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Multiple imputation is now well established as a practical and flexible
method for analyzing partially observed data, particularly under the miss-
ing at random assumption. However, when the substantive model is a
weighted analysis, there is concern about the empirical performance of
Rubin’s rules and also about how to appropriately incorporate possible in-
teraction between the weights and the distribution of the study variables.
One approach that has been suggested is to include the weights in the im-
putation model, potentially also allowing for interactions with the other
variables. We show that the theoretical criterion justifying this approach
can be approximately satisfied if we stratify the weights to define level-two
units in our data set and include random intercepts in the imputation model.
Further, if we let the covariance matrix of the variables have a random dis-
tribution across the level-two units, we also allow imputation to reflect any
interaction between weight strata and the distribution of the variables. We
evaluate our proposal in a number of simulation scenarios, showing it has
promising performance both in terms of coverage levels of the model
parameters and bias of the associated Rubin’s variance estimates. We illus-
trate its application to a weighted analysis of factors predicting reception-
year readiness in children in the UK Millennium Cohort Study.
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1. INTRODUCTION

When collecting data for research, it is often the case that we are not able to ob-
tain all the desired information for various reasons (e.g., lack of resources, un-
willingness to disclose information, loss to follow-up). Unfortunately, such
missing data complicate the intended analysis, not only causing a loss of power
but also potentially biasing the results—when the reason for the missing data is
associated with our scientific question.

For this reason, many methods have been developed to deal with missing
data, each relying on a series of different assumptions. One of the biggest cate-
gories of missing data methods is represented by imputation strategies.
Imputing missing data means replacing the missing values with a particular
value, drawn from a specified distribution, typically from the conditional distri-
bution of the missing data given the observed data. Fitting the substantive anal-
ysis model to such an imputed dataset gives the same weight to observed and
imputed values; however, the latter are, at best, good guesses, and therefore,
they should be somehow down-weighted. Otherwise, such an approach will re-
sult in marked underestimation of the standard errors because of a failure to re-
flect uncertainty due to the missing values.

In some specific settings, methods to obtain a valid variance estimate under
single imputation have been derived (Rao and Shao 1992; S€arndal, Swensson,
and Wretman 1992; Rao 1996; Beaumont, Haziza, and Bocci 2011), and these
are often used to handle missing data in surveys.

Alternatively, a very flexible, general method to address the same issue is
multiple imputation (MI) Rubin (1987). With MI, the missing values are im-
puted from the Bayesian predictive distribution of the missing data, given the
observed data, to create K imputed datasets. The substantive analysis model is
then fitted to each of these in turn, giving K different estimates of the model
parameters ĥk together with their standard error estimates r̂k. These are com-
bined for final inference using Rubin’s rules:

ĥMI ¼
XK

k¼1

ĥk=K;

VarðĥMIÞ ¼
1
K

XK

k¼1

r̂2
k þ 1þ 1

K

� �XK

k¼1

ðĥk � ĥMIÞ2:
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Over the last 25 years, the practicality and flexibility of MI, coupled with the
availability of accessible software, has led it to become increasingly popular,
particularly in clinical research.

As with all statistical methods, MI relies on some assumptions; in partic-
ular, most MI methods assume data are Missing at Random (MAR) (Rubin
1976), which broadly means that the reason for their missingness is unre-
lated to the unseen values, after conditioning on all the observed data.
Another important issue is that of congeniality. This was raised in the origi-
nal work from Rubin and was thoroughly investigated in a series of articles
in the mid-nineties (Fay 1992, 1993; Meng 1994). These highlighted that in
order for MI to lead to valid inference, the imputation model (i.e., the
model used to impute the data) and the substantive model (i.e., the original
model we wanted to fit on the complete data) must be congenial, which
means, loosely speaking, that they need to be derived from the same joint
model. In some situations, particularly when the substantive model has
nonlinear effects or interactions, it can be challenging to choose a congenial
imputation model (Goldstein, Carpenter, and Browne 2014; Bartlett,
Seaman, White, and Carpenter 2015; for a practical review of the issue, see
Carpenter and Kenward 2013, pp. 64–73).

Another issue that was discussed in the study by Meng (1994) is that of self-
efficiency; a procedure is self-efficient if it is not possible to gain precision by
applying it to a subset of the whole data. Self-efficiency of the complete-data
procedure is required for the validity of MI inference (Meng and Romero
2003).

