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Abstract 
Building-Stock Energy Models (BSEMs) are emerging as 
a powerful tool for cities and regions seeking to reduce 
greenhouse gas emissions and mitigate the effects of 
changing climates for their populations.  The potential 
influence of such model results coupled with the scale and 
complexity of the environments they aim to represent 
means it is essential to understand their limitations.  This 
study undertakes a systematic review of the literature 
relating to such models and finds that in only a very small 
proportion of studies are model uncertainties even 
considered.  This fundamental flaw is due to the 
computational demands of exploring the output space of 
such complex models.  A more detailed assessment was 
then undertaken of the identified studies in which 
uncertainty analysis (UA) and sensitivity analysis (SA) 
had been applied to BSEMs.  The adequacy of the applied 
methods is discussed, and recommendations proposed for 
the application of best practice techniques based on the 
underlying form of the model.  
Introduction 
As cities world-wide seek to reduce emissions of 
greenhouse gases to meet international obligations and to 
mitigate the effects of changing climates to address local 
concerns about health and well-being, tools are needed to 
compare the effects of different interventions and assess 
the impacts of different development scenarios.  BSEMs , 
incorporate representations of large numbers of individual 
buildings in order to create a model of a neighbourhood, 
entire city (Kavgic et al., 2010) or region.  In contrast to 
data-driven approaches which use statistical and machine 
learning techniques to relate overall energy consumption 
to characteristics of the building stock, this study focusses 
on BSEMs which are based on the aggregation of results 
for individual buildings, “bottom-up, building physics 
based models” (Swan & Ugursal, 2009).   
As availability of processing power has increased, 
BSEMs are emerging as powerful tools in urban planning, 
offering detailed insights into diagnosing energy 
consumption across a building stock, allowing energy 
efficiency interventions to be targeted at areas of greatest 
need. The impact of potential intervention strategies 
across the stock, including the application of renewable 
energy technologies, can be assessed, allowing competing 
strategies to be ranked.  A key benefit is the potential to 

explore future scenarios, such as changing climate and 
different development pathways for the stock. 
The wide range of potential applications coupled with the 
complexity of a modern city makes it essential to 
understand the limitations of the predictive power of such 
models.  The process of constructing models is, by 
definition, one of simplification.  No model can be a 
perfect representation of the system it aims to emulate and 
all models inevitably contain uncertainty (Refsgaard & 
Henriksen, 2004).  Uncertainty can be defined as “any 
deviation from the unachievable ideal of completely 
deterministic knowledge of the relevant system” (Walker 
et al., 2003).  It is to be expected that as the systems being 
modelled increase in scale and complexity, the 
uncertainty in the model will also increase.  
Consequently, it is inevitable that BSEMs will contain a 
considerable number of uncertainties and this should be 
cause for neither criticism nor alarm.  While some 
applications of BSEMs, such as in early design, actively 
seek a range of possible options, it is common to see 
output in BSEMs for existing cities expressed as a single 
value (Cerezo Davila, 2017).  Therefore, model 
uncertainties should be explored and reported to 
guarantee reliance on the model for decision support.  The 
quantification of the level of uncertainty in the model 
output, is essential.  Sensitivity analysis, while less 
fundamental, offers scope for significant insights by 
apportioning the uncertainty in the model output to 
individual input factors.   
Sources of uncertainty 
Modelling energy consumption (and related greenhouse 
gas emissions) at scale inherently involves a wide range 
of uncertain inputs (Eisenhower, O’Neill, Fonoberov, & 
Mezić, 2012) and it is helpful to begin by considering the 
types of uncertainty which can be found in these models.   
A number of different classification schemes have been 
proposed for the different sources of uncertainty (Stirling, 
2001; Walker et al., 2003).  For the purposes of this study, 
the categorisation proposed by Booth et al. (2012) is used 
since this was developed expressly for the case of BSEMs 
and makes explicit the concept of heterogeneity: 
1. Aleatory uncertainty – the random variation inherent 

in a parameter, for example in the thermal 
conductance of an individual building material. 

