
CONTRIBUTED RESEARCH ARTICLE 1

jomo: A Flexible Package for Two-level
Joint Modelling Multiple Imputation
by Matteo Quartagno, Simon Grund and James Carpenter

Abstract Multiple imputation is a tool for parameter estimation and inference with partially observed
data, which is used increasingly widely in medical and social research. When the data to be imputed
are correlated or have a multilevel structure — repeated observations on patients, school children
nested in classes within schools within educational districts — the imputation model needs to include
this structure. Here we introduce our joint modelling package for multiple imputation of multilevel
data, jomo, which uses a multivariate normal model fitted by Markov Chain Monte Carlo (MCMC).
Compared to previous packages for multilevel imputation, e.g. pan, jomo adds the facility to (i) handle
and impute categorical variables using a latent normal structure, (ii) impute level-2 variables, and (iii)
allow for cluster-specific covariance matrices, including the option to give them an inverse-Wishart
distribution at level 2. The package uses C routines to speed up the computations and has been
extensively validated in simulation studies both by ourselves and others.

Introduction

Missing data are ubiquitous in clinical and social research. The most straightforward way to deal with
missing data is to exclude all observations with any item missing from the analysis, i.e. a complete
records analysis. However this strategy is at best inefficient; further unless — given covariates — the
probability of a complete record does not depend on the outcome (dependent) variable, it will lead to
biased results.

Rubin (1976) described different mechanisms causing missing data: Missing Completely At
Random (probability of missingness unrelated to observed and unobserved values, MCAR), Missing
At Random (given observed data, occurrence of missing values is independent of the actual values,
MAR) and Missing Not At Random (given observed data, occurrence of missing values still depends
on the actual values, MNAR).

Multiple Imputation (MI) is a very flexible, practical, tool to deal with missing data. It consists
of imputing missing data several times, creating multiple imputed data sets. Then, the substantive
model is directly fitted to each of the imputed data sets; the results are then combined for inference
using Rubin’s rules (Rubin, 1987). An appropriately specified multiple imputation model gives valid,
efficient inference if data are MAR (Carpenter and Kenward, 2013, Ch. 2; Little and Rubin, 2002). Key
attractions of MI are that it separates the imputation of missing data from the analysis, thus allowing
(a) use of the substantive analysis model that we intended to use with fully observed data and (b)
inclusion of auxiliary variables in the imputation model — which provide information about the
missing values — without having to include them in the substantive analysis model.

There are several models and associated algorithms which can be used to impute missing data;
Schafer (1997) proposed a joint multivariate normal model, fitted by MCMC. The main assumption of
this method is that the partially observed data follow a joint multivariate normal distribution; given
this, a Gibbs sampler uses the proper conditional distributions to update the parameters of the model
and impute the missing data.

One of the advantages of the joint modelling approach is that it extends naturally to multi-
level/hierarchical data structures. Such structures arise commonly, for example, when we have
repeated observations (level 1) on individuals (level 2), or students (level 1) nested in schools (level 2).

A number of joint modelling multiple imputation packages have been written: norm (Novo and
Schafer, 2013; Schafer and Olsen, 2000) assumes a multivariate normal model for imputation of single-
level normal data, cat (Harding et al., 2012) a log-linear model to impute categorical data, and mix
(Schafer., 2010) uses the general location model (Olkin and Tate, 1961) to impute a mix of continuous
and categorical data (Schafer, 1997, Ch. 9). pan (Zhao and Schafer, 2013; Schafer and Yucel, 2002) uses
a multilevel multivariate normal model for imputation of multilevel normal data.

As far as we are aware, jomo is the first R package to extend this to allow for a mix of multilevel
(clustered) continuous and categorical data. It is derived from, but also extends the functionality of
REALCOM (Carpenter et al., 2011), a standalone program written in Matlab. In REALCOM, binary and
categorical variables are handled through a latent normal variables approach presented in Carpenter
and Kenward (2013, Ch. 5). The aim of the jomo package is to provide an efficient implementation of
the REALCOM imputation model in R, while both (i) speeding up the processes through the use of C
sub-routines and (ii) adding the flexibility to specify level-2 specific covariance matrices and level-2
random covariance matrices, the latter following the proposal of Yucel (2011).

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=jomo
https://CRAN.R-project.org/package=pan
https://CRAN.R-project.org/package=norm
https://CRAN.R-project.org/package=cat
https://CRAN.R-project.org/package=mix
https://CRAN.R-project.org/package=pan

CONTRIBUTED RESEARCH ARTICLE 2

This paper is organized as follows: after briefly introducing joint modelling multiple imputation
and the principal functions within jomo, we present a series of short tutorials, in which we explain
how to impute (i) single-level continuous and categorical data; (ii) clustered homoscedastic data, (iii)
clustered heteroscedastic data and (iv) level-2 variables. We then present functions to help check
the convergence of the underlying MCMC algorithms and outline the suggested workflow for using
the package. The next section introduces another R package, mitml, which provides both a different
interface to jomo and a number of useful tools to manage and investigate the properties of imputed
data sets. The penultimate section provides an overview of both the simulation studies and the
applications where the package was used. We conclude with a short discussion.

Joint Modelling Multiple Imputation

To introduce the general ideas of joint modelling multiple imputation, we consider a data set made up
of N observations on three continuous variables; we further assume that one of these variables, X,
is fully observed, while the other two, Y1 and Y2, have missing values. The main idea behind joint
modelling imputation is to define a joint multivariate model for all the variables in the data set, to be
used for imputation. The simplest joint model is the multivariate normal model:

Y1,i = β0,1 + β1,1Xi + ε1,i

Y2,i = β0,2 + β1,2Xi + ε2,i(
ε1,i
ε2,i

)
∼ N (0, Ω)

(1)

This model uses X, which is completely observed, as predictor while Y1 and Y2 are included as
outcomes, being partially observed. Another possibility is a tri-variate normal model with all variables,
including X, treated as outcomes. Choosing between these two models has been the matter of debate
in the literature, and is not the focus of this paper. We simply note here that the imputation model
chosen needs to be (at least approximately) congenial with the analysis model of substantial interest,
in order for multiple imputation to lead to correct inference (Meng, 1994).

After having chosen the imputation model, Bayesian methods are used to fit it and impute the
missing data. In particular, Gibbs sampling is used, dealing with missing data via a data augmentation
algorithm (Tanner and Wong, 1987). This consists of repeatedly drawing new values for all the
parameters in the model, one at a time, from the relevant conditional distribution. The parameters of
model (1) are the fixed effects β and the covariance matrix Ω, and the missing data.

The sampler has to be run until it reaches the stationary distribution. Then, the current draw of
the missing values is combined with the observed data to make the first imputed data set. Further
imputed data sets are obtained by running the sampler for a sufficient number of supplementary
iterations to guarantee stochastic independence between consecutive imputations.

Before running the Gibbs sampler, it is necessary to choose starting values for the parameters;
the more plausible these starting values are, the faster the sampler converges. Furthermore, being a
Bayesian method, prior distributions are used. By default, jomo uses flat priors for all the parameters
in the model, except for the covariance matrices, which are given inverse-Wishart priors with the
minimum possible number of degrees of freedom in order to give the greatest possible weight to the
observed data.

Extending the same methodology to more complicated situations is conceptually relatively straight-
forward. For example, binary and categorical variables can be included in the imputation model
by means of latent normal variables. Under this model, if Y1 is binary, a latent continuous variable
Y∗1 is included in the model, such that Y∗1,i > 0 for individuals i for whom Y1,i = 0 and Y∗1,i ≤ 0
for individuals for whom Y1,i = 1 (Goldstein et al., 2009). Similarly, a categorical variable with K
categories can be represented by K − 1 latent normal variables denoting the differences between
categories. In contrast to models without categorical data, this strategy requires constraints on the
variance-covariance matrix to guarantee identifiability of the model (for a wider discussion of model
identifiability see Carpenter and Kenward (2013, Chap.5)). To sample from this constrained covariance
matrix, Metropolis Hastings (MH) steps are introduced to augment the standard Gibbs Sampler.