This article focuses on the situation in which the substantive model is a
weighted regression model; this is common in survey sampling settings, where
appropriate weighting is often used to take account of the sampling schemes
(e.g., S€arndal et al. 1992). Throughout, we assume the weights considered are
the final ones, after adjustments for nonresponse (Holt and Elliot 1991) and
calibration (Deville and S€arndal 1992). The idea of MI was originally
expounded in a survey setting, and in Rubin (1987), it was implicitly assumed
that the imputer should have access to the variables used to construct any
weights and should always include them in the imputation model. However,
discussion of weighting was limited to a brief reference in the introduction,
where it was noted that “[weighting’s] apparent simplicity disappears with
multivariate outcomes”, followed by two excercises. Two questions remained
unanswered at the time:

(i) How should we include weights in the imputation model?
(ii) Does Rubin’s variance formula still hold in these settings?

To answer these questions, it is important to clarify the inferential frame-
work under which properties of MI are to be evaluated. For example, if evalu-
ating the properties with respect to the joint distribution of the response
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mechanism and the sampling mechanism, Rubin’s variance estimator is valid
under the assumption of proper imputation (Rubin 1987). Kim, Michael Brick
Fuller, and Kalton (2006) took a different approach and evaluated the proper-
ties with respect to the joint distribution of the sampling mechanism, the re-
sponse mechanism, the imputation mechanism, and a super-population model.
They showed that, because of a lack of self-efficiency, even in the case of a
simple weighted regression model with missing data in the outcome only, us-
ing a standard imputation model with Rubin’s rules results in an upwardly bi-
ased estimate of the variance. In particular, assuming both our substantive and
imputation model are of the form:

Y � NðXh; Ir2Þ;

and that we want to use the weighted least square estimator:

ĥ ¼ ðXT WXÞ�1XT WY;

then the bias in the Rubin’s variance estimator is

BiasðVMIÞ ¼ 2r2
�

wT
mwm � trðwT

o XoðXT
o XoÞ�1XT

mwmÞ
�
;

where r2 is the residual variance, the subscript “m” indexes missing observa-
tions, and “o” to the observed, so that for example, Xo represents the set of
covariates X for complete records. As Kim et al. (2006) pointed out, a practi-
cally important consequence follows from this expression: the bias vanishes if
the weights are included in the space spanned by the variates in the regression
model (i.e., for wo ¼ Xo d and wm ¼ Xm d, for some value of d). Therefore, a
simple way to correct for the bias in Rubin’s variance estimator when using
survey weights, at least with linear regression, is to introduce these into the lin-
ear predictor.

However, Kim et al. (2006) also picked up the result of Meng (1994) that
the MI variance estimator is biased upward if the imputer assumes more than
the analyst; therefore, for accurate inference within domains for survey data,
the imputer needs to include in his model (i) the weights, (ii) all the domain
indicators (i.e., all relevant covariates of the weighted regression), and (iii)
their interactions for valid MI inference in general.

Seaman et al. (2012) extended Kim’s results, showing that if using multiple
imputation with this correctly specified model, Rubin’s variance estimate is as-
ymptotically unbiased with missing data in the outcome only. With missing
covariates, there is generally an upward bias in the variance; however, the sim-
ulation results they report suggest this is of little practical concern.

In practice, a key issue is the correct specification of the imputation model,
taking into account the weights and their interaction with the covariates.
Ideally, we would impute separately in each weight strata so that the
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relationship between the variables are allowed to differ across weight strata.
Thus ideally, we should include weight as a factor variable, possibly with inter-
actions with other variables, alongside including it as a linear variable to avoid
the bias in Rubin’s MI variance estimator. In general, this will make estimation
noisy because of the increased number of parameters.

Instead in this article, we propose using the weight variable to define a sec-
ond level and then adopt a multilevel approach.

In section 2, we describe our proposed approach and how it approximately
satisfies Kim et al.’s (2006) criteria. Then in section 3, we describe a set of sim-
ulation studies to evaluate our proposal against alternative approaches. The
results are given in section 4. In section 5, we apply the same methods to han-
dle missing items in wave 2 of the Millennium Cohort Study; finally, we con-
clude in section 6 with a discussion.

2. METHODS

As set out in the previous section, the situation we are interested in is a sample
survey dataset, provided with weights and affected by missing items. This is
exemplified by the Millennium Cohort Study we analyze in section 5. Our
setup follows Kim et al. (2006); we assume we have a complex sample from
an infinite super-population. We evaluate the properties of Rubin’s MI vari-
ance estimator considering the joint distribution of the sampling, response, im-
putation, and super-population models.

2.1 Proposed Approach

We have already noted that the bias in Rubin’s MI variance formula, given
by (5), vanishes if the weights are included in the space of the variates
spanned in the regression model (i.e., if wo ¼ Xod and wm ¼ Xm d, for some
value of d).

For example, suppose that we have p covariates for each unit, of which the
first is the intercept and the second the weight. Then if the p� 1 vector d
¼ ð0; 1; 0; . . . ; 0ÞT ; this criterion is satisfied. However, while this is sufficient
for valid variance estimation using Rubin’s rules for a mean, as noted
previously, it is insufficient when we have domains in our data; then we need
to include both the domain indicators and their interactions with the weights.

