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Abstract 
 
Important coupled effects of stress and temperature change have long been recognised and 
taken into account in models assessing the performance of solid materials. However, due to 
incomplete understanding, existing models used for concrete are essentially empirical and 
lack rational basis. This limits their predictive capability and applicability range. In this paper, 
fundamental thermodynamics and continuum mechanics laws are used to obtain an 
expression quantitatively predicts the effects of stress on the coefficient of thermal expansion. 
The newly-defined thermal expansion coefficient is then used to develop a rational model, 
which is shown to be capable of reliably quantifying the coupling effects of stress and 
temperature change. Good agreement between the model predictions, available data and 
observations is obtained. Equally important, all parameters of the developed model can be 
determined using simple tests. This enables a wide adoption of the model in practical 
engineering applications. While this paper uses data for concrete, the proposed model is 
developed from first principles and using fundamental physical laws, therefore, it should be 
applicable to a wide range of solid materials. 

Introduction 
 
Structures are commonly exposed to rapid temperature changes due to fire, climatic 
conditions, radiation or heat developed from industrial processes. The combined effects of 
mechanical and thermal loading can give rise to significant level of stress and damage as a 
consequence of nonlinear temperature and strain profiles and of restrained structural 
deformation. Indeed, the coupling effects between stress and temperature increase have 
been widely observed experimentally and the critical need to properly account for these 
effects in assessing the performance of solid materials has been broadly acknowledged1-9. 
Such proper assessment is particularly important if a certain level of performance is strictly 
required in case of accidental loading: Typical examples include (i) nuclear reactors 
overheated due to a failure of the cooling system (e.g. in the recent Fukushima accident) and 
(ii) columns and shear walls in high-rise buildings in case of fires.  
 
Unfortunately, the coupling effects between stress and temperature increase are currently 
mainly accounted for in structural analysis and design through the introduction of empirical 
correlations1,2,7,10-14. As these empirical correlations are principally developed by best-fitting 
to limited test data, their applicability to scenarios different from those tested remains 
questionable and their reliability hinges on the quality and extent of the corresponding test 
data.  
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As a result, more rational models developed from first principles and based on fundamental 
physical laws are required. Additionally, in order for these models to be widely adopted in 
engineering applications, besides being adequately robust, they need to be sufficiently simple 
and their parameters are required to be conveniently determined using widely-available test 
setups and procedures. 
 
This paper presents one such rational model for solid materials subject to combined effects 
of stress and temperature increase, developed using fundamental laws of thermodynamics 
and continuum mechanics. Evidence for the predictive capability of the proposed first-
principles model will be highlighted, together with a simple methodology to conveniently 
determine the model parameters. 

Nomenclature 
E = Young’s modulus 
E0   =    Young’s modulus at Tamb 
E(T)  =   Young’s modulus at T 
Eeff(T) =  effective Young’s modulus at T 
eij,etot =  total strain 
e =  uniaxial strain 
es (T) =  mechanical strain at T 
eth(T) =  free thermal expansion strain at T 
elits(T) = load-induced thermal strain at T 
Tamb =  ambient temperature 
T = temperature 
DT =  T - Tamb 
a0 = free thermal expansion coefficient 
a =  thermal expansion coefficient 
aσ =  stress-dependent thermal expansion 

coefficient 

s =  uniaxial stress 
suT =  compressive strength at T 
su0 = compressive strength at Tamb 
s0 =  compressive stress at Tamb 
s(T) = thermal stress at T 
sij =  stress component 
U =  internal energy per unit mass 
R =  internal heat produced per unit 

mass 
Q =  heat loss 
A = Helmholtz free energy function 
S =  specific entropy 
r0 = density 
ce =  specific heat 

Background 
 
Theoretically, the total strain of solid materials in simultaneous load and heat conditions 
has been traditionally described by using Duhamel-Neumann constitutive law. The general 
model of Duhamel-Neumann model15-17 is as follows: 

𝜀"# =
1
𝐸
'(1 + 𝜐)𝜎"# − 𝜐. 𝛿"#. 𝜎001 + 𝛼. 𝛿"#Δ𝑇 (1) 

 
where: eij is principal strain for i = j and shear strain for i ¹ j; sij is principal stress for i = j 
and shear stress for i ¹ j; dij is the Kronecker delta being one for i = j and zero otherwise; 
skk equals the summation of principal stresses s11 + s22 + s33. Poison’s ratio is n, a is the 
thermal expansion coefficient and DT is the temperature above that of ambient. 
 
While analyzing structural elements under uniaxial loading and elevated temperatures, the 
following simplifications are possible: 

𝜎55 = 	𝜎; 𝜎88 = 	𝜎99 = 0; (2) 
 
The constitutive law of linear thermo-elasticity can then be written as: 
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𝜀;<; = 𝜀=(𝑇) + 𝜀;>(𝑇) =
𝜎
𝐸 + 𝛼. Δ𝑇; (3) 

 
where, s is the stress and E is Young’s modulus.  
 