If observations in the data set are nested in J clusters, model (1), can be readily expanded to include

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 3

Type of variables

Model type Missing data Continuous Binary/categorical Mixed

Single-level Level 1 jomo1con jomo1cat jomo1mix

Two-level Level 1 jomo1rancon jomo1rancat jomo1ranmix

Both levels jomo2com jomo2com jomo2com

Two-level, heteroscedastic Level 1 jomo1ranconhr jomo1rancathr jomo1ranmixhr

Both levels jomo2hr jomo2hr jomo2hr

Table 1: Summary of subfunctions used by the main "umbrella function" jomo, given the type of
imputation model, the level at which missing data occur, and the type of the variables with missing
data.

random intercepts as follows:

Y1,i,j = β0,1 + u1,j + β1,1Xi,j + ε1,i,j

Y2,i,j = β0,2 + u2,j + β1,2Xi,j + ε2,i,j(
ε1,i,j
ε2,i,j

)
∼ N (0, Ω)(

u1,j
u2,j

)
∼ N (0, Ωu)

(2)

More general random effects structures can be modelled as well, as we will show in a later section.

It is similarly possible to consider a joint imputation model for variables at level 2, e.g. patient-
level variables in longitudinal studies (Carpenter and Kenward, 2013, p. 212), or allowing for level-1
heteroscedasticity, which can be particularly appealing in individual patient data (IPD) meta-analyses
among other applications.

Package structure

The jomo package can be used to impute missing data in continuous and categorical variables
in single-level and multilevel data. The main interface to the jomo package is the jomo function,
which automatically selects the correct imputation method for the data, depending on (a) the model
specification (e.g., single-level vs. multilevel) and (b) the variables in the data set (e.g., continuous
variables of type numeric vs. categorical variables as factor vs. a mixture of them). In addition, the
sub-functions called by jomo can be called individually; a list of all sub-functions is given below and
in Table 1.

1. jomo1con, jomo1cat and jomo1mix: these impute single-level continuous, categorical and mixed
data sets. jomo1con is very similar to the imp.norm function of the norm package. However,
jomo1cat and jomo1mix used the latent normal variables approach described in Carpenter and
Kenward (2013, Ch. 5) to impute categorical variables and a mix of continuous and categorical
variables, respectively.

2. jomo1rancon, jomo1rancat and jomo1ranmix: these impute clustered continuous, categorical,
and mixed data, respectively. jomo1rancon is very similar to pan, whereas jomo1rancat and
jomo1ranmix use the latent normal model for the categorical variables. All these functions have
a fixed, common covariance matrix across all the clusters (level-2 units) in the imputation model;

3. jomo1ranconhr, jomo1rancathr and jomo1ranmixhr: these functions extend the above to allow
for either cluster (level-2 unit) specific covariance matrices, or random covariance matrices,
where the covariance matrices follow an inverse-Wishart distribution across level-2 units, as
described by Yucel (2011) and Quartagno and Carpenter (2016).

4. jomo2com and jomo2hr: these functions impute missing values in level-2 variables, and can be
used in the same manner as those in groups (2) and (3) above.

We next illustrate the use of jomo in each of the above situations. Throughout, we assume that the data
are MAR.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 4

jomo: tutorial with single-level data

We begin with single-level data sets. We first assume all variables with missing data are continuous,
that the substantive model is a linear regression of one variable on some or all the others, and that each
variable is approximately normally distributed conditional on the others (so that a joint multivariate
normal model is an appropriate choice for imputation).

A key attraction of multiple imputation is that any variables in the data set that are not in the
substantive model can still be included in the imputation model. If such auxiliary variables are good
predictors of missing values, they will help recover missing information. If they are also predictors
of the data being missing, they may correct bias. Recall that (simply speaking) the MAR assumption
states that, given the observed data, the probability that a value is missing is conditionally independent
of the actual value. Therefore, inclusion of judiciously chosen auxiliary variables (even ones that are
not themselves complete) can improve the plausibility of the MAR assumption.

In joint modelling imputation (Carpenter and Kenward, 2013, Ch. 3), partially observed variables
are dependent variables. However, as hinted above, with fully observed variables we can choose to
either condition on them as predictors or include them in the (multivariate) response. The software is
equally comfortable with both options, and it makes little difference in practice for single-level data.
However, the choice has a bigger impact for clustered data (Quartagno and Carpenter, 2016; Grund
et al., 2016b), as we will see in the multilevel imputation section.

Once we have decided on the variables to include in the imputation model, and whether to
condition on any fully observed variables as covariates, imputation using the jomo function is straight-
forward.

For illustration, we use an educational data set of students’ test scores (JSPmiss), which is a subset
of the Junior School Project (Mortimore et al., 1988). The fully observed data set is freely available with
the MLwiN software (Rasbash et al. (2017); or the related R package R2MLwiN Zhang et al. (2016))
and a partially observed version is included with this package (data are MAR). This data set has
eight variables: a school and an individual identifier, sex, fluency in English language (3 categories,
fluent), a test score at Year 1 (ravens) and at Year 3 (english) and a binary behavioral score at Year 3
(behaviour). Additionally a constant is provided to help the user, as we will see later in this tutorial.

First, we summarize the data:

library(jomo)

> summary(JSPmiss)
school id sex fluent ravens english

48 : 76 280 : 1 Min. :0.0000 0 : 32 Min. : 4.00 Min. : 0.00
42 : 52 281 : 1 1st Qu.:0.0000 1 : 29 1st Qu.:22.00 1st Qu.:24.00
31 : 44 282 : 1 Median :1.0000 2 :823 Median :26.00 Median :40.00
8 : 43 283 : 1 Mean :0.5103 NA's:235 Mean :25.35 Mean :41.36
33 : 43 284 : 1 3rd Qu.:1.0000 3rd Qu.:30.00 3rd Qu.:56.00
5 : 39 285 : 1 Max. :1.0000 Max. :36.00 Max. :98.00
(Other):822 (Other):1113 NA's :246 NA's :236

behaviour cons
lowerquarter:248 Min. :1
upper :871 1st Qu.:1

Median :1
Mean :1
3rd Qu.:1
Max. :1

This shows the data set has (248 + 871) = 1119 observations, of which 236 have missing data on
the outcome english, 235 have missing data on fluent and so on and so forth. For the purpose of
this example, we ignore clustering by school and take as the substantive analysis model the following
linear regression:

Yenglish,i =α0 + α1ravensi + α2sexi + εi (3)

εi ∼ N(0, σ2
e).

To illustrate the use of jomo with continuous variables, let i = 1, . . . , 1119 index observations and use

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=R2MLwiN

CONTRIBUTED RESEARCH ARTICLE 5

the following joint imputation model:

Yenglish,i = β0,e + β1,eXsex,i + εe,i

Yravens,i = β0,r + β1,rXsex,i + εr,i(
εe,i
εr,i

)
∼ N (0, Ω)

(4)

Both responses in this bivariate normal model, english and ravens, are partially observed contin-
uous variables. The binary covariate, sex, is fully observed. This is identical to model (1) with X being
sex.

To impute the missing values we proceed as follows. First, in order to guarantee that the correct
function is being used, we need to make sure that continuous variables are stored as numeric vectors
in the data frame and binary/categorical variables as factors. We can easily test this as follows:

Check that ravens is numeric:
class(JSPmiss$ravens)
[1] "numeric"

Were ravens not numeric, we convert it as follows:
JSPmiss <- within(JSPmiss, ravens <- as.numeric(ravens))

Define the data.frame with the outcomes
Y <- JSPmiss[, c("english", "ravens")]

The imputation model requires an intercept variable (simply a column of 1's)
to include in the covariate matrix X. The JSPmiss data set already contains
such a variable (cons). Were it not present, we could define it as follows:
JSPmiss$cons <- 1

Define the data.frame with the covariates:
X <- JSPmiss[, c("cons", "sex")]

Set the seed (so we can replicate the results exactly if desired)
set.seed(1569)

Run jomo and store the imputed data sets in a new data frame, imp
imp <- jomo(Y = Y, X = X, nburn = 1000, nbetween = 1000, nimp = 5)

Running this code, with the above seed, the following output is shown on screen:

No clustering, using functions for single-level imputation.
Found 2 continuous outcomes and no categorical. Using function jomo1con.
..
..........................First imputation registered.
..
..........................Imputation number 2 registered
..
..........................Imputation number 3 registered
..
..........................Imputation number 4 registered
..
..........................Imputation number 5 registered
The posterior mean of the fixed effects estimates is:
cons sex
english 38.15030 6.408079
ravens 25.32372 -0.556898
#
The posterior covariance matrix is:
english ravens
english 458.39885 64.92863
ravens 64.92863 36.41841

The first sentence informs us that, as we did not pass any clustering indicator to the function, jomo is

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 6

using single-level imputation. The second sentence is telling us which of the sub-functions was used.
As we have two numeric dependent variables, jomo1con has been chosen.