Instead, now suppose that we group the weights, without loss of generality,
into g ¼ 1; . . . ;G groups. We include additional G dummy variables as the
leftmost covariates in X indexing which of the groups unit i’s weight belongs
to. Also, let d ¼ ð�w1; �w2; . . . ; �wG; 0; . . . ; 0ÞT ; where �wg is the mean weight for
group g. Now the criteria for the bias in the variance vanishing is approxi-
mately satisfied. Further, the approximation will improve as the weight SD
within the groups decreases. This is often possible to do in applications
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because the weights are calculated (often by the data provider) from a set of
categorical predictors. Importantly, we also note that including these extra
parameters in the regression model of interest changes from one that is mar-
ginal to the weights to one that conditions on them and that this may not be the
model of concern for the analyst.

While approximately satisfying the criterion for Rubin’s variance formula to
work, this approach also has the advantage that it does not require the relation-
ship between the weights and the dependent variable to be linear; it is unstruc-
tured across the groups. However in general, fitting a large number of fixed
parameters is not desirable nor is it consistent with the aims of the data analyst,
as pointed out previously.

Instead, we propose letting the G weight groups define a second level in the
data and including random intercepts. This still approximately satisfies the cri-
terion for bias in (5) to vanish, but now we can pool information across weight
groups where appropriate. In other words, when we impose the standard as-
sumption that the random intercept distribution has zero mean, the fixed part of
the model will represent the (marginal) expected relationship for the popula-
tion, as desired by the analyst.

This is not sufficient in general, though, because ideally (as noted in the in-
troduction) we should allow for an interaction between the weights and the
other variables in the imputation model. We can do this by allowing the covari-
ance matrix of the (level-one) variables to vary across the (level-two) units
(weight-strata). Again, rather than introduce a lot of parameters, we can give
the covariance matrix a random distribution across strata.

For a specific example of our proposal, suppose that the substantive model
is a weighted linear regression of yi;j on x1;i;j; x2;i;j, where i ¼ 1; . . . ; nj indexes
units in strata j ¼ 1; . . . ; J with weight wj. Suppose data are MAR. We let the
weight strata define level two, and our imputation model is:

yi;j

x1;i;j

x2;i;j

0
BBBB@

1
CCCCA � N

h0;0;j þ u0;j

h1;0;j þ u1;j

h2;0;j þ u2;j

0
BBBB@

1
CCCCA;Xj

0
BBBB@

1
CCCCA

u0;j

u1;j

u2;j

0
BBBB@

1
CCCCA � N

0

0

0

0
BBBB@

1
CCCCA;W

0
BBBB@

1
CCCCA

Xj � W�1ða;A�1Þ;

;

where W–1 denotes the inverse Wishart distribution. Notice this includes the
random intercepts uk;j for each variable k and that the level-1 covariance matrix
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Xj varies across weight strata j, allowing the association of y, x1, x2 to vary
across strata. hk;0;j represent the overall means of the three variables, while W
is the level-two covariance matrix. This model was proposed in different con-
text by Yucel (2011) and developed for individual patient data meta-analysis
by Quartagno and Carpenter (2016).

Compared with including the weights as a linear term in the imputation
model, together with their interaction with the other variables, model (6)
has the advantage that the relationship across the weight strata is not re-
quired to be linear; it is driven by the data, and information is pooled
across strata as appropriate. While in general it only approximately satis-
fies the criteria for Rubin’s variance formula to hold, we will show by sim-
ulations that the difference between the empirical and Rubin’s MI variance
is small or negligible, and suggesting this will be satisfactory in
applications.

Note that if the weight is common in each group G, then as the number of
observations in each strata gets large, this approach tends to the natural—and
often optimal—approach of imputing separately in each strata. However, if the
proportion of missing in some strata is high, our approach may be able to im-
prove on this.

Having outlined our proposal, we now evaluate it using a series of
simulation studies, comparing with imputing separately in each strata,
ignoring the weights in the imputation, and including them in various
ways.

3. SIMULATION STUDIES

First, we describe the base-case simulation scenario, before outlining the
methods we are comparing with (6), and briefly discuss their relative merits.
We conclude this section by describing three additional simulation
scenarios.

The simulation scenarios are designed to reveal differences between the
methods. In all the scenarios, we consider three variables: Y, X1, and X2; our to-
tal sample size is 400 individuals, stratified in ten equal-sized strata, each with
corresponding known weight.

