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Abstract. Electronic health records (EHR) are increasingly being used for 

observational research at scale. In the UK, we have established the CALIBER 

research resource which utilizes national primary and hospital EHR data sources and 
enables researchers to create and validate longitudinal disease phenotypes at scale. 

In this work, we will describe the core components of the resource and provide 

results from three exemplar research studies on high-resolution epidemiology, 
disease risk prediction and subtype discovery which demonstrate both the 

opportunities and challenges of using EHR for research. 
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1. Introduction 

Electronic Health Records (EHR) are a rich source of information on human diseases 

[1]. EHR are generated during routine patient interactions in primary or secondary 

healthcare. EHR can contain information on diagnoses, symptoms. surgical procedures 

and interventions, prescriptions, laboratory biomarkers (e.g. high-density lipoprotein 

cholesterol) and physiological measurements (e.g. blood pressure (BP), body mass 

index).  Linking EHR which span primary care and hospital healthcare settings in the 

United Kingdom (UK) can enable researchers to create longitudinal phenotypes that 

accurately capture disease onset, severity, and progression [2]. The process of defining 

disease phenotypes in EHR data however is challenging and time-consuming since EHR 

are variably structured, fragmented, curated using different clinical terminologies and 

collected for purposes other than medical research [3].  
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2. Objective 

Here we present and describe a state-of-the-art phenomics resource, CALIBER, for 

developing, validating and sharing reproducible phenotypes in national structured EHR 

in the UK. We additionally briefly describe contemporary research exemplars using 

CALIBER data for translational research: a) disaggregating disease endpoints through 

high resolution clinical epidemiology, b) disease risk prediction using supervised 

machine learning approaches, and c) subtype discovery using unsupervised learning.  

3. Methods 

3.1 CALIBER phenomics resource 

We implemented and applied a rule-based phenotyping framework [4] for extracting 

information on diseases (status, severity, onset), lifestyle risk factors and biomarkers 

and applied it to a sample of 15 million individuals. CALIBER utilizes data from three 

national EHR sources: a) primary care EHR from the Clinical Practice Research 

Datalink (CPRD), b) administrative data on diagnoses and procedures during admission 

to hospitals from Hospital Episode Statistics (HES), and c) cause-specific mortality 

information from the Office for National Statistics (ONS) death register. Data were 

recorded using five controlled clinical terminologies: a) Read (primary care), b) ICD-

10 (hospital diagnoses, causes of death), c) ICD-9 (causes of death <1999), and d) 

OPCS-4 (surgical procedures), and d) DM+D (prescriptions in primary care). 

3.2 Contemporary research exemplars 

We present three contemporary research exemplars utilizing the CALIBER resource 

and phenotyping framework: a) high resolution epidemiology: we calculated Hazard 

ratios (HRs) based on disease-specific Cox models with time since study entry as the 

timescale, adjusted for baseline age and stratified by sex and primary care practice and 

report the associations of systolic and diastolic BP with 12 different cardiovascular 

diseases (CVD), b) disease risk prediction: using a global vectors model[5],  we trained 

clinical concept embeddings from hospitalization diagnosis and procedure information 

recorded in HES and evaluated them for predicting for the risk of admission to hospital 

in heart failure (HF) patients, and c) subtype discovery: we applied dimensionality 

reduction using multiple correspondence analysis and data clustering using k-means to 

a cohort of Chronic Obstructive Pulmonary Disease (COPD) patients in order to 

identify and characterize novel and clinically-meaningful disease subtypes.  

4. Results 

4.1 CALIBER phenomics resource 

We created an iterative, rule-based EHR phenotyping approach which combined 

domain expert input with data exploration. We curated >90,000 ontology terms from 

five clinical terminologies and created 51 phenotyping algorithms (35 
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diseases/syndromes, ten biomarkers, six lifestyle risk factors). Phenotype validation is a 

critical step in the process, and we provided up to six approaches for validating 

phenotypes: a) the ability to replicate aetiological and prognostic associations reported 

from non-EHR studies, b) case note review for Positive Predictive Value (PPV) 

reporting, c) the ability to replicate associations with genetic variants from non-EHR 

Genome-Wide Association Studies, d) algorithm performance in external populations, 

and e) cross-EHR-source concordance and stratification of populations.  

For each phenotype, we created a textual description with details on the 

implementation logic, the pre-processing steps and implementation steps. For some 

algorithms, we generated flowchart descriptions to describe how different components 

are combined to form the finalized phenotype and for facilitating the translation to 

machine-code (e.g. SQL) for execution and data extraction. Algorithms are curated on 

an open-access resource, the CALIBER Portal (https://www.caliberresearch.org/portal), 

[6,7] and have been used in >60 publications from national and international research 

groups. Each phenotype page on the Portal2 contains sufficient implementation and 

validation information for external researchers to re-use the algorithm. 

4.2 Contemporary research exemplars 

High resolution epidemiology: In a cohort of 1.25 million patients, we reported [8] 

highly-heterogeneous associations between BP and CVD disease endpoints: high 

systolic BP was more strongly associated with stable angina, Hazard Ratio (HR) 0.41 

[95% CI 1.36-1.46] than diastolic whereas diastolic BP had the strongest association 

with abdominal aortic aneurysm (HR 1.45 [95% CI 1.34–1.56]). We have undertaken 

similar analyses in other conventional CVD risk factors e.g. smoking [9], type-II 

diabetes [10], alcohol [11], social deprivation [12], heart rate [13], sex [14].  

Disease risk prediction:  We trained clinical concept embeddings [15] from 2,447 ICD-

9, 10,527 ICD-10 and 6,887 OPCS-4 terms across 2,779,598 hospitalizations in the UK 

Biobank. In the UK Biobank, we identified 4,581 HF cases (using the CALIBER HF 

phenotype [16,17])(30.52% female) and matched them to 13,740 controls. Clinical 

concept embeddings performed marginally better (AUROC 0.6965) than one-hot 

encoding of hospitalization data for predicting admission to hospital due to HF. 

Disease subtype discover: In the CPRD [18], we identified 30,961 current and former 

smokers diagnosed with COPD and extracted 15 clinical features including risk factors 

and comorbidities. Using clustering, we identified five clinically-meaningful COPD 

clusters with distinct dominant clinical profiles (e.g. anxiety/depression, frailty, CVD, 

obesity and atopy) and different healthcare utilization and exacerbation profiles. 

5. Conclusions 

In this manuscript, we described the CALIBER resource as a framework for using 

national EHR from primary and secondary health care, disease and national mortality 
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registries. Challenges remain with regards to scaling the phenotyping efforts to 

thousands of diseases and for recreating the life course of disease [19] .  
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