng et al., 2018a, 2018b, 2016; Saidur et al., 2011). These biomass resources, which are currently often treated as organic wastes, can contribute significantly to the 43 44 generation of renewable energy and reduction of greenhouse gas (GHG) emissions, reducing the dependency on fossil fuels (Ragauskas, 2006). The UK, for example, sets 45 a target of 80% GHG emissions reduction over 1990 levels by 2050; the bioenergy 46 47 industry contributes significantly to the achievement of these goals (Adams et al., 2011). 48

Consequently, recovery of energy from biomass by combustion or production of 49 fuel, e.g., from straw, meat and bone meal, poultry litter, wood shavings, and horse 50 bedding, is increasing in the UK, due to the mounting production of these wastes, 51 52 their energy contents, and the environmental benefits of their utilisation (Oshita et al., 2016; Williams et al., 2016). However, management of ash has emerged to be one of 53 54 the problems impeding the development of biomass combustion for energy (Niu et al., 55 2016). Since biomass ashes are rich in the nutrients phosphorus and potassium, they have been considered for use as a soil amendment on agricultural land. However, the 56 low P availability, high alkalinity (e.g., pH 13 or higher), and heavy metal contents in 57 58 these ashes may restrict their direct application (Niu et al., 2016; Vassilev et al., 2013a; Bogush et al., 2018). Environmental pollution from nutrient and contaminant 59 leaching can occur, and result in negative effects on crops, soils and water, when 60

ashes are applied under soil and climatic conditions that increase environmental 61 mobility of contaminants (Pettersson et al., 2008a; 2008b), or mobilise nutrients but 62 do not favour their agronomic utilization, e.g., due to excessive application or an 63 imbalance in the nutrient proportions (Bolan et al., 2010; Codling et al., 2002; Szögi 64 et al., 2015; Williams et al., 2016). However, it is worth mentioning that 65 environmental pollution by nutrients and contaminants has also been observed for soil 66 fertilized with animal residues (e.g., pig slurry) directly (Cela et al., 2010; Gunkel-67 Grillon et al., 2015; Olson et al., 2010). 68

69 Meanwhile, the widespread global use of P fertiliser over the past century and increasing demand for P by agriculture threatens to deplete sources of P-bearing rock 70 within the next century (Cordell et al., 2009; 2010; Mayer et al., 2016; Sattari et al., 71 72 2012; Tilman et al., 2001; Tilman and Lehman, 1987). Even ignoring rapidly increasing P demand, the estimated static lifetime of phosphorus reserves is only 73 around 350 years (IFDC, 2010). Furthermore, the remaining reserves are highly 74 75 geographically concentrated (Elser and Bennett, 2011), with around 71% located in Morocco and Western Sahara (USGS, 2019). Therefore, sourcing P from the P 76 consumption lifecycle and developing appropriate P recovery technology, especially 77 in places with a scarcity of natural P-bearing rock such as the UK, is important to 78 79 meet the increasing demand for this element (Cooper, 2014; Cordell et al., 2011; 80 Mayer et al., 2016; Rittmann et al., 2011). Phosphorus recovery from animal residues (e.g., poultry litter, meat and bone meal) and sewage sludge, and their incineration 81 ashes, is one of the most promising ways to increase the P resource security and 82 83 secure future food production (Akinola, 2013; Bogush et al., 2018; Havukainen et al., 2016; Kleemann et al., 2015; Mayer et al., 2016; Tan and Lagerkvist, 2011). Cooper 84 and Carliell-Marquet (2013) estimated that the P recovery potential from animal 85

manure produced in the UK could be higher than national net total P imports; in
general, the P value of meat and bone meal/animal bone alone is likely of a similar
order of magnitude to that of a country's phosphate fertiliser imports (Cooper and
Carliell-Marquet, 2013; Simons et al., 2014).

Hence, recovery of P from biomass ashes to produce more effective and 90 environmentally benign P fertilizer is of increasing interest for both research and 91 92 practice. Animal manures and manure derivatives such as ash and char have been widely explored for P recovery, with measurement of varied recovery rates and acid 93 94 demands because of differences between the sources (e.g., P concentration 4.0-139 g kg⁻¹) and process conditions (e.g., different acid types and loads, and solid/liquid 95 ratios) (Table 1). For example, P recovery rates around 90% were obtained for animal 96 97 manure char, but at acid loads in the region of 100 mol H⁺/mol P recovered (Azuara et al., 2013; Heilmann et al., 2014). Lower acid loads (3-10 mol H⁺/mol P recovered) 98 were found effective for P recovery from manures and their ashes (Cohen, 2009; 99 100 Kaikake et al., 2009; Kuligowski and Poulsen, 2010), which is similar to the recovery rates and acid loads for P recovery from sewage sludge ash (Petzet et al., 2012). In 101 addition to P content and recovery conditions, P speciation in the different P-102 containing resources (wastes) also influences P recovery performance. Elemental, 103 104 mineral and chemical compositions have been used to describe P speciation in these 105 materials (Bogush et al., 2018; Vassilev et al., 2013a, 2013b, 2013c), but few studies have related these results to P recovery performance. Furthermore, little has been 106 reported regarding meat and bone meal (MBM) and its derivatives (e.g., ash), despite 107 108 the high P recovery potential from these materials.

109 The main objectives of this research were thus:

110 1) to characterise biomass ashes from combustion of MBM or co-combustion of

111 poultry litter (PL) in UK biomass power plants (https://biofuelwatch.org.uk/wp-

112 <u>content/maps/uk-biomass.html</u>), and

113 2) to examine the potential and options for P recovery from these biomass ashes.

114 The bioavailability of P from biomass ashes and potential for its recovery from the biomass ashes depends on P speciation and matrix composition. The biomass ashes 115 were therefore characterised by multiple techniques, including elemental analysis, 116 thermogravimetric analysis (TGA), determination of crystalline phases by X-ray 117 powder diffraction (XRD), characterization of functional groups by Fourier transform 118 119 infrared spectroscopy (FTIR), and measurement of acid neutralization capacity (ANC) and pH-dependent P leachability, to understand the mechanisms responsible for 120 control of P solubility. P K-edge X-ray absorption near edge spectroscopy (XANES) 121 122 was used to examine the speciation of P in complex matrices without interference from irrelevant phases and irrespective of crystallinity. 123

124

2. Materials and methods

125 2.1 Materials

Five samples of biomass ash were collected from four different industrial-scale 126 biomass power plants in the UK that use different biomass types as the energy source. 127 The plants use moving grate incinerators with a combustion temperature of 850 °C, 128 dry discharge of bottom ash, and dry scrubbing of the flue gas. MBM1-BA and 129 130 MBM2-BA were bottom ashes collected from two different plants that combust MBM; MBM2-APCr was the fly ash from the second plant. PL1-BA and PL2-BA were both 131 bottom ashes from different power plants that co-combust PL. The moisture contents 132 133 of the biomass ashes were negligible (Bogush et al., 2018). The samples were ground to $< 250 \mu m$ using a ball mill and then stored in air-tight containers before use. 134

135 Reference materials used in the mineralogical investigation included a Ward's

Science Apatite Research Mineral (<u>www.wardsci.com</u>; Catalogue No. 470026-560), a
Moroccan apatite (carbonate apatite), and brushite (CaHPO₄·2H₂O, 99.0%, SigmaAldrich).

139 2.2 Biomass ash elemental composition and bioavailability of P

The biomass ashes were subjected to total digestion using HNO₃: HClO₄: H₂O₂ (v, 30%) = 5:5:3, v/v) (Leng et al., 2014) before chemical analysis for the elements of interest (Section 2.7). Separate extracts for P analysis (Section 2.7) were prepared by digestion with potassium persulfate at 150°C for 4.0 h.

Olsen's method has been widely used to evaluate the bioavailability of phosphorus (Olsen et al., 1954). The extraction was conducted in triplicate for all of the biomass samples and residues from leaching at mildly acidic pH (Section 2.5) by mixing 2.5 g ash with 50 mL 0.5 M of sodium bicarbonate (pH 8.5) and shaking for 30 min before separation of the extracts for analysis (Section 2.7).

149 2.3 Biomass ash mineralogy

The crystalline phases present in the biomass ashes and residues after leaching at mildly acidic pH (Section 2.5) were identified by XRD analysis on an XPERT-PRO diffractometer with an X-ray source of Cu K_{α} radiation at 40 KV and 30 mA. A scanning speed of 4 s per step and step size of 0.05° (2 θ) were used in the scanning range of 5°–70° (2 θ). The XRD data were analysed by using Jade software version 6.0 (Materials Data Inc., Livermore, USA).

Fourier transform infrared spectra (FTIR) of the biomass ashes, residues, and reference materials were obtained on a Thermo-Fischer Scientific Nicolet 670 spectrometer in the wavelength range of 400–4000 cm⁻¹.

Thermogravimetric analysis of the biomass ashes, residues, and reference materials was conducted by heating from room temperature to 1000 °C at a rate of 10 °C/min

161 under nitrogen atmosphere.

162 2.4 Phosphorus speciation

The speciation of P in the biomass ashes and residues after leaching at mild acidic 163 pH (Section 2.5) was assessed by comparing their P K-edge X-ray absorption near 164 edge structure (XANES) spectra with those of the reference materials. P K-edge 165 measurements were made at the Low Energy X-ray Absorption Spectroscopy (Lexas) 166 beamline of Louisiana State University's synchrotron research facility, the J. Bennett 167 Johnston, Sr. Center for Advanced Microstructures and Devices (CAMD), USA. 168 169 Lexas is a windowless beamline, i.e., with only a 13 µm think KatonTM window separating the ring from the experimental chamber. A University of Bonn-designed 170 Lemonnier type monochromator with InSb 111 crystals was used in measurements. 171 172 The measurements were made in fluorescence by diluting the sample as necessary with boron nitride to reduce self-absorption (Oxmann, 2014). A Ketek 150 mm² 173 silicon drift detector was used for fluorescence measurements. The white line of 174 175 reagent grade aluminum phosphate was used to calibrate the monochromator at 2152.8 eV. The parameters for the measurements were 2050 eV to 2110 eV with 5 eV 176 steps, 2110 eV to 2142 eV with 0.5 eV steps, 2142 eV to 2160 eV with 0.1 eV steps, 177 from 2160 to 2180 eV with 0.5 eV steps, and 2180 eV to 2250 eV with 1 eV steps. 178 179 The integration time was from 1 to 5 seconds for adequate counting statistics. The 180 spectra were analyzed with Athena in Demeter (Ravel and Newville, 2005).

181 2.5 *pH-dependent leaching*

The acid neutralization capacity (ANC) of the biomass ashes was measured to examine their pH responses to acid addition, and the consequent changes in the solubilities of their components of interest. This test involves adding increasing amounts of nitric acid to a series of 10 or more subsamples of the material under

investigation (Stegemann and Côté, 1991). A single series of 5.0 g subsamples was 186 weighed out for each of the biomass ashes and mixed with 30 mL of nitric acid 187 diluted with deionized water to a concentration from 0 to 3 N (up to 18 meq/g of 188 biomass ash) HNO₃. After 48h of end-over-end mixing at 30 rpm, the samples were 189 centrifuged, and the pH values and conductivities of all the supernatants were 190 measured before separation of the leachates for analysis. The solid residues 191 corresponding to leachates with mild acidic pH (6.2, 5.1, 5.9, 6.5, and 6.8 for MBM1-192 BA, MBM2-BA, MBM2-APCr, PL1-BA, and PL2-BA, respectively (Table S1) were 193 194 also analysed by XRD (Section 2.3) FTIR (Section 2.3), XANES (Section 2.4), and Olsen's method (Section 2.2) after drying at 60 °C. 195

196 2.6 Acid extraction for phosphorus recovery

To further assess acid extractability of P from the biomass ashes, the effects of contact time (0-48 h), liquid/solid ratio (4-20 mL/g of ash), acid type (HNO₃ and H₂SO₄), and acid load (6-16 meq H⁺/g ash) were investigated with the volume of the extraction liquid fixed at 30 mL. Experiments were conducted in duplicate. P recovery rate was defined as the percentage of P in the leachate as compared with that in the original ash.

203 2.7 Chemical analysis of extracts and leachates

Liquid samples from digestion, extraction, and wastewater treatment were filtered from the solids through 0.45 μ m membrane filters; leachates for metal analysis were acidified to pH 2 before storage.

- P in the filtered liquid samples was determined by colorimetry at 880 nm, by reaction with ammonium molybdate using ascorbic acid as the reducing agent (Murphy and Riley, 1962).
- 210 Metals, including Al, B, Bi, Ba, Ca, Co, Cr, Cu, Cd, Fe, K, Mg, Li, Mn, Na, Ni, Pb,
 - 9

Sr, and Zn, and P in the extracts from total digestion of the biomass ashes and the
ANC test leachates were determined by Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP-OES).
Anions in the ANC leachates, including F⁻, Cl⁻, Br⁻, NO₂⁻, NO₃⁻, PO₄³⁻ and SO₄²⁻,

were analysed by a Dionex AQUION Ion Chromatography (IC) before acidification

216 of the samples.

All chemical analyses were conducted in triplicate with reporting of mean values.

218 **3. Results and discussion**

219 3.1 Biomass ash elemental composition and bioavailability of P

The elemental compositions of the biomass ashes in Table 2 are typical for ashes from animal residue incineration (Bogush et al., 2018; Oshita et al., 2016; Vassilev et al., 2012; Zhang et al., 2002). Apart from P, the major elements are Al, Fe, K, Mg, Mn, and Na, with Ca as the most abundant element comprising 16-32% of the total ash.

The P concentrations of these ashes range from 8.3-13%, which is comparable to that of some natural phosphorus rocks [e.g., 30-40% P₂O₅; 13–17.5% P (Desmidt et al., 2015; Elouear et al., 2008)]. However, Fig. 2 shows that the contents of bioavailable P in the ashes are less than 800 mg P/kg ash, corresponding to <0.7% of the total P.

The contents of K and, especially, Mg, in the PL ashes are higher than those of the MBM ashes. Some differences between the compositions of ashes from different MBM incineration plants can also be observed, e.g., MBM1-BA has higher contents of Ca and P, and lower contents of K and Na compared to MBM2-BA, showing the effects of variations in the original MBM materials. Minor elements such as B, Zn, Sr, Ba, and Cu are in the range of 100-1100 mg/kg, while trace elements such as Bi, Cd,

- 236 Cr, Co, Li, Ni, and Pb are <100 mg/kg.
- 237 3.2 Biomass ash mineralogy

Fig. 1(a) shows that the dominant phase identified in the MBM ashes by XRD is 238 hydroxyapatite (HAP), which is consistent with the high contents of Ca and P. 239 Hydroxyapatite, with some carbonation, is the principal mineral in bone (e.g., Elliott, 240 2002), and increases in crystallinity with heating. Both β -tricalcium phosphate [β -241 $Ca_3(PO_4)_2$, β -TCP] and HAP were identified by XRD as the major phases in either 242 dried or calcined bones (Brod et al., 2015; Rajendran et al., 2013). XRD identified 243 potassium sodium calcium phosphate $[KNaCa_2(PO_4)_2]$ as the main phase in the PL 244 ashes. This phase is also identified as the major mineral phase after combustion of P 245 and Ca-bearing biomass at a temperature of 815 °C (Kongsomart et al., 2016). The 246 solubility of apatite varies significantly depending on its content of other anions (e.g., 247 $CO_3^{2^-}$, Cl⁻ or F⁻) (Magalhães and Williams, 2007), but Ca₅(PO₄)₃(OH), which has K_{sp} 248 = 3.98×10^{-59} (Chow, 2001; Delvasto et al., 2006) might be expected to have low 249 bioavailability, as was observed for the biomass ashes (Section 3.1). No data about 250 bioavailability was found for KNaCa₂(PO₄)₂. 251

A comparison of the Moroccan apatite FTIR spectrum with those of the ashes 252 [Fig. 1(b)] shows that all are dominated by the ca. 1030 cm⁻¹ (anti-symmetric stretch 253 Υ_3) band, with the Υ_1 (ca. 960 cm⁻¹) and symmetric stretch Υ_4 bands (F₂ bend 650-254 525 cm⁻¹) also being conspicuous; the resemblance to the reference material is most 255 obvious for MBM1-BA and MBM2-APCr. However, all phosphate bands show some 256 shift, indicating variations in composition, e.g., substitution of CO_3^{2-} in the crystal 257 structure. The CO_3^{2-} ion can be found in the channels (A type) of the hexagonal crystal 258 structure of apatite, or substitutes for the phosphate ion (B type). With B type 259 carbonate apatite, there is a doublet around 1430 cm⁻¹ (Fleet, 2009), as seen in the 260

Moroccan apatite. PL1-BA thus seems to contain carbonate apatite whereas the other 261 ashes showed only hydroxyapatite. The OH⁻ peak at 3420 cm⁻¹ in all FTIR spectra is 262 quite weak, but the derivative thermogravimetric (DTG) curves [Fig. 1(c)] show that 263 all ashes have mass loss peaks in the region 200 °C to 400 °C. A comparison with 264 apatite standards used in this study (not shown) and data from the literature suggests 265 this peak is from the OH in the apatite in the ashes. The DTG curves also have 266 doublets, which vary in strength depending on the biomass ash, in the region 600°C to 267 800°C, one of which is likely from the carbonate in the apatite structure, whereas the 268 269 other one is calcium carbonate (Peters et al., 2000).