Then, the software prints a ‘.’ for each 10 burn-in updates of the MCMC sampler, followed by a
notification that it has created the first imputed data set. It then prints a ‘.’ for each 10 further updates
of the MCMC sampler, before imputations 2, 3, 4, and 5. The default values for the burn-in and
between-imputation updates are both 1000, resulting in 100 dots printed in each case.

Finally, the software prints the estimated posterior mean of the regression coefficients for english
(β0,e, β1,e,), ravens (β0,r, β1,r), and the elements of the covariance matrix:(

εe,i
εr,i

)
∼ N

[
0, Ω =

(
458.40 64.93
64.93 36.42

)]
.

The same results can be obtained by running jomo1con in place of jomo with exactly the same argu-
ments. In general, to exactly replicate the results, you will have to (i) have the data sorted in the same
order and (ii) use the same seed. Sometimes we will wish to suppress the output generated by jomo;
the option output = 0 controls this.

Running jomo creates the object imp, which is a data frame:

class(imp)
#[1] "data.frame"

with the following names:
names(imp)
#[1] "english" "ravens" "cons" "sex" "id" "Imputation"

and dimension:
dim(imp)
[1] 6714 6

The names include the original variable names, inherited from JSPmiss, and a new variable Imputation,
which indexes the original data (0) and the imputed data sets. We have five imputed data sets. Let’s
look at the top of the original data, and the top of the fifth imputation:

View original (partially observed) data:
head(imp)

english ravens cons sex id Imputation
1 39 NA 1 1 1 0
2 NA 15 1 0 2 0
3 65 19 1 1 3 0
4 NA 22 1 0 4 0
5 30 NA 1 1 5 0
6 12 NA 1 0 6 0

View last imputation (the left most column is the row number):
head(imp[imp$Imputation == 5,])

english ravens cons sex id Imputation
5596 39.00000 32.17927 1 1 1 5
5597 54.37720 15.00000 1 0 2 5
5598 65.00000 19.00000 1 1 3 5
5599 46.57598 22.00000 1 0 4 5
5600 30.00000 21.30211 1 1 5 5
5601 12.00000 24.56964 1 0 6 5

Starting values and prior distributions

To impute missing data, jomo fits a Bayesian model using MCMC. Therefore, we need to provide
starting values and priors for each parameter in the model. The default starting values are a matrix
of zeros for the fixed effects parameter β, and the identity matrix for the covariance matrix. In the
majority of situations, changing the starting values will not change the results materially. Nevertheless,
good starting values may considerably reduce the number of iterations needed for the algorithm to
converge.

In order to represent the maximum uncertainty and to give the greatest weight to the data, jomo

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 7

assumes flat improper priors for all the parameters in the model, except the covariance matrix. For
this, an inverse-Wishart prior is used, with degrees of freedom set to the minimum possible, i.e.
the dimension of the covariance matrix; this represents the greatest uncertainty (least information).
Changing the scale matrix of the inverse-Wishart prior may have some impact when we have a very
small number of observations. In our example, with 1119 observations and only two outcomes, the
impact is immaterial.

We now illustrate how to set the starting values for all the parameters, the scale matrix of the
inverse-Wishart prior for the covariance matrix as well as the number of burn-in iterations for the
MCMC sampler, the number of iterations between imputations, and the number of imputations:

Set starting values for fixed effect parameters beta
beta.start <- matrix(1, 2, 2)

Set starting value for covariance matrix
l1cov.start <- diag(2, 2)

Set scale matrix of the inverse-Wishart prior for the covariance matrix:
l1cov.prior <- diag(2, 2);

Set seed to get results below
set.seed(1569)

Impute:
[Note for new R users: the inputs set above have the same names as their
corresponding options in the function. Hence, when we set <option> = <object
name>, we have the same string on both sides of '=']

imp2 <- jomo(Y, X = X, beta.start = beta.start, l1cov.start = l1cov.start,
l1cov.prior = l1cov.prior, nburn = 200,
nbetween = 200, nimp = 5)

....................First imputation registered.
....................Imputation number 2 registered
....................Imputation number 3 registered
....................Imputation number 4 registered
....................Imputation number 5 registered
cons sex
english 38.21636 6.4469156
ravens 25.33982 -0.5456155
#
The posterior covariance matrix is:
english ravens
english 460.37902 65.34086
ravens 65.34086 36.58763

We see no material change from the previous results. In simple problems, the default burn-in of nburn
= 1000 is often enough for the sampler to converge. Further below, we show how to visually check
whether the stationary distribution has been reached.

Analysing the imputed data

Recall our substantive linear regression model above. Once we have created our imputed data sets,
we follow the usual multiple imputation rules and fit our substantive model to each imputed data
set, before summarising the results for final inference using Rubin’s rules, which are implemented in
mitools:

library(mitools) # load if not done so above

Use the object imp which we created with the original run above. First
convert the data frame of results imp to a list of imputations
imp.list <- imputationList(split(imp, imp$Imputation)[-1])

Fit model to each of the 5 imputed data sets
fit.imp <- with(data = imp.list, lm(english ~ ravens + sex))

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=mitools

CONTRIBUTED RESEARCH ARTICLE 8

Extract coefficients and variances
coefs <- MIextract(fit.imp, fun = coef)
vars <- MIextract(fit.imp, fun = function(x) diag(vcov(x)))

Pool results with Rubin's rules
results <- MIcombine(coefs, vars)
summary(results)

Multiple imputation results:
MIcombine.default(coefs, vars)
results se (lower upper) missInfo
(Intercept) -6.549183 3.0013631 -12.618685 -0.4796807 35 %
ravens 1.767782 0.1124461 1.540232 1.9953322 36 %
sex 7.037727 1.3021658 4.424013 9.6514414 31 %

There are multiple alternative implementations of Rubin’s rules in R. These include pool from mice,
runMI from semTools, particularly appealing with Structural Equation Models, MI.inference from
BaBooN (Meinfelder, 2011), and testEstimates from mitml, which we present more in depth in the
penultimate section of this paper. Other packages with their own implementation of Rubin’s rules
include Amelia, mi, and lavaan.survey.

Categorical variables

Fully observed binary covariates can be included in the X matrix of the imputation model as type
numeric, exactly as with sex in this example. To include fully observed categorical covariates with
three or more categories, appropriate dummy variables have to be created. For this purpose, we might
use the R package dummies (Brown, 2012) or the function constrasts in base R.

jomo also readily imputes a mix of binary, categorical and continuous variables. This is done
using a latent normal model (see Goldstein et al., 2009; Carpenter and Kenward, 2013, Ch. 4). To
illustrate this, we continue to use the data set JSPmiss but now also impute the partially observed
fluency level (3 categories). The underlying joint imputation model remains a multivariate normal
model, but fluent is represented by two latent normal variables:

Yenglish,i = β0,e + β1,eXsex,i + εe,i

Yravens,i = β0,r + β1,rXsex,i + εr,i

Y∗f lu,1,i = β0, f 1 + β1, f 1Xsex,i + ε f 1,i

Y∗f lu,2,i = β0, f 2 + β1, f 2Xsex,i + ε f 2,i

(5)

where:

Pr(Yf lu,i = 1) = Pr
(

Y∗f lu,1,i = max
j=1,2

Y∗f lu,j,i and Y∗f lu,1,i > 0
)

Pr(Yf lu,i = 2) = Pr
(

Y∗f lu,2,i = max
j=1,2

Y∗f lu,j,i and Y∗f lu,2,i > 0
)

Pr(Yf lu,i = 3) = Pr
(

Y∗f lu,j,i < 0 for j = 1, 2
)

,

(6)

εe,i
εr,i

ε f 1,i
ε f 2,i

 ∼ N (0, Ω) (7)

As highlighted above, in order for this model to be estimable, we need to constrain the variance-
covariance matrix of (ε f 1,i, ε f 2,i)

T , (i.e. the bottom right 2× 2 submatrix of Ω) to be(
1 0.5

0.5 1

)
.