3.1 Base-Case Scenario

The base-case scenario simulated data from the following mechanism:
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x1;i;j

x2;i;j

0
@

1
A � N

0

0

0
@

1
A; 0:5 0:2

0:2 0:5

0
@

1
A

0
@

1
A

ei;j � Nð0; 1Þ

b0 ¼ ð1; 2; 3; 4; 5; 6; 7; 8; 9; 10Þ

b1 ¼ 0:2b0

b2 ¼ 0:5b0

yi;j ¼ b0;j þ b1;jx1;i;j þ b2;jx2;i;j þ ei;j

:

Here, j indexes different weight strata. After having generated the data, the
substantive analysis model is a weighted linear regression, where Y is the de-
pendent variable, X1 and X2 are the covariates, and we assume the weights are
known and equal to:

w ¼ 1
0:1

;
1

0:2
; . . . ;

1
1

� �
¼ ð10; 5; . . . ; 1Þ:

This may seem an extreme choice and in applications weights (and fixed effect
parameters b) would probably be more homogenous; however, we decided to
use such extreme values in order to bring out the properties of the methods.

We simulate 1,000 data sets and make Y Missing Completely at Random
(MCAR) with probability 0.5. We compare analysis of the original full data
(FD) and complete records (CR) and use the competing multiple imputation
methods we now describe. All of the imputation models are fitted by means of
a Gibbs sampling algorithm using data augmentation to impute the missing
data, using the R-package jomo (Quartagno, Grund, and Carpenter 2018).

3.2 Imputation Methods

We now describe the seven imputation approaches that we compare.

3.2.1 Multiple imputation with no weights (MI-noW). Multiple imputation
with no weights (MI-noW) uses the first and simplest imputation model we
might consider. It consists of a multivariate normal model for the three partially
observed variables and does not make any use of the weights:

yi;j

x1;i;j

x2;i;j

0
BB@

1
CCA � Nðh;XÞ:
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We know from section 1 that weights should be included in the imputation
model for Rubin’s rules to hold, and therefore, we expect this method to per-
form relatively poorly.

3.2.2 Multiple imputation with weights (MI-W). The next option is to use an
imputation model where the weights are included as additional variables; the
easiest way to do this is to include them as an additional covariate in the multi-
variate normal imputation model, assuming a linear relation between weights
and all three variables:

yi;j

x1;i;j

x2;i;j

0
BB@

1
CCA � N

h0;0;j þ h0;1;jwj

h1;0;j þ h1;1;jwj

h2;0;j þ h2;1;jwj

0
BB@

1
CCA;X

0
BB@

1
CCA:

While this model includes the weights it (i) assumes a linear relationship be-
tween the weights and the variables and (ii) does not include the interactions
between the weights and the covariates that appear in the substantive model,
which according to the literature is desirable, as seen in the introduction.

3.2.3 Multiple imputation with weights and interactions (MI-xW). As out-
lined in the introduction, the literature (Kim et al. 2006; Seaman et al. 2012)
suggests a better imputation model should include not only the weights but
also all interactions between weights and covariates. This can be done easily
when missing data are confined to the outcome variable—but not when data
are missing in all variables. In this setting, we need to use the substantive
model compatible imputation developed by Goldstein et al. (2014) (see also
Bartlett et al. 2015).

The idea is to use an imputation model that partitions the joint distribution
of the three variables between a joint distribution for the covariates and a con-
ditional distribution of the dependent variable given the covariates:

x1;i;j

x2;i;j

0
@

1
A � N

h1;0;j þ h1;1;jwj

h2;0;j þ h2;1;jwj

0
@

1
A;X

0
@

1
A

yi;jjx1;i;j; x2;i;j ¼ b0 þ b1x1;i;j þ b2x2;i;j þ b3wj þ b4wjx1;i;j þ b5wjx2;i;j þ �i;j

�i;j � Nð0; r2Þ

:

Missing data in Y are imputed from the conditional model given the covari-
ates, weights, and their interactions, while missing data in the covariates are
imputed compatibly with the model for Y, by means of a Metropolis-
Hastings step within the Gibbs sampler. Note the model specified for Y in
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(11) is not the substantive model, which is the weighted regression of y on
x1, x2.

Although this approach should improve on (1) and (2), there are two poten-
tial shortcomings. First, when values are missing in all three variables, we do
not have an interaction with the weights and the distribution of x2jx1 and vice
versa because their covariance matrix, X, is common across the strata. Second,
it again assumes a linear relationship of y on the weights and their interactions;
with a large number of covariates, the conditional model for Y becomes com-
plicated, and estimating the parameters may lead to noisy results.

3.2.4 Stratum-specific multiple imputation (MI-S). Where we have well-
defined strata and sufficient data in each, this is perhaps the best approach. It is
straight forward (we use standard imputation in each strata), allows a full inter-
action in the relationship between the variables by strata, and satisfies the crite-
ria for Rubin’s rules to give valid inference. For the ten strata in our simulated
data, we therefore have,

yi;j

x1;i;j

x2;i;j

0
BB@

1
CCA � N hj;XjÞ j ¼ 1; . . . ; 10:

�

The disadvantage of this method is that it may struggle with small strata or sub-
stantial numbers of missing values within some strata.