Previous studies have also found hydroxyapatite and KNaCa₂(PO₄)₂ (Bogush et al., 2018; Coutand et al., 2008; Komiyama et al., 2013; Oshita et al., 2016; Sugiyama et al., 2016), but also other minerals, e.g., Ca₃(PO₄)₂ in ashes from MBM or animal manure combustion (Coutand et al., 2008; Sugiyama et al., 2016) and Ca₉MgK(PO₄)₇ in manure ashes (Komiyama et al., 2013; Oshita et al., 2016). XRD also showed portlandite [Ca(OH)₂] in the MBM ashes, which is

corroborated by the 3643 cm⁻¹ FTIR band, suggestive of OH⁻ in Ca(OH)₂ for all ashes but PL1-BA. The single similar carbonate band around 1430 cm⁻¹ (Υ_3) in the FTIR spectra of all ashes except PL1-BA is typical of calcite, corresponding to calcite (CaCO₃) peaks in the XRD patterns except PL ashes.

280 XRD indicates sulphate to be present as calcium sulphate (CaSO₄) in all MBM 281 ashes (Table 3), and arcanite (K₂SO₄) in the MBM2 and PL ashes. The FTIR spectra 282 of MBM2-BA and PL2-BA are unlike those of the other ashes due to higher amounts 283 of arcanite, which presents as peaks at 618 cm⁻¹, 1100 cm⁻¹ and 1197 cm⁻¹. Sulfate 284 breakdown may be responsible for the peak observed in the DTG at 931°C (MBM2-285 APCr).

286 XRD also shows quartz (SiO₂) in the PL ashes and MBM1-BA, and abundant 287 halite (NaCl) in MBM2-APCr and MBM2-BA.

288 3.3 Phosphorus speciation

Fig. 1(d) shows the phosphorus K-edge XANES spectra of the samples along 289 with that of the Ward's Science apatite. The white line position (A) of the latter is 290 2151.84 eV, while that of the ash samples ranges from 2151.67 eV to 2151.85 eV. The 291 phosphate white line is from resonance between 1s and higher energy t_2^* orbitals, 292 while the peak around 2168 eV is from the P-O bond. The location and intensity of 293 294 the C and D maxima depend on the composition and crystallinity of the phosphate phases (Ingall et al., 2011). These ashes thus have different phosphate compositions. 295 Linear combination fitting of the spectrum of the MBM1-BA ash shows it to be 296 principally composed of apatite, but the fit of apatite was not as good for the other 297 ashes. The inflection of the shoulder at ~2155 eV correlates with the Ca/P ratio of the 298 299 structure (Franke and Hormes, 1995); consequently, the PL ashes, which are indicated by XRD to contain $KNaCa_2(PO_4)_2$, appear to have a lower Ca/P ratio than the MBM 300 ashes, in which $Ca_5(PO_4)_3(OH)$ was identified as the main P-bearing mineral. 301

There are some contradictions when comparing mineralogy results obtained from different analytical techniques. The variance between mineralogical analyses can be expected when applying different techniques to very small samples, particularly for complex materials such as these. Mineral phases identified by XRD were used in the following discussions unless specified otherwise.

307 3.4 pH dependent leaching and characterisation of the leached residues

The leachate pH values resulting from the discrete acid loading (on the secondary ordinate in Figs. 3 and 4) suggest a small, near vertical, plateau corresponding to neutralisation of the abundant $Ca(OH)_2$ in the MBM ash at pH ~12; this plateau is absent for the PL ashes, which contain little $Ca(OH)_2$ (section 3.2).

A second pH plateau at ~7 may be attributable to several different phenomena. 312 Dissolution of the small component of calcite in the ashes, which will yield a pH 313 lower than that of 8.3 expected in equilibrium with the atmosphere since the leaching 314 tubes are sealed, likely contributes to this plateau. For the MBM ashes, the plateau 315 also reflects dissolution of $Ca_5(PO_4)_3(OH)$, which has an equilibrium pH of ~7.5 316 317 (based on the K_{sp} noted above). Perhaps most importantly, a phosphate buffer system will result from dissolution of the apatite, and, especially, $KNaCa_2(PO_4)_2$. The second 318 319 plateau is more apparent for the PL ashes, which had an acid neutralization capacity of 9-10 meq H^+/g to pH 4, whereas it was only 5-6 H^+ meq/g for the MBM ashes. 320 There is a third pH plateau, below pH 4. 321

Fig. 3 shows that sulfate, released at high pH by dissolution of K_2SO_4 , drops in concentration below pH 8, likely due to precipitation of gypsum (CaSO₄·2H₂O; $K_{sp} =$ 2.62 × 10⁻⁵; Harouaka et al., 2014), as Ca enters solution from calcite and the phosphate minerals (Fig. 4). Since there is little K_2SO_4 to dissolve from MBM1-BA, Ca is not precipitated and its leached concentration is therefore higher than for the other ashes.

Fig. 3 shows constant concentrations of chloride regardless of pH for each 328 biomass ash, consistent with the presence of NaCl identified by XRD. Na and K are 329 330 also initially released from NaCl and K₂SO₄, but their concentrations rise slightly as the pH falls in the MBM ash leachates, and increase dramatically below pH 8 in the 331 PL ash leachates. P (Fig. 4, and phosphate, Fig. 3) concentrations are seen to be low 332 above pH ~4, and then increase as the phosphate minerals dissolve with further acid 333 addition. Release of Na and K with P from dissolution of the KNaCa₂(PO₄)₂ in the PL 334 ashes would be expected, but the increases in their concentrations before the 335

concentration of P starts to rise suggest that the dissolution of $KNaCa_2(PO_4)_2$ is incongruent, with selective loss of K and Na, or that this mineral dissolves and reprecipitates, e.g., as brushite (CaHPO₄·2H₂O) (Johnsson and Nancollas, 1992).

Mg, Ba and Sr (Fig. S1) seem to be mainly released in association with the pH~7 339 plateau. They may substitute for Ca in calcite or phosphate minerals and are released 340 when those dissolve. Cu and Zn form phosphates of low solubility and are mainly 341 released below pH 4; the leaching rates of these elements were undetectable or at very 342 low level at pH 8-12 from MBM1-BA (Fig. S1), because of the relatively low total 343 344 contents of minor elements in this ash (Table 2). The concentrations of Fe were almost undetectable, and those of Al were negligible, in the leachates from the MBM ashes 345 and PL2-BA. Iron oxides have low solubility, and it is possible that 346 Fe₃(PO₄)₂·8H₂O/FePO₄, AlPO₄, Pb₅(PO₄)₃(OH)/Pb₃(PO₄)₂, and Zn₃(PO₄)₂, which 347 have low solubility, may exist in the original ashes or were formed as secondary 348 precipitates during the test (Deydier et al., 2003; Parhi et al., 2006; Wilfert et al., 349 2015). 350

XRD of the residues in Fig. 1(a) from leaching at mildly acidic pH (5.1-6.8; 351 Section 2.5) shows precipitation of CaHPO₄·2H₂O [K_{sp} = 2.57×10^{-7} ; (Chow, 2001)], 352 which forms under acidic conditions (Johnsson and Nancollas, 1992). Dorozhkin's 353 dissolution mechanism for hydroxyapatite (Eqs. 1–3) demonstrates that 354 Ca₅(PO₄)₃(OH) would produce Ca₃(PO₄)₂ (K_{sp} = 3.16×10^{-26} for α -Ca₃(PO₄)₂ and K_{sp} 355 = 1.26×10^{-29} for β -Ca₃(PO₄)₂ (Chow, 2001)) at the first stage and then addition of 356 additional acid would yield metastable CaHPO₄, and finally the dissolution of 357 CaHPO₄ (Dorozhkin, 2012; 1997). Brushite solubility can markedly rise with a 358 decrease in pH from 6 to 3 (Kuz'mina et al., 2013) and at lower pH it dissolves 359 linearly (Figs. 3 and 4). 360

$$361 \qquad 2Ca_{5}(PO_{4})_{3}(OH) + 2H^{+} \rightarrow 3Ca_{3}(PO_{4})_{2} + Ca^{2+} + 2H_{2}O \quad (1)$$

362
$$Ca_3(PO_4)_2 + 2H^+ \rightarrow 2CaHPO_4 + Ca^{2+}$$
 (2)

363
$$CaHPO_4 + H^+ \rightarrow H_2PO_4^- + Ca^{2+}$$

The presence of CaHPO₄·2H₂O in the residues after leaching at mildly acidic pH 364 (pH 5.1-6.8) was verified by multiple techniques. Fig. 1(a) shows that it dominates the 365 XRD patterns of the leached residues, while the peak intensities for $Ca_5(PO_4)_3(OH)$ in 366 MBM ashes are reduced and KNaCa₂(PO₄)₂ in PL ashes have almost disappeared. The 367 prominent peak around 1650 cm⁻¹ found in the FTIR spectra of all the leached 368 residues as seen in [Fig. 1 (b)] corresponds to the molecular H_2O peak from 369 CaHPO₄·2H₂O at 1645.48 cm⁻¹. The precipitation of CaHPO₄·2H₂O is also evident in 370 the DTG traces for the leached residues of all the ashes as a peak at ~183°C [Fig. 1 371 (c)], with the amount ranging from 21.6-24.2%. Finally, the P K-edge XANES spectra 372 [Fig. 1(d)] confirm that different phosphate phases are present in the leached residues 373 than the original ashes, although fitting to estimate the exact P composition is difficult 374 as several phosphate phases are present. Although CaHPO₄·2H₂O ($K_{sp} = 2.57 \times 10^{-7}$) 375 in the residues is more soluble than Ca_5(PO_4)_3(OH) (K_{sp} = 3.98 \times $10^{-59}),$ the 376 bioavailable P in the solid residues separated from the mildly acidic leachates 377 remained low at <1400 mg P/kg ash (Fig. 2). It is noteworthy that CaHPO₄ \cdot 2H₂O can 378 transform back to $Ca_5(PO_4)_3(OH)$ or $Ca_3(PO_4)_2$ in an alkaline and calcium-rich 379 environment (Štulajterová and Medvecký, 2008). 380

(3)

During leaching, the water-soluble NaCl, K_2SO_4 , and acid-soluble calcite and Ca(OH)₂ were not found in the leached residues, as shown in Fig. 1(a), but gypsum (CaSO₄·2H₂O) and SiO₂ remained, as they are acid-insensitive over the pH range studied. The absence of the 618 cm⁻¹ and 1195 cm⁻¹ bands in the FTIR spectra of the leached residues [Fig. 1(b)] indicate the dissolution of the sulfate phases. The 713 cm⁻¹ ¹ carbonate band from calcite is very weak to non-existent in the residues [Fig. 1(b)].
In the thermogravimetric analysis of the leached residues, all the mass loss occurred by 600°C, and the absence of a calcite peak [Fig. 1(c)] reflect complete dissolution of calcite at the lower pH.

To summarize, NaCl and K₂SO₄ present in ashes dissolved readily with water leaching. Other chemical components dissolved with decreasing pH or increasing acid addition. Alkaline CaCO₃ and Ca(OH)₂ were neutralized at the first plateau and followed by the dissolution of Ca₅(PO₄)₃(OH) and KNaCa₂(PO₄)₂ to produce CaHPO₄·2H₂O at pH~7, which continued to dissolve with releasing of P to the leachate from pH ~4. Mg, Ba and Sr mainly released in association with the pH~7 plateau while the release of Fe, Al, Zn, and Cu became evident at pH~4.

397 3.5 Phosphorus recovery from biomass ash

P release in the ANC test can be used to estimate the P recovery potential from the biomass ashes studied. Phosphorus recovery was found to be linearly dependent on the leachate pH below pH~4, attaining 40-50% at pH~3, and ~100% P recovery at pH~1 [Fig. S2(a)]. Determination of the acid consumption per unit of P recovered [Fig. S2(b)] is essential to assess the economic feasibility of the recovery process, and ranged from 9-14 meq H⁺/g ash, assuming that the other ashes follow the trend established to 100% recovery for PL1-BA.

Investigation of the contact time showed that P recovery reached 75-95% of its highest value within several minutes [Fig. S3(a)], but the pH needed several hours to reach steady state [Fig. S3(b)]. This implies that P could be recovered promptly before surplus acid is consumed by the solid ash residue.

409 Solid/liquid (S/L) ratio also plays a significant role in P recovery; less acid was
410 consumed per unit of P recovered at lower S/L ratios because of more efficient mixing

(Fig. S4). For example, results show that 10-20% less acid will be needed at S/L ratio
of 0.05, than at a S/L of 0.1, which is the ratio that has been widely used for P
dissolution from biomass ashes (Oshita et al., 2016; Sugiyama et al., 2016).
Unfortunately, a lower S/L ratio also produces a larger amount of leachate with a
lower P concentration, which could make the recycling of P and the subsequent
wastewater treatment much more difficult.

417 HNO₃ and H₂SO₄ were therefore applied at S/L 0.1, with a contact time of 2h, to assess the influence of the acid type on P recovery and acid consumption. H₂SO₄ 418 419 seems to be more efficient for P leaching from these biomass ashes compared with HNO₃ particularly at lower acid load (Fig. 5). During the H₂SO₄ process, the 420 precipitation of gypsum promotes the dissolution of apatite, and facilitates the 421 422 separation of the product. By comparison, separation of dissolved Ca(NO₃)₂ formed during HNO₃ leaching is difficult. At H_2SO_4 load of 14 meq H⁺/g ash, the acid 423 consumption is in the range of 3.2-5.3 mol $H^+/mol P$ (Fig. 5), which is comparable 424 425 with those reported in previous studies when animal manures or their derivatives (e.g., ashes) (Table 1) or sewage sludge ashes (Petzet et al., 2012) were used for P recovery. 426 Meanwhile, P recovery of ~90% or higher was achieved at this acid load. 427

428 3.6 Economic considerations

In the phosphorus industry, phosphoric acid is the basic starting raw material for production, which is normally produced from phosphate rock. The wet process is the most commonly used phosphoric acid production process, in which H_2SO_4 dissolves $Ca_5(PO_4)_3(F, Cl, OH)$, followed with purification and condensation to produce phosphoric acid (H_3PO_4) and byproduct phosphogypsum (Tayibi et al., 2009). $Ca_5(PO_4)_3F$ is the dominant component of natural phosphate rock and its dissolution mechanisms during wet-process phosphoric acid production can be described by Eqs. 436 4-7 (Dorozhkin, 1996), which are similar to those for $Ca_5(PO_4)_3(OH)$ (Eqs. 1-3). The

437 overall reaction can be described by Eq. 8 (Wu et al., 2018).