These constraints are automatically implemented in the software.

The code for imputation is essentially the same as before, but now we need to make sure that fluent,
being a categorical variable, is included in the dependent variable data frame as a factor:

convert "fluent" to factor

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=mice
https://CRAN.R-project.org/package=semTools
https://CRAN.R-project.org/package=BaBooN
https://CRAN.R-project.org/package=mitml
https://CRAN.R-project.org/package=Amelia
https://CRAN.R-project.org/package=mi
https://CRAN.R-project.org/package=lavaan.survey
https://CRAN.R-project.org/package=dummies
https://CRAN.R-project.org/package=jomo

CONTRIBUTED RESEARCH ARTICLE 9

JSPmiss <- within(JSPmiss, fluent <- factor(fluent))

Define the data frame with the dependent (outcome) variables for the imputation model:
Y <- JSPmiss[, c("english", "ravens", "fluent")]

Define the data.frame with the (fully observed) covariates of the imputation model
X <- JSPmiss[, c("cons", "sex")]

fit the model and impute the missing data:
set.seed(1569)
imp <- jomo(Y = Y, X = X)

This will take a little longer than the previous examples, and returns the following output:

The posterior mean of the fixed effects estimates is:
cons sex
english 38.263132 6.3636755
ravens 25.324376 -0.5548762
fluent.1 -1.574369 -0.2318260
fluent.2 -1.836201 0.1829313
#
The posterior covariance matrix is:
english ravens fluent.1 fluent.2
english 458.164036 64.437168 -11.379005 -8.888263
ravens 64.437168 36.743243 -2.141006 -1.500893
fluent.1 -11.379005 -2.141006 1.000000 0.500000
fluent.2 -8.888263 -1.500893 0.500000 1.000000

The output illustrates that jomo recognized that fluent was a factor variable and therefore used the
function for the imputation of mixed data types.

The matrix posterior mean of the fixed effect estimates links directly to (5). Specifically, β̂0,e =
38.26, β̂1,e = 6.36, . . . , β̂0, f 2 = −1.84, β̂1, f 2 = 0.18. Likewise, the posterior means of the covariance
matrix terms are labelled, and correspond directly to (5). Specifically,

V̂ar

εe,i
εr,i

ε f 1,i
ε f 2,i

 =

458.16 64.44 −11.38 −8.89
64.44 36.74 −2.14 −1.50
−11.38 −2.14 1 0.5
−8.89 −1.50 0.5 1

 .

Calling the relevant sub-function (jomo1mix) is possible again but a bit more complex, because contin-
uous and categorical outcomes must be passed as separate arguments.

We can specify starting values explicitly if we wish. To specify all the starting values, we need
to specify n − 1 starting β values for each n-category variable and a proper starting value for the
covariance matrix. For example, in the present case, fluent has 3 categories, which are modelled with
2 latent normal variables. As a result, β is a 2× 4 matrix of regression coefficients, and the covariance
matrix is of size 4× 4 (i.e., two predictors with two continuous and two latent dependent variables).
So, continuing with Y and X defined as above:

Starting value for beta
beta.start <- matrix(0, 2, 4) # Specify a 2 by 4 matrix of zeros

Starting value for covariance matrix; the software disregards impossible values:
l1cov.start <- diag(2, 4)

set.seed(1569)
imp <- jomo(Y = Y, X = X, beta.start = beta.start, l1cov.start = l1cov.start)

As our starting values are different from the default, we get slightly different estimates of the posterior
means.

While the software is designed for unordered categorical data, it can be used for ordinal data
too. Our simulation results show that if variables are truly ordinal it gives good results with only a
marginal loss in efficiency (Quartagno and Carpenter, 2019).

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 10

jomo: tutorial with multilevel data

When we wish to impute missing data with a multilevel substantive model, our imputation model
should itself preserve the multilevel structure (Lüdtke et al., 2017; Andridge, 2011); one key benefit of
jomo is that it allows us to do this.

Three different approaches for multilevel multiple imputation have been implemented in jomo,
providing a flexible framework for the treatment of missing data in multilevel data sets. They allow:

1. imputation with a common level-1 covariance matrix across level-2 units (the default);

2. imputation with a cluster-specific level-1 covariance matrices, and

3. imputation allowing for the level-1 covariance matrix to be randomly distributed across level-2
units, following the proposal by Yucel (2011) and as developed by Quartagno and Carpenter
(2016).

Option (2) requires sufficient data within each level-2 unit to estimate the covariance matrix; option (3)
is a practical choice when we suspect there is heterogeneity across level-2 units, but there is insufficient
information within each level-2 unit for option (2).

We illustrate the software again with the JSPmiss data set, distributed with the package. Let j
index school and i students within schools. Our substantive model is:

Yenglish,i,j =α0 + α1ravensi,j + α2sexi,j + α31[fluenti,j == 2] + α41[fluenti,j == 3] + uj + εi,j (8)

uj ∼ N(0, σ2
u)

ei,j ∼ N(0, σ2
e).

(9)

We now use multilevel imputation for the missing data. This is done by extending the joint
imputation model described above to the multilevel setting. As before, the variables english, ravens
and fluent are responses, and the fully observed variable sex a covariate. The imputation model has
random intercepts at level 2, and a common level-1 covariance matrix (approach 1 above).

Yenglish,i,j = β0,e + β1,eXsex,i,j + ue,j + εe,i,j

Yravens,i,j = β0,r + β1,rXsex,i,j + ur,j + εr,i,j

Y∗f lu,1,i,j = β0, f 1 + β1, f 1Xsex,i,j + u f 1,j + ε f 1,i,j

Y∗f lu,2,i,j = β0, f 2 + β1, f 2Xsex,i,j + u f 2,j + ε f 2,i,j

(10)

where:

Pr(Yf lu,i,j = 1) = Pr
(

Y∗f lu,1,i,j = max
k=1,2

Y∗f lu,k,i,j and Y∗f lu,1,i,j > 0
)

Pr(Yf lu,i,j = 2) = Pr
(

Y∗f lu,2,i,j = max
k=1,2

Y∗f lu,k,i,j and Y∗f lu,2,i,j > 0
)

Pr(Yf lu,i,j = 3) = Pr
(

Y∗f lu,k,i,j < 0 for k = 1, 2
)

(11)

εi,j =

εe,i,j
εr,i,j

ε f 1,i,j
ε f 2,i,j

 ∼ N (0, Ωe) uj =

ue,j
ur,j

u f 1,j
u f 2,j

 ∼ N (0, Ωu) (12)

This is the same as model (5), apart from the addition of the covariance matrix Ωu for the vector of
random intercepts, uj.

Apart from specifying the level-two identifier, imputing the missing values proceeds the same as
before:

Define cluster/group indicator
clus <- JSPmiss$school

Define the data.frame with outcomes of the imputation model
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]

Define the data frame with covariates of the imputation model

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=jomo
https://CRAN.R-project.org/package=jomo

CONTRIBUTED RESEARCH ARTICLE 11

X <- JSPmiss[, c("cons", "sex")]

Perform multilevel imputation:
set.seed(1569)
imp <- jomo(Y = Y, X = X, clus = clus, nburn = 2000, nbetween = 1000, nimp = 5)