3.2.5 Homoscedastic multilevel multiple imputation (MLMI-Hom). This is
the first of our three multilevel imputation approaches. This approach does not
use the random weight-strata covariance matrices in (6); the reason for this is
to explore if this aspect is necessary. Thus, the imputation model is (6) with
common covariance matrix:

yi;j

x1;i;j

x2;i;j

0
BBBB@

1
CCCCA � N

h0;0;j þ u0;j

h1;0;j þ u1;j

h2;0;j þ u2;j

0
BBBB@

1
CCCCA;X

0
BBBB@

1
CCCCA

u0;j

u1;j

u2;j

0
BBBB@

1
CCCCA � N

0

0

0

0
BBBB@

1
CCCCA;W

0
BBBB@

1
CCCCA;

where the weight strata form the j ¼ 1; . . . ; J level-two groups. The problem
with this method is that the level-one correlation between the outcome and the
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covariates of the substantive model is kept fixed in the imputation model across
strata; this may bias inferences when (as will often be the case in practice) the
association between variables varies with the weights.

3.2.6 Heteroscedastic multilevel multiple imputation (MLMI-Het). The sixth
approach is (6), discussed in section 2. While not necessarily optimal in all sce-
narios, it should have good performance across them all. In particular, it allows
the relationships between the variables to vary with the weights but does not
insist this happens in a linear way.

3.2.7 Substantive model compatible multilevel MI (MLMI-SMC). The sev-
enth and final method is to use multilevel substantive model compatible impu-
tation (Goldstein et al. 2014). Essentially, this makes method three, (11),
multilevel by giving the coefficients in the model of yjx1; x2 random coeffi-
cients across the weight strata:

x1;i;j

x2;i;j

0
@

1
A � N

h1;0;j þ u1;j

h2;0;j þ u2;j

0
@

1
A;X

0
@

1
A

u1;j

u2;j

0
@

1
A � N

0

0

0
@

1
A;W

0
@

1
A

yi;jjx1;i;j; x2;i;j ¼ b0 þ v0;j þ ðb1 þ v1;jÞx1;i;j þ ðb2 þ v2;jÞx2;i;j þ �i;j

�i;j � Nð0; r2Þ
v0;j

v1;j

v2;j

0
BBBB@

1
CCCCA � N

0

0

0

0
BBBB@

1
CCCCA;WY

0
BBBB@

1
CCCCA

;

where vk;j are independent from uk;j. This model is almost as flexible as (6), but
not quite, as the distribution of (x1, x2) does not fully vary across weight strata.

3.3 Further Simulation Scenarios

In addition to the base-case scenario with missing values in Y alone described
at the start of this section, we consider four further cases:

3.3.1 Base-case scenario: missingness in Y, X1, X2. We use the base-case
scenario (7), but this time with 20 percent missing data in all three variables to
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have again approximately 50 percent complete records (0.8 * 0.8 *
0.8¼ 0.512¼ 51.2 percent).

3.3.2 Base-case scenario: missingness proportional to weights. We use the
base-case data-generating model, but now with the proportion of missing data
proportional to the weights:

pmiss;s ¼
2wsP10

s¼1
ws

:

3.3.3 Base-case scenario: missingness inversely proportional to weights.
We use the base-case data-generating model, but now with the proportion of
missing data inversely proportional to the weights:

pmiss;s ¼
2

wsP10

s¼1

1
ws

:

3.3.4 GLM scenario. Here, instead of a continuous dependent variable y, we
simulate a binary dependent variable as follows:

x1;i;j

x2;i;j

0
@

1
A � N

0

0

0
@

1
A; 0:5 0:2

0:2 0:5

0
@

1
A

0
@

1
A

b0 ¼ 0:1� ð1; 2; 3; 4; 5; 6; 7; 8; 9; 10Þ

b1 ¼ �b0

b2 ¼ 0:5b0

pi;j ¼ PrðYi;j ¼ 1Þ ¼ 1
1þ exp f�ðb0;j þ b1;jx1;i;j þ b2;jx2;i;jÞg

yi;j � Bernoulliðpi;jÞ:

:

Under data-generating model (15) applying the same weights as before, the
true parameter values are

b0 ¼ 0:334

b1 ¼ �0:334

b2 ¼ 0:170:
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Data are made MCAR independently in each variable with probability 0.2.
When imputing data generated using this model, all the methods apply the la-
tent normal method for imputing the binary dependent variable (Carpenter and
Kenward 2013, Chapter 5; Quartagno and Carpenter 2019).