When subjected to increasing temperature, thermal loads can induce restraint stresses if 
the elements are not free to expand. The resulted stresses induced by load and restraint 
thermal deformation in turn will affect the thermal deformation of structural elements18. 
The above coupling effects need to be properly accounted for in such rational constitutive 
model as the Duhamel-Neumann law19, which in turn requires clear understanding of each 
component of the model. While the mechanical part of Duhamel-Neumann model has 
been clearly defined, it is however still unclear whether the thermal expansion coefficient 
(a) is: 

(i) Free thermal expansion coefficient determined in the condition of zero stress 
(a0)15,16; or 

(ii) Stress-dependent thermal expansion coefficient (as)18,20: In case where a is 
assumed as as, the formula for as remains unclearly defined18 or inaccurately 
derived20. 

 
Due to such incomplete understanding, the coupling effects between stress and 
temperature increase have been predominantly taken into account in structural analysis 
and design through the introduction of empirical correlations1,2,7,10-14,21. The prevalent use 
of empirical correlations is clearly demonstrated in the subsequent section through the 
case of concrete, the most commonly used construction material, at elevated 
temperatures. A similar approach of empirical fitting to the test data could be found in case 
of steel when investigating mechanical responses at elevated temperatures under heat and 
load conditions21-23. 

Concrete and its load-induced thermal strain at elevated 
temperatures 
 
Tests conducted on concrete subject to various stress-thermal loading paths have 
experimentally shown that the total thermal strain of concrete (etot) at elevated 
temperatures is significantly reduced if the concrete is heated when loaded10,12,24. Similarly, 
the recorded mechanical reaction force of restrained samples while heating is drastically 
less than those calculated using Duhamel-Neumann model if the free thermal expansion 
coefficient (a0) is used. 
 
In a prior study conducted by Anderberg and Thelandersson 10, concrete samples were first 
loaded at ambient temperature and then heated to target temperature levels. It was 
observed that under a constant compressive stress of 22.5% of the ambient compressive 
strength, the total strain was between 55% and 70% smaller compared to that of the 
comparable samples heated in a zero-stress condition. This reduction is even higher if the 
sample is subjected to higher compressive stress levels before heating.  
 
Understanding and incorporating such reduction of strain in the constitutive model is vital 
to assess and simulate the performance of concrete structures in fire conditions. Therefore, 
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correction values for the strain component have been introduced. These corrections are 
described as load-induced thermal strain (LITS) and creep strain, and have been added into 
the Duhamel-Neumann constitutive model since the 1970s10. The total strain of loaded 
concrete samples in heating and loading conditions has therefore been mathematically 
modified in a manner that is described by a simple summation of effects as per Equation 
(4)25: 

𝜀;<; = 𝜀;>(𝑇) + 𝜀=(𝑇) + 𝜀?";@(𝑇, 𝜎) + 𝜀BC(𝑇) (4) 
 
where: etot is the total strain; eth is free thermal strain; es is the mechanical strain caused by 
corresponding stress s; elits is the transient thermal strain or load-induced thermal strain; 
and ecr is the creep strain.  
 
During rapid temperature increase, the thermal creep strain is typically negligibly small 
compared to the total strain10. In Anderberg and Thelandersson 10, for instance, the 
maximum creep strain (ecr(T)) over a 3-hour period was found less than 5% of the 
corresponding total strain. Therefore, Equation (4) can be revised to: 

𝜀;<; = 𝜀;>(𝑇) + 𝜀=(𝑇) + 𝜀?";@(𝑇, 𝜎) (5) 
 
Since 2004, the LITS or transient creep strain or transient thermal strain has long been 
implicitly included in the stress-strain constitutive model of concrete at elevated 
temperatures in Eurocode Standard25,26. Strength and deformation of concrete at elevated 
temperatures are then suggested to be obtained from this stress-strain relationship. In 
addition, it is also suggested that the thermally-induced strains and stress both due to 
temperature changes into the mechanical response need to be considered by using the 
relation as shown in the Equation (5)25. However, the design value of the LITS is not 
explicitly derived or nominated, thus the model of elits remains unclear in the design model 
in Eurocode Standard. 
 
Many correlations for elits have been developed since the 1970’s, mainly on the basis of 
available experimental data10,12,13,27. To calculate elits, the following approach has been 
used: 

𝜀?";@(𝑇, 𝜎) = 𝜀;<; − 𝜀;>(𝑇) − 𝜀=(𝑇) (6) 
 
where, etot is the measured total strain of concrete under load and heat condition; eth is free 
thermal strain, recorded from unrestrained concrete sample heated without applied stress; 
and es is mechanical strain, calculated by dividing mechanical forces by the instantaneous 
Young’s modulus. 
 
