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Abstract 

A review of existing large-scale building energy models 

was undertaken, highlighting their prevalence at 

geographically higher latitudes.  The ability of these 

models to adequately represent cities in the global south 

is questionable and existing classifications are inadequate 

to describe the diversity of models that have been 

developed. As a response, a novel model classification 

scheme was developed to explore how the various models 

capture the underlying physical context, and to assess 

their appropriateness for application to the city of 

Ahmedabad in western India. 

The model classification scheme was used to develop a 

characteristic map for the new model of Ahmedabad and 

define priorities for the model’s development. 

Introduction 

Within 30 years, India’s urban population will overtake 

its rural population, with 300 million additional people 

living in urban settlements.  These new urban dwellers 

will overwhelmingly inhabit the largest cities (United 

Nations, Department of Economic and Social Affairs, 

Population Division, 2018).   This rapid urbanization has 

profound implications for India’s energy demands: in 

2013, 65% of building energy consumption was in the 

form of biomass; by 2030, 60% will be supplied from oil 

and gas (International Energy Agency, 2015).  Shnapp 

and Lausten (2013) warned that “current trends show that, 

without a transformational change, energy consumption 

of buildings will increase to levels that are unsustainable 

and threatening to India’s energy security. However, 

improving the energy performance of existing and new 

buildings can have a major role in managing energy and 

CO2 emissions.”   

A wide range of tools have been developed to map this 

demand, ranging from statistical models of city-level 

consumption to models considering the consumption at 

the level of the individual building.   The aim of this study 

is to review and categorise the range of models available, 

to identify the most suitable form for the Indian context.  

In the first instance, this model will be developed for the 

city of Ahmedabad, the largest city in Gujarat and a major 

industrial and financial hub in western India. 

The key requirement of the model to be developed is that 

it should support progress on India's deep decarbonisation 

pathway by mapping current and future energy demand 

reduction opportunities in the built environment. It should 

allow diagnosis of urban energy problems, testing of 

solutions, verification of progress, and improvements in 

policy decisions.  

This process was undertaken as follows:  

The large-scale building energy model literature was 

surveyed to identify existing examples and the locations 

to which they have been applied. 

The differences between the Indian context and the 

northern hemisphere (where most of the models have 

been applied) are explored. 

A detailed review of a selection of the literature is 

undertaken and models classified according to their 

characteristics. 

The significance of gaps between characteristics of 

existing models and the demands of the model context is 

considered and a development plan set out for the new 

model. 

The range of existing UBEMs 

Urban Building Energy Models have traditionally been 

categorised as either top-down or bottom-up models, 

according to whether the starting point is stock level 

energy consumption which must be broken down into its 

constituent parts, or energy consumption of individual 

units, which must be aggregated to determine stock level 

demand (e.g. Swan & Ugursal, 2009).   Bottom-up models 

can further be broken down into statistical models which 

use historical data and assess the relationships between 

building information and energy use data; and building 

physics-based models (Lim & Zhai, 2017).   

Building physics-based models have been selected as the 

most appropriate form of building-stock energy model for 

this project due to the need to be able to model retrofit 

solutions which may impact on more than one building 

system (Chen, Hong, & Piette, 2017).   

For this study a model was considered to consist of 3 

layers, as proposed by Chen et al. (2017):  

 a data layer  

 an algorithm/engine software layer in which data is 

processed and outputs calculated 

 an application layer containing the model outputs. 

A title, keyword and abstract search was undertaken using 

the scopus database, the search query used was: 

“Building Stock” OR “Urban” OR “City” OR “Regional” 

located within three words of “Energy”, located within 

three words of “Model” AND “Building”.   



The search period was limited to literature dating from 

2010 and later.  Applications of the model were required 

to include at least 100 buildings for inclusion.  A total of 

177 records were identified for which abstracts were 

manually screened leading to the retention of 71 records.  

The location of each case was extracted from the abstract 

or, in a small number of cases where not detailed in the 

abstract, from a full text review. 