3.3.5 Realistic scenario. As discussed, the base-case simulation scenario in-
volved the choice of very extreme simulation parameters to make the compari-
son of the performance of different methods clear. In this last scenario, we
instead use more realistic parameters, mimicking the distribution of data from
the Millennium Cohort Study. In particular, we generate data for a total of
5,400 individuals divided in nine strata; weights associated with each stratum
range between 0.23 and 2, and we use the following data-generating
mechanism:

x1;i;j

x2;i;j

0
@

1
A � N

2:95

0:94

0
@

1
A; 0:76 �0:01

0:01 1:11

0
@

1
A

0
@

1
A

ei;j � Nð0; 0:91Þ

b0;j � Nð�0:63; 0:3Þ

b1;j � Nð0:30; 0:3Þ

b2;j � Nð�0:21; 0:3Þ

yi;j ¼ b0;j þ b1;jx1;i;j þ b2;jx2;i;j þ ei;j:

4. SIMULATION RESULTS

All the simulations used 1,000 replications. Imputation used the jomo package,
generating twenty imputed tables, with a burn-in of 500, and 500 updates be-
tween each imputed dataset.

4.1 Base-Case Scenario

The results of the base-case scenario, with 50 percent of y values MCAR but
other variables complete, are shown in the top part of table 1. As expected,
MI-S performs best here, giving approximately unbiased point estimates and
good coverage levels close to 95 percent. However, both multilevel imputation
methods, MLMI-Het and MLMI-SMC, give similar results for bias, precision,
and coverage. In particular, the model SE (i.e., the SE obtained using Rubin’s
rules) and the empirical SE are similar for all three parameter estimates. While
MI-xW has similar results, there seems to be slightly more bias in the
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parameter estimates; also, the model SE is somewhat larger than empirical SE
and greater than MI-S, MLMI-Het, and MLMI-SMC. Additionally, MI-noW,
MI-W, and MLMI-Hom all have some shortcomings in the way they handle
weights in the imputation model, and therefore, it is not surprising that they
lead to unsatisfactory results.

Interestingly, the estimated SEs are consistently smaller with MI-S, MLMI-
Het, and MLMI-SMC than for the CR analysis. In general, when missing data
are in the outcome only, it is not possible to recover information without auxil-
iary variables. Here though, the combination of small strata with relatively
high proportions of missing data is likely to be the reason why results after MI
gain over CR.

4.2 Base-Case Scenario—Missingness in Y, X1, X2

The results are shown in the bottom half of table 1. The MIMI-Het and MIML-
SMC now give the best results, outperforming MI-S because of their ability to
pool information across strata through the random effects (this issue with MI-S
also appears to affect CR and MI-xW, where the model SEs for b1, b2 are rela-
tively large). The MIMI-Het and MIML-SMC also recover a nontrivial propor-
tion of information compared with CR. Some of the parameter estimates with
CR, MI-S, and MI-xW are now slightly more biased, possibly because of a
common reason (i.e., the fact that strata are so small); this leads to undercover-
ing for b2 with CR and MI-S. Although with MI-xW, an overestimation of the
standard error leads to overcovering, despite the bias introduced.

Finally, we note that in both these scenarios, the full flexibility of MLMI-
Het is not needed, as the covariance matrix of the covariates is common across
strata in the data-generating mechanism. However, this does not adversely af-
fect its performance.

4.3 Base-Case Scenario—Missingness Proportional to Weights

This is a challenging scenario because we have a nontrivial proportion of miss-
ing data in each variable, and missingness is proportional to the weights that
are inversely proportional to the strata coefficients. The top parts of table 2 and
figure 1 summarize the results.

The best results are now obtained with MLMI-Het and MLMI-SMC, which
both perform better than MI-S. This can be clearly seen in the top row of fig-
ure 1, which shows the three zip plots (Morris 2016) for MI-S, MLMI-Het,
and MLMI-SMC. Each zip plot is for b2 (true value 1.707) and ranks the
results of the 1,000 replications top to the bottom according to their p value
against the null hypothesis. The red vertical line indicates the true value, and
we can see that both multilevel imputation methods seem approximately unbi-
ased. The purple bars indicate simulations that failed to cover the true value in
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their interval. These are approximately 5 percent for both multilevel methods;
however, MLMI-Het tend to cover a bit less than 95 percent and MLMI-SMC
a bit more. As expected, the fact that MLMI-Het allows for different covariate
covariance across the strata (which is not present here) gives slightly larger
SEs (wider CIs) than MIMI-SMC.