The correlations describing elits are sometimes expressed as functions of temperature and 
the ratio between applied stress (s) and compressive strength of the concrete at ambient 
temperature (su0). As an example, Anderberg and Thelandersson 10 used their 
experimental data to develop a mathematical correlation where elits is represented as a 
linear function of free thermal strain (eth) by introducing a correction factor k, as follows: 
 

𝜀?";@(𝑇, 𝜎) = 𝑘.
𝜎
𝜎EF

. 𝜀;> (7) 
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The value of k was calculated by using a linear regression analysis that compared the value 
of elits/(s/su0) against the value of free thermal expansion strain (eth). This regression 
analysis gave values of the correction factor (k) ranging from 1.8 to 2.35. The fit delivered 
good agreement between measured and calculated strains in the range of temperatures 
between ambient and 500°C, as shown in Figure 1. It should be noted that Anderberg and 
Thelandersson 10 failed to clearly define what fundamental physical behavior they were 
attempting to include in their correlation. Also, their correlation is sensitive to the value of 
k resulting in values for the load-induced thermal strain that changes within a range of 
approximately ±30% (Figure 1). 
 
Other corrections have been introduced to account for the non-linearity nature of the data 
with temperature. Diederichs 28 developed a LITS correlation by using a third order 
polynomial of the temperature to obtain a best fit to experimental data (cited by Li and 
Purkiss 29, and Torelli, et al. 1). Thus the ratio between elits/(s/su0) is defined as a polynomial 
function of temperature (Equation (8)) and is also plotted in Figure 1. 

𝜀?";@(𝑇, 𝜎) = 	 (4.12 × 10JK(𝑇 − 20) − 1.72 × 10JM(𝑇 − 20)8

+ 3.3 × 10J5F(𝑇 − 20)9).
𝜎
𝜎EF

 (8) 

Although the Diederichs’s correlation allows a better fit to the data, it still fails to explain 
the fundamental physical basis to the polynomial fit. Also, the value of the LITS is sensitive 
to the parameters used for the polynomial function. These parameters are a function of 
the concrete type, thus can only be used to quantify materials consistent with that of the 
test. 

 
Figure 1. Plot the ratio of elits/(s/su0) against the temperature of Anderberg and 
Thelandersson 10, Khoury, et al. 30 compared to Diederichs 28 and Anderberg and 

Thelandersson 10 fitting correlations. 

Gernay and Franssen 31 proposed a correlation of transient thermal strain or LITS using the 
stress-strain constitutive models from ENV 1992-1-2:199532 and EC2 1992-1-2:200425 
together with the test data conducted by Schneider 33, as Equation (9): 
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𝜀?";@(𝑇, 𝜎) = ∅(𝑇).
𝜎
𝜎EF

= 	
2
3
R𝜀B5,ST8 − 𝜀B5,U"VW

𝜎EX/𝜎EF
𝜎
𝜎EF

 (9) 

 
where, ∅(𝑇) is a nonlinear function of temperature; ec1,EC2 is the peak-stress strain in EN 
1992-1-2:2004; ec1,min is the peak-stress strain in ENV 1992-1-2:1995. The significance of 
this correlation is to model the irreversibility of transient creep strain, thus allows better 
modelling the performance of concrete structures in both heating and cooling phases34. 
However, the fundamental physic of the load-induced thermal strain or transient thermal 
strain has not been clearly incorporated into this correlation.  
 
Subsequent correlations attempted to generalize the LITS functions to include not only 
temperature but also the concrete type and the magnitude of the load imposed. In the 
1980s, Khoury, et al. 12 reported further experimental data and developed  “master-curves” 
for different aggregates types and concretes, including limestone aggregate, gravel 
aggregate, basalt concrete, and lightweight concrete (Figure 1).  The applicability of these 
“master-curves” to the wide range of concretes currently commercially available, however, 
remains to be ascertained. 
 
Terro 13 re-analysed the data of Khoury, et al. 12 and substituted the “master curves” by 
Equation (13). The author considered LITS as a linear function of the applied stress and a 
polynomial function of the temperature. It should be noted that Terro 13 defined the LITS 
as the combination of transient thermal strain and mechanical strain in his model. Equation 
(10) presents the LITS for lightweight concrete containing 65% of calcareous aggregate and 
loaded before heating at 30% of compressive strength at ambient: 
 
𝜀?";@(𝑇, 0.3𝜎EF)|[K%

= (43.87 − 2.73𝑇 − 6.35 × 10J8𝑇8 + 2.19 × 10Ja𝑇9
− 2.77 × 10JM𝑇a) × 10J[ 

(10) 

 
in a similar manner Equation (11) shows the LITS for gravel aggregate concrete 

𝜀?";@(𝑇, 0.3𝜎EF)|[K%
= 1.48 × 10J[(1098.5 − 39.21𝑇 + 0.43𝑇8)
− 1.48 × 10Jb(2.44𝑇9 − 6.27 × 10J9𝑇a
+ 5.95 × 10J[𝑇K) 

(11) 

 
For different stress levels, the LITS is calculated using a linear correction to the 30% load 
LITS as presented in Equation (12): 
 

𝜀?";@(𝑇, 𝜎)|[K% = c0.032+ 3.226.
𝜎
𝜎EF

d 𝜀?";@(𝑇, 0.3𝜎EF)|[K% (12) 

 
In an attempt to solve the mentioned weakness of the “master-curves” in Khoury’s model,  
Terro 13 introduced the correction factor Va, which is the volume fraction of aggregate in 
concrete samples. The general LITS model developed is then: 

𝜀?";@(𝑇, 𝜎) =
𝑉f
0.65 𝜀?";@(𝑇, 𝜎)

|[K% (13) 
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It should be emphasized that this model was developed using the “master-curves”, which 
contained a higher level of deviation at high temperatures. Also, similar to those proposed 
by Anderberg and Thelandersson 10, LITS correlations suggested by Terro 13 lack rational 
links to the fundamental physical basis and are also highly sensitive to the different fitting 
parameters. 
 