2. Epistemic uncertainty – uncertainty arising from a 
lack of knowledge, for example, the year of 
construction of a property. 



 

 

3. Heterogeneity – building stock models are  frequently 
simplified by the use of archetypes, in which a single 
set of parameter values is assigned to all buildings 
within a particular class.  Heterogeneity represents 
the variation between the buildings assigned to a 
particular archetype.1   

4. Model uncertainty – uncertainty about how to model 
the true processes, for example, the choice of sub-
model to calculate long-wave radiative transfer 
between buildings, or whether to exclude it entirely 
from calculations.  

Existing discussions of uncertainty and sensitivity 
analysis in building-stock energy models 
Uncertainty and sensitivity analysis of models for 
individual buildings is a well explored topic.  In 
particular, Tian (2013) presents a detailed review of the 
subject, together with recommendations for appropriate 
methods for different problem settings.  Naber et al. 
(2017) extend the review to encompass models at an 
urban or national scale, and note a limited uptake of UA 
and SA methods.  However, Naber et al. do not perform a 
systematic review nor offer any detailed analysis of the 
methods used and their appropriateness.  A more detailed 
review is presented by Lim and Zhai (2017) who discuss 
the approaches to UA and SA in the reviewed models.  
However, rather than a systematic review, Lim and Zhai 
aimed to synthesise examples of UA and SA practice.  As 
a result, it is clear that there is a need for a systematic 
review of the application of UA and SA to BSEMs, 
together with a need to determine how the form of the 
model in question might affect the application of UA and 
SA techniques.   
Aim of this paper 
The aim of our present paper then, is to systematically 
review the existing literature on the application of UA and 
SA to BSEMs, consider the forms of model encountered 
and the UA and SA methods used.  Based on this, 
recommendations are then provided for the application of 
UA and SA to BSEMs. 
Method 
A review was undertaken of journal and conference 
publications together with book chapters to explore UA 
and SA approaches employed to date.  Given the 
relatively recent emergence of BSEMs, the period of 
review was limited to publications from 2010 onwards.  A 
title, keyword and abstract search was undertaken in the 
Scopus database for the following terms: (energy AND 
building AND model) AND (uncertainty OR sensitivity 
OR probabilistic OR stochastic) AND (city OR building 
stock).  A variety of search terms were assessed and 
results screened to ensured that known publications on the 
subject were identified prior to selection of the final 
search string. 

                                                        
1 Following the definition by Swan and Ugursal (2009), 
in this article, representative buildings is used to refer to 
a specific set of parameters which applied to each building 
in a particular class (typically determined by age, function 

A total of 570 publications were identified, since this 
exceeded the resources available for review, the top 100 
publications by citation count were selected for review.  It 
is acknowledged that this selection procedure skews the 
choice of papers towards older publications (Davis & 
Cochran, 2015).  Alternative approaches to filtering the 
search results were possible, such as ranking by 
occurrence of search terms.  However, we follow the 
reasoning advanced by Saltelli et al. (2019) and note that 
the most highly cited papers are likely to be used as a 
benchmark to guide methodology and thus are an 
important indicator of the state of practice in a given field. 
The selected abstracts were then reviewed manually to 
determine whether they met the criteria for inclusion in 
this study: 
• A model based on aggregation of the simulated 

energy consumption of individual buildings in the 
stock, i.e. bottom-up, physics-based simulation. 

• Aggregation at a neighbourhood or larger scale.  The 
relative lack of research at scale led to a fairly low 
threshold being set for this criterion: 25 premises.  
This ensured that methods which could be 
demonstrated to work at a scale beyond that of the 
individual building would still be included. 