By contrast, the zip plot for MI-S has approximately correct coverage levels,
but the mean estimate is slightly biased, as can be seen from the fact that the
noncovering simulations are almost all to the left of the true value. This is
likely due to the fact that in this scenario, the probability of missingness is ex-
tremely high for the most weighted strata, which are the ones with the biggest
effect on the overall weighted estimate of the parameters. When imputing us-
ing MI-S, we therefore do not have enough information in some strata to build
and fit our stratum-specific imputation model, leading to biased estimates,
mainly toward the null.

Because missingness is no longer MCAR here, CR is not valid. Also
(table 2, top half), MI-xW gives poor results here; the pattern of missing data
means it leans heavily on its incorrect assumption of a linear effect of the
weights.

Figure 1. Zip Plot Comparing Simulation Results for MI-S, MLMI-Het, and
MLMI-SMC for b2, True Value 1.707. Top row: base-case scenario with missing-
ness probability proportional to weights; bottom row: base-case scenario with missing-
ness inversely proportional to weights.
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4.4 Base-Case Scenario—Missingness Proportional to Weights

This scenario is less challenging than the previous one because the proportion
of missing data is higher in the strata with lower weight. The results are shown
in the lower parts of table 2 and figure 1. Once again, we see good results for
MIMI-Het and MLMI-SMC; however, relative to these, the performance of
MI-S and MI-xW has improved.

4.5 GLM Scenario

Recall that in this scenario, once again each variable is MCAR with probability
0.2. Table 3 shows the results. There is a little bias in all the coefficient esti-
mates, most likely due to small sample effects in GLMs. Here, MI-xW, MI-S,
MLMI-Het, and MLMI-SMC are all competitive, with best results for MI-xW
and MLMI-SMC. However, for MI-xW the model SEs tend to be smaller than
the empirical SEs; this is avoided with MLMI-SMC and MLMI-Het. For MI-
S, the model SEs are also larger than the empirical SEs, and this allows the
coverage to be relatively good despite the slight bias (particularly for b2).

4.6 Realistic Scenario

Results are again shown in table 3. While generally inference seems to be accept-
able with most imputation methods, as indicated by negligible biases and good
coverage levels, MI-xW, MLMI-Het, and MLMI-SMC are the best methods for
variance estimation, as they are the methods for which model and empirical stan-
dard errors are most similar. MI-S seems to work similarly well, as expected given
that weight strata are large in this example (i.e., 600 observations per stratum),
and hence, within-stratum imputation is not as noisy as in the previous examples.

4.7 Summary of Simulation Results

In summary, both the MLMI-Het and MLMI-SMC give similar results across
the range of scenarios considered here, and in each scenario, either are compet-
itive with the best method or give the best results. In particular, neither MI-S
nor MI-xW give such consistently good results.

5. APPLICATION TO MILLENNIUM COHORT DATA

We now use the methods evaluated previously in an analysis of the
Millennium Cohort Study dataset (Plewis 2007). This is a multidisciplinary re-
search project following the lives of around 19,000 children born in the UK in
2000 and 2001. We focus on the second wave (children around three years of
age), where some items are missing, particularly in the family income and
hearing problems variables (around 12 percent missing).
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Our substantive model is a weighted regression of the quantitative Bracken
school readiness score on three explanatory variables: logarithm of family in-
come, whether the child has hearing problems (1¼ yes; 0¼ no), and the num-
ber of siblings. The sampling weights are provided with the data; more detail
on their derivation is given by Plewis (2007). We analyzed the complete
records, and then we multiply imputed missing values using each of the meth-
ods presented in section 2. We used a burn in of 500 updates and imputed 20
datasets, updating the sampler 500 times between each imputation. As there
are only nine weight strata, we use them to define the second level for the mul-
tilevel imputation method (i.e., all weights are the same within each stratum).

Table 4 summarizes the results. Compared with the CR analysis, only MI-S
gives larger SEs, suggesting estimation in some strata is poor, so this approach
may be less reliable here. The other best-performing methods from the simula-
tion study (MLMI-Het, MLMI-SMC, and MI-xW) give similar results.
Focusing on results from these three methods, compared with CR, they suggest
(i) a > 1 SE stronger positive effect of income on school readiness score (b1);
(ii) a slightly weaker effect of hearing problems (b2), and (iii) a marginally
stronger negative effect of a greater number of siblings (b3).