Alternative functions have also been reported but in most cases simply introduced 
different fits to the same data. For example, Nielsen, et al. 27 developed a similar model to 
that of Anderberg and Thelandersson 10 which described the LITS as a linear function of 
temperature and the ratio between applied stress (s) against ambient compressive 
strength (su0): 

𝜀?";@(𝑇, 𝜎) = 𝑏. 𝑇.
𝜎
𝜎EF

 (14) 

 
where, b = 38x10-6. The value of “b” was calibrated to obtain the best fit with Terro’s model 
and the “master-curves” developed by Khoury, et al. 12. No attempt was made to quantify 
the higher deviation of the “master curves” at high temperature and to quantify the 
association between material properties and LITS. Table 1 presents a summary of the 
above-discussed models. 
 
Table 1. Load-induced thermal strain correlations developed by different authors. 

Study LITS correlation Notes 
Anderberg 
and 
Thelandersson 
10 

𝜀?";@(𝑇, 𝜎) = 𝑘.
𝜎
𝜎EF

. 𝜀;> 

20–500 °C 

Terro 13 

For lightweight aggregates, 0.3su0 and 65% aggregate 
volume: 
				𝜀?";@(𝑇, 0.3𝜎EF)|[K%

= (43.87 − 2.73𝑇 − 6.35 × 10J8𝑇8
+ 2.19 × 10Ja𝑇9
− 2.77 × 10JM𝑇a) × 10J[ 

For gravel aggregates, 0.3su0 and 65% aggregate 
volume: 
				𝜀?";@(𝑇, 0.3𝜎EF)|[K%

= 1.48
× 10J[(1098.5 − 39.21𝑇 + 0.43𝑇8)
− 1.48 × 10Jb(2.44𝑇9
− 6.27 × 10J9𝑇a + 5.95 × 10J[𝑇K) 

For general stress level and 65% aggregate volume: 
				𝜀?";@(𝑇, 𝜎)|[K%

= c0.032

+ 3.226.
𝜎
𝜎EF

d 𝜀?";@(𝑇, 0.3𝜎EF)|[K% 

For general stress level and aggregate volume: 

20–600 °C  
 
0.3su0: 
Stress level 
of 30% of 
ambient 
compressive 
strength 
su0; 
Va: Volume 
fraction of 
aggregate in 
concrete 
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				𝜀?";@(𝑇, 𝜎) =
𝑉f
0.65 𝜀?";@(𝑇, 𝜎)

|[K% 

Nielsen, et al. 
27 

𝜀?";@(𝑇, 𝜎) = 𝑏. 𝑇.
𝜎
𝜎EF

 20–600 °C 
b=38x10-6 

Gernay and 
Franssen 31 𝜀?";@(𝑇, 𝜎) = ∅(𝑇).

𝜎
𝜎EF

=
2
3
R𝜀B5,ST8 − 𝜀B5,U"VW

𝜎EX/𝜎EF
𝜎
𝜎EF

 
20–800 °C 

Diederichs 28 

𝜀?";@(𝑇, 𝜎) = 	 (4.12 × 10JK(𝑇 − 20)
− 1.72 × 10JM(𝑇 − 20)8

+ 3.3 × 10J5F(𝑇 − 20)9).
𝜎
𝜎EF

 

20–800 °C 

 
In the ensuing section, a more rational model accounting for the coupling effects between 
stress and temperature increase is derived on the basis of fundamental laws of 
thermodynamics and continuum mechanics. The predictive capability of the newly-derived 
model is then demonstrated through comparing its predictions with corresponding 
experimental data and observations. 

Theoretical analysis 
 
Assuming no temperature gradient within the sample, the first law of thermodynamics 
results in Equation (15) as the description of conservation of energy: 

𝜌F c
𝜕𝑈
𝜕𝑡 −

𝜕𝑅
𝜕𝑡d = 𝜎.

𝜕𝜀
𝜕𝑡 − 𝑄 (15) 

 
where: U is the internal energy per unit mass; R is the internal heat produced per unit mass; 
r0 is the density of solid; s and e are stress and strain of solid in uniaxial loading condition; 
and Q is the total heat loss. 
 
Assuming no heat production and negligible heat losses, the conservation of energy 
equation can be further simplified to: 

𝜌F
𝜕𝑈
𝜕𝑡 = 𝜎.