Clustered data, using functions for two-level imputation.
Found 2 continuous outcomes and 1 categorical. Using function jomo1ranmix.
...
...
..........................First imputation registered.
...
.............Imputation number 2 registered
...
.............Imputation number 3 registered
...
.............Imputation number 4 registered
...
.............Imputation number 5 registered
The posterior mean of the fixed effects estimates is:
cons sex
english 38.145706 5.7460263
ravens 25.207758 -0.5280992
fluent.1 -1.889772 -0.1980197
fluent.2 -2.133932 0.3046025
#
The posterior mean of the random effects estimates is:
english.Z1 ravens.Z1 fluent.1.Z1 fluent.2.Z1
1 -9.3394300 -2.39167726 0.30978733 0.359526051
2 -0.6734767 0.09111794 0.16371750 -0.140409675
3 2.0366252 1.66523294 -0.52408207 -0.433563083
4 -0.7524001 0.15352258 -0.14147716 0.016889639
5 7.4086502 1.79372314 -0.46164853 0.029898809
[...]
46 7.6419790 1.93470732 -0.43765561 0.099247985
47 0.1680530 0.56124947 1.02219296 1.083265124
48 -1.9106040 -0.10743067 -0.24463642 -0.101618838
49 1.5480441 0.23546197 -0.31258927 -0.072163795
50 2.8932869 1.21095460 -0.46288361 -0.351124776
#
The posterior mean of the level 1 covariance matrices is:
english ravens fluent.1 fluent.2
english 394.192120 53.461640 -9.709166 -7.894670
ravens 53.461640 32.882006 -1.636866 -1.391647
fluent.1 -9.709166 -1.636866 1.000000 0.500000
fluent.2 -7.894670 -1.391647 0.500000 1.000000
#
The posterior mean of the level 2 covariance matrix is:
english.Z1 ravens.Z1 fluent.1.Z1 fluent.2.Z1
english*Z1 67.791552 13.5839586 -4.1394619 -2.2062157
ravens*Z1 13.583959 4.1667944 -1.0068761 -0.5742672
fluent.1*Z1 -4.139462 -1.0068761 0.6051437 0.3374155
fluent.2*Z1 -2.206216 -0.5742672 0.3374155 0.4628897

Simply including clus was enough to tell jomo that we have a multilevel structure and to impute
accordingly. The assumed model included a random intercept for each outcome variable; we will see
later in this section how to specify the design matrix for the random effects differently. The output
follows the same format as that from fitting (5) above, with two additions:

1. we obtain the posterior mean of the uj, the random intercepts for each of the 5 responses, for

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 12

each of the j = 1, . . . , 50 schools. For example, for school 2, the posterior means are
ue,2
ur,2

u f 1,2
u f 2,2

 =

−0.67
0.09
0.16
−0.14

2. we obtain the estimated level-2 variance covariance matrix of the random intercepts (common

across all ten cities):

V̂ar

ue,j
ur,j

u f 1,j
u f 2,j

 =

67.79 13.58 −4.14 −2.21
13.58 4.17 −1.01 −0.57
−4.14 −1.01 0.61 0.34
−2.21 −0.57 0.34 0.46

 .

Analysing the imputed data

To fit the substantive multilevel model to each imputed data set we proceed as before:

imp.list <- imputationList(split(imp, imp$Imputation)[-1])

Fit model to each of the 5 imputed data sets
fit.imp <- with(data = imp.list, lmer(english ~ ravens + sex + factor(fluent) + (1|clus)))

Extract coefficients and variances
coefs <- MIextract(fit.imp, fun = fixef)
vars <- MIextract(fit.imp, fun = function(x) diag(vcov(x)))

Pool results with Rubin's rules
results <- MIcombine(coefs, vars)
summary(results)

Multiple imputation results:
MIcombine.default(coefs, vars)
results se (lower upper) missInfo
(Intercept) -16.133067 3.7371534 -23.521995 -8.744139 18 %
ravens 1.622946 0.1197557 1.374339 1.871554 48 %
sex 6.837264 1.1452177 4.573386 9.101142 18 %
factor(fluent)1 5.000691 4.2413878 -3.420624 13.422006 22 %
factor(fluent)2 14.345070 3.1391521 8.057088 20.633051 29 %

In order to get multiple imputation inference for the random coefficients, we recommend using the
mitml package, as described in the penultimate section below.

Design matrix for random effects

We now show how to specify additional random effects in the imputation model, apart from the
random intercept that is included by default. This is done by specifying the design matrix of the
random effects, Z. When this is not specified, it defaults to a random intercept. When it is specified by
the user, the random intercept has to be included (if desired).

Z <- JSPmiss[, c("cons", "sex")] # intercept and sex have random effects

imp <- jomo(Y = Y, X = X, Z = Z, clus = clus)
Output omitted

Starting values and prior distributions

The starting values of the sampling algorithm can again be overridden by the user, thus potentially
leading to better sampling behaviour and faster convergence. In comparison with the single-level
case, we now have two additional sets of parameters: (i) the matrix of random effects, whose rows
contain the random effects vectors for all level-2 units (u.start), and (ii) the level-2 covariance matrix

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 13

(l2cov.start). Note that with small numbers of level-2 units, the impact of the scale matrix of the
prior for the level-2 covariance matrix can be substantial. We proceed as follows:

beta.start <- matrix(1, 2, 4) # initialise fixed effects to zero
u.start <- matrix(0.5, nlevels(JSPmiss$school), 4) # initialise all random effects to 0.5
l1cov.start <- diag(2, 4) # initialise diagonal covariance matrix of 2's for level 1
l2cov.start <- diag(2, 4) # initialise diagonal covariance matrix of 2's for level 1
l2cov.prior <- diag(2, 4); # set scale matrix of inverse-Wishart prior for level-2

covariance matrix

set.seed(1569)
imp <- jomo(Y = Y, X = X, clus = clus, beta.start = beta.start, u.start = u.start,

l1cov.start = l1cov.start, l2cov.start = l2cov.start,
l2cov.prior = l2cov.prior, nburn = 2000, nbetween = 1000, nimp = 5)

Output omitted; as these are not all the default values, the posterior means differ
from the previous results by Monte Carlo error.

Cluster-specific covariance matrices

In some cases, it is implausible that all of the clusters share the same level-1 covariance matrix. For
example, when aggregating individual patient data from different studies to perform a meta-analysis,
it is often reasonable to assume that covariance matrices are different across studies.

Continuing to use (10) as an example, the only difference from before is that now the level-1
covariance matrix is not modelled as constant but as different across level-2 units. Thus instead of Ωe,
we have Ωe,j, j = 1, . . . , 50. We fit this model by specifying the additional argument meth = "fixed":

Define the data.frame with outcomes of the imputation model
Y <- JSPmiss[, c("english", "ravens", "fluent")]

Define the data.frame with covariates of the imputation model
X <- JSPmiss[, c("cons", "sex")]

Define cluster/group indicator
clus <- JSPmiss$school

Fixed cluster-specific covariance matrices
imp2 <- jomo(Y = Y, X = X, clus = clus, meth = "fixed")
Output omitted

Note that the output is now considerably longer, as the posterior mean for each of the level 1 covariance
matrices is reported. Compared to the previous models, this model is more complex and requires
estimation of a larger number of parameters.

Random cluster-specific covariance matrices

There are several reasons why we may wish to go beyond the setting above and allow the covariance
matrices to be random across level-2 units. For example, we may have reason to believe that different
level-2 units have different covariance matrices but that the number of observations on some of these
level-2 units is insufficient to estimate level-2 specific covariance matrices reliably. In this case, sharing
information across level-2 units is desirable. Another situation is when some variable is fully missing
from some clusters, and therefore it is necessary to share information with clusters where it was
observed through the specification of a hierarchical distribution for the covariance matrices.

Continuing to use (10) as an example, the cluster-specific covariance matrices are now assumed to
follow a specific distribution. Thus instead of Ωe,j, we have Ωe,j ∼ IW(a, S) j = 1, . . . , 10. Here, a and
S are the degrees of freedom and scale matrix of the inverse-Wishart distribution, respectively.

We can simply fit this model by specifying the option meth = "random":

imp3 <- jomo(Y = Y, X = X, clus = clus, meth = "random")

and then analyse the imputed data sets in the usual way. For full details on the algorithm used to
fit the random covariance matrices algorithm initially proposed by Yucel (2011), see the appendix of
Quartagno and Carpenter (2016).

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 14

The sub-function called by jomo for this type of data is jomo1ranmixhr, which can be called directly
but with a slightly more complex syntax.

With random covariance matrices, we have one further parameter, a, denoting the degrees of
freedom of the inverse-Wishart distribution for the cluster-specific covariance matrices. The default
starting value for this parameter, a.start, is the minimum possible, i.e., the dimension of the level-1
covariance matrix. This is also the default for the hyperparameter a.prior of the chi-square prior
distribution for a.

