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Abstract— Cryosat-2 has provided measurements of pan-Arctic 

sea ice thickness since 2010 with unprecedented spatial coverage 

and frequency. However, it remains uncertain how the Ku-band 

radar interacts with the vast range of scatterers that can be present 

within the satellite footprint, including sea ice with varying 

physical properties and multi-scale roughness, snow cover, and 

leads. Here, we present a numerical model designed to simulate 

delay-Doppler SAR (Synthetic Aperture Radar) altimeter echoes 

from snow-covered sea ice, such as those detected by Cryosat-2. 

Backscattered echoes are simulated directly from triangular facet-

based models of actual sea ice topography generated from 

Operation IceBridge Airborne Topographic Mapper (ATM) data, 

as well as virtual statistical models simulated artificially. We use 

these waveform simulations to investigate the sensitivity of SAR 

altimeter echoes to variations in satellite parameters (height, pitch, 

roll) and sea ice properties (physical properties, roughness, 

presence of water). We show that the conventional Gaussian 

assumption for sea ice surface roughness may be introducing 

significant error into the Cryosat-2 waveform retracking process. 

Compared to a more representative lognormal surface, an echo 

simulated from a Gaussian surface with rms roughness height of 

0.2 m underestimates the ice freeboard by 5 cm – potentially 

underestimating sea ice thickness by around 50 cm. We present a 

set of ‘ideal’ waveform shape parameters simulated for sea ice and 

leads to inform existing waveform classification techniques. This 

model will ultimately be used to improve retrievals of key sea ice 

properties, including freeboard, surface roughness and snow 

depth, from SAR altimeter observations. 

 
Index Terms—Radar Altimetry; Synthetic Aperture Radar; 

Radar Scattering; Numerical Analysis; Modeling; Sea Ice; Snow. 

 

I. INTRODUCTION 

HE Cryosat-2 Synthetic Aperture Interferometric Radar 

Altimeter (SIRAL) has proven an immensely successful 

tool for monitoring global ice and ocean properties. It has 

allowed us to estimate interannual ice sheet mass balance [1], 

the global marine gravity field [2], coastal & polar (i.e. ice-

covered) ocean dynamic topography and geostrophic 
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circulation [3, 4], and sea ice thickness [5, 6], with 

unprecedented spatial coverage, frequency and accuracy. 

Recent work has demonstrated that sea ice extent is closely tied 

to the inter-seasonal ‘memory’ of ice thickness [7], which 

means that sea ice models initialized with thickness 

observations can substantially improve the skill of ice extent 

forecasts [8, 9, 10]. However, improvements in forecasting 

clearly depend on the accuracy and uncertainty of the ice 

thickness observations used to initialize a model. 

Synthetic aperture processing has reduced the sampling 

interval and size of the Cryosat-2 sensing footprint along the 

track of the satellite to only a few hundred meters, in 

comparison to conventional pulse-limited altimeters operating 

on kilometer scales [11]. This is crucial for discriminating 

between returns from sea ice and ocean, and accurately 

determining the ice surface elevation from which the radar 

wave is backscattered; the two essential prerequisites for 

measuring sea ice freeboard using altimetry. Yet uncertainties 

remain with both procedures [12]. Here, we develop a 

numerical model for simulating delay-Doppler SAR altimeter 

echoes backscattered from heterogenous snow-covered sea ice 

surfaces, designed to explore these uncertainties and ultimately 

improve sea ice property retrievals. 

Radar altimeter echoes from the polar oceans have 

conventionally been classified into sea ice, lead or open water 

classes based on the shape of the backscattered waveforms. Ice 

and water have very different scattering characteristics at the 

Ku-band frequency commonly used by altimeters, meaning that 

classes can be separated using the width or ‘peakiness’ of 

waveforms [5], total backscattered power [13], and various 

other parameters [6]. However, the scattering properties of sea 

ice vary widely, depending on sea ice thermodynamics, surface 

roughness and properties of the overlying snow cover [14, 15]. 

Moreover, leads within the icepack commonly exist at a scale 

below the Cryosat-2 pulse-limited footprint (<1500 m), and 

often not at the nadir-point of the radar antenna, resulting in 

waveforms combining a heterogenous mix of scatterers. Off-
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nadir leads can be detected up to the antenna beam-limited 

footprint radius ~7.5 km off nadir [16]. Past studies have 

mitigated for these uncertainties by discarding a portion of 

atypical waveforms not falling into any single class e.g. [5, 17, 

18]; however, mixed waveforms that are not discarded can still 

introduce biases into sea surface height retrievals [16]. 

 At the near-nadir incidence angles of a radar altimeter, it is 

assumed the Ku-band wave is principally backscattered from 

the snow-ice interface [19]. The most common approach for 

identifying (or ‘retracking’) the principal scattering horizon of 

a sea ice echo is the empirical Threshold First-Maximum 

Retracking Algorithm (TFMRA), which records the retracking 

range at a predefined threshold of the first major power peak 

[5]. A threshold of 50% power, adopted from pulse-limited 

altimetry, has been used most often [5, 6, 18, 20], although a 

higher threshold of 60-70% has demonstrated the closest 

association with validation data [6]. Variable thresholds can be 

applied for retracking sea ice versus lead returns [6]. Using a 

physically-based retracking model, Kurtz et al. [17] estimated 

that, for a Gaussian sea ice surface height distribution, the 

correct threshold is closer to 85-95%. This range of thresholds 

corresponds to >0.5 m variation in elevation over the roughest 

sea ice. The true retracking threshold varies in response to 

several factors that affect the mean scattering elevation of the 

surface. (i) Processing methodology of the pulse-limited or 

SAR system. (ii) The fractional mix and location of scattering 

elements within the sensing footprint, i.e. snow, ice and water 

[21]. (iii) Primary footprint-scale (1-100s meter) surface 

roughness [17]. (iv) Secondary small-scale (0.001-1 meter) 

surface roughness [22, 23]. (v) Snow properties, including 

depth, grain size [24, 25] and basal and volume salinity [26]. 

Two generalized physical models have been developed to 

simulate backscattered Cryosat-2 echoes from sea ice, the 

CS2WfF model [17] and SAMOSA+ model [23] (Table I). By 

adapting SAR altimetry theory for open ocean [27, 28], the 

received radar echo in both models can be expressed as the 

double convolution of the compressed transmit pulse, the 

surface height probability density function (PDF) and the 

‘rough surface’ impulse response. An additional convolution on 

the snow backscattering coefficient has been tested [17, 29]. 

(Note that several other semi-analytical models have been 

developed for the backscattered SAR altimeter echo from open 

ocean, e.g. [28, 30]). These models treat the target as a uniform, 

isotropic and homogenous, purely surface scattering medium 

and make the classical assumption that footprint-scale surface 

roughness can be represented by a Gaussian PDF. Both the 

homogenous and Gaussian simplifications are required to 

reduce the problem to a tractable level and obtain a generalized 

solution; however, they each have limited validity for sea ice 

surfaces. 

Rivas et al. [31] found that only 1% of their sea ice roughness 

observations (over the thinnest most-level ice) could be 

accurately represented by a Gaussian PDF. Numerous studies 

have demonstrated that sea ice surface roughness and thickness 

distributions are better represented by a lognormal PDF [32, 33, 

34, 35, 36, 37]. However, it is not only the sea ice height PDF 

that is assumed to be Gaussian. Both above models use a formal 

definition for the impulse response that is derived by assuming 

a Gaussian surface height distribution (Table I). The reduction 

in backscatter from a rough ocean surface as a function of radar 

incidence angle (the backscattering efficiency) can be well 

explained by a scattering model assuming Gaussian height 

statistics [38]. CS2WfF adapts the Hagfors [39] scattering 

model (which assumes an undulating Gaussian height PDF but 

exponentially autocorrelated surface) to calculate the sea ice 

backscattering efficiency as a function of secondary-scale 

roughness. Likewise, SAMOSA+ uses the same definition of 

the impulse response as the SAMOSA-2 ocean echo model [27] 

but introduces a term to parameterize the ‘scattering amplitude 

decay’ in terms of the secondary-scale surface roughness (in 

this case the mean-square slope) [23]. Neither of these models 

can correctly simulate the impulse response from a sea ice 

surface with lognormal, fractal or other potentially more 

realistic height statistics. 

Our long-term goal is to investigate the sensitivity of SAR 

altimeter echoes from sea ice to surface roughness (at multiple 

scales), mixed surface types, and snow & ice thermophysical 

properties. As a tool designed to realize these objectives, we 

present a new facet-based numerical model for simulating 

delay-Doppler SAR altimeter echoes from snow-covered sea 

ice with prescribed statistical or real surface height topography. 

The effect of nadir-located or off-nadir leads can also be 

included in the model to enable examination of the 

contributions of different scattering mechanisms within the 

antenna footprint to the total echo. In (II) we introduce the 

numerical model, including the method used to generate 

triangular facet models of statistical surface topographies, the 

facet-based delay-Doppler SAR altimeter echo simulator, and 

TABLE I 
COMPARISON OF PHYSICAL MODELS FOR THE BACKSCATTERED SAR ALTIMETER ECHO 

 CS2WfF [17] SAMOSA+ [23, 27] WINGHAM [28] Here 

Type* Semi-analytical Analytical Semi-analytical Numerical 

Mode(s) PL/SAR SAR PL/SAR/SARIn PL/SAR 

Roughness Stochastic (Gaussian) Stochastic (Gaussian) Stochastic (Gaussian) Deterministic 

Target Sea Ice & Leads Sea Ice & Inland Water Ocean & Ice Sheets Snow, Sea Ice & Leads 

Backscattering Properties Approximated Approximated Modelled Modelled 

Scattering Mechanism Decomposition No No No Yes 

*Analytical model approximates the rough surface impulse response with a Gaussian function; Semi-analytical model includes numerical integration of the impulse 

response and convolution with transmit signal and surface height PDF; Numerical model is a fully-numerical simulation of the backscattered SAR echo 
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the surface & volume backscattering properties of snow, sea ice 

and leads. In (III) we demonstrate the model sensitivity, first to 

parameters of the Cryosat-2 SIRAL instrument (pitch, roll, 

altitude) and second to properties of the target (snow & ice 

geophysical properties, surface roughness characteristics, 

mixed surface types). In (IV) we apply the model to a set of 

Operation IceBridge airborne laser scanning data of sea ice 

topography from the Central Arctic Ocean and compare 

simulated echoes to real echoes from a coincident Cryosat-2 

overpass. Finally, in (V) we compare the facet-based model to 

SAMOSA+ and discuss potential applications for the new 

simulator, before concluding in (VI). 