Figure 1 shows the results of this survey: coverage is 

much greater in the USA and Europe than the rest of the 

world, although China is reasonably well represented.  

Coverage is notably absent in low- and middle-income 

developing countries, in South America, Africa and 

Southern and South Eastern Asia. 

The potential implication of this pattern of application are 

considered next.

 

 
Figure 1: Geographic distribution of urban and city scale models  

 

The importance of context 

While the underpinning framework of building physics 

makes it tempting to view a UBEM as a neutral tool to 

be applied to answer a given question, the process of 

modelling is inherently value-laden.  Roman Frigg 

(2010) draws a clear distinction between two parts of the 

process of model making – the presentation of a 

hypothetical system as the object of study (the model 

system) and the representational relationship with the 

part of the world we are interested in (the target system).  

The process of representation necessarily involves 

simplification and judgements must be made about 

which details should be included.  This process raises the 

question: “What relation does the model have to bear to 

the target and what is the role of conscious users when a 

model system is used to represent something?” (Frigg 

2010, 252).  

The challenges of modelling at city-scale are largely 

driven by the scale of the target system as noted by 

Frayssinet et al. (2018) and thus the level of judgement 

employed in developing a model system which fits the 

limits of available computational power can be 

considerable.   

 Models based on developed cities may not be able to 

represent the stock dynamics of developing cities, 

Manu et al. (2011) estimated that 70% of India’s 2030 

building stock had not yet been built.   

 The building systems and equipment needed in 

climate zones with a winter heating season are 

different to those with a cooling summer season which 

may result in prioritisation of different aspects of 

UBEM.  Davis and Gertler (2017) estimate that India 

has a potential cooling demand twelve times higher 

than that of the United States for example.  

 Higher surface temperatures mean increased 

importance of longwave radiative heat transfer 

between surfaces (Evins, Dorer, & Carmeliet, 2014).   

 Availability of data on buildings, their function and 

their energy consumption underpin bottom up models; 

however, building energy data availability and 

robustness  differ dramatically between countries and 

regions of the world (Shnapp & Laustsen, 2013).  In 

addition, practices of energy consumption are often 

very different in countries where energy demand is 

financially constrained (Roy, 2000). 

Importantly, if these implications are overlooked, there is 

a real potential for harm: Sunikka-Blank et al. (2019, p. 

53) detail the negative impacts of poorly-planned slum 

rehabilitation in Mumbai where “changed practices, poor 



design of [replacement housing] and lack of outdoor 

space have radically increased electricity use and living 

costs in all the surveyed households.”   

Understanding the characteristics of existing 

models 

Having established that the majority of existing large-

scale building energy models have been developed for 

contexts which are very different to the one this study is 

focused on, it was necessary to explore the characteristics 

of each model in more detail to understand how well they 

might meet the needs of a rapidly expanding city in the 

global south  (dados & connell, 2012), such as 

Ahmedabad.  The high-level classification of existing 

frameworks (e.g. Lim & Zhai, 2017; Swan & Ugursal, 

2009) does not provide sufficient detail to be able to 

assess the appropriateness of different model 

characteristics for application in a new setting. 

A new concept for a model classification scheme is 

developed here, drawing on the ASHRAE characteristics; 

this scheme is visualised as overlapping layers (see Figure 

2).  At the core are building users, and how they and their 

interactions with the buildings they inhabit are captured.  

A building layer describes the envelope and systems 

which enclose and interact with the user.  The 

environmental layer addresses the context in which each 

building is situated.  Wrapping around all of these is a 

methodological layer capturing key choices in how 

models are structured and the outputs they produce.  The 

progression from the micro to meso (and possibly beyond 

to the macro or national scale) enables a much fuller 

description of the modelling approach.  While all of the 

models considered in this study address the meso-scale, 

the need to balance competing priorities of computational 

burden and complexity mean that the level of detail in 

which micro-scale parameters are considered varies 

significantly.  This balance is highly dependent on 

purpose of the model and the appropriate balance for the 

model of Ahmedabad is discussed further later in this 

paper.  