438
$$2Ca_5(PO_4)_3(F, OH) + 2H^+ \rightarrow 3Ca_3(PO_4)_2 + Ca^{2+} + 2HF, H_2O$$
 (4)

- 439 $Ca_3(PO_4)_2 + 2H^+ \rightarrow 2CaHPO_4 + Ca^{2+}$ (5)
- 440 $\operatorname{CaHPO}_4 + \operatorname{H}^+ \to \operatorname{H}_2\operatorname{PO}_4^- + \operatorname{Ca}^{2+}$ (6)
- 441 $H_2PO_4^- + H^+ \rightarrow H_3PO_4$

442 $Ca_{10}(PO_4)_6(F, OH)_2 + 10H_2SO_4 + nH_2O \rightarrow 10CaSO_4 \cdot nH_2O + 6H_3PO_4 + 2HF, H_2O$ (8)

(7)

The theoretical acid consumption for the wet-process phosphoric acid production 443 444 is 3.3 mol H⁺/mol P or 1.67 mol H₂SO₄/mol H₃PO₄. If the final product is H₂PO₄, the consumption drops to 2.3 mol H⁺/mol P, which is the lowest acid addition needed to 445 dissolve all P into the aqueous phase. However, the processes described by Eqs. 6 and 446 447 7 proceed at the same time; thus, the lowest theoretical acid consumption for P dissolution from $Ca_5(PO_4)_3(F, OH)$ would be 2.3-3.3 mol H⁺/mol P. Considering the 448 presence of minerals such as CaCO₃, MgCO₃, CaO, and MgO in natural phosphate 449 rock, the consumption would be >2.3-3.3 mol H⁺/mol P depending on the content of 450 acid-consuming components, which is comparable to that of dissolution of MBM 451 ashes (3.2-4.2 mol H⁺/mol P). Furthermore, the dissolution of MBM ashes (composed 452 of $Ca_5(PO_4)_3(OH)$) would not be complicated by the presence of fluorine, which is 453 454 abundant in phosphate rock. Therefore, P recovery from MBM ashes by direct acid 455 dissolution seems very promising and worth further investigation.

456

457 **4.** Conclusions

458 Hydroxyapatite $[Ca_5(PO_4)_3(OH)]$ and potassium sodium calcium phosphate 459 $[KNaCa_2(PO_4)_2]$ seem to be the main mineral phases in the MBM and PL ashes, 460 respectively, with low bioavailability of P. Phosphate leaching is pH dependent and 461 significant recovery was experienced at pH <4. Major heavy metals such as Cu and 462 Zn demonstrated similar leaching behavior as P. A substantial proportion of the P 463 remaining in the solid residues after acid leaching was transformed to brushite, but its 464 bioavailability increased only slightly.

It appears that secondary P, for industrial production of fertilizer or other chemicals, could be recovered from MBM and PL ashes by acid dissolution (particularly by H_2SO_4), with acid consumption as low as 3.2-5.3 mol H⁺/mol P and up to 90% P recovery. Particularly, the consumption when recovering P from MBM (3.2-4.2 mol H⁺/mol P) is close to that required for P recovery from natural phosphate rock.

470

471 Acknowledgment

The research was financially supported by the British Council (Newton Fund) and the China Scholarship Council [File No. 201503780024]. The authors wish to thank Dr. Judith Zhou for helping with the IC analysis, Catherine Unsworth for running the ICP-OES analysis, and Dr. Shi Shi for carrying out the XRD analysis. We also gratefully acknowledge the biomass fuel plants, who chose to be anonymous, for providing the ash samples.

478

479 **References**

- Adams, P.W., Hammond, G.P., McManus, M.C., Mezzullo, W.G., 2011. Barriers to
 and drivers for UK bioenergy development. Renew. Sustain. Energy Rev. 15,
 1217–1227. doi:10.1016/j.rser.2010.09.039
- Akinola, O., 2013. Overview of Phosphorus Recovery and Recycling From Selected
 Waste Streams Protecting Phosphorus as a Resource. Imperial College London.
- Azuara, M., Kersten, S.R.A., Kootstra, A.M.J., 2013. Recycling phosphorus by fast
 pyrolysis of pig manure: Concentration and extraction of phosphorus combined
 with formation of value-added pyrolysis products. Biomass Bioenerg. 49, 171–
 180. doi:10.1016/j.biombioe.2012.12.010
- Bogush, A.A., Stegemann, J.A., Williams, R., Wood, I.G., 2018. Element speciation
 in UK biomass power plant residues based on composition, mineralogy,
 microstructure and leaching. Fuel 211, 712–725. doi:10.1016/j.fuel.2017.09.103

492	Bolan, N.S., Szogi, A.A., Chuasavathi, T., Seshadri, B., Rothrock, M.J.,
493	Panneerselvam, P., 2010. Uses and management of poultry litter. Worlds. Poult.
494	Sci. J. 66, 673–698. doi:10.1017/S0043933910000656
495	Brod, E., Øgaard, A.F., Hansen, E., Wragg, D., Haraldsen, T.K., Krogstad, T., 2015.
496	Waste products as alternative phosphorus fertilisers part I: inorganic P species
497	affect fertilisation effects depending on soil pH. Nutr. Cycl. Agroecosystems
498	103, 167–185. doi:10.1007/s10705-015-9734-1
499	Cela, S., Berenguer, P., Santiveri, F., Lloveras, J., 2010. Potential phosphorus,
500	potassium, and magnesium surpluses in an irrigated maize monoculture fertilized
501	with Pig slurry. Agron. J. 102, 96–102. doi:10.2134/agronj2009.0139
502	Chow, L.C., 2001. Solubility of Calcium Phosphates. Octacalcium Phosphate 1, 94–
503	111. doi:10.1159/000061650
504	Cohen, Y., 2009. Phosphorus dissolution from ash of incinerated sewage sludge and
505	animal carcasses using sulphuric acid. Environ. Technol. 30, 1215–1226.
506	doi:10.1080/09593330903213879
507	Cooper, J., 2014. Managing phosphorus in the UK water industry to increase national
508	resource security. The University of Birmingham.
509	Cooper, J., Carliell-Marquet, C., 2013. A substance flow analysis of phosphorus in the
510	UK food production and consumption system. Resour. Conserv. Recycl. 74, 82–
511	100. doi:10.1016/j.resconrec.2013.03.001
512	Cordell, D., 2010. The story of phosphorus: Sustainability implications of global
513	phosphorus scarcity for food security. Linköping University.
514	Cordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: Global food
515	security and food for thought. Glob. Environ. Chang.
516	doi:10.1016/j.gloenvcha.2008.10.009
517	Cordell, D., Rosemarin, A., Schroder, J.J., Smit, A.L., 2011. Towards global
518	phosphorus security: A systems framework for phosphorus recovery and reuse
519	options. Chemosphere 84, 747–758. doi:10.1016/j.chemosphere.2011.02.032
520	Coutand, M., Cyr, M., Deydier, E., Guilet, R., Clastres, P., 2008. Characteristics of
521	industrial and laboratory meat and bone meal ashes and their potential
522	applications. J. Hazard. Mater. 150, 522–532. doi:10.1016/j.jhazmat.2007.04.133
523	Delvasto, P., Valverde, A., Ballester, A., Igual, J.M., Munoz, J.A., Gonzalez, F.,
524	Blazquez, M.L., Garcia, C., 2006. Characterization of brushite as a re-
525	crystallization product formed during bacterial solubilization of hydroxyapatite
526	in batch cultures. Soil Biol. Biochem. 38, 2645–2654.
527	doi:10.1016/j.soilbio.2006.03.020
528	Demirbas, A., 2004. Combustion characteristics of different biomass fuels. Prog.
529	Energy Combust. Sci. 30, 219–230. doi:10.1016/j.pecs.2003.10.004
530	Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete,
531	W., Rabaey, K., Meesschaert, B., 2015. Global Phosphorus Scarcity and Full-
532	Scale P-Recovery Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 45,
533	336–384. doi:10.1080/10643389.2013.866531
534	Deydier, E., Guilet, R., Sharrock, P., 2003. Beneficial use of meat and bone meal
535	combustion residue: "An efficient low cost material to remove lead from
536	aqueous effluent." J. Hazard. Mater. 101, 55–64. doi:10.1016/S0304-
537	3894(03)00137-7
538	DOROZINKIN, S. V, 2012. Dissolution mechanism of calcium apatites in acids: A review
539	of interature. World J. Methodol. 2, $1-1/.$ doi:10.5662/Wjm.V2.11.1
540	Dorozinkin, S. V, 1997. Surface Reactions of Apatite Dissolution. J. Colloid Interface
5/11	SCL 191, 489–497, 001:10,1000/1C18,1997,4942

Dorozhkin, S. V, 1996. Fundamentals of the Wet-Process Phosphoric Acid Production 542 . 1. Kinetics and Mechanism of the Phosphate Rock Dissolution. Ind. Eng. 543 Chem. Res. 35, 4328-4335. doi:10.1021/ie960092u 544 Ekpo, U., Ross, A.B., Camargo-Valero, M.A., Fletcher, L.A., 2016. Influence of pH 545 on hydrothermal treatment of swine manure: Impact on extraction of nitrogen 546 and phosphorus in process water. Bioresour. Technol. 214, 637-644. 547 Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F., Montiel, A., 2008. 548 Heavy metal removal from aqueous solutions by activated phosphate rock. J. 549 Hazard. Mater. 156, 412-420. doi:10.1016/j.jhazmat.2007.12.036 550 551 Elser, J., Bennett, E., 2011. A broken biogeochemical cycle. Nature 478, 29-31. doi:10.1038/478029a 552 Elliott, J. C., 2002. Calcium Phosphate Biominerals. Rev. Mineral. Geochem. 48(1): 553 554 427-453. Fleet, M. E., 2009. Infrared spectra of carbonate apatites: v2-Region bands. 555 Biomaterials 30(8): 1473-1481. 556 Franke, R., Hormes, J., 1995. The P K-near edge absorption spectra of phosphates. 557 Phys. B Phys. Condens. Matter 216, 85-95. doi:10.1016/0921-4526(95)00446-7 558 Grzmil, B., Wronkowski, J., 2006. Removal of phosphates and fluorides from 559 industrial wastewater. Desalination 189, 261-268. 560 doi:10.1016/j.desal.2005.07.008 561 Gunkel-Grillon, P., Roth, E., Laporte-Magoni, C., Le Mestre, M., 2015. Effects of 562 long term raw pig slurry inputs on nutrient and metal contamination of tropical 563 volcanogenic soils, Uvéa Island (South Pacific). Sci. Total Environ. 533, 339-46. 564 doi:10.1016/j.scitotenv.2015.06.110 565 Harouaka, K., Eisenhauer, A., Fantle, M.S., 2014. Experimental investigation of Ca 566 isotopic fractionation during abiotic gypsum precipitation. Geochim. 567 Cosmochim. Acta 129, 157-176. doi:10.1016/j.gca.2013.12.004 568 Havukainen, J., Nguyen, M.T., Hermann, L., Horttanainen, M., Mikkilä, M., 569 Deviatkin, I., Linnanen, L., 2016. Potential of phosphorus recovery from sewage 570 sludge and manure ash by thermochemical treatment. Waste Manag. 49, 221-571 229. doi:10.1016/j.wasman.2016.01.020 572 He, Z., Pagliari, P.H., Waldrip, H.M., 2016. Applied and Environmental Chemistry of 573 Animal Manure: A Review. Pedosphere 26, 779-816. doi:10.1016/S1002-574 0160(15)60087-X 575 Heilmann, S.M., Molde, J.S., Timler, J.G., Wood, B.M., Mikula, A.L., Vozhdayev, G. 576 577 V, Colosky, E.C., Spokas, K. a, Valentas, K.J., 2014. Phosphorus Reclamation through Hydrothermal Carbonization of Animal Manures. Environ. Sci. Technol. 578 doi:10.1021/es501872k 579 580 Huang, H., Yuan, X., 2015. Recent progress in the direct liquefaction of typical biomass. Prog. Energy Combust. Sci. 49, 59-80. doi:10.1016/j.pecs.2015.01.003 581 IFDC, 2010. World Phosphate Rock Reserves and Resources. International Fertilizer 582 Development Centre. 583 Ingall, E. D., Brandes J. A., Diaz J. M., de Jonge M. D., Paterson D., McNulty I., 584 Elliott W.C., Northrup P., 2011. Phosphorus K-edge XANES spectroscopy of 585 mineral standards. J. Synchrotron Radiat 18: 189-197. 586 Johnsson, M.S.-A., Nancollas, G.H., 1992. The Role of Brushite and Octacalcium 587 Phosphate in Apatite Formation. Crit. Rev. Oral Biol. Med. 3, 61-82. 588 589 doi:10.1177/10454411920030010601 Kaikake, K., Sekito, T., Dote, Y., 2009. Phosphate recovery from phosphorus-rich 590 solution obtained from chicken manure incineration ash. Waste Manag. 29, 591

 Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., 2015. Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359. doi:10.1016/j.resconrec.2015.09.007 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biorech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Li, J., Yuan, X., Li, J., Hang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleamer bio-oil and bio-char. B	592	1084–1088. doi:10.1016/j.wasman.2008.09.008
 Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359. doi:10.1016/j.resconrec.2015.09.007 Koniyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biottech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biottech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of	593	Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., 2015.
 treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359. doi:10.1016/j.resconrec.2015.09.007 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040	594	Evaluation of local and national effects of recovering phosphorus at wastewater
 347–359. doi:10.1016/j.resconrec.2015.09.007 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Mi	595	treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105,
 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Or Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Sol	596	347–359. doi:10.1016/j.resconrec.2015.09.007
 ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass-Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Pa	597	Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of
 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biotrech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Para	598	ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15,
 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biotrech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016	599	106–110. doi:10.1007/s10163-012-0089-2
 Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Mur	600	Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass-
 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biottech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biotrech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determ	601	Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables
 Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Remediation, Sevage Suluge solution method for the determination of phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modifie	602	5, 12–22.
 gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	603	Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally
 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim. Acta 27, 31–36. doi:10.1016/S0003- 	604	gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123-
 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim. Acta 27, 31–36. doi:10.1016/S0003- 	605	5130. doi:10.1016/j.biortech.2010.01.143
 medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	606	Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of
 Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	607	medium chemistry on the solubility and morphology of brushite crystals. Geol.
 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	608	Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072
 aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphatic in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	609	Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in
 Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	610	aqueous phase derived from hydrothermal liquefaction process. Bioresour.
 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	611	Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121
 Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	612	Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b.
 sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	613	Beneficial synergistic effect on bio-oil production from co-liquefaction of
 doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	614	sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56.
 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	615	doi:10.1016/j.biortech.2017.12.018
 and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	616	Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration
 sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	617	and transformation behavior of heavy metals during the liquefaction process of
 doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	618	sewage sludge. Bioresour. Technol. 167, 144–150.
 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	619	doi:10.1016/j.biortech.2014.05.119
 Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	620	Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016.
 liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	621	Study on demetalization of sewage sludge by sequential extraction before
 Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	622	liquefaction for the production of cleaner bio-oil and bio-char. Bioresour.
 Magalhäes, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	623	Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040
 Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	624	Magalhaes, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and
 Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	625	Environmental Remediation, in: Thermodynamics, Solubility and Environmental
 Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	626	Issues. pp. $327-340$.
 Parameswaran, P., Stoltzrus, J., Westernoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	627	Mayer, B.K., Baker, L.A., Boyer, I.H., Drechsel, P., Gifford, M., Hanjra, M.A.,
 629 Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. 630 doi:10.1021/acs.est.6b01239 631 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination 632 of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	628	Value of Phoenhouse Decouvery, Environ, Sci. Technol, 50, 6606, 6620
630 doi:10.1021/acs.est.0001259 631 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination 632 of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003-	629	doi:10.1021/oog.ogt.ch01220
631 Murphy, J., Kney, J.P., 1962. A modified single solution method for the determination 632 of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003-	630	001:10.1021/acs.est.0001239 Mumby I. Dilay, I.D. 1062. A modified single solution method for the determination
-532 OF DIOSDIALE IN NATURAL WALES. ANAL, UNITE ACIA 27, 51–50, GOUTO, 1010/50005-	631	Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination
222 $2670(00)89444.5$	632	of phosphate in natural waters. Anal. Chini. Acta 27, 51–50. doi:10.1010/50005- 2670(00)88444.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	633	Niu V. Tan H. Hui S. 2016. Ash related issues during biomass combustion:
Alkali induced slagging silicate melt induced slagging (ash fusion)	034 625	Alkali induced slagging silicate malt induced slagging (ash fusion)
Alkall-induced slagging, sincate inen-induced slagging (asil fusion),	635	Arkan-induced stagging, sincate men-induced stagging (asir fusion),
Energy Combust Sci 52, 1, 61, doi:10.1016/j.pecs.2015.00.003	627	Energy Combust Sci 52, 1, 61, doi:10.1016/j.pecs.2015.00.003
638 Olsen S.R. Cole C. V. Watandhe F. Dean I. 1954 Estimation of Available	638	Olsen S.R. Cole C. V. Watandhe F. Dean I. 1954 Estimation of Available
639 Phosphorus in Soil by Extraction with sodium Ricarbonate U.S. Den Agric	639	Phosphorus in Soil by Extraction with sodium Ricarbonate U.S. Den Agric
640 939	640	939
641 Olson, B.M., Bremer, E., McKenzie, R.H., Bennett, R., 2010, Phosphorus	641	Olson, B.M., Bremer, E., McKenzie, R.H., Bennett, R., 2010. Phosphorus