II. NUMERICAL ECHO MODEL 

A. Rough Surface Simulation 

Three different types of statistical rough surface are 

generated, using spectral analysis, to represent the primary 

footprint-scale (1-100s meters) sea ice surface topography. The 

predetermined parameters used to characterize all these 

surfaces are the root-mean square roughness height 𝜎𝑠𝑢𝑟𝑓 and 

autocorrelation length 𝑙𝑠𝑢𝑟𝑓. The power spectrum of sea ice 

surface roughness can be well described by a Lorentzian model 

(i.e. height features are exponentially correlated [31]), so we 

first generate surfaces with Gaussian height distributions and 

exponential autocorrelation functions. Gaussian height 

statistics are randomly drawn from the following zero-mean 

PDF 

𝑓(𝑧) =
1

√2𝜋𝜎𝑠𝑢𝑟𝑓
2
𝑒
− 

𝑧2

2𝜎𝑠𝑢𝑟𝑓
2
 (1) 

 

(which has been adopted to represent the sea ice topography in 

both CS2WfF and SAMOSA+), to generate an initially 

uncorrelated rough surface. The correlated surface is derived by 

multiplying the Fourier transform of 𝑓(𝑧) with the root of the 

Fourier transform of the autocorrelation function 𝜔(𝜉) =

𝑒−|𝜉|/𝑙𝑠𝑢𝑟𝑓 , following the method of [40]. Surfaces with a 

lognormal height distribution and exponential autocorrelation 

function are generated in a similar manner, following the 

approach of [41]. In this case, height statistics are drawn from 

the following PDF 

 

𝑓(𝑧) =
1

𝑧𝜎𝑙𝑜𝑔√2𝜋
𝑒
− 
(ln 𝑧−𝜇𝑙𝑜𝑔)

2

2𝜎𝑙𝑜𝑔
2

 (2) 

 

and 𝜎𝑙𝑜𝑔 and 𝜇𝑙𝑜𝑔 can be related to 𝜎𝑠𝑢𝑟𝑓 by 

 

𝜎𝑠𝑢𝑟𝑓 = √(𝑒𝜎𝑙𝑜𝑔
2
− 1)𝑒(2𝜇𝑙𝑜𝑔+𝜎𝑙𝑜𝑔

2) 

𝑒
(𝜇𝑙𝑜𝑔+

𝜎𝑙𝑜𝑔
2

2
)
= 0. 

(3) 

 

Finally, random fractal surfaces are generated from a 

roughness spectrum with a Gaussian height distribution, 

characterized by rms height 𝜎𝑠𝑢𝑟𝑓 and a high spatial-

wavelength cutoff at 
2𝜋

𝑙𝑠𝑢𝑟𝑓Δ𝑥
, where Δ𝑥 is the sampling interval 

of the surface [42]. The slope of the spectrum is controlled by a 

third surface parameter, the Hurst exponent 𝐻𝑠𝑢𝑟𝑓 , which is 

related to the fractal dimension of the surface by 𝐷 = 3 −
𝐻𝑠𝑢𝑟𝑓 . The two scale parameters 𝜎𝑠𝑢𝑟𝑓 and 𝑙𝑠𝑢𝑟𝑓 can be selected 

independently for each surface and do not depend on the choice 

of height PDF. Past observations have demonstrated that sea ice 

roughness parameters vary in the range 0.05 < 𝜎𝑠𝑢𝑟𝑓 < 0.50 m 

and 1 < 𝑙𝑠𝑢𝑟𝑓 < 10 m, between smooth level first-year ice and 

deformed multi-year ice [31, 33, 34]. After a surface is 

generated it is converted into a triangular irregular network 

(TIN) based on the MATLAB Delaunay triangulation structure. 

This structure contains a set of vectors defining the vertices or 

nodes of the original surface and the continuous tetrahedral 

mesh which links them. Our facet-based model computes the 

SAR altimeter’s power waveform from the integral of power 

backscattered from each triangular facet of the tetrahedral 

mesh. 

B. Delay-Doppler SAR Altimeter Echo Model 

We base our SAR altimeter echo model on the sensing and 

processing infrastructure of the Cryosat-2 SIRAL instrument. 

SIRAL uses aperture synthesis to generate a set of 𝑁𝑏 Doppler 

beams equally spaced in angle over the antenna’s along-track 

beam-width, for every burst of radar pulses. The angular 

interval between successive Doppler beams is [28] 

 

𝜉𝑘 =
𝜆0𝑓𝑝

2𝑁𝑏𝑣
 (4) 

 

(see Table II for parameter definitions). Each synthetic beam 

illuminates a beam-limited footprint along the satellite track of 

width 

TABLE II 
SYSTEM PARAMETERS USED IN THE NUMERICAL ECHO MODEL 

Symbol Parameter Reference Value 

𝑐 Speed of light 299792458 m s-1 

𝑅𝑒 Radius of Earth 6371000 m 

𝜆0 Carrier wavelength 0.0221 m 

𝑘0 Carrier wavenumber 284.307 m-1 

𝐵𝑤 Received bandwidth 320000000 Hz 

ℎ Satellite altitude 720000 m 

𝑣 Satellite velocity 7500 m s-1 

𝑓𝑝 Pulse repetition frequency 18182 Hz 

𝑃𝑇 Transmit peak power 2.2 x 10-5 W 

𝐺0 One-way antenna gain 42 dB 

𝐷0 Synthetic beam gain 36.12 dB 

𝛾1 Along-track antenna parameter 0.0116 rads 

𝛾2 Across-track antenna parameter 0.0129 rads 

𝑁𝑏 Number of synthetic beams 64 
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Δ𝑥𝑑𝑜𝑝𝑝 = ℎ𝜉𝑘 (5) 

while remaining pulse-limited across-track to 

 

Δ𝑥𝑝𝑙 = 2√
𝑐

𝐵𝑤

ℎ𝑅𝑒
ℎ + 𝑅𝑒

. (6) 

 

Equations (5) and (6) define the area of the triangular mesh 

generated in Section II-A. Doppler cells illuminated at different 

angles, but from consecutive bursts, can subsequently be 

‘steered’ to the same location on the surface, providing 𝑁𝑙 
independent looks at the surface within a small range of angles 

limited to 𝑁𝑏𝜉𝑘 [11]. The actual number of looks in a multi-

looked SAR waveform can be as high as 240 [28]. The set of 𝑁𝑙 
co-located radar echoes can be ‘stacked’ by performing a slant-

range correction to compensate for the increased two-way 

transit time of echoes from off-nadir Doppler beams. Slant-

range time correction 𝜏𝑐 for the 𝑘th Doppler beam is 

 

𝜏𝑐(𝑘) =
2

𝑐
√(
𝑘𝜉𝑘
ℎ
)
2

(1 +
ℎ

𝑅𝑒
) + ℎ2 (7) 

 

which accounts for curvature of the Earth’s surface. The final 

‘multi-looked’ Cryosat-2 SAR-mode waveform is an 

incoherent sum of all the independent echoes (or looks) from 

the stack, which reduces speckle noise and improves the 

measurement precision [11]. Here, we do not introduce speckle 

to the modelled echo and therefore do not have to account for 

𝑁𝑙. The multi-looked waveform can be characterized exactly 

from 𝑁𝑏 = 64. 

The multi-looked echo waveform model is based on the 

following power integral, which calculates a stack of 𝑁𝑏 

received echoes from a prescribed rough surface using the radar 

equation [43, 44, 45] 

 

𝑃𝑟(𝜏) = ∑
𝜆0

2𝑃𝑇
(4𝜋)3

(
1

2
𝑐ℎ)

(𝑁𝑏−1)/2

𝑘=−(𝑁𝑏−1)/2

 

                  ∫
𝑝𝑇(𝜏, 𝑘)

𝑟4
𝐺2(휃, 𝜙)𝑑(𝜉𝑘)𝜎

0(𝜏, 휃𝑝𝑟)

𝐴

 𝑑𝐴 

(8) 

 

where 𝐴 is the area of a surface facet, 𝑝𝑇(𝜏, 𝑘) describes the 

transmitted power envelope as a function of time 𝜏 and 

synthetic beam 𝑘, 𝑟 is the range, 𝐺(휃, 𝜙) is the antenna gain 

pattern as a function of incidence 휃 and azimuth 𝜙 angles, 

𝑑(𝜉𝑘) describes the gain pattern of synthetic beam 𝑘 as a 

function of look-angle 𝜉𝑘 during along-track SAR processing, 

and 𝜎0(𝜏, 휃𝑝𝑟) describes the total surface plus volume 

backscattering coefficient as a function of time and facet polar 

response angle 휃𝑝𝑟. The basic geometry of the echo model is 

illustrated in Figure 1. While the location of the triangular mesh 

is fixed, so the antenna boresight is always directed towards the 

surface centre, the antenna origin depends on satellite altitude, 

pitch 휁 and roll 휂 mis-pointing angles, and Doppler beam angle 

 

𝑥0 = ℎ𝑘𝜉𝑘 + ℎ휁 

𝑦0 = ℎ휂 
(9) 

 

The range, incidence angle and azimuth angle from the antenna 

origin to surface facet [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖] are therefore 

 

𝑟

= √(𝑧𝑖 − ℎ)
2 + [(𝑥𝑖 − 𝑥0)

2 + (𝑦𝑖 − 𝑦0)
2] (1 +

ℎ

𝑅𝑒
) 

휃 =
𝜋

2
+ tan−1 [

√(𝑥𝑖 − 𝑥0)
2 + (𝑦𝑖 − 𝑦0)

2

(𝑧𝑖 − ℎ)
] 

𝜙 = tan−1 (
𝑥𝑖 − 𝑥0
𝑦𝑖 − 𝑦0

) 

(10) 

 

The polar response angle 휃𝑝𝑟 is simply the angle between the 

antenna-facet vector and facet-normal vector [43]. As the 

antenna boresight is directed towards the surface centre, the 

look angle between the radar and facet with respect to the 𝑥𝑧-

plane is given by 

휃𝑙 = tan−1 (−
𝑥𝑖 − ℎ𝑘𝜉𝑘
𝑧𝑖 − ℎ

) (11) 

The transmitted compressed pulse of the SIRAL radar can be 

described by a sinc function 

𝑝𝑇(𝜏) = 𝑠𝑖𝑛𝑐2(𝜋𝐵𝑤𝜏) (12) 

 
Fig. 1.  Three-dimensional geometry of the facet-based SAR altimeter echo 
model. The triangular mesh is always located such that the antenna boresight 

is directed towards the surface centre C at 𝑥 = 0 and 𝑦 = 0. The satellite velocity 

vector 𝑣 is aligned to the 𝑥-axis but rolled by angle 휂 so that the radar is mis-

pointing along the 𝑦-axis and the nadir location N does not align with C. 