 
Figure 2: Model classification framework 

In total 11 different model characteristics were identified 

in these four layers, which define the differences between 

the reviewed models.  For each characteristic a series of 

descriptors were established to describe the different 

approaches.  Table 1 sets out the classification scheme and 

the descriptors together with examples identified in the 

literature. 

Table 1: Classification scheme 

Layer Characteristic Descriptor Count Examples 

U
se

r Occupant and 

Occupancy 

Related 

Single profile 9 (Caputo, Costa, & Ferrari, 2013; Dall’O’, Galante, 

& Torri, 2012; Filogamo, Peri, Rizzo, & Giaccone, 

2014) 

Multiple profiles 17 (Clarke, Ghauri, Johnstone, Kim, & Tuohy, 2008; 

Dogan & Reinhart, 2017; Heiple & Sailor, 2008) 

Stochastic selection 

from predefined sets of profiles  

6 (Cerezo Davila, 2017; Cerezo Davila, Jones, Al-

Mumin, Hajiah, & Reinhart, 2017; Evans, Liddiard, 

& Steadman, 2017) 

Stochastic generation 

e.g. agent-based modelling 

1 (Nägeli, Camarasa, Jakob, Catenazzi, & 

Ostermeyer, 2018) 

B
u

il
d

in
g
 

Level of 

Geometric 

Detail 

Extruded  

Cuboid based on floor area 

17 (Filogamo et al., 2014; Heiple & Sailor, 2008; Mata, 

Kalagasidis, & Johnsson, 2013) 

LOD1 

Extruded floor plan 

13 (Chen et al., 2017; Evans et al., 2017; Mhalas, 

Kassem, Crosbie, & Dawood, 2013) 

LOD2   

as LOD1 with roof form included 

2 (Caputo et al., 2013; Kaden & Kolbe, 2013) 

LOD3  

as LOD2 with exterior windows 

0  

Thermal 

Zoning 

Simple   

single zone per building or floor 

26 (Booth, Choudhary, & Spiegelhalter, 2012; Fonseca 

& Schlueter, 2015; Kaden & Kolbe, 2013) 

Core and perimeter  

4 perimeter and 1 core zone per floor 

3 (CARBSE, 2016; Chen et al., 2017; Heiple & 

Sailor, 2008) 



Layer Characteristic Descriptor Count Examples 

Detailed  

Based on layouts and activities 

1 (Caputo et al., 2013) 

Shoebox 

As detailed in Dogan and Reinhardt (2017) 

1 (Dogan & Reinhart, 2017) 

Fabric & 

Systems 

Single archetype 3 (Booth et al., 2012; Koene, Bakker, Lanceta, & 

Narmsara, 2014; Shimoda, Fujii, Morikawa, & 

Mizuno, 2004) 

Multiple archetypes 27 (Cerezo Davila, 2017; Chen et al., 2017; Gupta, 

2009) 

Stochastic selection 2 (Evans et al., 2017; Nägeli et al., 2018) 

E
n

v
ir

o
n

m
en

ta
l 

Surroundings 

& Orientation 

Volumetric 

Buildings expressed as idealised volumes 

9 (CARBSE, 2016; Jones, Williams, & Lannon, 2000; 

Mhalas et al., 2013) 

Standalone 

Orientation considered  

13 (Caputo et al., 2013; Nägeli et al., 2018; Symonds et 

al., 2016) 

Contextual 

Orientation and shading included 

7 (Cerezo Davila, 2017; Dogan & Reinhart, 2017; 

Evans et al., 2017) 

Interactive 

Orientation, shading and interactions with 

surroundings  

2 (Kaden & Kolbe, 2013; Robinson et al., 2009) 

Climate 

None 

No weather or climate variations 

2 (Dall’O’ et al., 2012; Jones et al., 2000) 