With random level-1 covariance matrices we can also specify starting values for the nclus covariance
matrices. Below, we show how to do this by (i) first creating the matrix for the first level 2 unit, a
4-by-4 diagonal matrix with all entries ‘2’, using diag(2,4) then (ii) stacking 50 copies of this:

Starting values for the 5 by 5 level-1 covariance matrix for the first level-2 unit
l1cov.start.1 <- diag(2, 4)
Stack 10 copies of this matrix (one for each of the level-2 units)
l1cov.start <- matrix(l1cov.start.1, nrow = 4 * nlevels(JSPmiss$school), ncol = 4,

byrow = TRUE)

Choose a starting value for the degrees of freedom, a (automatically >= 5)
a.start <- 7

Run jomo
imp <- jomo(Y = Y, X = X, clus = clus, l1cov.start = l1cov.start, a = a.start,

meth = "random")

Imputing level-2 variables

In many applications, we have variables describing aspects of the level-2 units, and these may also
have missing values. For example, in longitudinal studies, time-independent variables related to
individuals (level-2 units), such as sex or the baseline variable ravens, may be affected by missing
data. We can impute any missing level-2 values naturally with jomo (Carpenter and Kenward, 2013,
Ch.9). As described above, we can use either a single common or multiple cluster-specific level-1
covariance matrices.

To illustrate this, we use a new data set, ExamScores. The fully observed version of this data
set is again available with MLwiN and R2MLwiN, and it represents a subset of a larger data set of
examination results from six inner London Education Authorities. The partially observed version that
we use here is available with jomo. As in the previous example, this data set contains data from pupils
(level 1) clustered in schools (level 2). Some of the variables are related to students at level 1 (normexam,
a normalised version of exam score at age 16 and standlrt, London Reading Test (LRT) score at age
11). The other variables describe features of the schools at level 2, for example avslrt (continuous),
representing the average LRT score for pupils in a particular school.

The two-level multivariate normal joint model for normexam (n), standlrt (s) and avslrt (a) is:

Ynormexam,i,j = β0,n + u(1)
n,j + εn,i,j

Ystandlrt,i,j = β0,s + u(1)
s,j + εs,i,j

Yavslrt,j = β0, a + u(2)
a,j

(13)

εi,j =

(
εn,i,j
εs,i,j

)
∼ N (0, Ωe) uj =

u(1)

n,j

u(1)
s,j

u(2)
a,j

 ∼ N (0, Ωu), (14)

where the superscripts (1) and (2) indicate the level-2 random effect for a level-1 and level-2
covariate, respectively (level-2 covariates have no level-1 residuals).

Fitting this model is very similar to fitting previous models; we simply have to define the level-2
variables.

Define data.frame with level-1 outcomes of imputation model
Y <- ExamScores[, c("normexam", "standlrt")]

Define data.frame with level-2 outcomes of imputation model

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=jomo

CONTRIBUTED RESEARCH ARTICLE 15

Y2 <- ExamScores[, "avslrt", drop = FALSE]

Define clustering indicator
clus <- ExamScores$school

Run jomo
set.seed(1569)
imp <- jomo(Y = Y, Y2 = Y2, clus = clus)

2-level data, using functions for two-level imputation.
Found 2 level 1 continuous and 0 level 1 categorical outcomes, 1 level 2 continuous
and 0 level 2 categorical outcomes. Using function jomo2com, assuming common
covariance matrix across clusters

Output partially omitted [...]

The posterior mean of the fixed effects estimates is:
X1
normexam -0.009685026
standlrt -0.002263212

The posterior mean of the level 2 fixed effects estimates is:
X2.1
avslrt -0.03268919

The posterior mean of the random effects estimates is:
normexam.Z1 standlrt.Z1 avslrt
1 0.485259093 0.146952219 0.198863738
2 0.896523031 0.378616363 0.429914831
3 0.871480465 0.464155974 0.546844580
[...]
63 0.586499213 0.161779179 0.188900255
64 0.310554391 0.391077349 0.466833301
65 -0.320429589 -0.086303587 -0.202661000

The posterior mean of the level 1 covariance matrix is:
normexam standlrt
normexam 0.8536697 0.5045721
standlrt 0.5045721 0.8876558

The posterior mean of the level 2 covariance matrix is:
normexam.Z1 standlrt.Z1 avslrt
normexam*Z1 0.2023980 0.10005877 0.10599527
standlrt*Z1 0.1000588 0.12408893 0.09844939
avslrt 0.1059953 0.09844939 0.13067251

As above, we can specify the starting values for all the parameters in the model, and in particular the
parameter of the level-2 variable β2 with the input l2.beta.start. As we noted above, with small
cluster sizes, the scale matrix for the prior of the level 2 covariance matrix, l2cov.prior, may have a
non-negligible impact on the results.

The sub-functions for imputation of level 2 variables are jomo2com and jomo2hr. Cluster-specific
covariance matrices can be specified as before by setting meth = "common" or meth = "random".

Checking convergence of MCMC

When using MCMC for model fitting and imputation, it is crucial to be confident of having reached
the stationary distribution of the sampler before starting to register imputations. We do this by
monitoring the parameter chains generated by the MCMC algorithm. To facilitate this, we introduced
a .MCMCchain version of each function in the package, which allows convergence assessment without
imputation. We illustrate this with a simple example:

Define data.frames with outcomes and covariates of imputation model

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 16

0 1000 3000 5000

45
50

55

Iteration number

β n
or

m
ex

am
,0

0 1000 3000 5000

30
0

35
0

40
0

45
0

50
0

Iteration number

ω
n,

1,
1

2
Figure 1: MCMC chain for βe,0 (left panel) and ω2

e,1,1 (right panel).

Y <- JSPmiss[, c("english", "ravens")]
X <- JSPmiss[, c("cons", "sex")]

Run jomo.MCMCchain
imp <- jomo.MCMCchain(Y = Y, X = X, nburn = 5000)

This updates the sampler nburn times, but does not create any imputed data sets. Instead, the output
of this function is a list containing three elements:

• finimp: the final state of the data set, which would be the first imputation if we ran the jomo
function with nburn burn-in iterations;

• collectbeta: a three-dimensional array containing the fixed effect parameter draws at each of
the nburn iterations;

• collectomega: a three-dimensional array containing the level-1 covariance matrix draws at each
of the nburn iterations;

When running the corresponding .MCMCchain functions for multilevel imputation we will also have:

• collectu: a three-dimensional array containing the random effects draws at each of the nburn
iterations;

• collectcovu: a three-dimensional array containing the level-2 covariance matrix draws at each
of the nburn iterations;

We can then check the convergence of the sampler by looking at the trace plot for each parameter
value. For example, in Figure 1 (left panel), we can see the plot for βe,0, which we obtain by running:

plot(imp$collectbeta[1, 1, 1:5000], type = "l", ylab = expression(beta["e,0"]),
xlab = "Iteration number")

In this case, we can see that a burn in of 100–500 is reasonable; the sampler clearly converges very
quickly.

Plots for elements of the covariance matrix updated though Metropolis-Hastings steps may look
different, because these chains have higher auto-correlation (as they are not guaranteed to be updated
at each iteration). The right panel of Figure 1 gives an example; this was obtained by running the
following commands:

JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]
X <- JSPmiss[, c("cons", "sex")]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 17

imp2 <- jomo.MCMCchain(Y = Y, X = X, nburn = 5000)

plot(imp2$collectomega[1, 1, 1:5000], type = "l", ylab = expression(omega[e,1,1]^2),
xlab = "Iteration number", ylim=c(300,500))

Note there is little point in plotting the constrained elements of the covariance matrix — these will
always give a straight line!

Using jomo in practice

The .MCMCchain functions only register a single imputation, but the state of the sampler at this point is
captured. This provides a mechanism for combining multiple runs of .MCMCchain and/or jomo in a
flexible manner, for example, to obtain the full set of posterior draws for the model parameters with
multiple runs of .MCMCchain or to generate mildly informative prior distributions to be used with
jomo. Specifically, at the end of the .MCMCchain run, the following objects capture the state of the
MCMC sampler:

• start.imp for the level-1 variables with missing values;

• (where present) l2.start.imp for level-2 variables with missing values, and

• finimp.latnorm: the final state of the imputed data set using latent normals in place of categori-
cal variables.