Synthetic beams are formed at a series of look angles with interval 𝜉𝑘, parallel 

to the 𝑥-axis, between the synthetic beam boresight direction and C. Here the 

angles are illustrated from the central beam 𝑁𝑏/2 and subsequent beam 𝑁𝑏/2 + 

1, having been ‘steered’ to the identical sub-satellite location C. Surface facet 

F is located at azimuth angle 𝜙 in the 𝑥𝑦-plane and incidence angle 휃 from N, 

with respect to the satellite origin ⊖ at beam 𝑁𝑏/2. The satellite ‘look angle’ 

to F is characterized only in the 𝑥𝑧-plane and is given by 휃𝑙. The polar response 

angle 휃𝑝𝑟 of F is the difference between the antenna-facet vector ⊖F and facet 

normal-vector.  



TGRS-2018-01433 

 

5 

where 𝜏 is the time referenced to the mean scattering surface of 

the echo, given by 

𝜏 = 𝑡 + 𝜏𝑐(𝑘) −
2𝑟

𝑐
 (13) 

where 𝑡 defines the sampling of bins 𝑛 (1 to 256 for Cryosat-2 

in SAR mode) in the altimeter ranging window 𝑡 =
1

2𝐵𝑤
(𝑛 − 𝑡0), and 𝑡0 is the bin number at the mean sea ice 

elevation. The mean ice elevation is necessary for accurately 

calculating the sea ice freeboard, rather than any other 

parameter of the ice surface height distribution. The synthetic 

beam gain function is adapted from [11, 44] as 

 

𝐷0𝑑(𝜉𝑘) = |

sin (𝑁𝑏 [𝑘0
𝑣
𝑓𝑝
sin(휃𝑙 + 𝑘𝜉𝑘)])

𝑁𝑏 sin (𝑘0
𝑣
𝑓𝑝
sin(휃𝑙 + 𝑘𝜉𝑘))

|

2

 (14) 

 

where 𝐷0 is the gain of a single beam. In the Cryosat-2 

processing chain, a Hamming window is conventionally 

applied to (14) in the along-track direction, during synthetic 

aperture processing, to reduce scattering ambiguities introduced 

by side-lobes of the synthetic beam 

𝐻 = 0.54 − 0.46 cos 휃𝑙 (15) 

Finally, the elliptical pattern for the SIRAL antenna’s gain is 

established as [11] 

 

𝐺(휃, 𝜙) = 𝐺0𝑒𝑥𝑝 [−휃
2 (
cos2 휃

𝛾1
2
+
𝑠𝑖𝑛2 𝜙

𝛾2
2
)] (16) 

 

Giles et al. [43] demonstrated that the integral in (8) could be 

approximated as a sum provided the surface facets over which 

the power is integrated are small enough. As the transmitted 

pulse intersects the surface, the pulse annulus decreases in 

width. An error is introduced if the facet spacing is so coarse 

that the annulus cannot be effectively defined, with the error 

increasing (by power 2) over echo time. By testing the model 

over a very rough surface (𝜎𝑠𝑢𝑟𝑓 = 0.5 m), we found that the 

minimum facet spacing required before significant error is 

introduced to the echo trailing edge is ~25 m. This is well above 

the upper spacing limit necessary for characterizing the surface 

backscattering coefficient, as described in Section II. C, and 

thus does not impact our simulations.  

C. Surface and Volume Backscatter Modelling 

Estimating the backscattering coefficient 𝜎0 of a sea ice 

surface with nonuniform topography, potentially also 

containing mixed surface types including leads at the footprint 

scale, is a major source of uncertainty in the echo model. The 

ice surface backscattered power has been estimated in previous 

studies using simple exponential or power-law functions. For 

instance, Giles et al. [43] adopted the following expression 

 

𝜎0(휃𝑝𝑟) = 𝑒𝑥𝑝 (−
휃𝑝𝑟

𝜙𝑝𝑟
)

2

 (17) 

 

where 𝜙𝑝𝑟 is the backscattering efficiency, which defines the 

rate that backscattered power drops off as the facet-normal 

diverges from the antenna boresight direction. This is a similar 

approach to Kurtz et al. [17] who quantified 𝜎0 as a function of 

secondary-scale sea ice surface roughness 

 

𝜎0(휃𝑝𝑟) =
𝑅0𝛼

2
(1 + 𝛼 sin2 휃𝑝𝑟)

−3
2  (18) 

 

where 𝑅0 is the Fresnel reflection coefficient at normal 

incidence, 𝛼 = (
𝑙𝑠𝑖

2𝑘0𝜎𝑠𝑖
2)
2

, and 𝜎𝑠𝑖 and 𝑙𝑠𝑖 are the small-scale 

sea ice rms height and autocorrelation length. Note that 𝜎𝑠𝑖 and 

𝑙𝑠𝑖 parameterize roughness in the same way as 𝜎𝑠𝑢𝑟𝑓 and 𝑙𝑠𝑢𝑟𝑓; 

however, the two parameter sets are completely independent. 

The latter applies only to the generation of large-scale ice 

surface topography, as described in Section II-A, whereas the 

former applies only to small-scale roughness in the IEM 

simulations described below. The functions in (17) and (18) are 

illustrated in Figure 2, with representative values of 𝜙𝑝𝑟 and 𝛼 

for diffuse sea ice-type and specular lead-type surfaces. 

Here we model the backscattering coefficient directly by 

simulating surface scattering properties of snow, sea ice and 

seawater, as well as volume scattering by snow, and by 

accounting for their individual contributions to the total 

backscattered power within the altimeter footprint. Several 

initial assumptions are necessary to simplify the problem. We 

assume zero volume backscatter from sea ice [46], with all the 

energy transmitted across the snow-ice interface absorbed by 

TABLE III 
REFERENCE VALUES AND EXPECTED RANGES OF VALUES FOR 

PARAMETERS USED IN SURFACE AND VOLUME BACKSCATTER 

MODELLING OF SNOW, SEA ICE AND SEAWATER. 

 Parameter 
Expected 

Range 

Reference 

Value 
 

𝝈𝒔 Air-snow rms height 0.5 to 2.0 mm 1 mm [22, 67] 

𝒍𝒔 
Air-snow correlation 

length 

10 to 100 mm 
40 mm 

[22, 67] 

𝑻𝒔 
Bulk snow 

temperature 

-30 to -5 °C 
-20 °C 

[68] 

𝝆𝒔 
Bulk snow density 50 to 450 kg 

m-3 
350 kg m-3 

[69] 

𝝌𝒔 
Snow grain size 0.05 to 4.00 

mm 
1 mm 

[14, 69] 

𝒉𝒔 Snow depth 0 to 50 cm 25 cm [66] 

𝝈𝒔𝒊 Snow-ice rms height 1 to 4 mm 2 mm [22, 67] 

𝒍𝒔𝒊 
Snow-ice correlation 

length 
5 to 40 mm 

20 mm 
[22, 67] 

𝑻𝒔𝒊 
Bulk sea ice 

temperature 

-20 to -2 °C 
-15 °C 

[68] 

𝑺𝒔𝒊 Bulk sea ice salinity 2 to 12 ‰ 6 ‰ [68] 

𝝈𝒔𝒘 
Seawater-air rms 

height 
0 to 0.01 mm 

0.001 mm 
[67] 

𝑻𝒔𝒘 Seawater temperature -2 to 0 °C 0 °C [68] 

𝑺𝒔𝒘 Seawater salinity 28 to 35 ‰ 34 ‰ [68] 

𝜷𝒄 Effective angular 
width of coherent 

scattering component 

0 to 𝜉𝑘  𝜉𝑘 [19] 
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the ice cover. We model scattering and absorption in the snow 

cover, if present, but here only consider dry snow ( 
𝑇𝑠 < -5 °C) in a single layer, neglecting any dependence on 

salinity or liquid water in the snowpack. Additionally, we make 

the reasonable assumption that surface scattering of the Ku-

band wave from air-snow and snow-ice interfaces is purely 

diffuse and estimate only incoherent backscatter [47]. In 

contrast, we assume the seawater surface in a lead is a purely 

specular reflector and estimate only the coherently reflected 

power. 

1) Snow and Ice Surface Scattering 

Surface backscattering coefficients from air-snow and snow-  

ice interfaces are modelled using the integral equation model 

(IEM) for polarization 𝑝𝑝 [48, 49] 

 

𝜎𝑝𝑝
0 =

𝑘0
2

4𝜋
𝑒𝑥𝑝(−2𝑘𝑧

2𝜎𝑚
2 )∑|𝐼𝑝𝑝

𝑛 |
2𝑊(𝑛)(−2𝑘𝑥, 0)

𝑛!