642	accumulation and leaching in two irrigated soils with incremental rates of cattle
643	manure. Can. J. Soil Sci. 90, 355–362. doi:10.4141/CJSS09025
644	Oshita, K., Sun, X., Kawaguchi, K., Shiota, K., Takaoka, M., Matsukawa, K.,
645	Fujiwara, T., 2016. Aqueous leaching of cattle manure incineration ash to
646	produce a phosphate enriched fertilizer. J. Mater. Cycles Waste Manag. 18, 608-
647	617. doi:10.1007/s10163-016-0528-6
648	Oxmann, J. F., 2014. Technical Note: An X-ray absorption method for the
649	identification of calcium phosphate species using peak-height ratios.
650	Biogeosciences 11(8): 2169-2183.
651	Parhi, P., Ramanan, A., Ray, A.R., 2006. Hydrothermal Synthesis of nanocrystalline
652	powders of alkaline-earth hydroxyapatites, $A10(PO4)6(OH)2$ (A = Ca, Sr and
653	Ba). J. Mater. Sci. 41, 1455–1458. doi:10.1007/s10853-006-7460-4
654	Pettersson, A., Åmand, LE., Steenari, BM., 2008a. Leaching of ashes from co-
655	combustion of sewage sludge and wood—Part II: The mobility of metals during
656	phosphorus extraction. Biomass Bioenerg. 32, 236–244.
657	doi:10.1016/j.biombioe.2007.09.006
658	Pettersson, A., Åmand, LE., Steenari, BM., 2008b. Leaching of ashes from co-
659	combustion of sewage sludge and wood—Part I: Recovery of phosphorus.
660	Biomass Bioenerg. 32, 224–235. doi:10.1016/j.biombioe.2007.09.016
661	Peters, F., Schwarz K., Epple M., 2000. The structure of bone studied with
662	synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal
663	analysis. Thermochim. Acta 361(1-2): 131-138.
664	Petzet, S., Peplinski, B., Cornel, P., 2012. On wet chemical phosphorus recovery from
665	sewage sludge ash by acidic or alkaline leaching and an optimized combination
666	of both. Water Res. 46, 3769–3780. doi:10.1016/j.watres.2012.03.068
667	Ragauskas, A.J., 2006. The Path Forward for Biofuels and Biomaterials. Science. 311,
668	484-489. doi:10.1126/science.1114736
669	Rajendran, J., Gialanella S., Aswath P. B., 2013. XANES analysis of dried and
670	calcined bones. Mat. Sci. Eng. C-Mater. 33(7): 3968-3979.
671	Ravel, B., Newville M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis
672	for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12:
673	537-541.
674	Rittmann, B.E., Mayer, B., Westerhoff, P., Edwards, M., 2011. Capturing the lost
675	phosphorus. Chemosphere 84, 846–853. doi:10.1016/j.chemosphere.2011.02.001
676	Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., 2011. A
677	review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 15, 2262–
678	2289. doi:10.1016/j.rser.2011.02.015
679	Sattari, S.Z., Bouwman, A.F., Giller, K.E., van Ittersum, M.K., 2012. Residual soil
680	phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc.
681	Natl. Acad. Sci. U. S. A. 109, 6348-53. doi:10.1073/pnas.1113675109
682	Simons, A., Solomon, D., Chibssa, W., Blalock, G., Lehmann, J., 2014. Filling the
683	phosphorus fertilizer gap in developing countries. Nat. Geosci. 7, 3–3.
684	doi:10.1038/ngeo2049
685	Stegemann, J.A., Côté, P.L., 1991. Acid Neutralization Capacity, Appendix B:
686	Investigation of test methods for solidified waste evaluation—a cooperative
687	program, Manuscript Series TS-15, Environment Canada Wastewater
688	Technology Centre, Burlington, Ontario Canada.
689	Štulajterová, R., Medvecký, Ľ., 2008. Effect of calcium ions on transformation
690	brushite to hydroxyapatite in aqueous solutions. Colloids Surfaces A
691	Physicochem. Eng. Asp. 316, 104–109. doi:10.1016/j.colsurfa.2007.08.036

692	Sugiyama, S., Kitora, R., Kinoshita, H., Nakagawa, K., Katoh, M., Nakasaki, K.,
693	2016. Recovery of Calcium Phosphates from Composted Chicken Manure. J.
694	Chem. Eng. Japan 49, 224–228. doi:10.1252/jcej.15we111
695	Szögi, A.A., Vanotti, M.B., Hunt, P.G., 2015. Phosphorus recovery from pig manure
696	solids prior to land application. J. Environ. Manage. 157, 1–7.
697	Tan, Z., Lagerkvist, A., 2011. Phosphorus recovery from the biomass ash: A review.
698	Renew. Sustain. Energy Rev. 15, 3588–3602. doi:10.1016/j.rser.2011.05.016
699	Tavibi, H., Choura, M., López, F.A., Alguacil, F.J., López-Delgado, A., 2009.
700	Environmental impact and management of phosphogypsum. J. Environ. Manage.
701	90, 2377–2386. doi:10.1016/j.jenvman.2009.03.007
702	Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R.,
703	Schindler, D., Schlesinger, W.H., Simberloff, D., Swackhamer, D., 2001.
704	Forecasting agriculturally driven global environmental change. Science 292.
705	281–284. doi:10.1126/science.1057544
706	Tilman, D., Lehman, C., 1987, Human-caused environmental change : Impacts on
707	plant diversity and evolution. Proc. Natl. Acad. Sci. U. S. A. 98, 5433–5440.
708	doi:10.1073/pnas.091093198
709	United States Geological Survey 2019, Phosphate Rock Mineral Commodity
710	Summaries n 122-123 Available from: https://prd-wret s3-us-west-
711	2 amazonaws com/assets/palladium/production/atoms/files/mcs-2019-phosp.pdf
712	[accessed 17/6/19]
713	Vassilev S V Baxter D Andersen L K Vassileva C G 2013a An overview of
714	the composition and application of biomass ash. Part 2. Potential utilisation
715	technological and ecological advantages and challenges Fuel 105, 19–39
716	doi:10.1016/i fuel 2012.10.001
717	Vassilev, S. V. Baxter, D. Andersen, L.K. Vassileva, C.G. 2013b, An overview of
718	the composition and application of biomass ash Part 1 Phase-mineral and
719	chemical composition and classification Fuel 105 40–76
720	doi:10.1016/i fuel 2012.09.041
721	Vassilev, S. V. Baxter, D. Andersen, L.K. Vassileva, C.G. Morgan, T.J. 2012, An
722	overview of the organic and inorganic phase composition of biomass. Fuel 94 1–
723	33. doi:10.1016/i fuel 2011.09.030
724	Vassiley S V Baxter D Vassileya C G 2013c An overview of the behaviour of
725	biomass during combustion: Part L Phase-mineral transformations of organic and
726	inorganic matter. Fuel 112, 391–449 doi:10.1016/i fuel 2013.05.043
727	Wilfert P. Kumar P.S. Korving L. Witkamp G.L. Van Loosdrecht, M.C.M. 2015
728	The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus
729	from Wastewater: A Review Environ Sci Technol 49 9400–9414
730	doi:10.1021/acs.est.5b00150
731	Williams A.G. Leinonen, L. Kyriazakis, L. 2016, Environmental benefits of using
732	turkey litter as a fuel instead of a fertiliser. J. Clean. Prod. 113, 167–175
733	doi:10.1016/i.jclepro.2015.11.044
734	Wu S Wang L Zhao L Zhang P El-shall H 2018 Recovery of rare earth
735	elements from phosphate rock by hydrometallurgical processes – A critical
736	review Chem Eng I 335 774–800 doi:10.1016/j.cei 2017.10.143
737	Zhang, F.S., Yamasaki, S., Kimura, K., 2002. Waste ashes for use in agricultural
738	production: II Contents of minor and trace metals Sci Total Environ 286 111_
739	118. doi:10.1016/S0048-9697(01)00968-8
740	
741	

742	
743	Figure captions
744	
745	Fig. 1 X-ray powder diffraction (XRD) (a), Fourier transform infrared spectra (FTIR,
746	normalised) (b), Thermogravimetric (TG/DTG) (c), and P K-edge X-ray
747	absorption near edge structure (XANES, normalised) (d) analyses of meat and
748	bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr),
749	and poultry litter co-combustion (PL) bottom ash and residues from leaching of
750	the same residues at pH 5.1-6.8. The reference materials Morrocan apatite
751	(carbonate apatite), brushite, and apatite (hydroxyapatite) were all analyzed by
752	FTIR, TG/DTG, and XANES, but only the references most relevant to each
753	figure were presented; XRD references were from the XRD pattern database
754	(International Centre for Diffraction Data, ICDD).
755	Fig. 2 Concentration of available P in meat and bone meal (MBM) bottom ashes (BA)
756	and air pollution control residue (APCr), and poultry litter co-combustion (PL)
757	bottom ash and residues from leaching of the same residues at pH 5.1-6.8. Error
758	bars represent the standard deviation of three replicates.
759	Fig. 3 Anion leaching from meat and bone meal (MBM) bottom ashes (BA) and air
760	pollution control residue (APCr), and poultry litter co-combustion (PL) bottom
761	ash in the Acid Neutralization Capacity test (circled points are those for which
762	the leached residue was characterised).
763	Fig. 4 Major element leaching from meat and bone meal (MBM) bottom ashes (BA)
764	and air pollution control residue (APCr), and poultry litter co-combustion (PL)
765	bottom ash in the Acid Neutralization Capacity test (circled points are those for
766	which the leached residue was characterised).

- Fig. 5 P recovery (average of duplicates) from meat and bone meal (MBM) bottom
- ashes (BA) and air pollution control residue (APCr), and poultry litter co-
- combustion (PL) bottom ash using H_2SO_4 and HNO_3 , (a) Acid consumption
- comparison between H_2SO_4 and HNO_3 ; (b) P recovery percentage using H_2SO_4 .
- TT1 Leaching time 2 h; Solid/liquid ratio 0.1.

Characterisation of ashes from waste biomass power plants

and phosphorus recovery

Lijian Leng, Anna A. Bogush, Amitava Roy, Julia A. Stegemann*

Highlights

- Meat and bone meal (MBM) and poultry litter (PL) biomass ashes were characterised
- P is mainly $Ca_5(PO_4)_3(OH)$ in MBM ashes and $KNaCa_2(PO_4)_2$ in PL ashes
- P recovery by acid dissolution seems feasible and promising
- Optimized acid consumption for ~90% P recovery is as low as 3.2-5.3 mol H⁺/mol P

1	Characterisation of ashes from waste biomass power plants
2	and phosphorus recovery
3	
4	Lijian Leng ^a , Anna A. Bogush ^b , Amitava Roy ^c , Julia A. Stegemann ^{b*}
5	
6	^a School of Resources, Environmental & Chemical Engineering and Key Laboratory
7	of Poyang Lake Environment and Resource Utilization, Ministry of Education,
8	Nanchang University, Nanchang, 330031, China
9	^b Centre for Resource Efficiency & the Environment, Department of Civil,
10	Environmental & Geomatic Engineering, University College London, Chadwick
11	Building, Gower Street, London WC1E 6BT, UK
12	^c J. Bennett Johnston, Sr., Center for Advanced Microstructures & Devices, Louisiana
13	State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806, USA
14	
15	* Corresponding author. Tel.: +44 (0)2076797370
16	E-mail address: j.stegemann@ucl.ac.uk (J.A. Stegemann)
17	

Abstract: Biowastes, such as meat and bone meal (MBM), and poultry litter (PL), are 19 used as energy sources for industrial combustion in the UK. However, the biomass 20 ashes remaining after combustion, which contain nutrients such as phosphorus, are 21 22 landfilled rather than utilised. To promote their utilisation, biomass ashes from industries were characterised in terms of their elemental and mineral compositions, 23 phosphorus extractability, and pH-dependent leachability. These ashes were highly 24 25 alkaline (pH as high as 13), and rich in calcium and phosphorus. The P bioavailabilities in the ash evaluated by Olsen's extraction were low. Hydroxyapatite and 26 27 potassium sodium calcium phosphate were identified by X-ray powder diffraction (XRD) as the major phases in the MBM and PL ashes, respectively. The leaching of P, 28 29 Ca, and many other elements was pH dependent, with considerable increase in 30 leaching below about pH 6. P recovery by acid dissolution (e.g., with H₂SO₄) seems feasible and promising; the optimized acid consumption for ~90% P recovery could 31 be as low as $3.2-5.3 \text{ mol H}^+/\text{mol P}$. 32 33 **Keywords**: incineration; fertiliser; phosphorus recovery; acid neutralisation capacity; animal manure 34

36 **1. Introduction**

Thermal or biological processing of biomass produces heat, electricity, or 37 liquid/gas/solid bioenergy with low net greenhouse gas emissions (Ragauskas, 2006). 38 39 Wood and wood wastes, agricultural crops and their waste byproducts, animal wastes, wastes from food processing, aquatic plants, and algae are the most widely used 40 biomass energy resources (Bogush et al., 2018; Demirbas, 2004; Huang and Yuan, 41 42 2015; Leng et al., 2018a, 2018b, 2016; Saidur et al., 2011). These biomass resources, which are currently often treated as organic wastes, can contribute significantly to the 43 44 generation of renewable energy and reduction of greenhouse gas (GHG) emissions, reducing the dependency on fossil fuels (Ragauskas, 2006). The UK, for example, sets 45 a target of 80% GHG emissions reduction over 1990 levels by 2050; the bioenergy 46 47 industry contributes significantly to the achievement of these goals (Adams et al., 2011). 48

Consequently, recovery of energy from biomass by combustion or production of 49 fuel, e.g., from straw, meat and bone meal, poultry litter, wood shavings, and horse 50 bedding, is increasing in the UK, due to the mounting production of these wastes, 51 52 their energy contents, and the environmental benefits of their utilisation (Oshita et al., 2016; Williams et al., 2016). However, management of ash has emerged to be one of 53 54 the problems impeding the development of biomass combustion for energy (Niu et al., 55 2016). Since biomass ashes are rich in the nutrients phosphorus and potassium, they have been considered for use as a soil amendment on agricultural land. However, the 56 low P availability, high alkalinity (e.g., pH 13 or higher), and heavy metal contents in 57 58 these ashes may restrict their direct application (Niu et al., 2016; Vassilev et al., 2013a; Bogush et al., 2018). Environmental pollution from nutrient and contaminant 59 leaching can occur, and result in negative effects on crops, soils and water, when 60

ashes are applied under soil and climatic conditions that increase environmental 61 mobility of contaminants (Pettersson et al., 2008a; 2008b), or mobilise nutrients but 62 do not favour their agronomic utilization, e.g., due to excessive application or an 63 imbalance in the nutrient proportions (Bolan et al., 2010; Codling et al., 2002; Szögi 64 et al., 2015; Williams et al., 2016). However, it is worth mentioning that 65 environmental pollution by nutrients and contaminants has also been observed for soil 66 fertilized with animal residues (e.g., pig slurry) directly (Cela et al., 2010; Gunkel-67 Grillon et al., 2015; Olson et al., 2010). 68

69 Meanwhile, the widespread global use of P fertiliser over the past century and increasing demand for P by agriculture threatens to deplete sources of P-bearing rock 70 within the next century (Cordell et al., 2009; 2010; Mayer et al., 2016; Sattari et al., 71 72 2012; Tilman et al., 2001; Tilman and Lehman, 1987). Even ignoring rapidly increasing P demand, the estimated static lifetime of phosphorus reserves is only 73 around 350 years (IFDC, 2010). Furthermore, the remaining reserves are highly 74 75 geographically concentrated (Elser and Bennett, 2011), with around 71% located in Morocco and the Western Sahara (USGS, 2019). Therefore, sourcing P from the P 76 consumption lifecycle and developing appropriate P recovery technology, especially 77 in places with a scarcity of natural P-bearing rock such as the UK, is important to 78 79 meet the increasing demand for this element (Cooper, 2014; Cordell et al., 2011; 80 Mayer et al., 2016; Rittmann et al., 2011). Phosphorus recovery from animal residues (e.g., poultry litter, meat and bone meal) and sewage sludge, and their incineration 81 ashes, is one of the most promising ways to increase the P resource security and 82 83 secure future food production (Akinola, 2013; Bogush et al., 2018; Havukainen et al., 2016; Kleemann et al., 2015; Mayer et al., 2016; Tan and Lagerkvist, 2011). Cooper 84 and Carliell-Marquet (2013) estimated that the P recovery potential from animal 85

manure produced in the UK could be higher than national net total P imports; in
general, the P value of meat and bone meal/animal bone alone is likely of a similar
order of magnitude to that of a country's phosphate fertiliser imports (Cooper and
Carliell-Marquet, 2013; Simons et al., 2014).