𝜕𝜀
𝜕𝑡 (16) 

 
The Helmholtz free energy function A can be used to describe the relation of the internal 
energy U, temperature T, and the entropy S, as follows: 

𝐴 = 𝑈 − 𝑇𝑆 (17) 
 
By differentiating the Helmholtz free energy respect to time, we get: 

𝜕𝐴
𝜕𝑡 =

𝜕𝑈
𝜕𝑡 − 𝑆.

𝜕𝑇
𝜕𝑡 − 𝑇.

𝜕𝑆
𝜕𝑡  (18) 

 
Given that for elastic materials, the Helmholtz energy A is a function of strain (e) and 
temperature (T). Then, the rate of change of A can be determined by using the chain rule: 
 

𝜕𝐴
𝜕𝑡 =

𝜕𝐴
𝜕𝜀 .

𝜕𝜀
𝜕𝑡 +

𝜕𝐴
𝜕𝑇

𝜕𝑇
𝜕𝑡  (19) 

 
Substituting Equation (19) into (18) gives: 
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𝜕𝑈
𝜕𝑡 =

𝜕𝐴
𝜕𝜀 .

𝜕𝜀
𝜕𝑡 +

𝜕𝐴
𝜕𝑇

𝜕𝑇
𝜕𝑡 + 𝑆.

𝜕𝑇
𝜕𝑡 + 𝑇.

𝜕𝑆
𝜕𝑡  (20) 

 
Equation (20) can be then substituted into (16), resulting in: 

c𝜌F
𝜕𝐴
𝜕𝜀 − 𝜎d

𝜕𝜀
𝜕𝑡 + 𝜌F c

𝜕𝐴
𝜕𝑇 + 𝑆d

𝜕𝑇
𝜕𝑡 + 𝜌F𝑇.

𝜕𝑆
𝜕𝑡 = 0 (21) 

 
With the assumption of negligible heat produced and negligible heat losses, the second law 
of thermodynamics requires: 

𝜌F𝑇.
𝜕𝑆
𝜕𝑡 = 0; 								𝑙𝑒𝑎𝑑𝑖𝑛𝑔	𝑡𝑜:						

𝜕𝑆
𝜕𝑡 = 0 (22) 

 
As ¶e/¶t and ¶T/¶t are arbitrary, the non-trivial solution of Equation (21) leads to: 

𝜎 = 𝜌F
𝜕𝐴
𝜕𝜀 ; 

(23) 

𝑆 = −
𝜕𝐴
𝜕𝑇 ; 

(24) 

 
Substituting Equation (24) into Equation (22) and applying the chain rule, we obtain: 

𝜕𝑆
𝜕𝑡 = −

𝜕
𝜕𝑡 c

𝜕𝐴
𝜕𝑇d = −

𝜕
𝜕𝑇 c

𝜕𝐴
𝜕𝑡d = −

𝜕
𝜕𝑇 c

𝜕𝐴
𝜕𝜀 .

𝜕𝜀
𝜕𝑡 +

𝜕𝐴
𝜕𝑇

𝜕𝑇
𝜕𝑡d 

= −
𝜕8𝐴
𝜕𝜀𝜕𝑇 .

𝜕𝜀
𝜕𝑡 −

𝜕𝐴
𝜕𝜀

𝜕8𝜀
𝜕𝑇𝜕𝑡 −

𝜕8𝐴
𝜕𝑇8

𝜕𝑇
𝜕𝑡 −

𝜕𝐴
𝜕𝑇

𝜕8𝑇
𝜕𝑇𝜕𝑡 

(25) 

 
Since ¶2e/¶T¶t = 0, and ¶2T/¶T¶t = 0, Equation (25) can be rewritten as: 

𝜕𝑆
𝜕𝑡 = −

𝜕8𝐴
𝜕𝜀𝜕𝑇 .

𝜕𝜀
𝜕𝑡 −

𝜕8𝐴
𝜕𝑇8

𝜕𝑇
𝜕𝑡  (26) 

 
Differentiating the stress in Equation (23) respect the temperature T gives:   

𝜕𝜎
𝜕𝑇 = 𝜌F.

𝜕8𝐴
𝜕𝜀𝜕𝑇 (27) 

 
Substituting Equation (27) into Equation (26) and multiplying both sides of the resulting 
equation with T, we obtain: 

𝜌F𝑇
𝜕𝑆
𝜕𝑡 = −𝑇.

𝜕𝜎
𝜕𝑇 .

𝜕𝜀
𝜕𝑡 − 𝜌F𝑇

𝜕8𝐴
𝜕𝑇8

𝜕𝑇
𝜕𝑡 = 0 (28) 

 
By defining the specific heat as follows: 

𝑐z = −𝑇
𝜕8𝐴
𝜕𝑇8  (29) 

 
Equation (28) can then be re-written as: 

𝜌F𝑐z
𝜕𝑇
𝜕𝑡 = 𝑇.

𝜕𝜎
𝜕𝑇 .

𝜕𝜀
𝜕𝑡  (30) 
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It should be noted that a similar derivation for Equations (15) to (30) can be found in Wong, 
et al. 35 and Bert and Fu 20 when they investigated the thermoelastic parameter and thermal 
buckling taking into account the effect of stress on the coefficient of thermal expansion.  
 