∞

𝑛=1

 (19) 

 

where 𝑘𝑧 = 𝑘0 cos 휃𝑝𝑟, 𝑘𝑥 = 𝑘0 sin 휃𝑝𝑟, 𝑝𝑝 = VV or HH, 𝜎𝑚 is 

the rms height for medium 𝑚 (snow or ice), and 𝑊(𝑛) is the 

Fourier transform of the 𝑛th power of the surface autocorrelation 

function (ACF). The ACF of natural small-scale snow and sea 

ice surfaces can be well characterised by the exponential 

function 𝜔(𝜉) = 𝑒−|𝜉|/𝑙𝑚  [22]. The spectrum 𝐼𝑝𝑝
𝑛  is defined as 

[48, 49] 

𝐼𝑝𝑝
𝑛 = (2𝑘𝑧𝜎𝑚)

𝑛𝑓𝑝𝑝𝑒𝑥𝑝(−𝑘𝑧
2𝜎𝑚

2 ) + (𝑘𝑧𝜎𝑚)
𝑛𝐹𝑝𝑝 (20) 

where the coefficients  

 

𝑓𝑉𝑉 =
2𝑅𝑉
𝑐𝑜𝑠휃𝑝𝑟

;  𝑓𝐻𝐻 =
−2𝑅𝐻
𝑐𝑜𝑠휃𝑝𝑟

 (21) 

𝐹𝑉𝑉 = (
sin2 휃𝑝𝑟

𝑐𝑜𝑠휃𝑝𝑟
−
√𝜇𝑚휀𝑚 − sin

2 휃𝑝𝑟

휀𝑚
) (1 + 𝑅𝑉)

2 

−2 sin2 휃𝑝𝑟 (
1

𝑐𝑜𝑠휃𝑝𝑟
−

1

√𝜇𝑚휀𝑚 − sin
2 휃𝑝𝑟

) (1

+ 𝑅𝑉)(1 − 𝑅𝑉) 

+(
sin2 휃𝑝𝑟

𝑐𝑜𝑠휃𝑝𝑟
−
휀𝑚(1 + sin

2 휃𝑝𝑟)

√𝜇𝑚휀𝑚 − sin
2 휃𝑝𝑟

) (1 − 𝑅𝑉)
2 

(22) 

𝐹𝐻𝐻 = −(
sin2 휃𝑝𝑟

𝑐𝑜𝑠휃𝑝𝑟

−
√𝜇𝑚휀𝑚 − sin

2 휃𝑝𝑟

𝜇𝑚
) (1 + 𝑅𝐻)

2 

+2 sin2 휃𝑝𝑟 (
1

𝑐𝑜𝑠휃𝑝𝑟
−

1

√𝜇𝑚휀𝑚 − sin
2 휃𝑝𝑟

) (1

+ 𝑅𝐻)(1 − 𝑅𝐻) 

−(
sin2 휃𝑝𝑟

𝑐𝑜𝑠휃𝑝𝑟
−
𝜇𝑚(1 + sin

2 휃𝑝𝑟)

√𝜇𝑚휀𝑚 − sin
2 휃𝑝𝑟

) (1 − 𝑅𝐻)
2 

 

(23) 

𝑅𝑉 and 𝑅𝐻 are the Fresnel reflection coefficients for H and V 

polarisations, 𝜇𝑚 is the relative permeability of medium 𝑚, and 

휀𝑚 = 휀𝑚
′ + 𝑖휀𝑚

′′ , are real 휀′ and imaginary 휀′′ parts of the 

complex dielectric permittivity of the medium. The SIRAL 

antennas are linearly polarized with an orientation parallel to 

the interferometer baseline [11], which means that effective 

polarization varies with 𝜙. Because of this we estimate final 

surface 𝜎0 simply from the mean of 𝜎𝑉𝑉
0  and 𝜎𝐻𝐻

0 . In any case 

𝜎𝑉𝑉
0  and 𝜎𝐻𝐻

0  are almost identical at low incidence angles. The 

presented derivation of the IEM is valid for 𝑘0𝜎𝑚 < 2 and √3
𝜎𝑚

𝑙𝑚
 

< 0.3 [48], which for Ku-band places an upper limit on 𝜎𝑚 of 

~7 mm and a lower limit on 𝑙𝑚 of ~10 mm, suitable for the 

realistic range of interface roughness values in Table III. Owing 

to the multi-scale nature of sea ice roughness, field 

 

 
Fig. 2.  Backscattering coefficients 𝜎0 of snow, sea ice and leads, simulated by various methods. Panel (a) is a subset of panel (b) covering only the 0-2° incidence 

angle range. Snow volume (vol) & surface (surf) scattering, sea ice surface scattering and lead scattering coefficients are modelled directly from Eqs. (19)-(32), 

using the parameter set in Table III. Estimates for sea ice and lead surface backscattering coefficients are also obtained following the techniques of [17, 43]. 𝜙𝑝𝑟 

in (17) is taken as 1° and 0.01° for diffuse and specular surfaces, respectively. 𝜎𝑠𝑖 and 𝑙𝑠𝑖 in (18) are taken as 2 and 20 mm for the diffuse surface and 0.01 and 

1000 mm for the specular surface. 
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measurements of these small-scale roughness parameters tend 

to depend on the length-scale at which they are characterized. 

For instance, Landy et al. [22] demonstrated that measured 

small-scale roughness parameters remain within the IEM 

validity criteria only up to a length-scale of a few meters. It is 

not computationally practical to run our numerical echo model 

on a triangular mesh of 1-m facets, so we generally use 5-m 

facets for the simulations as a compromise between speed and 

accuracy. 

The dielectric constants of snow, sea ice and seawater are 

frequency dependent, and are derived here for the Ku-band. The 

relative dielectric constant of pure ice is estimated from the 

model introduced by Mätzler [50], depending weakly on 

temperature, but generally 휀𝑖 = 3.175 + 0.001i. The dry snow 

dielectric constant is obtained from an empirical expression in 

[50], derived from a two-phase Tinga-Voss-Blossey (TVB) 

mixing formula for spherical pure ice particles interspersed in 

air and with bulk density 𝜌𝑠. Snow dielectric constant depends 

strongly on density but, based on the reference values for 𝑇𝑠 and 

𝜌𝑠 in Table III, 휀𝑠 = 1.640 + 0.000i. The sea ice is treated as a 

heterogenous mixture of liquid brine inclusions interspersed 

within a pure ice host medium. The dielectric constant of brine 

is derived from the formulations of Stogryn [51], which require 

an estimate for the brine salinity. This is obtained from the well-

known brine salinity 𝑆𝑏 and volume 𝑉𝑏 functions of bulk sea ice 

temperature 𝑇𝑠𝑖  and salinity 𝑆𝑠𝑖  developed by Cox and Weeks 

[52]. With the reference values for 𝑇𝑠𝑖  and 𝑆𝑠𝑖 , brine permittivity 

휀𝑏𝑟 = 12.3 + 19.0i. A sea ice dielectric constant is estimated 

from a TVB mixing formula for spherical brine inclusions with 

volume fraction 𝑉𝑏/𝑉𝑠𝑖, in a background of pure ice, and is 휀𝑠𝑖 
= 3.35 + 0.06i. A seawater dielectric constant is derived through 

the same method as brine [51] and is 휀𝑠𝑤 = 29.5 + 36.7i. 

Realistic variations in sea ice and seawater dielectric constants 

do not significantly affect the modelled echo; however, snow 

dielectric properties, depending on density and grain size, are 

significant and therefore analyzed directly in Section IV-B. 

2) Lead Surface Scattering 

We expect the radar wave to be reflected coherently from a 

smooth lead within the ice pack, providing high backscattered 

power close to the nadir location but reducing quickly as 휃 rises. 

In the general case, the total polarization-independent 

monostatic scattering coefficient 𝜎0(휃) = 𝜎𝑐𝑜ℎ
0 (휃) + 𝜎𝑖𝑛𝑐

0 (휃), 
consisting of coherent and incoherent components, 

respectively. For a given lead surface roughness, the fraction of 

the backscattered power reflected coherently (rather than 

scattered incoherently) is [19] 

𝜔𝑐𝑜ℎ = 𝑒𝑥𝑝(−2𝑘0𝜎𝑠𝑤𝑐𝑜𝑠휃)
2 (24) 

For a lead surface with very low roughness (i.e. in the absence 

of significant wind-wave roughening) 𝜔𝑐𝑜ℎ is above 0.98, so 

we assume the lead only contributes coherently reflected power. 

Using (24), the coherent backscattering coefficient can be 

defined in terms of the surface roughness and the Fresnel 

reflection coefficient as [19] 

 

𝜎𝑐𝑜ℎ
0

= 𝜋𝑘0
2|2𝑅 cos 휃|2exp (−2𝑘0𝜎𝑐𝑜𝑠휃)

2𝛿(2𝑘0𝑠𝑖𝑛휃) 
(25) 

 

where 𝛿 is the Dirac delta function. The delta function accounts 

for the fact that the coherent contribution exists only at angles 

휃 in the immediate vicinity of normal incidence. By 

approximating cos 휃 ≅ 1 and sin 휃 ≅ 휃, and taking 

𝛿(2𝑘0𝑠𝑖𝑛휃) to be Gaussian in shape, the coherent 

backscattering coefficient for a smooth seawater surface can 

then be written in the form [53] 

 

 

𝜎𝑠𝑤
0 = (

𝑅

𝛽𝑐
)
2

exp (−4𝑘0
2𝜎𝑠𝑤

2 )𝑒𝑥𝑝 (−
휃2

𝛽𝑐
2
) (26) 

 

where 𝛽𝑐 is the effective width of the angular extent of the 

coherent backscatter component 𝜎𝑠𝑤
0 . Equation (26) is valid 

only at small angles, for close to specular surfaces, and the 

magnitude of 𝛽𝑐 is generally smaller than 1°. For SIRAL, 𝛽𝑐 is 

limited to a maximum angle of 𝜉𝑘 but, in the absence of 

sufficient calibration data over leads, we take 𝛽𝑐 = 𝜉𝑘 as a first 

approximation. 