Hence, recovery of P from biomass ashes to produce more effective and 90 environmentally benign P fertilizer is of increasing interest for both research and 91 92 practice. Animal manures and manure derivatives such as ash and char have been widely explored for P recovery, with measurement of varied recovery rates and acid 93 94 demands because of differences between the sources (e.g., P concentration 4.0-139 g kg⁻¹) and process conditions (e.g., different acid types and loads, and solid/liquid 95 ratios) (Table 1). For example, P recovery rates around 90% were obtained for animal 96 97 manure char, but at acid loads in the region of 100 mol H⁺/mol P recovered (Azuara et al., 2013; Heilmann et al., 2014). Lower acid loads (3-10 mol H⁺/mol P recovered) 98 were found effective for P recovery from manures and their ashes (Cohen, 2009; 99 100 Kaikake et al., 2009; Kuligowski and Poulsen, 2010), which is similar to the recovery rates and acid loads for P recovery from sewage sludge ash (Petzet et al., 2012). In 101 addition to P content and recovery conditions, P speciation in the different P-102 containing resources (wastes) also influences P recovery performance. Elemental, 103 104 mineral and chemical compositions have been used to describe P speciation in these 105 materials (Bogush et al., 2018; Vassilev et al., 2013a, 2013b, 2013c), but few studies have related these results to P recovery performance. Furthermore, little has been 106 reported regarding meat and bone meal (MBM) and its derivatives (e.g., ash), despite 107 108 the high P recovery potential from these materials.

109 The main objectives of this research were thus:

110 1) to characterise biomass ashes from combustion of MBM or co-combustion of

111 poultry litter (PL) in UK biomass power plants (https://biofuelwatch.org.uk/wp-

112 <u>content/maps/uk-biomass.html</u>), and

113 2) to examine the potential and options for P recovery from these biomass ashes.

114 The bioavailability of P from biomass ashes and potential for its recovery from the biomass ashes depends on P speciation and matrix composition. The biomass ashes 115 were therefore characterised by multiple techniques, including elemental analysis, 116 thermogravimetric analysis (TGA), determination of crystalline phases by X-ray 117 powder diffraction (XRD), characterization of functional groups by Fourier transform 118 119 infrared spectroscopy (FTIR), and measurement of acid neutralization capacity (ANC) and pH-dependent P leachability, to understand the mechanisms responsible for 120 control of P solubility. P K-edge X-ray absorption near edge spectroscopy (XANES) 121 122 was used to examine the speciation of P in complex matrices without interference from irrelevant phases and irrespective of crystallinity. 123

124

2. Materials and methods

125 2.1 Materials

Five samples of biomass ash were collected from four different industrial-scale 126 biomass power plants in the UK that use different biomass types as the energy source. 127 The plants use moving grate incinerators with a combustion temperature of 850 °C, 128 dry discharge of bottom ash, and dry scrubbing of the flue gas. MBM1-BA and 129 130 MBM2-BA were bottom ashes collected from two different plants that combust MBM; MBM2-APCr was the fly ash from the second plant. PL1-BA and PL2-BA were both 131 bottom ashes from different power plants that co-combust PL. The moisture contents 132 133 of the biomass ashes were negligible (Bogush et al., 2018). The samples were ground to $< 250 \mu m$ using a ball mill and then stored in air-tight containers before use. 134

135 Reference materials used in the mineralogical investigation included a Ward's

Science Apatite Research Mineral (<u>www.wardsci.com</u>; Catalogue No. 470026-560), a
Moroccan apatite (carbonate apatite), and brushite (CaHPO₄·2H₂O, 99.0%, SigmaAldrich).

139 2.2 Biomass ash elemental composition and bioavailability of P

The biomass ashes were subjected to total digestion using HNO₃: HClO₄: H₂O₂ (v, 30%) = 5:5:3, v/v) (Leng et al., 2014) before chemical analysis for the elements of interest (Section 2.7). Separate extracts for P analysis (Section 2.7) were prepared by digestion with potassium persulfate at 150°C for 4.0 h.

Olsen's method has been widely used to evaluate the bioavailability of phosphorus (Olsen et al., 1954). The extraction was conducted in for all of the biomass samples and residues from leaching at mildly acidic pH (Section 2.5) by mixing 2.5 g ash with 50 mL 0.5 M of sodium bicarbonate (pH 8.5) and shaking for 30 min before separation of the extracts for analysis (Section 2.7).

149 2.3 Biomass ash mineralogy

The crystalline phases present in the biomass ashes and residues after leaching at mildly acidic pH (Section 2.5) were identified by XRD analysis on an XPERT-PRO diffractometer with an X-ray source of Cu K_{α} radiation at 40 KV and 30 mA. A scanning speed of 4 s per step and step size of 0.05° (2 θ) were used in the scanning range of 5°–70° (2 θ). The XRD data were analysed by using Jade software version 6.0 (Materials Data Inc., Livermore, USA).

Fourier transform infrared spectra (FTIR) of the biomass ashes, residues, and reference materials were obtained on a Thermo-Fischer Scientific Nicolet 670 spectrometer in the wavelength range of 400–4000 cm⁻¹.

Thermogravimetric analysis of the biomass ashes, residues, and reference materials was conducted by heating from room temperature to 1000 °C at a rate of 10 °C/min

161 under nitrogen atmosphere.

162 2.4 Phosphorus speciation

The speciation of P in the biomass ashes and residues after leaching at mild acidic 163 pH (Section 2.5) was assessed by comparing their P K-edge X-ray absorption near 164 edge structure (XANES) spectra with those of the reference materials. P K-edge 165 measurements were made at the Low Energy X-ray Absorption Spectroscopy (Lexas) 166 beamline of Louisiana State University's synchrotron research facility, the J. Bennett 167 Johnston, Sr. Center for Advanced Microstructures and Devices (CAMD), USA. 168 169 Lexas is a windowless beamline, i.e., with only a 13 µm think KatonTM window separating the ring from the experimental chamber. A University of Bonn-designed 170 Lemonnier type monochromator with InSb 111 crystals was used in measurements. 171 172 The measurements were made in fluorescence by diluting the sample as necessary with boron nitride to reduce self-absorption (Oxmann, 2014). A Ketek 150 mm² 173 silicon drift detector was used for fluorescence measurements. The white line of 174 175 reagent grade aluminum phosphate was used to calibrate the monochromator at 2152.8 eV. The parameters for the measurements were 2050 eV to 2110 eV with 5 eV 176 steps, 2110 eV to 2142 eV with 0.5 eV steps, 2142 eV to 2160 eV with 0.1 eV steps, 177 from 2160 to 2180 eV with 0.5 eV steps, and 2180 eV to 2250 eV with 1 eV steps. 178 179 The integration time was from 1 to 5 seconds for adequate counting statistics. The 180 spectra were analyzed with Athena in Demeter (Ravel and Newville, 2005).

181 2.5 *pH-dependent leaching*

The acid neutralization capacity (ANC) of the biomass ashes was measured to examine their pH responses to acid addition, and the consequent changes in the solubilities of their components of interest. This test involves adding increasing amounts of nitric acid to a series of 10 or more subsamples of the material under

investigation (Stegemann and Côté, 1991). A single series of 5.0 g subsamples was 186 weighed out for each of the biomass ashes and mixed with 30 mL of nitric acid 187 diluted with deionized water to a concentration from 0 to 3 N (up to 18 meq/g of 188 biomass ash) HNO₃. After 48h of end-over-end mixing at 30 rpm, the samples were 189 centrifuged, and the pH values and conductivities of all the supernatants were 190 measured before separation of the leachates for analysis. The solid residues 191 corresponding to leachates with mild acidic pH (6.2, 5.1, 5.9, 6.5, and 6.8 for MBM1-192 BA, MBM2-BA, MBM2-APCr, PL1-BA, and PL2-BA, respectively (Table S1) were 193 194 also analysed by XRD (Section 2.3) FTIR (Section 2.3), XANES (Section 2.4), and Olsen's method (Section 2.2) after drying at 60 °C. 195

196 2.6 Acid extraction for phosphorus recovery

To further assess acid extractability of P from the biomass ashes, the effects of contact time (0-48 h), liquid/solid ratio (4-20 mL/g of ash), acid type (HNO₃ and H₂SO₄), and acid load (6-16 meq H⁺/g ash) were investigated with the volume of the extraction liquid fixed at 30 mL. Experiments were conducted in duplicate. P recovery rate was defined as the percentage of P in the leachate as compared with that in the original ash.

203 2.7 Chemical analysis of extracts and leachates

Liquid samples from digestion, extraction, and wastewater treatment were filtered from the solids through 0.45 μ m membrane filters; leachates for metal analysis were acidified to pH 2 before storage.

- P in the filtered liquid samples was determined by colorimetry at 880 nm, by reaction with ammonium molybdate using ascorbic acid as the reducing agent (Murphy and Riley, 1962).
- 210 Metals, including Al, B, Bi, Ba, Ca, Co, Cr, Cu, Cd, Fe, K, Mg, Li, Mn, Na, Ni, Pb,
 - 9

Sr, and Zn, and P in the extracts from total digestion of the biomass ashes and the
ANC test leachates were determined by Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP-OES).
Anions in the ANC leachates, including F⁻, Cl⁻, Br⁻, NO₂⁻, NO₃⁻, PO₄³⁻ and SO₄²⁻,
were analysed by a Dionex AQUION Ion Chromatography (IC) before acidification

of the samples.

All chemical analyses were conducted in triplicate with reporting of mean values.

218 **3. Results and discussion**

219 3.1 Biomass ash elemental composition and bioavailability of P

The elemental compositions of the biomass ashes in Table 2 are typical for ashes from animal residue incineration (Bogush et al., 2018; Oshita et al., 2016; Vassilev et al., 2012; Zhang et al., 2002). Apart from P, the major elements are Al, Fe, K, Mg, Mn, and Na, with Ca as the most abundant element comprising 16-32% of the total ash.

The P concentrations of these ashes range from 8.3-13%, which is comparable to that of some natural phosphorus rocks [e.g., 30-40% P₂O₅; 13–17.5% P (Desmidt et al., 2015; Elouear et al., 2008)]. However, Fig. 2 shows that the contents of bioavailable P in the ashes are less than 800 mg P/kg ash, corresponding to <0.7% of the total P.

The contents of K and, especially, Mg, in the PL ashes are higher than those of the MBM ashes. Some differences between the compositions of ashes from different MBM incineration plants can also be observed, e.g., MBM1-BA has higher contents of Ca and P, and lower contents of K and Na compared to MBM2-BA, showing the effects of variations in the original MBM materials. Minor elements such as B, Zn, Sr, Ba, and Cu are in the range of 100-1100 mg/kg, while trace elements such as Bi, Cd,

- 236 Cr, Co, Li, Ni, and Pb are <100 mg/kg.
- 237 3.2 Biomass ash mineralogy

Fig. 1(a) shows that the dominant phase identified in the MBM ashes by XRD is 238 hydroxyapatite (HAP), which is consistent with the high contents of Ca and P. 239 Hydroxyapatite, with some carbonation, is the principal mineral in bone (e.g., Elliott, 240 2002), and increases in crystallinity with heating. Both β -tricalcium phosphate [β -241 $Ca_3(PO_4)_2$, β -TCP] and HAP were identified by XRD as the major phases in either 242 dried or calcined bones (Brod et al., 2015; Rajendran et al., 2013). XRD identified 243 potassium sodium calcium phosphate $[KNaCa_2(PO_4)_2]$ as the main phase in the PL 244 ashes. This phase is also identified as the major mineral phase after combustion of P 245 and Ca-bearing biomass at a temperature of 815 °C (Kongsomart et al., 2016). The 246 solubility of apatite varies significantly depending on its content of other anions (e.g., 247 $CO_3^{2^-}$, Cl⁻ or F⁻) (Magalhães and Williams, 2007), but Ca₅(PO₄)₃(OH), which has K_{sp} 248 = 3.98×10^{-59} (Chow, 2001; Delvasto et al., 2006) might be expected to have low 249 bioavailability, as was observed for the biomass ashes (Section 3.1). No data about 250 bioavailability was found for KNaCa₂(PO₄)₂. 251

A comparison of the Moroccan apatite FTIR spectrum with those of the ashes 252 [Fig. 1(b)] shows that all are dominated by the ca. 1030 cm⁻¹ (anti-symmetric stretch 253 Υ_3) band, with the Υ_1 (ca. 960 cm⁻¹) and symmetric stretch Υ_4 bands (F₂ bend 650-254 525 cm⁻¹) also being conspicuous; the resemblance to the reference material is most 255 obvious for MBM1-BA and MBM2-APCr. However, all phosphate bands show some 256 shift, indicating variations in composition, e.g., substitution of CO_3^{2-} in the crystal 257 structure. The CO_3^{2-} ion can be found in the channels (A type) of the hexagonal crystal 258 structure of apatite, or substitutes for the phosphate ion (B type). With B type 259 carbonate apatite, there is a doublet around 1430 cm⁻¹ (Fleet, 2009), as seen in the 260

Moroccan apatite. PL1-BA thus seems to contain carbonate apatite whereas the other 261 ashes showed only hydroxyapatite. The OH⁻ peak at 3420 cm⁻¹ in all FTIR spectra is 262 quite weak, but the derivative thermogravimetric (DTG) curves [Fig. 1(c)] show that 263 all ashes have mass loss peaks in the region 200 °C to 400 °C. A comparison with 264 apatite standards used in this study (not shown) and data from the literature suggests 265 this peak is from the OH in the apatite in the ashes. The DTG curves also have 266 doublets, which vary in strength depending on the biomass ash, in the region 600°C to 267 800°C, one of which is likely from the carbonate in the apatite structure, whereas the 268 269 other one is calcium carbonate (Peters et al., 2000).

Previous studies have also found hydroxyapatite and KNaCa₂(PO₄)₂ (Bogush et al., 2018; Coutand et al., 2008; Komiyama et al., 2013; Oshita et al., 2016; Sugiyama et al., 2016), but also other minerals, e.g., Ca₃(PO₄)₂ in ashes from MBM or animal manure combustion (Coutand et al., 2008; Sugiyama et al., 2016) and Ca₉MgK(PO₄)₇ in manure ashes (Komiyama et al., 2013; Oshita et al., 2016). XRD also showed portlandite [Ca(OH)₂] in the MBM ashes, which is

corroborated by the 3643 cm⁻¹ FTIR band, suggestive of OH⁻ in Ca(OH)₂ for all ashes but PL1-BA. The single similar carbonate band around 1430 cm⁻¹ (Υ_3) in the FTIR spectra of all ashes except PL1-BA is typical of calcite, corresponding to calcite (CaCO₃) peaks in the XRD patterns except PL ashes.

280 XRD indicates sulphate to be present as calcium sulphate (CaSO₄) in all MBM 281 ashes (Table 3), and arcanite (K₂SO₄) in the MBM2 and PL ashes. The FTIR spectra 282 of MBM2-BA and PL2-BA are unlike those of the other ashes due to higher amounts 283 of arcanite, which presents as peaks at 618 cm⁻¹, 1100 cm⁻¹ and 1197 cm⁻¹. Sulfate 284 breakdown may be responsible for the peak observed in the DTG at 931°C (MBM2-285 APCr).