This initial screening led to 39 publications being retained 
for detailed screening.  The challenge of inferring 
methods from short abstract meant that where there was a 
lack of clarity about whether or not a publication met the 
criteria, it was retained.  The full content of each of the 39 
publications was then re-evaluated against the inclusion 
criteria.  This resulted in the exclusion of a further 15 
publications, either because the model described was not 
a bottom-up, physics-based model, or because, although 
the abstract discussed application at scale, the case 
detailed in the publication referred only to a single 
building.  The high exclusion rate at this stage of the 
screening process highlights a tendency for abstracts to 
discuss the potential extension of methods and models to 
a larger scale than that which is actually addressed in the 
research. 
The application of UA and SA in the remaining 24 
publications was then reviewed.  This resulted in 
discarding a further 10 publications which contained only 
narrative references to the search terms between varying 
inputs and outputs, or did not detail any analysis of their 
relationships. 
Evidence from the selected literature 
The details of the reviewed publications are summarised 
in  
Table 1.  We observe the following types of uncertainty 
analyses: 
UA1 Calculated confidence intervals (CI) 

etc.).  Where the representative buildings are simulated 
directly and results scaled for other buildings in the class, 
these are referred to as sample buildings  



 

 

Found in 2 refs. This approach to propagating uncertainty 
benefits from simplicity and requires only a small number 
of transformations.  However, as employed in Firth et al. 
(2010), it entails the assumption that all input parameters 
are normally distributed  and independent.  For systems 
with physical limits this will not be true.  In addition, it is 
assumed that there are no interactive effects between 
parameters which might result in more extreme results.  
Finally, for practical reasons, this approach is only 
possible for simple, quasi-steady state models. 
UA2 Stochastic uncertainty propagation 
Found in 2 refs. This approach typically applies a quasi-
random sampling strategy. Ascione et al. (2017) employ 
a Latin Hypercube Sampling strategy (LHS) which allows 
probability distributions to be defined independently for 
each of the input parameters, avoiding the necessity to 
assume a normal distribution for all parameters.  These 
methods can be extended to consider the correlation 
structure of the input parameters. 
UA3 Bayesian calibration 
Found in 2 refs. Although Bayesian calibration is not an 
uncertainty analysis method, it is included here since it 
involves the refinement of a quantified uncertainty 
distribution by calibration against measured data.  It is 
important to note that with any calibration process, the 
uncertainty in any parameters which were deemed to be 
fixed will be incorporated within the uncertainty of the 
variable parameters.  Therefore, the resulting posterior 
distributions for input parameters must be carefully 
interpreted.   
These three approaches are presented in order of 
increasing robustness, stochastic uncertainty propagation 
is preferred to calculating confidence intervals since it 
does not rely on the assumption of normally distributed 
variables.  Where measured data is available for 
comparison with the model output, Bayesian calibration 
offers a more precise definition of the output range of the 
model. 
As for the sensitivity analysis methods used, we observe: 
SA1 Scenario analysis 
Found in 3 refs. A scenario is “based on a coherent and 
internally consistent set of assumptions about key 
relationships and driving forces (technology changes, 
prices, etc.)” and is used to explore the output space of a 
given set of input parameters (Walker et al. (2003).  Since 

the change in outputs cannot be attributed to an individual 
input parameter without further analysis this is not strictly 
a sensitivity analysis method but is included here since it 
is often conflated with sensitivity analysis.  While 
scenario analyses can be useful for demonstrating the 
potential impact of a particular combination of input 
parameters, they do not systematically explore the input 
space of a model.  As a result, the model output for a 
specific scenario cannot be used to infer potential outputs 
due to alternative combinations of input parameters.  A 
true sensitivity analysis maps the changes in output values 
to changes in input parameters allowing inferences to be 
made about the relationships between the two.  
Quantification of uncertainty can provide valuable 
information on the range of outcomes in any given 
scenario. 
SA2 One-at-a-Time (OAT)  
Found in 6 refs. The effect of variable input parameters 
on the output is assessed by varying each input parameter 
in turn.  All other input parameters are held fixed while 
the parameter in question is varied. One-at-a Time 
sensitivity analysis belongs to the class of local sensitivity 
analysis.  By varying model inputs sequentially, the 
relationship between model input and output is explored 
at certain key points in the input space.  However, the 
principal failure of OAT analyses is the lack of coverage 
of the whole input space as demonstrated by Saltelli and 
Annoni (2010).  The limitations of the OAT analysis 
proposed by Firth et al. (2010) were explored by Cheng 
and Steemers (2011) who demonstrated that the results 
were only valid locally.  As a result, the sensitivity 
analysis was of limited predictive value since it did not 
apply to the full range of likely or valid values for each 
input parameter. 
SA3 Global sensitivity analysis 
Found in 2 refs. These techniques aim to provide a full 
coverage of the model input space.  However, this comes 
at considerable computational cost, since models must be 
evaluated at many points within the input space in order 
to produce results.  For models covering large building 
stocks, this can be prohibitive, although approaches based 
on design of experiments can be used to reduce the burden 
as discussed later in this article.  A full discussion of 
global sensitivity analysis methods is beyond the scope of 
this review, but  Saltelli and Annoni (2010) provide a 
useful introduction to the topic.