3) Snow Volume Scattering 

Volume scattering and absorption within the snowpack are 

estimated from Mie scattering theory, for ice particles of radius 

𝜒𝑠 with density 𝜌𝑠. At realistic snow grain sizes (𝜒𝑠 > 0.5 mm) 

scattering dominates absorption in dry snow at frequencies 

around 15 GHz and above [46] and grain sizes are too large to 

use the Rayleigh approximation [19]. The snow volume 

scattering coefficient does not depend on polarization. We 

assume a single snow grain size and no additional scattering 

contribution from brine present in the snow volume [26]. The 

single scattering, extinction and absorption efficiencies of a 

spherical ice particle can be calculated from [19] 

 

휁𝑠 =
2

𝜓2
∑(2𝑙 + 1)(|𝑎𝑙|

2 − |𝑏𝑙|
2) 

∞

𝑙=1

 

휁𝑒 =
2

𝜓2
∑(2𝑙 + 1)ℜ{𝑎𝑙 + 𝑏𝑙}  

∞

𝑙=1

 

휁𝑎 = 휁𝑒 − 휁𝑠 

(27) 

 

where 𝜓 =
2𝜋𝜒𝑠

𝜆0
, 𝑛 = √

𝜀𝑖

𝜀𝑎
, and the relative permittivity of air 휀𝑎 

= 1. The coefficients in (27) are calculated from the recursive 

procedure 

 

𝑎𝑙 =
(
𝐴𝑙
𝑛
+
𝑙
𝜓
)ℜ{𝑊𝑙} − ℜ{𝑊𝑙−1}

(
𝐴𝑙
𝑛
+
𝑙
𝜓
)𝑊𝑙 −𝑊𝑙−1

  

𝑏𝑙 =
(𝑛𝐴𝑙 +

𝑙
𝜓
)ℜ{𝑊𝑙} − ℜ{𝑊𝑙−1}

(𝑛𝐴𝑙 +
𝑙
𝜓
)𝑊𝑙 −𝑊𝑙−1

 

(28) 

 

where 𝑊𝑙 = (
2𝑙−1

𝜓
)𝑊𝑙−1 −𝑊𝑙−2, and 𝐴𝑙 = −

𝑙

𝑛𝜓
+ (

𝑙

𝑛𝜓
−

𝐴𝑙−1)
−1

. Here the notation ℜ{𝑊𝑙} describes the real part of the 
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function 𝑊𝑙, where 𝑊0 = 𝑠𝑖𝑛𝜓 + 𝑗𝑐𝑜𝑠𝜓 and 𝑊−1 = 𝑐𝑜𝑠𝜓 −
𝑗𝑠𝑖𝑛𝜓. The scattering, extinction and absorption coefficients 𝜅𝑣 

of snow can then determined from 

𝜅𝑣 = 𝜋𝜒𝑠
2𝑁𝑣휁𝑣 (29) 

where 𝑁𝑣 =
𝜌𝑠

𝜌𝑖
(
4

3
𝜋𝜒𝑠

3)
−1

 is the number density of ice spheres. 

For the reference snowpack properties (Table III) scattering 

dominates absorption: scattering coefficient 𝜅𝑠 = 7.8 dB m-1, 

absorption coefficient 𝜅𝑎 = 0.3 dB m-1, so that extinction 

coefficient 𝜅𝑒 = 8.1 dB m-1. The snow volume backscattering 

coefficient is estimated from the extinction coefficient and 

snow depth ℎ𝑠 as [47] 

 

𝜎𝑠
0
𝑣𝑜𝑙

= 𝑇(휃𝑇)
2 [1 − 𝑒𝑥𝑝 (

−2𝜅𝑒ℎ𝑠
𝑐𝑜𝑠휃𝑇

)] (30) 

 

where 𝑇 is the Fresnel transmission coefficient at the air-snow 

interface, and 휃𝑇 = sin−1(sin 휃𝑝𝑟√휀𝑎/휀𝑠) is the angle of 

transmission into the snowpack. 

4) Total Backscattering Coefficient 

The total backscattering coefficient for a facet as a function 

of antenna-facet polar incidence angle 휃𝑝𝑟 and echo time 𝜏 can 

be calculated from (19), (26) and (30) as [17, 44, 29] 

 

𝜎0(𝜏, 휃𝑝𝑟)

=

{
 
 
 
 

 
 
 
 0, 𝜏 < −

2ℎ𝑠
𝑐𝑠

𝜎𝑠
0
𝑠𝑢𝑟𝑓

(휃𝑝𝑟) + 𝜎𝑠
0
𝑣𝑜𝑙
(𝜏, 휃𝑝𝑟)𝜅𝑒

𝑒𝑥𝑝 [−𝑐𝑠𝜅𝑒 (𝜏 +
2ℎ𝑠
𝑐𝑠
)] , −

2ℎ𝑠
𝑐𝑠

≥ 𝜏 > 0

𝜎𝑠𝑖
0(휃𝑝𝑟)𝑇(휃𝑇)

2𝑒𝑥𝑝 (−
𝜅𝑒ℎ𝑠
2
) , 𝜏 ≥ 0

𝜎𝑠𝑤
0 (휃𝑝𝑟), ℎ𝑖 = 0

 
(31)    

 

where the reduced speed of light within the snowpack is 

obtained from [13] 

𝑐𝑠 = 𝑐(1 + 51 ∙ 10
−5𝜎𝑠)

(−
3
2
). (32) 

Total 𝜎0 can be integrated over the altimeter footprint within 

(8) to simulate the aggregate backscattered power of a multi-

looked echo. However, each of the component backscattering 

coefficients (snow surface, snow volume, ice surface, lead 

surface) can also be integrated individually over the altimeter 

footprint to produce a set of multi-looked component echoes, as 

we demonstrate in Section IV. It is not computationally 

efficient to run forward models for the component 

backscattering coefficients at the 휃𝑝𝑟 of each elevation model 

facet. Instead we fit cubic splines to smoothly-varying functions 

of 𝜎0, for each component, simulated for the full 0 to 𝜋/2 range 

of possible 휃𝑝𝑟 values, but with interval spacing logarithmically 

weighted towards angles close to nadir. Spline interpolants can 

then be called for all facet 휃𝑝𝑟 simultaneously. 

III. COMPARISON WITH THE GENERALIZED MODEL SAMOSA+ 

The semi-analytical SAR waveform model SAMOSA+ is an 

adapted version of the generalized SAMOSA2 model for 

altimeter echoes from the ocean [27], developed for coastal 

altimetry but also applied for retracking waveforms from inland 

water and sea ice [23]. For quasi-specular surfaces the 

significant wave height (i.e. large-scale roughness) can be set 

to zero, with the mean-square slope of the surface (𝑠𝑠𝑖
2 ) 

controlling how rapidly backscattering decays with incidence 

angle [23]. Here we evaluate how the facet-based SAR echo 

model for sea ice compares to waveforms simulated from 

SAMOSA+. The SAMOSA2 model approximates the point 

target impulse response (PTR) with a Gaussian curve and uses 

a Gaussian height PDF, so we compare SAMOSA+ echoes with 

varied 𝑠𝑠𝑖
2  to echoes simulated from the facet-based model with 

a Gaussian height distribution and varied 𝜎𝑠𝑖. To relate 𝑠𝑠𝑖
2  to 

small-scale roughness 𝜎𝑠𝑖 and 𝑙𝑠𝑖, we use the following formula 

for the root mean-square slope of a truncated, exponentially-

correlated surface [54] 

 

𝑠𝑠𝑖 = √
2

𝜋

𝜎𝑠𝑖
𝑙𝑠𝑖
√5𝑘0𝑙𝑠𝑖 − tan

−1(5𝑘0𝑙𝑠𝑖). (33) 

 

Figure 3 compares echoes simulated for a range of 𝜎𝑠𝑢𝑟𝑓 

from the facet-based model and SAMOSA+. We use a value of 

0.42 for the SAMOSA+ coefficient 𝛼𝑝 which approximates the 

dimensionless width of the PTR [23]. The facet-model and 

SAMOSA+ are almost identical for the flat surface response 

(𝜎𝑠𝑢𝑟𝑓 = 0), when small-scale roughness parameters are as in 

Table III. For a Gaussian PDF with 𝜎𝑠𝑢𝑟𝑓 = 0.5 m, the echo from 

SAMOSA+ is slightly wider than the facet-model, with higher 

power modelled on the trailing edge. Some of this discrepancy 

may be explained by our use of constant 𝛼𝑝 (whereas previous 

studies have treated this as an a priori unknown parameter 

[23]), or by the fact we parameterize surface autocorrelation 

𝑙𝑠𝑢𝑟𝑓 directly. The specular echo from a lead is well 

 
Fig. 3. SAR echoes from sea ice simulated with the facet-based numerical 

model presented here (‘FM’, solid lines) and the semi-analytical generalized 
isotropic model SAMOSA+ (‘S+’, dashed lines). 
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characterized by a mean-square surface slope of 10-6, when we 

set the effective width of the coherent reflection 𝛽𝑐 = 𝜉𝑘. 

 

IV. MODEL SENSITIVITY 

By directly modelling the backscattering properties of snow, 

sea ice and seawater, and accounting for heterogeneity within 

the altimeter footprint, we can examine the sensitivity of the 

delay-Doppler SAR altimeter echo to fundamental target 

geophysical properties, as well as radar antenna parameters. We 

do not expect most of the geophysical parameters in Table III 

to significantly affect the echo shape, so in this section we 

generally illustrate only the most important parameters. 

Reference parameter values from Tables II & III are used in all 

simulations unless otherwise stated. 

A. Sensitivity to Antenna Parameters 

The model applied to a perfectly level surface with ℎ𝑠 = 0 

produces an echo analogous to the flat surface impulse response 

of sea ice. If the model is interrupted prior to SAR processing, 

a classic pulse-limited echo is simulated with the tracking point 

𝑡0 at half-power on the leading edge (Figure 4a). Contributions 

from a subset of different Doppler beams (Figure 4b) as part of 

the full delay-Doppler map (Figure 4c) highlights the variation 

in echo shape as a function of SAR look angle. 

Our model provides an exact characterization of antenna 

boresight mis-pointing up to >0.25°; however, mean recorded 

pitch and roll of the Cryosat-2 antenna bench are less than 0.01° 

over Arctic regions [55]. The effects of mis-pointing in pitch 휁 

and roll 휂 are illustrated in Figure 5, for a rough surface with 

lognormal PDF and exponential correlation function (𝜎𝑠𝑢𝑟𝑓 = 

0.1 m, 𝑙𝑠𝑢𝑟𝑓 = 10 m), and indicate that realistic variations in 

satellite bench orientation do not significantly impact the 

backscattered waveform shape [27]. 