Now, assuming linear elastic behaviour, i.e. using Hooke’s law: 

𝜎 = 𝐸. 𝜀 (31) 
where, s is the mechanical stress in the system, E is Young’s modulus and e is the strain of 
the material. It should be noted that the strain and Young’s modulus in Equation (31) are 
functions of temperature.  
 
By differentiating the stress of Hooke’s law with respect to temperature, we obtain: 

𝜕𝜎
𝜕𝑇 =

𝜕
𝜕𝑇

(𝐸𝜀) = 𝐸.
𝜕𝜀
𝜕𝑇 + 𝜀.

𝜕𝐸
𝜕𝑇 (32) 

 
Substituting the strain e  of s/E from Hooke’s law into Equation (32) yields: 

𝜕𝜎
𝜕𝑇 = 𝐸.

𝜕𝜀
𝜕𝑇 +

𝜎
𝐸 .
𝜕𝐸
𝜕𝑇 (33) 

 
which can be re-arranged to give: 

𝜕𝜎
𝜕𝑇 = −𝐸 c−

𝜕𝜀
𝜕𝑇 −

𝜎
𝐸8 .

𝜕𝐸
𝜕𝑇d (34) 

 
By substituting Equation (34) into Equation (30), we obtain: 

𝜌F𝑐z
𝜕𝑇
𝜕𝑡 = −𝐸𝑇 c−

𝜕𝜀
𝜕𝑇 −

𝜎
𝐸8 .

𝜕𝐸
𝜕𝑇d .

𝜕𝜀
𝜕𝑡 

(35) 

 
For instances of stress being equal to zero, but ¶e/¶T not necessarily equal to zero, the 
conservation of energy can be rewritten as: 

𝜌F𝑐z
𝜕𝑇
𝜕𝑡 = −𝐸𝑇 c−

𝜕𝜀
𝜕𝑇d .

𝜕𝜀
𝜕𝑡 (36) 

 
Equation (36) allows to define the free linear expansion coefficient (a0) as: 

𝛼F = −
𝜕𝜀
𝜕𝑇 (37) 

 
Combining this with Equation (35) while introducing a stress-dependent thermal expansion 
coefficient as and the total thermal expansion coefficient a, we have: 

𝜌F𝑐z
𝜕𝑇
𝜕𝑡 = −𝐸𝑇 c𝛼F −

𝜎
𝐸8 .

𝜕𝐸
𝜕𝑇d .

𝜕𝜀
𝜕𝑡 (38) 

𝛼= =
𝜎
𝐸8
𝜕𝐸
𝜕𝑇 (39) 

𝛼 = 𝛼F − 𝛼= = 𝛼F −
𝜎
𝐸8
𝜕𝐸
𝜕𝑇 (40) 

𝜌F𝑐z
𝜕𝑇
𝜕𝑡 = −𝛼𝐸𝑇

𝜕𝜀
𝜕𝑡 

(41) 
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Accordingly, it can be concluded that the thermal expansion coefficient of a material 
subject to combined heating and loading condition is the summation of its free linear 
expansion coefficient and a stress-dependent expansion coefficient. The effects of stress 
on thermal expansion coefficient of material have thus been explicitly accounted for in 
Equation (40), which has been derived on the basis of only fundamental thermodynamics 
and continuum mechanics laws – with no mathematical fits to experimental data required. 
 
Recognizing the dependency of all the parameters on temperature, Equation (3) can now 
be fully rewritten as: 

𝜀;<; =
𝜎(𝑇)
𝐸(𝑇) + 𝛼. Δ𝑇 (42) 

 
where a is the total thermal expansion coefficient, comprising the free linear thermal 
expansion coefficient (a0) and a stress-dependent thermal expansion coefficient (as) as per 
Equation (40).  
 
Equation (42) enables to effectively and rationally account for the combined effects of 
stress and temperature increase. The following section aims to highlight such capability of 
the model, with a focus on concrete – the most commonly used construction material.  It 
should also be noted that the above relationships, Equation (42) included, are valid for a 
wide range of materials, as long as the associated assumptions made during derivation of 
the Equations are satisfied. It should also be noted that such assumptions are essentially 
consistent with typical testing regimes used for establishing constitutive model parameters 
for solid materials. 

Model verification 
 
We chose the original test data on concrete conducted by Anderberg and Thelandersson 10  
and some available LITS correlations10,27,28  to verify the improved constitutive model. Two 
types of test data are used for this verification, including (i) the total strain recorded while 
maintaining constant stress during heating of the samples, and (ii) the total reaction force 
recorded while maintaining zero total strain during sample heating.  
 