 
Table 1: Applications of UA and SA in building-stock models (ordered by number of citations)

Authors UA Methods SA Methods 
Form of 
model 

Uncertain 
parameters Size of stock 

Representative 
buildings 

Firth et al. (2010) Calculated CI OAT 
Quasi-

steady state 27 England 47 

Baetens et al. 
(2012) 

uncertainty 
propagation (unclear 

stochasticity) n/a 

Scaled 
dynamic 

not reported 33 4 
Cheng and 

Steemers (2011) Calculated CI OAT 
Quasi-

steady state 27 16,194 50 
Wang and Chen 

(2014) n/a 
scenario 
analysis 

Scaled 
dynamic 1 USA 9 



 

 

Authors UA Methods SA Methods 
Form of 
model 

Uncertain 
parameters Size of stock 

Representative 
buildings 

Papaefthymiou et 
al. (2012) n/a 

scenario 
analysis 

Scaled 
dynamic 1 Germany 7 

Tian  and 
Choudhary (2012) Bayesian calibration Global SA  

Surrogate 
model 16 379 1 

Nouvel et al. 
(2013) n/a OAT 

Quasi-
steady state 2 Neighbourhood 6 

Collins et 
al.(2010) n/a OAT 

Scaled 
dynamic 4 UK 6 

Booth et al. 
(2013) Bayesian calibration n/a 

Surrogate 
model 6 City 21 

Ascione et al. 
(2017) 

Stochastic uncertainty 
propagation Global SA  

Surrogate 
model 48 8,800 1 

Fonseca et al. 
(2016) n/a 

scenario 
analysis 

unclear 
16 Neighbourhood ? 

Turhan et al. 
(2014) n/a OAT 

Surrogate 
model 5 2,136 n/a 

Kazas et al. 
(2017) 

Stochastic uncertainty 
propagation n/a 

Scaled 
dynamic 1 144 1 

Nouvel et al. 
(2017) n/a 

OAT 
graphical 

Quasi-
steady state 4 150 150 

The results presented in Table 1 demonstrate the low 
penetration of UA and SA methods in the selected 
literature.  Of the 24 publications identified as relating to 
the application of a bottom-up simulation of energy 
consumption at scale and purporting to address UA and 
SA, only 7 undertook some form of uncertainty analysis.  
This means that even for the 24 papers which a full text 
review had confirmed met the requirements of both model 
form and coverage and which included the search terms 
“uncertainty”, “sensitivity” or “stochastic”, over two-
thirds of studies do not include even a basic assessment of 
the bounds of inference of the model presented.  Our 
findings are therefore in agreement with the more general 
results of the systematic review undertaken by Saltelli et 
al. (2019) which found three quarters of publications 
selected through a search focussed on sensitivity analysis 
did not contain an uncertainty analysis. 
Our corresponding findings for sensitivity analysis are 
similar to those by Shin et al. (2013) in their review of the 
application of sensitivity analysis in hydrological 
modelling who found 36% of the total papers mentioned 
some form of SA (46% in this review) but only 19% of 
those discussing SA actually undertook some form of 
analysis and only half used robust methods (i.e Global SA 
for a non-linear model).  In our review 33% of the papers 
which met the modelling criteria applied some form of SA 
of which only a quarter were robust techniques. 
Only two of the reviewed publications (Ascione et al., 
2017; Tian & Choudhary, 2012) applied global sensitivity 
analysis methods.  Both use regression techniques to map 
changes in input parameters to changes in output values.  
In both cases, SA is undertaken at a sample building level 
rather than at a stock level.  The results of SA are then 
used to generate a surrogate model which is used to 
generate the building stock.   Tian and Choudhary (2012) 
use the SA results directly to create a regression model 
while Ascione et al. (2017) use the SA to exclude non-