286 XRD also shows quartz (SiO₂) in the PL ashes and MBM1-BA, and abundant 287 halite (NaCl) in MBM2-APCr and MBM2-BA.

288 3.3 Phosphorus speciation

Fig. 1(d) shows the phosphorus K-edge XANES spectra of the samples along 289 with that of the Ward's Science apatite. The white line position (A) of the latter is 290 2151.84 eV, while that of the ash samples ranges from 2151.67 eV to 2151.85 eV. The 291 phosphate white line is from resonance between 1s and higher energy t_2^* orbitals, 292 while the peak around 2168 eV is from the P-O bond. The location and intensity of 293 294 the C and D maxima depend on the composition and crystallinity of the phosphate phases (Ingall et al., 2011). These ashes thus have different phosphate compositions. 295 Linear combination fitting of the spectrum of the MBM1-BA ash shows it to be 296 principally composed of apatite, but the fit of apatite was not as good for the other 297 ashes. The inflection of the shoulder at ~2155 eV correlates with the Ca/P ratio of the 298 299 structure (Franke and Hormes, 1995); consequently, the PL ashes, which are indicated by XRD to contain $KNaCa_2(PO_4)_2$, appear to have a lower Ca/P ratio than the MBM 300 ashes, in which $Ca_5(PO_4)_3(OH)$ was identified as the main P-bearing mineral. 301

There are some contradictions when comparing mineralogy results obtained from different analytical techniques. The variance between mineralogical analyses can be expected when applying different techniques to very small samples, particularly for complex materials such as these. Mineral phases identified by XRD were used in the following discussions unless specified otherwise.

307 3.4 pH dependent leaching and characterisation of the leached residues

The leachate pH values resulting from the discrete acid loading (on the secondary ordinate in Figs. 3 and 4) suggest a small, near vertical, plateau corresponding to neutralisation of the abundant $Ca(OH)_2$ in the MBM ash at pH ~12; this plateau is absent for the PL ashes, which contain little $Ca(OH)_2$ (section 3.2).

A second pH plateau at ~7 may be attributable to several different phenomena. 312 Dissolution of the small component of calcite in the ashes, which will yield a pH 313 lower than that of 8.3 expected in equilibrium with the atmosphere since the leaching 314 tubes are sealed, likely contributes to this plateau. For the MBM ashes, the plateau 315 also reflects dissolution of $Ca_5(PO_4)_3(OH)$, which has an equilibrium pH of ~7.5 316 317 (based on the K_{sp} noted above). Perhaps most importantly, a phosphate buffer system will result from dissolution of the apatite, and, especially, $KNaCa_2(PO_4)_2$. The second 318 319 plateau is more apparent for the PL ashes, which had an acid neutralization capacity of 9-10 meq H^+/g to pH 4, whereas it was only 5-6 H^+ meq/g for the MBM ashes. 320 There is a third pH plateau, below pH 4. 321

Fig. 3 shows that sulfate, released at high pH by dissolution of K_2SO_4 , drops in concentration below pH 8, likely due to precipitation of gypsum (CaSO₄·2H₂O; $K_{sp} =$ 2.62 × 10⁻⁵; Harouaka et al., 2014), as Ca enters solution from calcite and the phosphate minerals (Fig. 4). Since there is little K_2SO_4 to dissolve from MBM1-BA, Ca is not precipitated and its leached concentration is therefore higher than for the other ashes.

Fig. 3 shows constant concentrations of chloride regardless of pH for each 328 biomass ash, consistent with the presence of NaCl identified by XRD. Na and K are 329 330 also initially released from NaCl and K₂SO₄, but their concentrations rise slightly as the pH falls in the MBM ash leachates, and increase dramatically below pH 8 in the 331 PL ash leachates. P (Fig. 4, and phosphate, Fig. 3) concentrations are seen to be low 332 above pH ~4, and then increase as the phosphate minerals dissolve with further acid 333 addition. Release of Na and K with P from dissolution of the KNaCa₂(PO₄)₂ in the PL 334 ashes would be expected, but the increases in their concentrations before the 335

concentration of P starts to rise suggest that the dissolution of $KNaCa_2(PO_4)_2$ is incongruent, with selective loss of K and Na, or that this mineral dissolves and reprecipitates, e.g., as brushite (CaHPO₄·2H₂O) (Johnsson and Nancollas, 1992).

Mg, Ba and Sr (Fig. S1) seem to be mainly released in association with the pH~7 339 plateau. They may substitute for Ca in calcite or phosphate minerals and are released 340 when those dissolve. Cu and Zn form phosphates of low solubility and are mainly 341 released below pH 4; the leaching rates of these elements were undetectable or at very 342 low level at pH 8-12 from MBM1-BA (Fig. S1), because of the relatively low total 343 344 contents of minor elements in this ash (Table 2). The concentrations of Fe were almost undetectable, and those of Al were negligible, in the leachates from the MBM ashes 345 and PL2-BA. Iron oxides have low solubility, and it is possible that 346 Fe₃(PO₄)₂·8H₂O/FePO₄, AlPO₄, Pb₅(PO₄)₃(OH)/Pb₃(PO₄)₂, and Zn₃(PO₄)₂, which 347 have low solubility, may exist in the original ashes or were formed as secondary 348 precipitates during the test (Deydier et al., 2003; Parhi et al., 2006; Wilfert et al., 349 2015). 350

XRD of the residues in Fig. 1(a) from leaching at mildly acidic pH (5.1-6.8; 351 Section 2.5) shows precipitation of CaHPO₄·2H₂O [K_{sp} = 2.57×10^{-7} ; (Chow, 2001)], 352 which forms under acidic conditions (Johnsson and Nancollas, 1992). Dorozhkin's 353 dissolution mechanism for hydroxyapatite (Eqs. 1–3) demonstrates that 354 Ca₅(PO₄)₃(OH) would produce Ca₃(PO₄)₂ (K_{sp} = 3.16×10^{-26} for α -Ca₃(PO₄)₂ and K_{sp} 355 = 1.26×10^{-29} for β -Ca₃(PO₄)₂ (Chow, 2001)) at the first stage and then addition of 356 additional acid would yield metastable CaHPO₄, and finally the dissolution of 357 CaHPO₄ (Dorozhkin, 2012; 1997). Brushite solubility can markedly rise with a 358 decrease in pH from 6 to 3 (Kuz'mina et al., 2013) and at lower pH it dissolves 359 linearly (Figs. 3 and 4). 360

$$361 \qquad 2Ca_5(PO_4)_3(OH) + 2H^+ \rightarrow 3Ca_3(PO_4)_2 + Ca^{2+} + 2H_2O \quad (1)$$

362
$$Ca_3(PO_4)_2 + 2H^+ \rightarrow 2CaHPO_4 + Ca^{2+}$$
 (2)

363
$$CaHPO_4 + H^+ \rightarrow H_2PO_4^- + Ca^{2+}$$

The presence of CaHPO₄·2H₂O in the residues after leaching at mildly acidic pH 364 (pH 5.1-6.8) was verified by multiple techniques. Fig. 1(a) shows that it dominates the 365 XRD patterns of the leached residues, while the peak intensities for $Ca_5(PO_4)_3(OH)$ in 366 MBM ashes are reduced and KNaCa₂(PO₄)₂ in PL ashes have almost disappeared. The 367 prominent peak around 1650 cm⁻¹ found in the FTIR spectra of all the leached 368 residues as seen in [Fig. 1 (b)] corresponds to the molecular H_2O peak from 369 CaHPO₄·2H₂O at 1645.48 cm⁻¹. The precipitation of CaHPO₄·2H₂O is also evident in 370 the DTG traces for the leached residues of all the ashes as a peak at ~183°C [Fig. 1 371 (c)], with the amount ranging from 21.6-24.2%. Finally, the P K-edge XANES spectra 372 [Fig. 1(d)] confirm that different phosphate phases are present in the leached residues 373 than the original ashes, although fitting to estimate the exact P composition is difficult 374 as several phosphate phases are present. Although CaHPO₄·2H₂O ($K_{sp} = 2.57 \times 10^{-7}$) 375 in the residues is more soluble than Ca_5(PO_4)_3(OH) (K_{sp} = 3.98 \times $10^{-59}),$ the 376 bioavailable P in the solid residues separated from the mildly acidic leachates 377 remained low at <1400 mg P/kg ash (Fig. 2). It is noteworthy that CaHPO₄ \cdot 2H₂O can 378 transform back to $Ca_5(PO_4)_3(OH)$ or $Ca_3(PO_4)_2$ in an alkaline and calcium-rich 379 environment (Štulajterová and Medvecký, 2008). 380

(3)

During leaching, the water-soluble NaCl, K_2SO_4 , and acid-soluble calcite and Ca(OH)₂ were not found in the leached residues, as shown in Fig. 1(a), but gypsum (CaSO₄·2H₂O) and SiO₂ remained, as they are acid-insensitive over the pH range studied. The absence of the 618 cm⁻¹ and 1195 cm⁻¹ bands in the FTIR spectra of the leached residues [Fig. 1(b)] indicate the dissolution of the sulfate phases. The 713 cm⁻¹ ¹ carbonate band from calcite is very weak to non-existent in the residues [Fig. 1(b)].
In the thermogravimetric analysis of the leached residues, all the mass loss occurred by 600°C, and the absence of a calcite peak [Fig. 1(c)] reflect complete dissolution of calcite at the lower pH.

To summarize, NaCl and K₂SO₄ present in ashes dissolved readily with water leaching. Other chemical components dissolved with decreasing pH or increasing acid addition. Alkaline CaCO₃ and Ca(OH)₂ were neutralized at the first plateau and followed by the dissolution of Ca₅(PO₄)₃(OH) and KNaCa₂(PO₄)₂ to produce CaHPO₄·2H₂O at pH~7, which continued to dissolve with releasing of P to the leachate from pH ~4. Mg, Ba and Sr mainly released in association with the pH~7 plateau while the release of Fe, Al, Zn, and Cu became evident at pH~4.

397 3.5 Phosphorus recovery from biomass ash

P release in the ANC test can be used to estimate the P recovery potential from the biomass ashes studied. Phosphorus recovery was found to be linearly dependent on the leachate pH below pH~4, attaining 40-50% at pH~3, and ~100% P recovery at pH~1 [Fig. S2(a)]. Determination of the acid consumption per unit of P recovered [Fig. S2(b)] is essential to assess the economic feasibility of the recovery process, and ranged from 9-14 meq H⁺/g ash, assuming that the other ashes follow the trend established to 100% recovery for PL1-BA.

Investigation of the contact time showed that P recovery reached 75-95% of its highest value within several minutes [Fig. S3(a)], but the pH needed several hours to reach steady state [Fig. S3(b)]. This implies that P could be recovered promptly before surplus acid is consumed by the solid ash residue.

409 Solid/liquid (S/L) ratio also plays a significant role in P recovery; less acid was
410 consumed per unit of P recovered at lower S/L ratios because of more efficient mixing

(Fig. S4). For example, results show that 10-20% less acid will be needed at S/L ratio
of 0.05, than at a S/L of 0.1, which is the ratio that has been widely used for P
dissolution from biomass ashes (Oshita et al., 2016; Sugiyama et al., 2016).
Unfortunately, a lower S/L ratio also produces a larger amount of leachate with a
lower P concentration, which could make the recycling of P and the subsequent
wastewater treatment much more difficult.

417 HNO₃ and H₂SO₄ were therefore applied at S/L 0.1, with a contact time of 2h, to assess the influence of the acid type on P recovery and acid consumption. H₂SO₄ 418 419 seems to be more efficient for P leaching from these biomass ashes compared with HNO₃ particularly at lower acid load (Fig. 5). During the H₂SO₄ process, the 420 precipitation of gypsum promotes the dissolution of apatite, and facilitates the 421 422 separation of the product. By comparison, separation of dissolved Ca(NO₃)₂ formed during HNO₃ leaching is difficult. At H_2SO_4 load of 14 meq H⁺/g ash, the acid 423 consumption is in the range of 3.2-5.3 mol $H^+/mol P$ (Fig. 5), which is comparable 424 425 with those reported in previous studies when animal manures or their derivatives (e.g., ashes) (Table 1) or sewage sludge ashes (Petzet et al., 2012) were used for P recovery. 426 Meanwhile, P recovery of ~90% or higher was achieved at this acid load. 427

428 3.6 Economic considerations

In the phosphorus industry, phosphoric acid is the basic starting raw material for production, which is normally produced from phosphate rock. The wet process is the most commonly used phosphoric acid production process, in which H_2SO_4 dissolves $Ca_5(PO_4)_3(F, Cl, OH)$, followed with purification and condensation to produce phosphoric acid (H_3PO_4) and byproduct phosphogypsum (Tayibi et al., 2009). $Ca_5(PO_4)_3F$ is the dominant component of natural phosphate rock and its dissolution mechanisms during wet-process phosphoric acid production can be described by Eqs. 436 4-7 (Dorozhkin, 1996), which are similar to those for $Ca_5(PO_4)_3(OH)$ (Eqs. 1-3). The

437 overall reaction can be described by Eq. 8 (Wu et al., 2018).

438
$$2Ca_5(PO_4)_3(F, OH) + 2H^+ \rightarrow 3Ca_3(PO_4)_2 + Ca^{2+} + 2HF, H_2O$$
 (4)

- 439 $Ca_3(PO_4)_2 + 2H^+ \rightarrow 2CaHPO_4 + Ca^{2+}$ (5)
- 440 $\operatorname{CaHPO}_4 + \operatorname{H}^+ \to \operatorname{H}_2\operatorname{PO}_4^- + \operatorname{Ca}^{2+}$ (6)
- 441 $H_2PO_4^- + H^+ \rightarrow H_3PO_4$

442 $Ca_{10}(PO_4)_6(F, OH)_2 + 10H_2SO_4 + nH_2O \rightarrow 10CaSO_4 \cdot nH_2O + 6H_3PO_4 + 2HF, H_2O$ (8)

(7)

The theoretical acid consumption for the wet-process phosphoric acid production 443 444 is 3.3 mol H⁺/mol P or 1.67 mol H₂SO₄/mol H₃PO₄. If the final product is H₂PO₄, the consumption drops to 2.3 mol H⁺/mol P, which is the lowest acid addition needed to 445 dissolve all P into the aqueous phase. However, the processes described by Eqs. 6 and 446 447 7 proceed at the same time; thus, the lowest theoretical acid consumption for P dissolution from $Ca_5(PO_4)_3(F, OH)$ would be 2.3-3.3 mol H⁺/mol P. Considering the 448 presence of minerals such as CaCO₃, MgCO₃, CaO, and MgO in natural phosphate 449 rock, the consumption would be >2.3-3.3 mol H⁺/mol P depending on the content of 450 acid-consuming components, which is comparable to that of dissolution of MBM 451 ashes (3.2-4.2 mol H⁺/mol P). Furthermore, the dissolution of MBM ashes (composed 452 of $Ca_5(PO_4)_3(OH)$) would not be complicated by the presence of fluorine, which is 453 454 abundant in phosphate rock. Therefore, P recovery from MBM ashes by direct acid 455 dissolution seems very promising and worth further investigation.

456

457 **4.** Conclusions

458 Hydroxyapatite $[Ca_5(PO_4)_3(OH)]$ and potassium sodium calcium phosphate 459 $[KNaCa_2(PO_4)_2]$ seem to be the main mineral phases in the MBM and PL ashes, 460 respectively, with low bioavailability of P. Phosphate leaching is pH dependent and 461 significant recovery was experienced at pH <4. Major heavy metals such as Cu and 462 Zn demonstrated similar leaching behavior as P. A substantial proportion of the P 463 remaining in the solid residues after acid leaching was transformed to brushite, but its 464 bioavailability increased only slightly.

It appears that secondary P, for industrial production of fertilizer or other chemicals, could be recovered from MBM and PL ashes by acid dissolution (particularly by H_2SO_4), with acid consumption as low as 3.2-5.3 mol H⁺/mol P and up to 90% P recovery. Particularly, the consumption when recovering P from MBM (3.2-4.2 mol H⁺/mol P) is close to that required for P recovery from natural phosphate rock.

470

471 Acknowledgment

The research was financially supported by the British Council (Newton Fund) and the China Scholarship Council [File No. 201503780024]. The authors wish to thank Dr. Judith Zhou for helping with the IC analysis, Catherine Unsworth for running the ICP-OES analysis, and Dr. Shi Shi for carrying out the XRD analysis. We also gratefully acknowledge the biomass fuel plants, who chose to be anonymous, for providing the ash samples.