In practice, we typically need to use finimp.latnorm, together with the last value of the fixed parame-
ters and the covariance matrix at level 1 (and at level 2 if present). The following code illustrates the
approach:

Define data frames for outcomes and covariates of imputation model and
convert "fluent" to factor
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]
X <- JSPmiss[, c("cons", "sex")]

Run jomo to register 2 imputations
set.seed(1569)
imp <- jomo(Y = Y, X = X, nimp = 2)

OR, run jomo.MCMCchain to register first imputation
set.seed(1569)
imp1 <- jomo.MCMCchain(Y = Y, X = X)

Capture the state of the sampler as starting values for the second set of iterations:
beta.start <- imp1$collectbeta[,,1000] # capture the fixed parameter values
l1cov.start <- imp1$collectomega[,,1000] # capture the level-1 covariance matrix values
start.imp <- imp1$finimp.latnorm # capture the final imputed data set (with

latent normals for categorical variables)

Run jomo.MCMCchain to register second imputation
imp2 <- jomo.MCMCchain(Y = Y, X = X, beta.start = beta.start, l1cov.start = l1cov.start,

start.imp = start.imp, nburn = 1000)

In practice, it often works well to use this function to find plausible initial values for the scale matrices
of the level-1 and level-2 covariance matrix priors. This allows us to provide ‘weakly informative’
priors consistent with the data, and avoids imputations being unnecessarily variable.

To do this, we run jomo.MCMCchain first, using the default prior. We retain the last draw (or the
posterior mean of the latter part of the chain) as the covariance matrix prior. We use these to assign
values to l1cov.prior or l2cov.prior and then we apply jomo as usual. Specifically:

Define data frame as usual
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]
X <- JSPmiss[, c("cons", "sex")]

Run jomo.MCMCchain with default prior

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 18

imp1 <- jomo.MCMCchain(Y = Y, X = X)

Collect posterior mean of covariance matrix
l1cov.guess <- apply(imp1$collectomega, c(1, 2), mean)
Multiply by degrees of freedom, i.e. dimension of the matrix (4), to get scale matrix
l1cov.prior <- l1cov.guess*4

Run jomo
imp <- jomo(Y = Y, X = X, l1cov.prior = l1cov.prior)

However, if a proper prior guess for the value of all the parameters was available, this would
be preferable, as it would avoid using the same data twice, to fit the model and to estimate the
hyperparameters of the priors.

When using jomo, we recommended the following workflow:

1. Before running the imputation model (which may take some time), perform a "dry run", to check
the software is fitting the model we intended. We can do this using the .MCMCchain function
with nburn = 2 and checking the output.

2. Re-run the same function for a larger number of iterations (e.g. 5000) and analyse the resulting
trace and autocorrelation plots to choose a sensible number of burn-in and between-imputation
iterations for the final imputation process.

3. Run the jomo function for the chosen number of iterations.

4. Fit the substantive model on the imputed data sets and apply Rubin’s rules.

mitml: an alternative interface to jomo

The mitml package (Grund et al., 2016c) provides an alternative interface to joint modeling multiple
imputation with jomo. Originally created as an interface to the pan package, mitml also provides
access to most of the features implemented in jomo and includes a number of additional tools for
managing, visualising, and analysing multiply imputed data sets.

Specification of the imputation model

The main interface to jomo is provided by the function jomoImpute, which offers two convenient
ways of specifying the imputation model. The first option uses a formula-based syntax similar to
packages for multilevel modelling such as lme4, nlme (Pinheiro et al., 2017), and others. The following
operators can be used to define such a formula:

~ : separates the dependent variables (left-hand side) and predictor variables (right-hand side) of
the imputation model;

+ : adds dependent and predictor variables to the model;

* : adds interactions of two or more predictors to the model;

| : specifies the cluster indicator and adds cluster-specific random effects to the model (e.g.,
1|school), and

I() : defines additional transformation of predictor variables to be included in the model.

For example, to fit the imputation model in (10) for the substantive model in (8) with JSPmiss, the
model formula can be specified as:

fml <- english + ravens + fluent ~ sex + (1|school)

The imputation is then run with jomoImpute by specifying the incomplete data, the imputation
model, the number of imputations (m), and the number of iterations for burn-in (n.burn) and between
imputations (n.iter). Like jomo, jomoImpute requires that categorical variables are formatted as
factors.

Convert "fluent" to factor
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))

Run imputation
imp <- jomoImpute(data = JSPmiss, formula = fml, n.burn = 1000, n.iter = 1000, m = 5,

seed = 1569)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=mitml
https://CRAN.R-project.org/package=nlme

CONTRIBUTED RESEARCH ARTICLE 19

In addition, imputation models can be run independently in subsets of the data. For this purpose,
jomoImpute includes an optional group argument, denoting the name of a variable in the data set. If
specified, the imputation model is run separately for each level of group.

As an alternative to specifying a formula, the imputation model can be specified with the type
argument of jomoImpute. The type argument is an integer vector denoting the role of each variable in
the imputation model. The following values are supported:

1 : dependent variables (fully or partially observed);

2 : predictor variables (fully observed) with fixed effect;

3 : predictor variables (fully observed) with fixed and random effect;

-1 : (optional) grouping variable; if specified, imputations are run separately within each group;

-2 : cluster indicator, and

0 : variables excluded from the imputation model.

In applications with missing data at both level 1 and 2, formula and type are specified as a list of two
formulas or type vectors, denoting the imputation model for variables at level 1 and 2, respectively.

Analysis of the imputed data sets

The mitml package can also be used to manage, visualise, and analyse the imputed data. For example,
the summary and plot methods display information about the imputed data object and the convergence
of the MCMC algorithm.

Summarize model and display convergence statistics
summary(imp)

Call:

jomoImpute(data = JSPmiss, formula = fml, n.burn = 1000, n.iter = 1000,
m = 5, seed = 1569)
#
Cluster variable: school
Target variables: english ravens fluent
Fixed effect predictors: (Intercept) sex
Random effect predictors: (Intercept)
#
Performed 1000 burn-in iterations, and generated 5 imputed data sets,
each 1000 iterations apart.
#
Potential scale reduction (Rhat, imputation phase):
#
Min 25% Mean Median 75% Max
Beta: 1.000 1.002 1.009 1.011 1.013 1.021
Psi: 1.001 1.002 1.006 1.004 1.006 1.019
Sigma: 1.000 1.002 1.054 1.014 1.058 1.258
#
Largest potential scale reduction:
Beta: [1,3], Psi: [4,2], Sigma: [3,1]
#
Missing data per variable:
school english ravens fluent id sex behaviour cons
MD% 0 21.1 22.0 21.0 0 0 0 0
#
Display convergence plots (not shown here)
plot(imp, trace = "all")

The function mitmlComplete can be used to extract a list of imputed data sets. Each data set can
be transformed and analysed with the functions with and within similar to base R. For example, the
following code extracts the imputed data and fits the model in (8) to each of the data sets:

Extract list of completed data sets
imp.list <- mitmlComplete(imp, print = "all")

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 20

Fit the substantive model to each of the imputed data sets
fit.imp <- with(imp.list, lmer(english ~ ravens + sex + fluent + (1|school)))

Finally, mitml allows pooling the results obtained from the imputed data sets. For example,
testEstimates can be used to pool the estimates of individual parameters such as fixed effects and
variance components (Rubin’s rules).

testEstimates(fit.imp, var.comp = TRUE)

Call:
#
testEstimates(model = fit.imp, var.comp = TRUE)
Final parameter estimates and inferences obtained from 5 imputed data sets.
Estimate Std.Error t.value df P(>|t|) RIV FMI
(Intercept) -16.133 3.737 -4.317 139.189 0.000 0.204 0.181
ravens 1.623 0.120 13.552 21.626 0.000 0.755 0.476
sex 6.837 1.145 5.970 142.006 0.000 0.202 0.179
fluent1 5.001 4.241 1.179 94.051 0.241 0.260 0.223
fluent2 14.345 3.139 4.570 56.201 0.000 0.364 0.292
#
Estimate
Intercept~~Intercept|school 32.231
Residual~~Residual 291.538
ICC|school 0.099
Unadjusted hypothesis test as appropriate in larger samples.

Many different pooling methods are supported by mitml, including Rubin’s rules with and without
correction for smaller samples (testEstimates), pooled Wald and likelihood-ratio tests (LRTs) for
multiple parameters and model comparisons (testModels, anova), and tests of constraints on the
model parameters via the “delta method” (testConstraints, see Casella and Berger, 2002).