influential parameters and then build a neural network 
model based on the reduced parameter set.  Tian and 
Choudhary create a sample of the whole stock by 
sampling from the results of the calibrated surrogate 
model and scaling for each individual instance.  This 
process is repeated multiple times to generate a 
distribution for the whole stock.  The scaling process 
employed by Ascione et al. is not detailed in the reviewed 
publication. 
Types of uncertainty considered 
Figure 1 shows the categories of uncertain parameter used 
in the reviewed publications and which were most 
common.  The approaches taken to determining uncertain 
parameters and the overall form and purpose of model 
seem to have a strong influence:  
• Location is more likely to be a variable parameter in 

studies undertaken for national stocks (Cheng & 
Steemers, 2011; Firth et al., 2010). This is however 
not related to sensitivity or uncertainty analysis in 
itself but used as means of upscaling, in which a very 
limited amount of representative buildngs are 
modelled in the different climate zones of the 
geographic region studied. 

• Inputs which some studies treat as a categorical 
variable defining an archetype are treated as an 
uncertain parameter in others (e.g. Collins et al., 2010 
take "dwelling type" as an uncertain parameter). 

• The most common category of uncertain parameter 
considered is building fabric.  This may owe more to 
the ease of modelling and conceptual simplicity than 
likelihood of being influential. 

A clear gap concerns Booth et al.’s (2012) fourth category 
of uncertainty as discussed earlier: the uncertainty in how 
to model the true processes. This category of uncertainty 
was not addressed in any of the reviewed publications. 



 

 

 
Figure 1: Occurrences of categories of uncertain 
parameter (count by use of category in each publication) 
Potential applicability of UA and SA for 
other building-stock modelling approaches  
The stochastic uncertainty propagation and global 
sensitivity analysis techniques which represent best 
practice in UA and SA methods are well established and 
extensively applied at the individual building scale (e.g. 
De Wit, 1997; Eisenhower et al., 2012).  However, as 
demonstrated by this review, these techniques are 
infrequently applied in larger scale models.  The 
challenges of dimensionality which underlie scale 
simulation are exacerbated by techniques which increase 
the number of simulations required by one or more orders 
of magnitude.   
The approach to scaling from individual buildings to 
multiple buildings is dependent on the form of the model.  
Models were categorised following the schema used by 
Gaetani et al. (2016). While robust uncertainty 
propagation techniques were not applied in all the 
reviewed cases, they would have been applicable to each 
form of model.  A suggested approach to this and the 
potential implications are discussed in the following 
sections. 
Quasi-steady state models 
The processing power required to compute detailed 
outputs for a complex building in granular time-steps can 
be considerable.  As a consequence, many researchers 
have sought to reduce the complexity of calculations.  In 
some cases this is done by using quasi-steady state models 
which average variables over long time periods and keep 
all building parameters fixed (Raslan & Davies, 2010). 
Quasi-steady state models extend this approach by 
incorporating some transient parameters, typically 
weather by using degree days data for example Cheng & 
Steemers’ model of UK housing (2011).  These models 
can be evaluated on a scaled sample basis (by modelling 
sample buildings and scaling results to be representative 
of the stock) (e.g. Firth et al., 2010).  The proposed 3 step 
approach to uncertainty propagation follows that 
suggested by Tian and Choudhary (2012): 
1. Quantify range for each uncertain parameter, paying 

particular attention to heterogeneity and ensuring that 
the distribution and ranges of each parameter are 
carefully considered (Shin et al., 2013).  Paying 
attention to hetereogeniety means considering all the 
ways in which the real buildings might vary from the 
archetype, orientation is a key example of this.  The 
correlation structure of the inputs should also be 

considered (Zhao, 2012) since correlations between 
inputs can result in both over and under estimation of 
sensitivity depending on the direction of correlation. 