B. Sensitivity to Snow-Covered Sea Ice Physical Properties 

1) Surface and Volume Backscattering Coefficients 

The variation in backscattering coefficient 𝜎0 of a facet with 

incidence angle 휃𝑝𝑟, for different components of the ice cover 

(snow surface, snow volume, ice surface, lead surface), 

illustrates the potential heterogeneity in scattering mechanisms 

within the altimeter footprint (Figure 2). The three 𝜎𝑠𝑤
0   

scattering signatures are similar, with backscatter dropping off 

rapidly to negligible levels within 휃𝑝𝑟 < 0.1°, reflecting the 

specular response of a lead. However, our direct estimation of 

𝜎𝑠𝑤
0  produces higher backscattering at nadir and falls off 

slightly less rapidly with 휃𝑝𝑟 than the other parameterizations 

[17, 43]. Surface backscattering coefficients at air-snow and 

snow-ice interfaces have similar scattering signatures, although 

𝜎𝑠𝑠𝑢𝑟𝑓
0  is significantly lower and drops off more rapidly than 𝜎𝑠𝑖

0  

because the interface is smoother and dielectric contrast 

between snow and sea ice is larger [46, 48]. The shape of the 

power-law parameterization of [17] is a reasonable 

 

 
Fig. 4.  Flat surface impulse response of sea ice simulated by the facet-based numerical echo model. Panel (a) is a single-look pulse-limited echo simulated from 

nadir. Panel (b) are SAR echoes simulated from various Doppler beams after slant-range time correction (7). Panel (c) is the full delay-Doppler map (DDM) 

simulated for 𝑁𝑏 = 64, up to a maximum look angle of 
𝑁𝑏

2
𝜉𝑘 = ±0.76°, as calculated from (4). All echoes are over-sampled in time by a factor of four for easier 

visualization. 

 

 
 
Fig. 5. Effect of mis-pointing in (a) pitch and (b) roll on SAR echoes from sea 

ice. 
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approximation for 𝜎𝑠𝑖
0 , although the absolute magnitude is lower 

than modelled 𝜎𝑠𝑖
0  from IEM if the same roughness parameters 

are used. The exponential law of [43] overestimates the 

reduction in 𝜎𝑠𝑖
0  as 휃𝑝𝑟 rises above ~1°. Applying these three 

different parameterizations for 𝜎𝑠𝑖
0  with varied small-scale 

roughness parameters to the numerical echo model, for a rough 

surface with lognormal PDF and exponential correlation 

function (𝜎𝑠𝑢𝑟𝑓 = 0.1 m, 𝑙𝑠𝑢𝑟𝑓 = 10 m, ℎ𝑠 = 0), produces the set 

of waveforms in Figure 6. The shape of the waveform is almost 

identical, but the waveform power (i.e. peak amplitude) and rate 

of trailing-edge decay are sensitive to variations in small-scale 

roughness. Finally, snow volume scattering is relatively low 

and remains almost constant over the relevant range of 휃𝑝𝑟 for 

the altimeter echo model (Figure 2). 

2) Model Sensitivity to Snow Properties 

Snow cover at the sea ice surface shifts the tracking point of 

the echo forward by a time interval that depends on the physical 

properties of the snow: principally its depth. The backscattered 

echo is not sensitive to variations in snow surface roughness, 

within the realistic range of parameters tested here (Table III). 

However, at snow grain sizes 𝜒𝑠 > 1 mm volume scattering is 

significant, with the leading edge of the waveform shifting and 

becoming less concave (Figure 7a). Increasing snow density 

produces a similar response to larger grain size, with the leading 

edge beginning to shift when 𝜌𝑠 > 150 kg m-3, although not to 

the same degree (Figure 7b). Figure 7c illustrates that even 10 

cm of accumulated snow has an instant effect on the waveform 

trailing edge. Backscattered power is reduced, but fluctuations 

also become enhanced because the reduced wave speed within 

the snowpack emphasizes small variations in sea ice 

topography between adjacent areas of the footprint. When 

volume scattering in the snowpack is strong, increasing snow 

depth shifts the tracking point to an earlier time, by up to −
2ℎ𝑠

𝑐𝑠
. 

3) Model Sensitivity to Sea Ice Surface Roughness 

Sea ice surfaces with large-scale topography simulated from 

a fractal roughness spectrum produce very similar echoes 

regardless of whether 𝐻𝑠𝑢𝑟𝑓  is 0 or 1. These surfaces also have 

a Gaussian PDF and therefore produce echoes close in shape to 

those simulated from an exponentially-correlated surface with 

a Gaussian PDF (Figure 8a). The clearest impact of 

representing the large-scale sea ice topography with a 

lognormal instead of conventional Gaussian PDF, is to reduce 

the amplitude of the tracking point on the waveform leading 

edge. For all waveforms, the tracking point corresponds to the 

mean height of the surface PDF and is used to obtain the range 

from satellite to surface. It therefore has a direct impact on the 

estimate of sea ice freeboard. The difference in tracking point 

threshold between lognormal and Gaussian surfaces becomes 

larger as surface roughness 𝜎𝑠𝑢𝑟𝑓 increases. By an (unrealistic) 

roughness height of ~0.8 m (not shown), the tracking point for 

a lognormal surface is close to the 50% amplitude threshold 

adopted for pulse-limited waveform retracking [38] and 

regularly also for SAR waveform retracking from sea ice [5, 

18]. 

Increasing 𝜎𝑠𝑢𝑟𝑓 for a Gaussian surface has negligible impact 

on the amplitude threshold of the tracking point, but 

progressively widens echo leading and trailing edges (Figure 

8b) [11, 17, 38]. This is because the mean scattering height of 

the ice surface is at approximately half the range in surface 

 
 
Fig. 6. Sensitivity of a SAR echo from sea ice to varied small-scale ice surface 

roughness parameterizations. For the Giles et al. [43] method, 𝜙𝑝𝑟 in (17) was 

taken as 2° for a diffuse surface. For the Kurtz et al. [17] method, 𝜎𝑠𝑖 and 𝑙𝑠𝑖 in 

(18) were taken as 2 and 10 mm to simulate a power response within the 
roughness bounds of the IEM simulations made here. 

 

 
 

 
Fig. 7.  Sensitivity of a SAR echo from sea ice to varied snow physical properties: (a) grain size, (b) density and (c) depth. All parameters are held at the values in 

Table III, with the exceptions that ℎ𝑠 = 0.5 m in (a) and (b), and 𝜒𝑠 = 2 mm in (b) and (c), to emphasize the results. The same large-scale sea ice surface topography 

is used as in Figure 6. 
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height. Widening the surface height PDF just enhances the 

power contributions at range bins around the waveform peak. 

However, the tracking point threshold for a surface with a 

lognormal PDF reduces by ~5 percentage points (pp) per 10 cm 

increase in 𝜎𝑠𝑢𝑟𝑓 (Figure 8c). As the lognormal height PDF 

widens, the mean scattering height of the ice surface falls 

relative to the maximum height, so that total power 

contributions from surface facets above the mean height 

decreases. Relatively lower power has been received at the 

antenna by the time the transmitted pulse reaches the tracking 

point. Incidentally, the tracking point is located at an amplitude 

threshold of 60-80% on the waveform leading edge, for sea ice 

with lognormal roughness 𝜎𝑠𝑢𝑟𝑓 between 0 and 50 cm, which 

corresponds to the range of empirical thresholds demonstrating 

closest association with validation data in [6]. 

This discrepancy between the shapes of Gaussian and 

lognormal echoes has important implications for retracking sea 

ice freeboard from Cryosat-2 waveforms. Leads have negligible 

roughness, so the range measured to a lead is not influenced by 

the shape of the height distribution. However, by fitting an echo 

simulated from a Gaussian surface rather than a lognormal 

surface to a Cryosat-2 waveform, the measured tracking point 

from the fit will be overestimated in range and lead to an 

underestimate of the sea ice surface elevation compared to 

leads. Figure 9 illustrates how the modelled bias in sea ice 

freeboard increases nonlinearly as a function of the ice surface 

roughness height 𝜎𝑠𝑢𝑟𝑓. By assuming a sea ice density of 915 

kg m-3 and ocean water density of 1024 kg m-3, we can also 

estimate the underestimation in ice thickness introduced by this 

bias. For an ice surface with 𝜎𝑠𝑢𝑟𝑓 = 0.2 m and truly lognormal 

height distribution, the ice surface elevation will be 

underestimated by ~5 cm by fitting a Gaussian echo model, 

translating to an ice thickness error of approximately 0.5 m. 

4) Model Sensitivity to Mixed Surface Types (Leads) 

A major question remaining for SAR altimeter 

measurements of sea ice thickness concerns the separation of 

echoes from leads versus sea ice, and how leads located outside 

the nadir position of the antenna contribute to mixed-signal 

waveforms. Our evaluation of the individual scattering 

contributions to echoes from snow surface and volume 

scattering, ice surface scattering and lead surface scattering, 

allows us to examine this directly. Figure 10 illustrates the 

scattering contributions from each source when a 50-m wide 

and 0.2-m deep lead bisects a lognormal sea ice surface parallel 

to the along-track flight direction. If the lead is at nadir, the 

offset between 𝑡0 and the tracking point (i.e. the ice freeboard) 

is a function of lead depth. At 600 m off nadir, scattering from 

the lead still contributes almost 100% of the backscattered echo, 

with the waveform having a characteristic specular shape [5]. 

As the lead moves to 800 and 1000 m off nadir, scattering 

contributions from the snow surface & volume and especially 

ice surface increase. The 800-m off-nadir waveform has a 

characteristic mixed shape comprising quasi-specular and 

diffuse components. As the lead reaches 1000-m off nadir, it 

can hardly be detected within the diffuse-type waveform 

dominated by sea ice surface scattering. At this point scattering 

from the 20 cm snowpack contributes significantly to the 

leading-edge of the echo and the tracking point shifts slightly to 

 

 

 
Fig. 9. Modelled underestimation of sea ice freeboard ℎ𝑜𝑓𝑓𝑠𝑒𝑡, and approximate 

ice thickness, as a function of surface roughness height 𝜎𝑠𝑢𝑟𝑓, when assuming 

a Gaussian height PDF to model sea ice with truly lognormal surface height 

statistics. 