Steady-state 

Long range averages used 

8 (Gupta, 2009; Hughes, Palmer, & Pope, 2013; 

Mhalas et al., 2013) 

Historic 

Daily variability based on historic data 

19 (Caputo et al., 2013; Clarke et al., 2008; Symonds et 

al., 2016) 

Actual 

Locally collected data used 

3 (Kaden & Kolbe, 2013; Nouvel et al., 2013; 

Robinson et al., 2009) 

Municipal 

Not included 30 (Cerezo Davila, 2017; Chen et al., 2017; Fonseca, 

Nguyen, Schlueter, & Marechal, 2016) 

Included 

e.g. for street lighting, water pumping 

2 (Kaden & Kolbe, 2013; Robinson et al., 2009) 

M
et

h
o
d

o
lo

g
ic

al
 

Stock 

Dynamics 

Snapshot  

Static stock evaluated at a single point  

32 (Caputo et al., 2013; Koene et al., 2014; Nouvel et 

al., 2013) 

Time series 

Historic stock evolution data included 

0  

Dynamic 

Dynamic updates to reflect redevelopment  

0  

 

Form of 

Calculation 

Reduced order model 

e.g. resistor-capacitor models or quasi-

steady-state 

17 (Koene et al., 2014; Mata et al., 2013; Nouvel et al., 

2013) 

Scaled dynamic model 

Dynamic simulation of a limited number of 

archetype or sample buildings  

7 (Caputo et al., 2013; CARBSE, 2016; Dall’O’ et al., 

2012) 

Meta model 

Regression/machine learning techniques to 

generate surrogate models 

1 (Symonds et al., 2016) 

Dynamic simulation 

Dynamic thermal simulation of whole 

building stock 

7 (Cerezo Davila, 2017; Chen et al., 2017; Dogan & 

Reinhart, 2017) 

Treatment of 

Uncertainty 

Deterministic 

Given set of inputs has a single set of 

outputs 

28 (Caputo et al., 2013; Heiple & Sailor, 2008; 

Shimoda et al., 2004) 

Probabilistic 

Model output takes the form of a 

distribution of possible values 

4 (Booth et al., 2012; Cerezo Davila et al., 2017; 

Symonds et al., 2016) 

Temporal 

Resolution 

Annual 16 (Clarke et al., 2008; Filogamo et al., 2014; Nägeli et 

al., 2018) 

Granular 16 (Dogan & Reinhart, 2017; Heiple & Sailor, 2008; 

Mata et al., 2013) 



Figure 3 illustrates the diverse range of approaches which 

have been undertaken where the weight of the links 

between characteristics reflects the number of models 

which share those two characteristics.  It is clear that 

models typically use simpler approaches for most 

characteristics with a few which are more complex.  This 

targeted application of complexity has close parallels with 

the  concept of “fit-for-purpose modelling”  as described 

by Gaetani et al. (2016) in which the “the most 

appropriate model for a specific case is characterised by 

the lowest complexity, while preserving its validity with 

respect to the aim of the simulation.”  These trade-offs 

between simplicity and validity inherently relate to the 

underlying purpose for which the model was developed: 

for example, characterising long-wave radiative heat 

transfer between external surfaces is a low priority in 

London where surface temperatures are relatively low, 

but a dynamic simulation model which allows detailed 

simulation of retrofit option is important due to the long 

life-span of the existing building stock. 

Context-specific modelling challenges for 

Ahmedabad 

The application of a complex large-scale model to a new 

context inevitably brings a range of challenges, both in 

terms in terms of data and modelling.  In creating a model 

of Ahmedabad, data collection is a key challenge – very 

limited data exists documenting occupant behaviour and 

patterns of use (Bardhan, Debnath, Jana, & Norford, 

2018; Debnath, Bardhan, & Jain, 2017).  This data-

scarcity extends to building fabric and systems and is 

exacerbated  by the diversity of a building stock which has 

only relatively recently been subject to systematic 

building regulations and associated enforcement. 