478

479 **References**

- Adams, P.W., Hammond, G.P., McManus, M.C., Mezzullo, W.G., 2011. Barriers to
 and drivers for UK bioenergy development. Renew. Sustain. Energy Rev. 15,
 1217–1227. doi:10.1016/j.rser.2010.09.039
- Akinola, O., 2013. Overview of Phosphorus Recovery and Recycling From Selected
 Waste Streams Protecting Phosphorus as a Resource. Imperial College London.
- Azuara, M., Kersten, S.R.A., Kootstra, A.M.J., 2013. Recycling phosphorus by fast
 pyrolysis of pig manure: Concentration and extraction of phosphorus combined
 with formation of value-added pyrolysis products. Biomass Bioenerg. 49, 171–
 180. doi:10.1016/j.biombioe.2012.12.010
- Bogush, A.A., Stegemann, J.A., Williams, R., Wood, I.G., 2018. Element speciation
 in UK biomass power plant residues based on composition, mineralogy,
 microstructure and leaching. Fuel 211, 712–725. doi:10.1016/j.fuel.2017.09.103

492	Bolan, N.S., Szogi, A.A., Chuasavathi, T., Seshadri, B., Rothrock, M.J.,
493	Panneerselvam, P., 2010. Uses and management of poultry litter. Worlds. Poult.
494	Sci. J. 66, 673–698. doi:10.1017/S0043933910000656
495	Brod, E., Øgaard, A.F., Hansen, E., Wragg, D., Haraldsen, T.K., Krogstad, T., 2015.
496	Waste products as alternative phosphorus fertilisers part I: inorganic P species
497	affect fertilisation effects depending on soil pH. Nutr. Cycl. Agroecosystems
498	103, 167–185. doi:10.1007/s10705-015-9734-1
499	Cela, S., Berenguer, P., Santiveri, F., Lloveras, J., 2010. Potential phosphorus,
500	potassium, and magnesium surpluses in an irrigated maize monoculture fertilized
501	with Pig slurry. Agron. J. 102, 96–102. doi:10.2134/agronj2009.0139
502	Chow, L.C., 2001. Solubility of Calcium Phosphates. Octacalcium Phosphate 1, 94–
503	111. doi:10.1159/000061650
504	Cohen, Y., 2009. Phosphorus dissolution from ash of incinerated sewage sludge and
505	animal carcasses using sulphuric acid. Environ. Technol. 30, 1215–1226.
506	doi:10.1080/09593330903213879
507	Cooper, J., 2014. Managing phosphorus in the UK water industry to increase national
508	resource security. The University of Birmingham.
509	Cooper, J., Carliell-Marquet, C., 2013. A substance flow analysis of phosphorus in the
510	UK food production and consumption system. Resour. Conserv. Recycl. 74, 82–
511	100. doi:10.1016/j.resconrec.2013.03.001
512	Cordell, D., 2010. The story of phosphorus: Sustainability implications of global
513	phosphorus scarcity for food security. Linköping University.
514	Cordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: Global food
515	security and food for thought. Glob. Environ. Chang.
516	doi:10.1016/j.gloenvcha.2008.10.009
517	Cordell, D., Rosemarin, A., Schroder, J.J., Smit, A.L., 2011. Towards global
518	phosphorus security: A systems framework for phosphorus recovery and reuse
519	options. Chemosphere 84, 747–758. doi:10.1016/j.chemosphere.2011.02.032
520	Coutand, M., Cyr, M., Deydier, E., Guilet, R., Clastres, P., 2008. Characteristics of
521	industrial and laboratory meat and bone meal ashes and their potential
522	applications. J. Hazard. Mater. 150, 522–532. doi:10.1016/j.jhazmat.2007.04.133
523	Delvasto, P., Valverde, A., Ballester, A., Igual, J.M., Munoz, J.A., Gonzalez, F.,
524	Blazquez, M.L., Garcia, C., 2006. Characterization of brushite as a re-
525	crystallization product formed during bacterial solubilization of hydroxyapatite
526	in batch cultures. Soil Biol. Biochem. 38, 2645–2654.
527	doi:10.1016/j.soilbio.2006.03.020
528	Demirbas, A., 2004. Combustion characteristics of different biomass fuels. Prog.
529	Energy Combust. Sci. 30, 219–230. doi:10.1016/j.pecs.2003.10.004
530	Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete,
531	W., Rabaey, K., Meesschaert, B., 2015. Global Phosphorus Scarcity and Full-
532	Scale P-Recovery Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 45,
533	336–384. doi:10.1080/10643389.2013.866531
534	Deydier, E., Guilet, R., Sharrock, P., 2003. Beneficial use of meat and bone meal
535	combustion residue: "An efficient low cost material to remove lead from
536	aqueous effluent." J. Hazard. Mater. 101, 55-64. doi:10.1016/S0304-
537	3894(03)00137-7
538	Dorozhkin, S. V, 2012. Dissolution mechanism of calcium apatites in acids: A review
539	of literature. World J. Methodol. 2, 1–17. doi:10.5662/wjm.v2.i1.1
540	Dorozhkin, S. V, 1997. Surface Reactions of Apatite Dissolution. J. Colloid Interface
5/11	Sci. 191, 489–497, doi:10.1006/icis.1997.4942

Dorozhkin, S. V, 1996. Fundamentals of the Wet-Process Phosphoric Acid Production 542 . 1. Kinetics and Mechanism of the Phosphate Rock Dissolution. Ind. Eng. 543 Chem. Res. 35, 4328-4335. doi:10.1021/ie960092u 544 Ekpo, U., Ross, A.B., Camargo-Valero, M.A., Fletcher, L.A., 2016. Influence of pH 545 on hydrothermal treatment of swine manure: Impact on extraction of nitrogen 546 and phosphorus in process water. Bioresour. Technol. 214, 637-644. 547 Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F., Montiel, A., 2008. 548 Heavy metal removal from aqueous solutions by activated phosphate rock. J. 549 Hazard. Mater. 156, 412-420. doi:10.1016/j.jhazmat.2007.12.036 550 551 Elser, J., Bennett, E., 2011. A broken biogeochemical cycle. Nature 478, 29-31. doi:10.1038/478029a 552 Elliott, J. C., 2002. Calcium Phosphate Biominerals. Rev. Mineral. Geochem. 48(1): 553 554 427-453. Fleet, M. E., 2009. Infrared spectra of carbonate apatites: v2-Region bands. 555 Biomaterials 30(8): 1473-1481. 556 Franke, R., Hormes, J., 1995. The P K-near edge absorption spectra of phosphates. 557 Phys. B Phys. Condens. Matter 216, 85-95. doi:10.1016/0921-4526(95)00446-7 558 Grzmil, B., Wronkowski, J., 2006. Removal of phosphates and fluorides from 559 industrial wastewater. Desalination 189, 261-268. 560 doi:10.1016/j.desal.2005.07.008 561 Gunkel-Grillon, P., Roth, E., Laporte-Magoni, C., Le Mestre, M., 2015. Effects of 562 long term raw pig slurry inputs on nutrient and metal contamination of tropical 563 volcanogenic soils, Uvéa Island (South Pacific). Sci. Total Environ. 533, 339-46. 564 doi:10.1016/j.scitotenv.2015.06.110 565 Harouaka, K., Eisenhauer, A., Fantle, M.S., 2014. Experimental investigation of Ca 566 isotopic fractionation during abiotic gypsum precipitation. Geochim. 567 Cosmochim. Acta 129, 157-176. doi:10.1016/j.gca.2013.12.004 568 Havukainen, J., Nguyen, M.T., Hermann, L., Horttanainen, M., Mikkilä, M., 569 Deviatkin, I., Linnanen, L., 2016. Potential of phosphorus recovery from sewage 570 sludge and manure ash by thermochemical treatment. Waste Manag. 49, 221-571 229. doi:10.1016/j.wasman.2016.01.020 572 He, Z., Pagliari, P.H., Waldrip, H.M., 2016. Applied and Environmental Chemistry of 573 Animal Manure: A Review. Pedosphere 26, 779-816. doi:10.1016/S1002-574 0160(15)60087-X 575 Heilmann, S.M., Molde, J.S., Timler, J.G., Wood, B.M., Mikula, A.L., Vozhdayev, G. 576 577 V, Colosky, E.C., Spokas, K. a, Valentas, K.J., 2014. Phosphorus Reclamation through Hydrothermal Carbonization of Animal Manures. Environ. Sci. Technol. 578 doi:10.1021/es501872k 579 580 Huang, H., Yuan, X., 2015. Recent progress in the direct liquefaction of typical biomass. Prog. Energy Combust. Sci. 49, 59-80. doi:10.1016/j.pecs.2015.01.003 581 IFDC, 2010. World Phosphate Rock Reserves and Resources. International Fertilizer 582 Development Centre. 583 Ingall, E. D., Brandes J. A., Diaz J. M., de Jonge M. D., Paterson D., McNulty I., 584 Elliott W.C., Northrup P., 2011. Phosphorus K-edge XANES spectroscopy of 585 mineral standards. J. Synchrotron Radiat 18: 189-197. 586 Johnsson, M.S.-A., Nancollas, G.H., 1992. The Role of Brushite and Octacalcium 587 Phosphate in Apatite Formation. Crit. Rev. Oral Biol. Med. 3, 61-82. 588 589 doi:10.1177/10454411920030010601 Kaikake, K., Sekito, T., Dote, Y., 2009. Phosphate recovery from phosphorus-rich 590 solution obtained from chicken manure incineration ash. Waste Manag. 29, 591

 Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., 2015. Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359. doi:10.1016/j.resconrec.2015.09.007 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biorech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Li, J., Yuan, X., Li, J., Hang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleamer bio-oil and bio-char. B	592	1084–1088. doi:10.1016/j.wasman.2008.09.008
 Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359. doi:10.1016/j.resconrec.2015.09.007 Koniyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biottech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biottech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of	593	Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., 2015.
 treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359. doi:10.1016/j.resconrec.2015.09.007 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040	594	Evaluation of local and national effects of recovering phosphorus at wastewater
 347–359. doi:10.1016/j.resconrec.2015.09.007 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Mi	595	treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105,
 Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Or Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Sol	596	347–359. doi:10.1016/j.resconrec.2015.09.007
 ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass-Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Pa	597	Komiyama, T., Kobayashi, A., Yahagi, M., 2013. The chemical characteristics of
 106–110. doi:10.1007/s10163-012-0089-2 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biotrech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Para	598	ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15,
 Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass- Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biotrech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016	599	106–110. doi:10.1007/s10163-012-0089-2
 Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Mur	600	Kongsomart, B., Kannari, N., Takarada, T., 2016. Catalytic Effects of Biomass-
 5, 12–22. Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biottech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biotrech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determ	601	Derived Ash on Loy Yang Brown Coal Gasification. Int. J. Biomass Renewables
 Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123–5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Remediation, Sevage Suluge solution method for the determination of phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modifie	602	5, 12–22.
 gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123– 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	603	Kuligowski, K., Poulsen, T.G., 2010. Phosphorus and zinc dissolution from thermally
 5130. doi:10.1016/j.biortech.2010.01.143 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim. Acta 27, 31–36. doi:10.1016/S0003- 	604	gasified piggery waste ash using sulphuric acid. Bioresour. Technol. 101, 5123-
 Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim. Acta 27, 31–36. doi:10.1016/S0003- 	605	5130. doi:10.1016/j.biortech.2010.01.143
 medium chemistry on the solubility and morphology of brushite crystals. Geol. Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	606	Kuz'mina, M.A., Zhuravlev, S. V., Frank-Kamenetskaya, O. V., 2013. The effect of
 Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	607	medium chemistry on the solubility and morphology of brushite crystals. Geol.
 Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	608	Ore Depos. 55, 692–697. doi:10.1134/S1075701513080072
 aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphatic in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	609	Leng, L., Li, J., Wen, Z., Zhou, W., 2018a. Use of microalgae to recycle nutrients in
 Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	610	aqueous phase derived from hydrothermal liquefaction process. Bioresour.
 Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	611	Technol. 256, 529–542. doi:10.1016/j.biortech.2018.01.121
 Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	612	Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W., 2018b.
 sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56. doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	613	Beneficial synergistic effect on bio-oil production from co-liquefaction of
 doi:10.1016/j.biortech.2017.12.018 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	614	sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56.
 Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	615	doi:10.1016/j.biortech.2017.12.018
 and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	616	Leng, L., Yuan, X., Huang, H., Jiang, H., Chen, X., Zeng, G., 2014. The migration
 sewage sludge. Bioresour. Technol. 167, 144–150. doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	617	and transformation behavior of heavy metals during the liquefaction process of
 doi:10.1016/j.biortech.2014.05.119 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	618	sewage sludge. Bioresour. Technol. 167, 144–150.
 Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	619	doi:10.1016/j.biortech.2014.05.119
 Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	620	Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., Chen, X., Zeng, G., 2016.
 liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	621	Study on demetalization of sewage sludge by sequential extraction before
 Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040 Magalhães, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	622	liquefaction for the production of cleaner bio-oil and bio-char. Bioresour.
 Magalhäes, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	623	Technol. 200, 320–327. doi:10.1016/j.biortech.2015.10.040
 Environmental Remediation, in: Thermodynamics, Solubility and Environmental Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	624	Magalhaes, M.C.F., Williams, P.A., 2007. Apatite Group Minerals Solubility and
 Issues. pp. 327–340. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	625	Environmental Remediation, in: Thermodynamics, Solubility and Environmental
 Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	626	Issues. pp. $327-340$.
 Parameswaran, P., Stoltzrus, J., Westernoff, P., Rittmann, B.E., 2016. Total Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. doi:10.1021/acs.est.6b01239 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	627	Mayer, B.K., Baker, L.A., Boyer, I.H., Drechsel, P., Gifford, M., Hanjra, M.A.,
 629 Value of Phosphorus Recovery. Environ. Sci. Technol. 50, 6606–6620. 630 doi:10.1021/acs.est.6b01239 631 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination 632 of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003- 	628	Value of Phoenhouse Decouvery, Environ, Sci. Technol, 50, 6606, 6620
630 doi:10.1021/acs.est.0001259 631 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination 632 of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003-	629	doi:10.1021/oog.ogt.ch01220
631 Murphy, J., Kney, J.P., 1962. A modified single solution method for the determination 632 of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003-	630	001:10.1021/acs.est.0001239 Mumby I. Dilay, I.D. 1062. A modified single solution method for the determination
-532 OF DIOSDIALE IN NATURAL WALES. ANAL, UNITE ACIA 27, 51–50, GOUTO, 1010/50005-	631	Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination
222 $2670(00)89444.5$	632	of phosphate in natural waters. Anal. Chini. Acta 27, 51–50. doi:10.1010/50005- 2670(00)88444.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	633	Niu V. Tan H. Hui S. 2016. Ash related issues during biomass combustion:
Alkali induced slagging silicate melt induced slagging (ash fusion)	034 625	Alkali induced slagging silicate malt induced slagging (ash fusion)
Alkall-induced slagging, sincate inen-induced slagging (asil fusion),	635	Arkan-induced stagging, sincate men-induced stagging (asir fusion),
Energy Combust Sci 52, 1, 61, doi:10.1016/j.pecs.2015.00.003	627	Energy Combust Sci 52, 1, 61, doi:10.1016/j.pecs.2015.00.003
638 Olsen S.R. Cole C. V. Watandhe F. Dean I. 1954 Estimation of Available	638	Olsen S.R. Cole C. V. Watandhe F. Dean I. 1954 Estimation of Available
639 Phosphorus in Soil by Extraction with sodium Ricarbonate U.S. Den Agric	639	Phosphorus in Soil by Extraction with sodium Ricarbonate U.S. Den Agric
640 939	640	939
641 Olson, B.M., Bremer, E., McKenzie, R.H., Bennett, R., 2010, Phosphorus	641	Olson, B.M., Bremer, E., McKenzie, R.H., Bennett, R., 2010. Phosphorus