Young’s modulus at elevated temperatures 
 
The instantaneous Young’s modulus is used in this model. This value is determined by using 
the unstressed test in which the sample is heated to target temperature, then maintained 
at the target temperature for 2-3 hours to achieve an essentially stable condition within 
samples. The sample is then loaded until failure to determine the stress-strain curve and 
Young’s modulus value. To simplify the comparison, a simple Young’s modulus model of 
concrete found in the literature36 is used in subsequent comparisons: 

𝐸(𝑇) =
800 − 𝑇
740 . 𝐸F; 𝑓𝑜𝑟	60℃ ≤ 𝑇 ≤ 800℃ (43) 

 
where E0 is Young’s modulus of concrete at ambient temperature. 
 
Accordingly, the rate of change of Young’s modulus respect to temperature is: 
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𝜕𝐸
𝜕𝑇 =

−𝐸F
740 ; 

(44) 

 
Total strain correction 
 
As discussed in the previous section, the total strain of the concrete sample should take 
into account the step of applying a compressive load at ambient condition before heating, 
which creates an initial strain in concrete. In tests where the measured total strain is tared 
to zero (from a value caused by loading) shortly prior to heating, the following correction 
needs to be made to obtain the true total strain: 
 

𝜀;<;(𝑇fU�, 𝜎F) =
𝜎F
𝐸F

 (45) 

𝜀;<;(𝑡𝑟𝑢𝑒) = 𝜀;<;(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) −
𝜎F
𝐸F

 (46) 

 
Results and discussion 
 
To assess the predictive capability of the proposed model, its predicted values for the total 
strain and for the restraint stress are plotted in Figure 2 Error! Reference source not 
found.and Figure 3 respectively. The predictions are presented with the corresponding 
experimental data (Khoury, et al. 12 and Anderberg and Thelandersson 10) as well as the 
estimations obtained using available correlations10,27,28.  
 
It can be clearly seen from Figures 2 and 3 that: 

• Values of the total strain given by proposed model agree well with corresponding 
experimental data for all four stress levels reported (Figure 2). Such good 
agreement is observed for the entire range of temperatures tested, including those 
above 500°C. 

• The proposed model captures very well both the trend and magnitude of the 
restraint stress throughout the heating process (Figure 3). In contrast, the 
Anderberg’s correlation gives less accurate predictions for temperatures above 
200°C, even though the correlation was developed on the basis of such test data. 

 
Furthermore, major features characterizing the coupled effects of stress and temperature 
on total strain, which have been experimentally observed and reported as LITS in previous 
studies1,7, can be logically explained or captured by the proposed model. To illustrate: 

• The LITS developed during first heating is observed mostly irrecoverable on cooling: 
This can be explained by the negligible contribution of the stress-dependent 
thermal expansion coefficient as to the total strain in Equation (42), resulted from 
the very small ¶E/¶T during cooling. 

• Similarly, ¶E/¶T is also negligibly small during subsequent heating up to 
temperature levels lower than the maximum temperature reached during first 
heating. This helps explain the observed inappreciable additional LITS during such 
subsequent heating. 
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• However, if temperature levels during subsequent heating are considerably higher 
than the maximum temperature during first heating, ¶E/¶T becomes significant; 
and hence, appreciable LITS should be expected.  

 
The above statements are in good agreement with test data. The ability of the proposed 
model to capture and explain experimentally-observed features of the LITS component 
clearly demonstrates its strong predictive capability.  
 

 
(a) For applied stress being 10% of ambient compressive strength. 

 

 
(b)  For applied stress being 20% of ambient compressive strength. 
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(c)  For applied stress being 22.5% of ambient compressive strength. 

 

 
(d)  For applied stress being 35% of ambient compressive strength. 

Figure 2. Comparison between experimental  (Khoury, et al. 12 and Anderberg and 
Thelandersson 10) and predicted values of the total strain of concrete at elevated 

temperatures under different stress levels.  
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Figure 3. Comparison between experimental (Anderberg and Thelandersson 10) and 

predicted values of restraint stress of heated concrete samples.  

Simple method for establishing parameters of the derived model 
 
Equation (42) can be re-written as: 

𝜀;<; =
𝜎(𝑇)
𝐸(𝑇) + c𝛼F −

𝜎(𝑇)
𝐸(𝑇)8

𝜕𝐸
𝜕𝑇dΔ𝑇 (47) 

 
On the basis of Equation (47), prior knowledge of E(T) and ¶E/¶T is required to quantify the 
coupling effects. However, such knowledge may not be available for the material under 
consideration: Extensive testing is then required to collect needed data. Alternatively, 
assumptions on E(T) and ¶E/¶T can be made; however, such assumptions necessarily 
introduce uncertainties that may not be easily quantifiable. 
 