6. DISCUSSION

In this article, we have reviewed some of the issues raised by using multiple
imputation to impute missing values when the substantive analysis is a
weighted model. This led us to propose a multilevel approach, where (i) the

Table 4. MCS Analysis Results: Parameter Estimates and Associated Standard
Error Estimates for the Four Fixed Effect Parameters of the Substantive
Weighted Regression Model, b0, b1, b2 and b3

b0 b1 b2 b3

Mean SE Mean SE Mean SE Mean SE

CR �0.683 0.051 0.292 0.013 0.101 0.033 �0.198 0.011
MI-noW �0.749 0.047 0.313 0.012 0.090 0.030 �0.208 0.009
MI-W �0.754 0.048 0.313 0.012 0.091 0.031 �0.208 0.009
MI-xW �0.744 0.049 0.311 0.011 0.089 0.032 �0.208 0.009
MI-S �0.703 0.083 0.309 0.021 0.074 0.049 �0.206 0.016
MLMI-Hom �0.756 0.047 0.314 0.012 0.091 0.032 �0.208 0.009
MLMI-Het �0.772 0.046 0.320 0.011 0.090 0.031 �0.206 0.009
MLMI-SMC �0.756 0.049 0.314 0.012 0.092 0.031 �0.208 0.009

NOTE.—We compare CR estimates with the estimates handling missing data with CR,
MI-noW, MI-W, MI-xW, MI-S, MLMI-Hom, MLMI-Het and MLMI-SMC.

22 Quartagno, Carpenter, and Goldstein D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/advance-article-abstract/doi/10.1093/jssam
/sm

z036/5569522 by U
C

L, London user on 05 D
ecem

ber 2019

Deleted Text: s
Deleted Text: ,
Deleted Text: ,
Deleted Text: s
Deleted Text: s
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: 6 Discussion
Deleted Text: paper 


weights are used to form strata which define level-two, (ii) we include random
intercepts, and (iii) we allow the variance structure of the variables to vary
across strata. While random-effects models has been proposed previously as
substantive models in order to shrink across weight strata (Elliott and Little
2000; Elliott 2007; Xia and Elliott 2016), to our knowledge, the use of a multi-
level model, allowing associations between the variables to vary across weight
strata in these settings, is new. Furthermore, while the possibility of using such
models for the imputation of missing data has been suggested from a theoreti-
cal point of view (Zhou, Elliott, and Raghunathan 2016b), in this article, this
strategy is evaluated through simulations and application of real data for the
first time.

We have evaluated our approach in a series of simulation studies, finding
encouraging results across all the scenarios. In applications, we may need to
group weights in order to form strata. In this case, the approach is likely to per-
form best if the strata are relatively homogeneous.

Given our results, we believe that adopting our approach (either MLMI-Het
or MLMI-SMC) addresses the issues raised by (Kim et al. 2006) and so renders
their conclusion that “MI is not generally recommended for public use data fil-
es” unduly negative.

If our approach is adopted and the imputer and analyst are separate, we be-
lieve that those imputing data and subsequently releasing them for public use
should also publish the imputation model so that users can see the structure
that has been captured in the imputation model.

Across the scenarios we considered for MLMI-Het and MLMI-SMC, the
empirical standard error was either close to or slightly larger than the model-
based SE (obtained using Rubin’s rules), suggesting at worse the approach
may be slightly conservative but still more efficient than CR (cf Meng, 1994).

Compared with the MI-xW approach, our multilevel approach does not rely
on a linear association between the weights and the other variables; this can
vary as dictated by the data across the weight strata. A further potential advan-
tage of MLMI-SMC is that it can be combined with the approach outlined by
Goldstein et al. (2014) to impute consistent with nonlinear relationships and
interactions.

One possible issue with our proposed method is that with high dimensional
data, incorporating all domains with their interaction might be complicated,
even using our random effects to reduce the number of parameters. Because of
this, an alternative multiple imputation method based on finite population
Bayesian bootstrap has been recently proposed (Zhou, Elliott, and
Raghunathan 2016a, 2016b); this method could have a potential advantage
with large numbers of domains. We plan in the future to compare this method
with our strategy to explore under which circumstances one is better than the
other.

In this article, we focused on weights arising from simple random sampling.
Extensions to consider more complex multistage sampling designs may be
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needed in applications. For example, our approach could have to be used to im-
pute multilevel datasets. In this setting, the weight strata give rise to a cross-
classified structure (Browne, Goldstein, and Rasbash 2001). In principle, this
could be addressed simply by using a more complicated imputation model.
This is a topic for future research.

For standard MI (i.e., when the substantive model is not weighted), our ap-
proach can also be used. In other words, we can estimate the probability of
missing data and use these to form strata. If the weights are right, but the impu-
tation model is wrong, preliminary simulations show this provides a degree of
double-robustness.

The strategy we investigated in this article is tailored to handle missing
items in surveys. We did not focus on the case of completely missing units,
since we assume this will be addressed by the weights. This was also consid-
ered by Seaman et al. (2012), who recommended a two-stage combination of
multiple imputation to handle item nonresponse and inverse probability
weighting (IPW) to handle unit nonresponse.

To conclude, we have proposed and evaluated a multilevel multiple imputa-
tion approach for situations where the substantive analysis is weighted and
found promising results. The approach described here is implemented in the R
package jomo Quartagno and Carpenter (2014).
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