 
Fig. 8.  Sensitivity of a SAR echo to large-scale sea ice surface roughness: (a) for Gaussian, lognormal and fractal surfaces simulated with the same roughness 

parameters; and surfaces with (b) lognormal and (c) Gaussian height distributions, constant correlation lengths 𝑙𝑠𝑢𝑟𝑓 = 5 m, but varied roughness heights 𝜎𝑠𝑢𝑟𝑓. 

Each waveform has been generated from the mean of ten independent echoes from different permutations of the random statistical surfaces. All parameters are as 

in Tables II & III except that ℎ𝑠 = 0. 
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an earlier time (Figure 10c). When scattering from the 20-cm 

deep lead dominates (Figures 10a and b) the primary peak is 

delayed by several range bins. This correctly identifies the lead 

elevation, with respect to the ice surface, when the lead is 

located at nadir, but adds a positive bias to the range when the 

lead is off nadir [4]. Varying the depth of the lead has little 

noticeable effect on the shape of the backscattered echo but 

enhances the ranging bias if the lead is located off nadir. 

The relative contributions of each scattering mechanism to 

the total echo closely depends on the modelled component 

backscatter (Figure 2). In most cases, sea ice and snow 

backscatter are well constrained by their physical properties 

(Table III) and can be modelled reasonably accurately e.g. [14], 

but the process by which the Ku-band radar wave reflects from 

a lead is more uncertain. The level of wind-induced roughness 

has some effect on the power reflected by the lead, see (25). 

However, the most important yet poorly constrained parameter 

is the effective angular width of the coherent backscatter 𝛽𝑐. 

This parameter has considerable influence on the rate that 𝜎𝑠𝑤
0  

falls off with 휃𝑝𝑟, so controls when the lead can and cannot be 

‘observed’ by the radar at certain look angles. Figure 11 shows 

the effect of 𝛽𝑐 and off-nadir location on the waveform pulse-

peakiness for a 50-m lead [56], i.e. when the waveform will and 

will not be classified as a lead. The threshold proposed by 

Ricker et al. [6] will still accurately identify a lead 700 m off 

nadir, if the effective width of the coherent beam is at the wider 

end. If the coherent beam is at the narrower end (𝛽𝑐 <
𝜉𝑘

2
) this 

threshold will only identify a lead within 350 m off nadir. The 

lead can clearly be observed over a much greater range of look 

angles when 𝛽𝑐 is larger, leading to a less distinct transition 

between sea ice- and lead-type waveform shapes as lead off-

nadir distance increases. 

V.  APPLICATION TO SEA ICE OBSERVATIONS 

To evaluate how the facet-based altimeter model simulates 

actual SAR echoes, we use snow-covered sea ice surface 

topography observations from the Central Arctic Ocean, 

obtained by the Operation IceBridge (OIB) Airborne 

Topographic Mapper (ATM) laser scanner on 20th March 2013. 

The campaign on this date was exceptional because the OIB 

aircraft flew directly along the track of Cryosat-2 for around 62 

km, with the satellite passing over between 3 and 0.2 hours after 

the underflight. In total the OIB plane passed over the section 

intersecting Cryosat-2 twelve times, in an elliptical pattern, 

improving the sampling interval to 0.5-3 m and extending the 

across-track swath of topography observations to >8 km. We 

use these observations here to directly compare modelled SAR 

echoes to real waveforms from Cryosat-2. A detailed 

description of the method used to merge and georeference the 

ATM data is provided in the Appendix. 

The predominantly multi-year ice along the 62-km OIB 

section had very a rough surface topography, with 𝜎𝑠𝑢𝑟𝑓 

ranging from 0.37 to 0.72 m. A comparison between true and 

modelled Cryosat-2 echoes from sea ice is shown in Figure 12. 

The sea ice surface topography (Figure 12a) can be accurately 

characterized by a lognormal model with fitted 𝜎𝑠𝑢𝑟𝑓 of 0.46 

cm (Figure 12b). By simulating backscattered power directly 

from a triangular mesh of this topography, the numerical echo 

 
Fig. 10.  Total and sub-component echoes derived from the scattering contributions of snow surface roughness, snow volume scattering, ice surface roughness and 

lead specular reflection, for a lead located (a) 600 m, (b) 800 m and (c) 1000 m off nadir. The lead is 50 m wide and 0.2 m deep, parallel to the along-track satellite 

velocity vector. The sea ice surface has 𝜎𝑠𝑢𝑟𝑓 = 0.1 m, 𝑙𝑠𝑢𝑟𝑓 = 5 m, and ℎ𝑠 = 0.2 m. 

 

 

 
Fig. 11. Impact of the effective angular width of the coherent specular 

backscatter component 𝛽𝑐 and off-nadir lead location, on the pulse-peakiness 

of a SAR echo waveform. Lead width is 50 m. The black line identifies the 
pulse-peakiness threshold used by Ricker et al. [6] to separate lead- and sea 

ice-type waveforms. 



TGRS-2018-01433 

 

13 

model can closely characterize the shape of the sea ice 

waveform leading edge, with a more representative wider and 

deeper front ‘toe’ than is common for echoes simulated from 

surfaces with a Gaussian PDF (Figure 12c and d). The model 

can also characterize echo trailing-edge power fluctuations, 

although without the same detail. The discrepancies in this part 

of the echo are likely caused by spatial heterogeneities in 

scattering from the snow-covered sea ice that are not captured 

by the model. The effect of a large (>4 m high) pressure ridge 

situated ~300 m across-track from nadir (Figure 12a) can be 

observed in the Cryosat-2 echo, with a slightly stepped leading 

edge (Figure 12c). The discretization interval of the true 

Cryosat-2 echo also cuts off the very peak of the waveform 

(Figure 12d). 

A comparison between true and modelled Cryosat-2 echoes 

from leads intersecting three sea ice floes is shown in Figure 13. 

The sea ice surface topography (Figure 13a) can once again be 

accurately characterized by a lognormal model with fitted 𝜎𝑠𝑢𝑟𝑓 

 
Fig. 12.  Example of a Cryosat-2 echo modelled from real sea ice surface topography, including (a) ATM observations of the sea ice surface (with the extent of the 

pulse-limited footprint in black); (b) a lognormal fit to the surface height PDF; (c) the true Cryosat-2 SIRAL echo, and (d) the modelled echo (using the inset 
SIRAL antenna parameters). 
 

 

 

 
Fig. 13.  As in Figure 12, but for a Cryosat-2 echo modelled from leads intersecting three sea ice floes. Lead locations are highlighted in yellow on the point cloud 

in (a). ATM samples from the leads were classified based on the low intensity of laser reflections. 
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of 0.51 cm (Figure 13b). When a lead is located close to the 

nadir point of the footprint, the Cryosat-2 waveform has a 

strongly-peaked shape indicating dominant specular reflection. 

We chose this footprint because it represents a case where 

neither specular nor diffuse scattering dominates, with two thin 

leads located >1 km from nadir, producing a commonly 

observed mixed waveform (Figure 13c). Here, we separate the 

scattering contributions from different surface types within the 

footprint to examine this integration in detail. Scattering from  

sea ice around nadir dominates the first peak of the echo (Figure 

13d). Very rough pressure ridges beyond the pulse-limited 

footprint additionally contribute to fluctuations in echo power 

on the trailing edge. Maximum echo power, however, is 

produced by specular scattering from the relatively larger lead 

located at ~2300 m across-track, with the secondary peak 

occurring approximately 20 ns (3 m in range) after the first. This 

delay illustrates the potential impact of off-nadir leads on sea 

ice elevation retrievals, if waveforms are not re-tracked or 

classified accurately. 

 Given suitably-detailed topography, the facet-based 

numerical echo model appears able to closely simulate the 

complex backscattering response of mixed sea ice/ocean 

surfaces. Obviously, the number of available coincident 

Cryosat-2 and high-resolution laser scanning observations is 

severely limited. However, the comparison between true and 

simulated Cryosat-2 echoes provides confidence in the model 

for investigating the sensitivity of waveform shape to physical 

properties of the sea ice cover, as well as potentially retrieving 

sea ice properties (freeboard, roughness) through an inversion 

scheme. A single model run generally takes between 30 and 180 

seconds, so curve fitting for property retrievals would require 

the use of a lookup table, as in e.g. [17]. 

VI. POTENTIAL APPLICATIONS OF THE FACET-BASED MODEL 

Here we have presented the basic architecture and sensitivity 

of the facet-based model for simulating delay-Doppler SAR 

echo waveforms from sea ice. There are several avenues for 

future research that could benefit from using this model. 

Past studies have used constant amplitude thresholds on the 

leading edge to re-track sea ice waveforms, based on early 

techniques developed for pulse-limited altimetry [5, 6, 18]. 

However, for SAR altimetry, it has been demonstrated that the 

true amplitude of the tracking point varies as a function of both 

primary- and secondary-scale sea ice surface [17]. Here we 

have shown that the amplitude of the tracking point is also 

clearly sensitive to the statistical description of the surface 

roughness. The sea ice surface height distribution is almost 

always better characterized by a lognormal model instead of the 

conventionally-used Gaussian model [31]. An obvious research 

avenue is therefore to evaluate whether SAR echoes modelled 

from lognormal surfaces provide an improved fit to observed 

Cryosat-2 waveforms than those from Gaussian surfaces and, if 

so, whether using a ‘lognormal’ retracker improves ice 

thickness retrievals. 

A second avenue of study relates to the separation of sea ice 

and lead classes, and the treatment of mixed-type waveforms. 

The capability of the facet-based model to separate 

backscattering contributions from different surfaces within the 

footprint allows us to assess the probability of an off-nadir lead 

detection (retracker ‘snagging’ event) for various scenarios. 