Now, re-arranging Equation (47): 

𝜀;<; = 	𝜎(𝑇) c
1

𝐸(𝑇) −
1

𝐸(𝑇)8
𝜕𝐸
𝜕𝑇 ∆𝑇d + 𝛼FΔ𝑇 (48) 

 
By defining an effective Young’s modulus of elasticity as Eeff(T), where: 

1
𝐸z��(𝑇)

=
1

𝐸(𝑇) −
1

𝐸(𝑇)8
𝜕𝐸
𝜕𝑇 ∆𝑇 (49) 

 
Equation (48) becomes: 

𝜀;<; =
𝜎(𝑇)
𝐸z��(𝑇)

+ 𝛼F∆𝑇 (50) 

 
Equation (50) allows to conveniently determine parameters of the derived rational model 
(including Eeff(T)) using existing and widely-available tests. This aspect is critically significant 
in enabling the wide adoption of the model in engineering applications, thereby realising 
the potential impacts of fundamental science. 
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The following scenarios are to further illustrate the simple determination of the model 
parameters: 
 

a. If the sample is loaded to target stress at ambient temperature, Equation (48) can 
be simplified as indicated in Equation (50) and the constitutive model of the sample 
will be Hooke’s law:  

𝜀;<; =
𝜎F
𝐸F
+ 0 =

𝜎F
𝐸F

 (51) 

 where, s0 is compressive stress at ambient temperature 
o This test allows to obtain the Young’s modulus of concrete at ambient 

temperature E0. 
b. If the sample is heated to the target temperature without any restraint condition, 

the stress in the sample will be zero. Equation (50) then becomes: 

𝜀;<;(𝑇) =
0

𝐸(𝑇)	+ 𝛼. Δ𝑇 = 	𝛼F. Δ𝑇 (52) 

 
o If the sample is heated in this case, the total strain is the free thermal 

expansion strain without any effects of stress on the thermal expansion 
coefficient. 

o This test allows to obtain the free linear thermal expansion coefficient at 
temperature T (a0). 

c. If the sample is heated to the target temperature with no restraint condition, then 
loaded to failure at such target temperature, the total strain of sample becomes: 

𝜀;<;(𝑇) = 	𝛼F. Δ𝑇 + 𝜀= (53) 
 
 where 𝜀= = 𝜎 𝐸(𝑇)⁄ . 

o Therefore, this test allows to obtain the Young’s modulus of concrete E(T) 
and the stress-strain curve for concrete at a specific target temperature. 

d. If the sample is loaded to target stress s0 and then heated to target temperature 
(T) with the stress unchanged, the constitutive model will be: 

o Before heating: 

𝜀;<;(𝑇fU�) =
𝜎F
𝐸F
	 (54) 

 
o After being heated to target temperature (T) with stress (s0) unchanged: 

𝜀;<;(𝑇) =
𝜎F

𝐸z��(𝑇)
	+ 𝛼FΔ𝑇 (55) 

 
o This test allows to determine the effective Young’s modulus Eeff(T) if the free 

thermal expansion coefficient (a0) at temperature T is known and the total 
strain etot is measured during testing.  

e. If the total strain of the sample is fixed at zero while the sample is heated to a target 
temperature, the stress in the sample increases due to the expansion as follows: 

o Before heating: etot = 0; s = 0 
o After heating: etot = 0; s(T) ¹ 0 

𝜀;<; =
𝜎(𝑇)
𝐸z��(𝑇)

	+ 𝛼FΔ𝑇 = 0 (56) 
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o This test allows to determine the effective Young’s modulus Eeff(T) if the free 
thermal expansion coefficient (a0) at temperature T is known and the 
restraint stress s(T) is captured during testing . 

f. If the sample is loaded to a target stress and then heated to a target temperature 
while maintaining the total strain constant then the increased stress in the sample 
is given by: 

o Before heating: etot = constant; s0 ¹ 0 

𝜀;<; =
𝜎F
𝐸F
	= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (57) 

 
o After heating: etot = constant; s(T) ¹ s0 ¹ 0 

𝜀;<;(𝑇, 𝜎) =
𝜎(𝑇)
𝐸z��(𝑇)

	+ 𝛼FΔ𝑇 =
𝜎F
𝐸F
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (58) 

o This test allows to determine or calibrate the coupling effect of stress and 
temperature increase. 

Summary and Conclusions 
 
In this paper, the need to account for the coupled effects of stress and temperature 
increase in assessing the performance of solid materials is first emphasized. It is then clearly 
highlighted that such effects are currently accounted for through the introduction of 
empirical correlations principally developed by best-fitting to limited test data. Accordingly, 
the applicability of existing correlations to scenarios different from those tested remains 
questionable and their reliability hinges on the reliability of corresponding test data. 
 
Using fundamental thermodynamics and continuum mechanics laws, an equation showing 
the effects of stress on thermal expansion coefficient is then derived. On that basis, a new 
constitutive model for the total strain of solid materials under simultaneous loading and 
heating is proposed. The newly-proposed model is shown to have great predictive 
capability: (i) Its predictions agree well with available corresponding test data; and (ii) Key 
features of the coupling effects of stress and temperature increase on total strain, as 
experimentally observed in reported studies, can be logically explained by the model. The 
proposed model thus allows to reliably quantify such coupled effects of stress and 
temperature increase, thereby contributing to a more rational and reliable analysis and 
design of structures. Equally importantly, a simple method to conveniently determine 
parameters of the derived rational model is also presented, enabling the wide adoption of 
the model in engineering applications. Having been rationally developed from first 
principles, the proposed model should be applicable to a wide range of solid materials. 
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