642	accumulation and leaching in two irrigated soils with incremental rates of cattle
643	manure. Can. J. Soil Sci. 90, 355–362. doi:10.4141/CJSS09025
644	Oshita, K., Sun, X., Kawaguchi, K., Shiota, K., Takaoka, M., Matsukawa, K.,
645	Fujiwara, T., 2016. Aqueous leaching of cattle manure incineration ash to
646	produce a phosphate enriched fertilizer. J. Mater. Cycles Waste Manag. 18, 608-
647	617. doi:10.1007/s10163-016-0528-6
648	Oxmann, J. F., 2014. Technical Note: An X-ray absorption method for the
649	identification of calcium phosphate species using peak-height ratios.
650	Biogeosciences 11(8): 2169-2183.
651	Parhi, P., Ramanan, A., Ray, A.R., 2006. Hydrothermal Synthesis of nanocrystalline
652	powders of alkaline-earth hydroxyapatites, $A10(PO4)6(OH)2$ (A = Ca, Sr and
653	Ba). J. Mater. Sci. 41, 1455–1458. doi:10.1007/s10853-006-7460-4
654	Pettersson, A., Åmand, LE., Steenari, BM., 2008a. Leaching of ashes from co-
655	combustion of sewage sludge and wood—Part II: The mobility of metals during
656	phosphorus extraction. Biomass Bioenerg. 32, 236–244.
657	doi:10.1016/j.biombioe.2007.09.006
658	Pettersson, A., Åmand, LE., Steenari, BM., 2008b. Leaching of ashes from co-
659	combustion of sewage sludge and wood—Part I: Recovery of phosphorus.
660	Biomass Bioenerg. 32, 224–235. doi:10.1016/j.biombioe.2007.09.016
661	Peters, F., Schwarz K., Epple M., 2000. The structure of bone studied with
662	synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal
663	analysis. Thermochim. Acta 361(1-2): 131-138.
664	Petzet, S., Peplinski, B., Cornel, P., 2012. On wet chemical phosphorus recovery from
665	sewage sludge ash by acidic or alkaline leaching and an optimized combination
666	of both. Water Res. 46, 3769–3780. doi:10.1016/j.watres.2012.03.068
667	Ragauskas, A.J., 2006. The Path Forward for Biofuels and Biomaterials. Science. 311,
668	484-489. doi:10.1126/science.1114736
669	Rajendran, J., Gialanella S., Aswath P. B., 2013. XANES analysis of dried and
670	calcined bones. Mat. Sci. Eng. C-Mater. 33(7): 3968-3979.
671	Ravel, B., Newville M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis
672	for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12:
673	537-541.
674	Rittmann, B.E., Mayer, B., Westerhoff, P., Edwards, M., 2011. Capturing the lost
675	phosphorus. Chemosphere 84, 846–853. doi:10.1016/j.chemosphere.2011.02.001
676	Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., 2011. A
677	review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 15, 2262–
678	2289. doi:10.1016/j.rser.2011.02.015
679	Sattari, S.Z., Bouwman, A.F., Giller, K.E., van Ittersum, M.K., 2012. Residual soil
680	phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc.
681	Natl. Acad. Sci. U. S. A. 109, 6348–53. doi:10.1073/pnas.1113675109
682	Simons, A., Solomon, D., Chibssa, W., Blalock, G., Lehmann, J., 2014. Filling the
683	phosphorus fertilizer gap in developing countries. Nat. Geosci. 7, 3–3.
684	doi:10.1038/ngeo2049
685	Stegemann, J.A., Côté, P.L., 1991. Acid Neutralization Capacity, Appendix B:
686	Investigation of test methods for solidified waste evaluation—a cooperative
687	program, Manuscript Series TS-15, Environment Canada Wastewater
688	Technology Centre, Burlington, Ontario Canada.
689	Štulajterová, R., Medvecký, Ľ., 2008. Effect of calcium ions on transformation
690	brushite to hydroxyapatite in aqueous solutions. Colloids Surfaces A
691	Physicochem. Eng. Asp. 316, 104–109. doi:10.1016/j.colsurfa.2007.08.036

692	Sugiyama, S., Kitora, R., Kinoshita, H., Nakagawa, K., Katoh, M., Nakasaki, K.,
693	2016. Recovery of Calcium Phosphates from Composted Chicken Manure. J.
694	Chem. Eng. Japan 49, 224–228. doi:10.1252/jcej.15we111
695	Szögi, A.A., Vanotti, M.B., Hunt, P.G., 2015. Phosphorus recovery from pig manure
696	solids prior to land application. J. Environ. Manage. 157, 1–7.
697	Tan, Z., Lagerkvist, A., 2011. Phosphorus recovery from the biomass ash: A review.
698	Renew. Sustain. Energy Rev. 15, 3588–3602. doi:10.1016/j.rser.2011.05.016
699	Tayibi, H., Choura, M., López, F.A., Alguacil, F.J., López-Delgado, A., 2009.
700	Environmental impact and management of phosphogypsum. J. Environ. Manage.
701	90, 2377–2386. doi:10.1016/j.jenvman.2009.03.007
702	Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R.,
703	Schindler, D., Schlesinger, W.H., Simberloff, D., Swackhamer, D., 2001.
704	Forecasting agriculturally driven global environmental change. Science 292,
705	281-284. doi:10.1126/science.1057544
706	Tilman, D., Lehman, C., 1987. Human-caused environmental change : Impacts on
707	plant diversity and evolution. Proc. Natl. Acad. Sci. U. S. A. 98, 5433–5440.
708	doi:10.1073/pnas.091093198
709	Vassilev, S. V., Baxter, D., Andersen, L.K., Vassileva, C.G., 2013a. An overview of
710	the composition and application of biomass ash. Part 2. Potential utilisation,
711	technological and ecological advantages and challenges Fuel 105, 19–39.
712	doi:10.1016/j.fuel.2012.10.001
713	Vassilev, S. V., Baxter, D., Andersen, L.K., Vassileva, C.G., 2013b. An overview of
714	the composition and application of biomass ash. Part 1. Phase-mineral and
715	chemical composition and classification. Fuel 105, 40–76.
716	doi:10.1016/j.fuel.2012.09.041
717	Vassilev, S. V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J., 2012. An
718	overview of the organic and inorganic phase composition of biomass. Fuel 94, 1–
719	33. doi:10.1016/j.fuel.2011.09.030
720	Vassilev, S. V., Baxter, D., Vassileva, C.G., 2013c. An overview of the behaviour of
721	biomass during combustion: Part I. Phase-mineral transformations of organic and
722	inorganic matter. Fuel 112, 391–449. doi:10.1016/j.fuel.2013.05.043
723	Wilfert, P., Kumar, P.S., Korving, L., Witkamp, G.J., Van Loosdrecht, M.C.M., 2015.
724	The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus
725	from Wastewater: A Review. Environ. Sci. Technol. 49, 9400–9414.
726	doi:10.1021/acs.est.5b00150
727	Williams, A.G., Leinonen, I., Kyriazakis, I., 2016. Environmental benefits of using
728	turkey litter as a fuel instead of a fertiliser. J. Clean. Prod. 113, 167–175.
729	doi:10.1016/j.jclepro.2015.11.044
730	Wu, S., Wang, L., Zhao, L., Zhang, P., El-shall, H., 2018. Recovery of rare earth
731	elements from phosphate rock by hydrometallurgical processes – A critical
732	review. Chem. Eng. J. 335, 774–800. doi:10.1016/j.cej.2017.10.143
733	Zhang, F.S., Yamasaki, S., Kimura, K., 2002. Waste ashes for use in agricultural
734	production: II. Contents of minor and trace metals. Sci. Total Environ. 286, 111-
735	118. doi:10.1016/S0048-9697(01)00968-8
736	

738	
739	Figure captions
740	
741	Fig. 1 X-ray powder diffraction (XRD) (a), Fourier transform infrared spectra (FTIR,
742	normalised) (b), Thermogravimetric (TG/DTG) (c), and P K-edge X-ray
743	absorption near edge structure (XANES, normalised) (d) analyses of meat and
744	bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr),
745	and poultry litter co-combustion (PL) bottom ash and residues from leaching of
746	the same residues at pH 5.1-6.8. The reference materials Morrocan apatite
747	(carbonate apatite), brushite, and apatite (hydroxyapatite) were all analyzed by
748	FTIR, TG/DTG, and XANES, but only the references most relevant to each
749	figure were presented; XRD references were from the XRD pattern database
750	(International Centre for Diffraction Data, ICDD).
751	Fig. 2 Concentration of available P in meat and bone meal (MBM) bottom ashes (BA)
752	and air pollution control residue (APCr), and poultry litter co-combustion (PL)
753	bottom ash and residues from leaching of the same residues at pH 5.1-6.8. Error
754	bars represent standard deviation of three replicates.
755	Fig. 3 Anion leaching from meat and bone meal (MBM) bottom ashes (BA) and air
756	pollution control residue (APCr), and poultry litter co-combustion (PL) bottom
757	ash in the Acid Neutralization Capacity test (circled points are those for which
758	the leached residue was characterised).
759	Fig. 4 Major element leaching from meat and bone meal (MBM) bottom ashes (BA)
760	and air pollution control residue (APCr), and poultry litter co-combustion (PL)
761	bottom ash in the Acid Neutralization Capacity test (circled points are those for
762	which the leached residue was characterised).

- Fig. 5 P recovery (average of duplicates) from meat and bone meal (MBM) bottom
- ashes (BA) and air pollution control residue (APCr), and poultry litter co-
- combustion (PL) bottom ash using H_2SO_4 and HNO_3 , (a) Acid consumption
- comparison between H_2SO_4 and HNO_3 ; (b) P recovery percentage using H_2SO_4 .
- 767 Leaching time 2 h; Solid/liquid ratio 0.1.

Item	Original	TP	Acid demand	Method and optimal	Comments	Ref.
	TP (g kg ⁻¹)	recovery rate (%)	(mol H ⁺ / mol P)	conditions		
Swine manure	~16	94% leached to solution	3.78	Hydrothermal acid leaching (S/L: 24 g/220 mL): 170 °C, 0.1 M HaSO: (pH \rightarrow 3.5)	Additional thermal consumption.	(Ekpo et al., 2016)
Composited chicken manure	-	-	9.10	Acid leaching (S/L: 1 g/100 mL): 0.1 M HNO ₃	Too much wastewater.	(Sugiyama et al., 2016)
Fresh pig manure	4.2	87% leached to solution	6.36	Acid leaching (S/L: 2 g/50 mL): 10 mM citric (pH $6.9 \rightarrow 3.2$)	Extracted residues are safer for land	(Szögi et al., 2015)
	4.0	88% leached to solution	8.81	Acid leaching (S/L: 2 g/50 mL): 40 mM HCl (pH 7.0 \rightarrow 1.8)	application with a more balanced N: P ratio. Too much wastewater.	
Poultry manure hydrochar	32.9	89.7% leached to solution	92.2	Acid leaching (S/L: 10 g/220 mL): 4 M HCl	High acid load. Too much	(Heilmann et al., 2014)
Swine manure hydrochar	39.1	89.3% leached to solution	78.1		wastewater.	
Cow manure hydrochar	18.6	98.4% leached to solution	149.1			
Pig manure pyrolysis char	41.2-54.6	~ 90% leached to solution	126.2-167.2	Acid leaching (S/L: 2 g/1000 mL): 0.2 M H ₂ SO ₄	High acid load. Too much wastewater.	(Azuara et al., 2013)
Gasified piggery waste ash	-	94% leached to solution	6.61	Acid leaching: (S/L: 1 g/12.5 mL): 0.8 M H ₂ SO ₄	Higher H ₂ SO ₄ concentration did not improve P dissolution.	(Kuligowski and Poulsen, 2010)
Animal carcasses incineration	138.4	57% leached to solution	3.10	Acid leaching: H ₂ SO ₄ (pH 2.0)	Feasible practice	(Cohen, 2009)
ash		73% leached to solution	3.29	Acid leaching: H_2SO_4 (pH 1.5)		
MBM ashes/PL ashes	84.6-139	About 90% leached to solution	3.1-5.3	Acid leaching: H_2SO_4 or HNO_3 (S/L: 1 g/10 mL, pH around 1.0-1.5)	Feasible practice	This study

Table 1 Acid demand for P recovery

Element	MBM1-BA	MBM2-BA	MBM2-APCr	PL1-BA	PL2-BA			
Major element (mg/g)								
Al	3.70	1.78	1.58	6.07	3.58			
Ca	316	245	246	175	161			
Fe	15.3	4.04	2.51	7.34	5.99			
Κ	7.97	50.9	27.0	88.5	119			
Mg	7.66	7.23	6.13	37.0	45.2			
Mn	0.23	0.18	0.08	3.14	4.09			
Na	22.5	88.0	72.7	18.3	21.7			
Р	131	95.4	97.9	82.8	109			
TP^*	139	96.3	98.8	84.6	111			
Minor ele	Minor element (mg/kg)							
В	113	37.6	23.0	146.8	186			
Ba	156	99.0	92.0	228	156			
Bi	1.4	0.4	1.2	ND	ND			
Cd	ND	ND	ND	ND	ND			
Cr	16.7	34.4	26.2	48.8	35.2			
Co	10.5	8.6	0.9	6.5	16.1			
Cu	183	141	67.8	806	640			
Li	ND	ND	ND	1.4	ND			
Ni	6.6	7.4	5.5	35.1	22.4			
Pb	4.7	41.2	22.8	48.8	2.7			
Sr	191	125	130	198	211			
Zn	157	830	529	1110	760			

Table 2 Elemental analyses of UK biomass bottom ashes (BA) and air pollution control residue (APCr) determined by digestion and ICP-OES, including also total P by colorimetry (*)

ND indicates not detected

Sample	Mineral phases									
	Hydroxyapatite, Ca ₅ (PO ₄) ₃ (OH)	Arcanite, K ₂ SO ₄	Brushite, CaHPO ₄ .2H ₂ O	Calcite, CaCO ₃	Calcium Sulfate, CaSO ₄	Gypsum, CaSO ₄ ·2H ₂ O	Halite, NaCl	Portlandite, Ca(OH) ₂	Potassium sodium calcium phosphate, KNaCa ₂ (PO ₄) ₂	Quartz, SiO ₂
MBM1-BA	+			+	+			+		+
MBM1-BA	+		+			+				+
residue (pH 6.2)										
MBM2-BA	+	+		+	+		+	+		+
MBM2-BA	+		+			+				+
residue (pH 5.1)										
MBM2-APCr	+	+		+	+		+	+		
MBM2-APCr	+		+			+				
residue (pH 5.9)										
PL1-BA		+			+				+	+
PL1-BA residue			+			+				+
(pH 6.5)										
PL2-BA		+			+				+	+
PL2-BA residue			+			+				+

Table 3 Mineral phases identified in meat and bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr), and poultry litter co-combustion (PL) bottom ash and residues from leaching of the same residues at pH 5.1-6.8

Fig. 1 X-ray powder diffraction (XRD) (a), Fourier transform infrared spectra (FTIR, normalised) (b), Thermogravimetric (TG/DTG) (c), and P K-edge X-ray absorption near edge structure (XANES, normalised) (d) analyses of meat and bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr), and poultry litter co-combustion (PL) bottom ash and residues from leaching of the same residues at pH 5.1-6.8. The reference materials Morrocan apatite (carbonate apatite), brushite, and apatite (hydroxyapatite) were all analyzed by FTIR, TG/DTG, and XANES, but only the references most relevant to each figure were presented; XRD references were from the XRD pattern database (International Centre for Diffraction Data, ICDD).

Fig. 2 Concentration of available P in meat and bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr), and poultry litter co-combustion (PL) bottom ash and residues from leaching of the same residues at pH 5.1-6.8. Error bars represent the standard deviation of three replicates.

Fig. 3 Anion leaching from meat and bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr), and poultry litter co-combustion (PL) bottom ash in the Acid Neutralization Capacity test (circled points are those for which the leached residue was characterised).

Fig. 4 Major element leaching from meat and bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr), and poultry litter co-combustion (PL) bottom ash in the Acid Neutralization Capacity test (circled points are those for which the leached residue was characterised).

Fig. 5 P recovery (average of duplicates) from meat and bone meal (MBM) bottom ashes (BA) and air pollution control residue (APCr), and poultry litter co-combustion (PL) bottom ash using H_2SO_4 and HNO_3 , (a) Acid consumption comparison between H_2SO_4 and HNO_3 ; (b) P recovery percentage using H_2SO_4 . Leaching time 2 h; Solid/liquid ratio 0.1.

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Leng et al 2018-biomass ashes & P recovery-SI.doc