2. For each reference building, create a distribution of 
output values by repeated sampling from the input 
parameter distributions.  Saltelli et al. (2008) suggest 
500 to 1000 evaluation of each archetype.  A low 
discrepancy sampling method such as Latin 
Hypercube Sampling or Sobol’ sequences should be 
used.  The resulting distributions for each archetype 
are then divided by floor area to create a metric which 
can be applied to all buildings in the stock. 

3. A single sample of the whole stock is generated by 
creating a sample for each building in the stock 
through random sampling from the appropriate 
reference building distribution and scaling by the 
appropriate parameter (e.g. floor area).  This process 
is repeated until the desired number of samples of the 
stock have been obtained.  A sample of the order of 
1000 is recommended, in order to have a sufficiently 
large sample to apply regression based sensitivity 
analysis (e.g. the approach used in Tian & 
Choudhary, 2012) as a subsequent step. 

Some quasi-steady state models are evaluated on a 
building by building basis.  In such case, the archetype 
input data defines the input data for a particular class of 
buildings but as each building is evaluated separately, 
more of the details of the individual building are retained 
with archetype data typically being used to provide 
building fabric and systems information combined with 
details of the specific geometry and orientation of the 
target building.  Following construction of the input 
distribution for each sample building as described in point 
1 above, an output estimate for each real building is 
evaluated by randomly selection from the relevant sample 
building input distribution.  The real building model is 
evaluated, and the process repeated the desired number of 
times.  As the initial number of model evaluations is given 
by the number of buildings in the stock, rather than the 
number of samples as in the previous case, this is a 
significantly more onerous undertaking.  The simplicity 
of the underlying building energy model means that this 
could potentially be applied at an urban scale, but larger 
scales are likely to remain beyond the scope of current 
computational results.   
Nodal-network models 
An alternative approach to reducing the complexity of 
calculations which underpin the model is the use of 
resistor-capacitor models, which model the energy flows 
within each building using an analogy with an electronic 
circuit (Fonseca et al., 2016).  This approach allows the 
urban scene to be simulated as a single entity.  
Consequently, as detailed for quasi-steady state models in 
which all buildings are directly evaluated, following 
quantification of input distributions, each model 
evaluation requires sampling of all inputs from the 
defined distributions.  A random sample of each of the 
inputs is generated and the model evaluated until 
sufficient samples have been obtained to produce a stable 
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output distribution.  Even if a relatively small number of 
archetypes is used, with only a few uncertain parameters 
for each, the total number of uncertain parameters quickly 
reaches the hundreds.  If a sample sufficient for regression 
analysis is not feasible, a design of experiments method 
may be possible.  These approaches are less robust than 
the regression method described above but offer the 
advantage of requiring less computational resource.  
Fractional factorial (Hajas, 1998) and elementary effects 
methods (Campolongo, Saltelli, & Cariboni, 2011) use a 
carefully constructed exploration of the input space to 
minimise the number of model evaluations required.   
Scaled dynamic models  
Scaled dynamic models are based on detailed 
characterisation of sample buildings to calculate the 
transfer of energy to, from and within the building.  This 
calculation is dynamic with the results of one time-step 
forming the initial conditions for calculations in the next, 
often performed for sub-hourly timesteps. The normalised 
outputs for reference buildings are used develop metrics, 
e.g. energy use intensity per square metre which can then 
be scaled according to the proportion of the overall stock 
represented by that building type. Examples include 
Heiple and Sailor’s model of Houston (2008) and 
Shimoda et al.’s model of residential building stock in 
Osaka, Japan (2004). 
The approach detailed for quasi-steady state models, in 
which only the archetype buildings are directly evaluated 
is appropriate here, but the same concerns apply regarding 
the importance of accounting for all significant 
differences between sample and real buildings.  The 
increased number of model inputs may make this more 
difficult. 
Surrogate models  
As with scaled dynamic models, detailed simulation is 
used to generate models for a set of sample buildings.  
Following this machine learning techniques are used to 
generate a meta-model or response surface which links 
inputs and outputs.  This surrogate model can then be 
applied to inputs for the full building stock. (Ascione et 
al., 2017; Tian & Choudhary, 2012)  One approach to this 
is to develop individual surrogate models for each 
reference building.  SA may be applied at the level of the 
sample buildings in order to develop the surrogate 
models.  Uncertainty in the whole stock can be generated 
through stochastic sampling as described for quasi-steady 
state models above.  As before, if sufficient samples are 
drawn, these can be reused to undertake a regression-
based SA of the whole stock. 
Full dynamic simulation models 
An additional form of BSEM which was not encountered 
in the publications reviewed in this study is dynamic 
simulation models, in which each building in the stock is 
directly evaluated in a full dynamic simulation.  Examples 
of dynamic simulation models include: ECCABS initially 
developed to evaluate the energy demand of the Swedish 
residential stock (Mata, Kalagasidis, & Johnsson, 2013) 
and MIT’s UBEM (Cerezo Davila, 2017). 