(Nutkiewicz, Jain, & Bardhan, 2018).   

However, the modelling process itself presents additional 

challenges.  As noted earlier, a model is not a neutral tool 

and the choice of which elements to simplify and which 

to develop in detail is driven by the demands of context 

and model purpose.  Since Ahmedabad is an example of 

an under-represented context in the field of large-scale 

building stock energy models, there are a number of 

features of the context which have not been priorities for 

development for existing models: 

 

 Thermal zoning – simplified zoning approaches need 

to take account of domestic cooling practices in the 

global south which often focus on cooling individual 

rooms (McNeil & Letschert, 2008).    

 Municipal services are a factor of interest for urban 

local bodies and there is considerable potential for 

energy savings (International Finance Corporation, 

Bureau of Energy Efficiency, Alliance to Save 

Energy, & Alliance to Save Energy/South East Asia, 

2008) 

 Climate - Urban heat island implications are 

significant (Mathew, Chaudhary, Gupta, Khandelwal, 

& Kaul, 2015) 

 Surroundings and orientation – Long-wave radiative 

exchange between buildings is significant at lower 

latitudes.  Ahmedabad is characterised as an extreme 

hot dry climate with particularly high surface 

temperatures where these effects are likely to be 

significant (Evins et al., 2014).  

 Stock dynamics - New, potentially unplanned stock 

must be modelled as well as existing due to rate of new 

development (Manu et al., 2011). 

 
Figure 3: Model characteristics map 

Figure 4 extends the analysis shown in Figure 3 by 

plotting the different approaches to each model 

characteristic according to their complexity and 

suitability for the context of Ahmedabad.  The lower right 

quadrant of Figure 3 contains the optimal choice of an 

approach which is highly suitable for the context with low 



complexity.  The upper right quadrant contains the next 

preferred options, those which are highly suitable, but 

which are complex, while the upper left quadrant contains 

the approaches which are least preferred, increasing the 

complexity of the model with limited gains in suitability. 

 

 

Figure 4: Trade-offs between complexity and suitability of different approaches to the 11 identified model characteristics 

It should be noted that the complexity burden of the model 

may be cumulative, for example, combining a detailed 

zoning model and the interactions between buildings may 

be beyond the scope of the available computational 

resources, forcing a sub-optimal choice to be made for one 

of these elements.   

Referring back to Figure 3, It is clear that this selection of 

modelling approaches represents a set of requirements not 

met by any existing large-scale building energy models.  

In particular, the need to accommodate local climate, 

interactions between buildings and a rapidly developing 

building stock will require significant development work.  

This is coupled with the data collection challenges 

associated with defining usage and building archetype. 

Conclusions and policy implications  

The importance of large-scale building energy models as 

a tool for supporting the deep decarbonisation of urban 

centres is increasing.  However, such models have been 

overwhelmingly developed for cities in Europe and the 

USA and as a result lack features which will be essential 

to the valid simulation of energy demand in rapidly 

urbanising countries in the global south which are also 

faced with extreme climactic conditions.   

A novel model classification scheme was developed to 

allow existing models to be explored in detail and create 

a framework for assessing their appropriateness for the 

case of the city of Ahmedabad, Gujarat.  The framework 

addresses the multiple challenges of developing a large-

scale building energy model for a city in the global south 

and highlights the dangers of unquestioning replication of 

models developed for very different contexts.  Mapping 

the simulation aims against the model characteristics 

allowed the key requirements for a new model to be 

identified and defined a programme of work necessary to 

develop modelling strategies to address the needs of the 

particular context. 

While the classification framework developed in this 

study is applied to a particular context, the framework is 

applicable to any context and can provide a useful tool to 

assess the adequacy of existing models to capture its 

unique circumstances.  A key outcome of this process is 



the ability to clearly identify additional development work 

which might be required to improve the representation in 

each case. 
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