However, to accurately simulate the echo components, further 

research is required to understand how backscattering at Ku-

band varies between sea ice and ocean, in particular the 

sensitivity of coherent lead reflection to 𝛽𝑐. 
The facet-based model has been flexibly designed to simulate 

pulse-limited or SAR echoes, at frequencies other than Ku-

band. We therefore anticipate that the model could be used to 

improve retrievals of snow depth on sea ice from dual-altimetry 

[57, 24, 58]. In theory, at the Ka-band (36 GHz) frequency of 

the AltiKa satellite, snow surface scattering should dominate 

and the radar tracking point will be located close to the air-snow 

interface [24]. Snow depth can be estimated from the difference 

between AltiKa and Cryosat-2 radar freeboards. However, 

snow properties [24, 59], sea ice surface roughness [58] and 

differences between the pulse-limited and SAR-limited 

footprints [57], can all introduce significant biases into snow 

depth retrievals if they are not properly accounted for [24, 60]. 

There have also been clear differences identified between 

pulse-limited (Envisat) and SAR altimeter (Cryosat-2) returns 

at Ku-band, likely resulting from sea ice roughness and mixed 

surface types [61]. For instance, the calibration developed by 

Lawrence et al. [58] to correct AltiKa and Cryosat-2 radar 

freeboards to air-snow and snow-ice interfaces, respectively, 

varies with waveform pulse-peakiness (principally a function of 

large-scale surface roughness). The facet-based model 

presented here could be used to directly evaluate the effects of 
 
 

TABLE IV 

MODELLED WAVEFORM SHAPE PARAMETERS FOR VARIOUS SEA ICE SCENARIOS 

Scenario1 
Stack Standard 

Deviation 
Stack Kurtosis Leading-Edge Width3 Pulse Peakiness4 Max Echo Power5 

Nadir Lead2 1.3 55.2 0.6 0.48 5.6 x 10-8 

800-m Off-nadir Lead2 1.8 44.3 1.5 0.20 8.4 x 10-10 

900-m Off-nadir Lead2 6.1 6.2 2.4 0.08 2.2 x 10-11 

1000-m Off-nadir Lead2 12.8 2.6 2.8 0.06 1.0 x 10-11 

Sea Ice Roughness 𝜎 = 5 cm 15.6 1.6 2.6 0.06 1.2 x 10 -11 

Sea Ice Roughness 𝜎 = 10 cm 16.0 1.5 2.7 0.06 1.1 x 10 -11 

Sea Ice Roughness 𝜎 = 20 cm 17.6 1.5 2.8 0.06 9.4 x 10 -12 

Sea Ice Roughness 𝜎 = 50 cm 19.3 1.5 3.3 0.06 5.7 x 10-12 

1 All model runs performed with the reference parameters sets in Tables II and III, lognormal large-scale roughness of 10 cm, and a snow depth of zero. 2 For a 

reference lead width of 50 m and depth of 0.2 m, as in Figure 10. 3 Waveform leading-edge definition taken from Paul et al. [61]. 4 Waveform pulse peakiness 
definition taken from Kurtz et al. [17]. 5 Estimated, in Watts, but without atmospheric transmission, snow or other losses. 
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surface roughness and snow properties on the expected 

waveform shape, including pulse-peakiness, of both AltiKa and 

Cryosat-2. Theoretical corrections obtained from these 

simulation results could improve the empirical corrections 

already developed. 

Rather than using delay-Doppler SAR processing, as 

described here, the facet-based model could be readily 

converted to exploit the fully-focused SAR altimetry processing 

of [62], which is an avenue of huge potential. This could be 

valuable for understanding the sensitivity of the along-track 

SAR focused echo to sea ice surfaces with heterogenous 

scatterers and complex topography. 

Finally, the facet-based model could be extended to simulate 

the echo cross-product for an interferometric radar altimeter 

like Cryosat-2. This would involve calculating the cross-

product impulse responses of the surface at the interferometer 

baseline, as in e.g. [28], providing simulations for the coherence 

and phase of the echo cross-product for a given snow-covered 

ice surface. A particularly valuable application of this could be 

for understanding the sensitivity of the radar echo cross-product 

to the slope, roughness, melting state and backscattering 

properties of glacial ice [63, 64]. OIB underflights of Cryosat-

2 tracks over ice sheets could, as here, provide a means of 

validating simulations results. 

VII. CONCLUSION 

Although Cryosat-2 has provided measurements of Arctic 

sea ice thickness at unprecedented resolution and accuracy 

since 2010, several areas of uncertainty remain – principally 

concerning the sensitivity of the backscattered echo to snow 

properties, sea ice surface roughness and mixed surface types. 

In this paper we have presented a novel facet-based numerical 

model of the delay-Doppler synthetic aperture radar altimeter 

echo from snow-covered sea ice. The model can simulate 

echoes from a triangular-mesh of real sea ice topography, 

obtained from airborne laser scanning data, or from virtual sea 

ice surfaces generated by statistical models of the ice surface 

roughness. Backscattering from the air-snow interface, snow 

volume, snow-ice interface and leads are simulated directly 

from the Integral Equation Model and Mie particle scattering 

theory. This allows us to partition the relative contributions of 

each scattering mechanism to the final power echo. 

We have demonstrated that the backscattered multi-looked 

echo from sea ice varies weakly as a function of radar antenna 

properties (e.g. pitch and roll). The modelled echo for a sea ice 

surface with Gaussian topography compares closely to the 

analogous echo simulated by SAMOSA+ analytical waveform 

model for a rough Gaussian ocean surface. However, airborne 

laser scanner observations (including those presented here) 

have shown that sea ice surface roughness is typically better 

characterized by a lognormal height distribution than a 

Gaussian one. Indeed, echoes simulated from OIB laser scanner 

observations of lognormal sea ice in the Central Arctic Ocean 

compare well to coincident Cryosat-2 SAR-mode waveforms. 

By assuming Gaussian height statistics for truly lognormal sea 

ice surfaces, the tracking point (and thus ice freeboard) will be 

underestimated by ~5 cm for sea ice with rms roughness height 

of 0.2 m. This translates to an ice thickness underestimation of 

around 50 cm. The tracking point for echoes from lognormal 

surfaces varies nonlinearly as a function of roughness; however, 

for sea ice surfaces with typical roughness, the tracking 

threshold is between 60 and 80% of the leading-edge power. 

A set of modelled waveform shape parameters, for different 

sea ice surface roughness and lead scenarios, are shown in 

Table IV. Shape parameters vary within the typical ranges 

presented in previous studies e.g. [5, 6, 13, 17, 56]; however, 

the values in Table IV provide guidance for detailed 

interpretation of echoes based on their shape. These model 

scenarios can improve the discrimination between echoes from 

sea ice versus leads.  

We anticipate that the facet-based SAR echo model will 

prove to be a valuable tool for investigating the sensitivity of 

backscattered waveforms to a variety of sea ice properties: 

surface roughness, off-nadir lead detection, snow depth at 

various radar frequencies, and potentially glacier ice properties. 

Our future work will aim to utilize this model in an inversion 

scheme to retrieve key sea ice properties from Cryosat-2 and 

other SAR altimeters. 

APPENDIX 

Airborne Topographic Mapper (ATM) observations from 

OIB on 20th March 2013 were processed using the following 

methodology. A scanner-azimuth-dependent bias was removed 

from all point clouds along the 62-km section coincident to the 

Cryosat-2 overpass, following [65]. The Level 1b ATM data 

have a precision of 0.03-0.05 m, a typical sampling interval on-

the-ground of 4-12 m, and single-track swath width of ~600 m 

[65]. However, on this date the OIB plane passed over the 62-

km section intersecting Cryosat-2 twelve times, in an elliptical 

pattern, to improve the sampling interval (where tracks 

intersected) to 0.5-3 m and extend the across-track swath of 

topography observations to >8 km. The along-track footprint of 

SIRAL is limited to ~300 m through SAR processing. The 

across-track pulse-limited footprint is ~1500 m, though the 

trailing-edge of the echo can include backscattered power 

above the noise floor from surface facets located >5000 m away 

from nadir. Thus, to characterize as much of the echo as 

possible, we generated a merged point cloud from all twelve 

ATM tracks. This was aligned to the Cryosat-2 overflight to 

identify 207 independent sea ice/lead elevation models, of 

approximately 500 by 8000 m size, intersecting individual 

Cryosat-2 footprints. Each of these elevation models was finally 

converted, at full resolution, into a triangular mesh of facets for 

use in the numerical echo model and compared to the true 

Cryosat-2 received waveforms. 

As is typical, the ice floes in the Central Arctic Ocean region 

were drifting over the three-hour period that ATM observations 

were acquired, so the process of merging individual tracks was 

not straightforward. The final ATM track was flown at UTM 

17:16, twelve minutes before the Cryosat-2 overpass, so all 

point clouds were georeferenced to the location of this track. 

General motion of the region’s icepack was determined by 

accurately registering sets of aerial photographs from the OIB 

Digital Mapping System (DMS) at the centre and each end of 

the coincident 62 km section. Over the 3-hr measurement 

period the icepack drifted at 0.7 km hr-1 to the North-northwest, 
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with little internal deformation. Starting from the track 

immediately adjacent to the reference track, each point cloud 

was displaced in the direction opposing the ice drift by 0.7 km 

hr-1 multiplied by the time offset between measurements. The 

MATLAB iterative closest point (ICP) algorithm was then used 

to tune the point cloud-to-point cloud registration by 

minimizing the rms distance between pairs of points from 

overlapping regions, with the vertical fit between points 

weighted twice as heavily as the horizontal fit. Each point in a 

pair will rarely come from the same location, so RMSE between 

pairs will never be zero; however, including the ICP algorithm 

registration step was critical and improved the overall fit by 

around 300%. The region of interest included several leads and 

cracks which could be aligned and used to verify the quality of 

the final merged point cloud, although understandably the fit is 

imperfect and could have introduced artificial facets into the sea 

ice models. Maps of the twelve point clouds before and after 

they were merged and georeferenced are shown in Figure 14. 

Normally the OIB aircraft records estimates for the snow 

depth on sea ice from the CReSIS Frequency-Modulated 

Continuous Wave (FMCW) snow radar alongside the ATM 

topography measurements. However, the snow radar was not  

operational for the 20th March 2013 campaign because the flight 

altitude was increased to widen the ATM swath. So here we 

simply simulate Cryosat-2 waveforms assuming the upper 20 

cm of the ATM topography is snow [66]. All other snow 

properties are kept as in Table III. 
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