Full dynamic simulation models are the most 
computationally demanding form of stock model and 
recent developments aimed at quantifying interactive 
exchanges between buildings and the environment (Hong 
& Luo, 2018) are likely to increase these demands.  
Nonetheless, these models represent an important area of 
emerging work and merit some discussion here (Reinhart 
& Cerezo Davila, 2016).  For these models, as with 
individually evaluated quasi-steady state models, 
dimensionality is a significant concern, compounded by 
the complexity of the underlying simulation model. While 
new approaches are emerging to deal with such models 
(e.g. Becker, Tarantola, & Deman, 2018), uncertainty 
quantification remains challenging. For these models, 
evaluating sensitivity using the techniques discussed 
previously but with factors considered in groups rather 
than individually is proposed as a strategy for qualitative 
SA (Saltelli et al., 2008, p. 121). 
Dynamic forecasting models  
Although no publications about dynamic forecasting 
models were identified in the review, these are an 
important category of BSEM, which would  be 
strengthened by quantification of uncertainty and from 
which insights could be obtained through use of SA 
(Sandberg, Sartori, & Brattebø, 2014).  These models 
combine changes in the stock of buildings and energy mix 
over time with bottom-up evaluation of heat balances and 
energy services to generate long range forecasts of energy 
consumption.  In addition to the uncertain parameters 
considered above for models of an unchanging building 
stock, the uncertainty in parameters such as rates of 
construction, demolition and renewal of the stock and the 
energy consumption of new and refurbished buildings 
needs to be considered.  The uncertainty in these 
parameters is driven by a range of complex political and 
economic factors and may dominate the uncertainty in the 
baseline parameters.  For these models the range of 
sample buildings can be extended to incorporate 
representations of new and updated stock and the 
uncertainty quantification approach set out above for 
quasi-steady state models could be applied with the 
weighting of each reference building in the stock treated 
as a stochastic variable with uncertain parameters. 
Conclusions  
We conclude that Uncertainty Analysis (UA) and 
Sensitivity Analysis (SA) are not common practice in 
building-stock energy modelling and that if UA and SA 
are performed, only a few parameters are assessed and 
that methodologies are not standardized. To foster UA 
(preferably) and SA (subsidiary) we recommend to (i) 
launch a dedicated research programme and to (ii) to 
make such analysis a pre-requisite for scientific journal 
papers. The research programme should (i) highlight the 
benefits and the costs of different UA and SA approaches, 
(ii) generate indications  about which types and sets of 
variables, input data and modelling approaches are most 
appropriate for different types of model output (e.g. 
energy use and consumption, emissions, costs and 
benefits), differentiating by use case of the model and 



 

 

spatial and temporal resolution, and (iii) provide 
guidelines about good and best practice on how to 
perform UA and SA in different cases. This should raise 
awareness about the relevance of uncertainties, give 
modellers and their clients a guideline on how to prioritize 
UA and SA depending on the use case and enable them to 
state the impact of uncertainties at least in a rough semi-
quantitative manner. The programme could be based on 
the outcome of the IEA EBC Annex 70, for instance. 
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