Note that, in order to use mitml directly with jomo, the imputed data must be converted to the
mitml.list format. This conversion can be achieved with the function jomo2mitml.list.

Simulations and applications

The jomo package has been extensively evaluated in simulation studies and has been used in various
applications. In this section, we provide a brief overview of these studies. For continuous data,
Quartagno and Carpenter (2016); Audigier et al. (2018); Grund et al. (2018c,b) showed that jomo
provides accurate parameter estimates and inferences. Quartagno and Carpenter (2019); Audigier
et al. (2018); Grund et al. (2018c,b) provided similar results for binary categorical data, and Quartagno
and Carpenter (2019) showed that the same procedures can be used for categorical and ordinal data.
Similar findings were reported by Grund et al. (2018a,b,c) for missing data at level 2 and by Quartagno
and Carpenter (2016) for applications with group-specific fixed or random covariance matrices at
level 1. Further, jomo has been used to study the performance of MI for handling missing data in
clustered randomised trials (Hossain et al., 2017a,b) and matched case-control studies (Seaman and
Keogh, 2015). Finally, it has been used in applications, particularly, but not exclusively, for imputation
of missing data in individual patient data meta-analyses (e.g., (Bloos et al., 2017)).

Conclusions and further developments

In this article, we have introduced a flexible new package for performing joint modelling multiple
imputation for multilevel data. This package provides three important contributions: (i) it handles
mixed data types, including continuous, categorical and binary data in a flexible way, (ii) it allows
for either a common level-1 covariance matrix across level-2 units , cluster-specific level-1 covariance
matrices, or random level-1 covariance matrices, and (iii) it gives valid imputation of missing values on
level-2 variables. This makes jomo an effective choice for treating missing data in many applications,
including single-level and multilevel data, cross-sectional and longitudinal data, and meta-analyses
with individual participant data.

As with all statistical techniques, multiple imputation has to be used carefully. In particular:

• We should check that the stationary distribution has been reached, before acting on our results.
As described above, the package provides tools to facilitate this.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 21

• With many (level-1) variables and relatively few observations, a careful choice of the prior for
the level-1 covariance matrix is important. We recommend a weakly informative prior and, in
particular, following the strategy described above, running the .MCMCchain functions to find a
sensible choice for the scale matrices for the inverse-Wishart priors.

• Like most imputation software, ours assumes that data are MAR. If data are MNAR, the results
of analyses under MAR may be biased.

In this paper we present functions for multilevel imputation, which make better and more efficient
use of all the available data compared to ad-hoc strategies, like imputing including cluster as a fixed
effect or imputing separately by cluster. The first approach has been discussed in various publications
(Lüdtke et al., 2017; Audigier et al., 2018; Drechsler, 2015) which broadly concluded that the approach
is unsatisfactory for small clusters and low intra-cluster correlation. Additionally, under this approach
dealing with random slopes is problematic and it is not possible to impute systematically missing
variables. Similar considerations are likely to hold for the second strategy consisting in imputing
separately by cluster, with the additional complication that level 2 variables cannot be imputed with
this method.

If we are imputing a variable which has a random slope in the substantive model (Grund et al.,
2016a), then (i) as usual, this variable will be a response in the imputation model and (ii) we should also
allow its association with the outcome to be cluster-specific in the imputation model by allowing the
level-1 covariance matrix to be random across level-2 units. However, although this approach performs
better than a simpler one using a common covariance matrix, it is not a perfectly compatible approach
(Quartagno and Carpenter, 2018; Enders et al., 2018), and functions for substantive model compatible
imputation (Goldstein et al., 2014) should be preferred to impute missing data in those settings, when
possible. These have been recently added to jomo and they will be presented in a second paper
soon. When interactions or non-linear terms are present in the model of interest, ignoring them in the
imputation model may lead to bias; instead, they should be included as covariates (Carpenter and
Kenward, 2013, p. 130). When these terms involve partially observed variables, the solution consists
again in using substantive model compatible functions.

When using functions for random cluster-specific covariance matrices, users should note that
this specifies an inverse-Wishart distribution matrix for the level-1 covariance matrices across the
level-2 units. Our simulations (Quartagno and Carpenter, 2016) suggest when this assumption is not
appropriate there will be some (usually immaterial) loss of efficiency. In principle, jomo could be
extended to incorporate other distributions.

All the illustrated functions make use of either Gibbs or Metropolis-Hastings sampling; however,
other sampling algorithms such as Hamiltonian Monte-Carlo may provide interesting alternatives in
the future.

Future updates and additions to the package will be advertised on www.missingdata.org.uk,
together with an up-to-date list of publications related to the package. We hope the package is useful
to readers and welcome their feedback.

Sources of funding

Matteo Quartagno was supported by funding from the European Community’s Seventh Framework
Programme FP7/2011: Marie Curie Initial Training Network MEDIASRES ("Novel Statistical Method-
ology for Diagnostic/Prognostic and Therapeutic Studies and Systematic Reviews"; www.mediasres-
itn.eu) with the Grant Agreement Number 290025.
James Carpenter is supported by the MRC grant MC_UU_12023/21

Aknowledgements

The authors of the package would like to thank Christopher Charlton and Professor Harvey Goldstein
from Bristol University for their help in creating the package. We would like to thank Alexander
Robitzsch, Vincent Audigier, Anower Hossain, Manuel Gomes, Nicole Erler and all the other people
that found bugs and imperfections in the code.

Bibliography

R. R. Andridge. Quantifying the impact of fixed effects modeling of clusters in multiple imputation
for cluster randomized trials. Biom J, 53(1):57–74, Feb 2011. [p10]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 22

V. Audigier, I. R. White, S. Jolani, T. P. A. Debray, M. Quartagno, J. Carpenter, S. van Buuren, and
M. Resche-Rigon. Multiple imputation for multilevel data with continuous and binary variables.
Statist. Sci., 33(2):160–183, 05 2018. doi: 10.1214/18-STS646. URL https://doi.org/10.1214/18-
STS646. [p20, 21]

F. Bloos, H. Ruddel, D. Thomas-Ruddel, D. Schwarzkopf, C. Pausch, S. Harbarth, T. Schreiber,
M. Grundling, J. Marshall, P. Simon, M. M. Levy, M. Weiss, A. Weyland, H. Gerlach, T. Schurholz,
C. Engel, C. Matthaus-Kramer, C. Scheer, F. Bach, R. Riessen, B. Poidinger, K. Dey, N. Weiler,
A. Meier-Hellmann, H. H. Haberle, G. Wobker, U. X. Kaisers, and K. Reinhart. Effect of a multifaceted
educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial.
Intensive Care Med, 43(11):1602–1612, Nov 2017. [p20]

C. Brown. dummies: Create dummy/indicator variables flexibly and efficiently, 2012. URL http://CRAN.R-
project.org/package=dummies. R package version 1.5.6. [p8]

J. R. Carpenter and M. G. Kenward. Multiple Imputation and its Application. Wiley, 2013. ISBN:
978-0-470-74052-1. [p1, 2, 3, 4, 8, 14, 21]

J. R. Carpenter, H. Goldstein, and M. G. Kenward. Realcom-impute software for multilevel multiple
imputation with mixed response types. Journal of Statistical Software., 45(5):1–14, 2011. [p1]

G. Casella and R. L. Berger. Statistical inference. Duxbury Press, 2nd edition, 2002. [p20]

J. Drechsler. Multiple imputation of multilevel missing data—rigor versus simplicity. Journal of
Educational and Behavioral Statistics, 40(1):69–95, 2015. doi: 10.3102/1076998614563393. URL https:
//doi.org/10.3102/1076998614563393. [p21]

C. K. Enders, T. Hayes, and H. Du. A comparison of multilevel imputation schemes for random coeffi-
cient models: Fully conditional specification and joint model imputation with random covariance
matrices. Multivariate Behavioral Research, 53(5):695–713, 2018. doi: 10.1080/00273171.2018.1477040.
URL https://doi.org/10.1080/00273171.2018.1477040. PMID: 30693802. [p21]

H. Goldstein, J. R. Carpenter, M. G. Kenward, and K. A. Levin. Multilevel models with multivariate
mixed response types. Statistical Modelling., 9(3):173–197, 2009. DOI: 10.1177/1471082X0800900301.
[p2, 8]

H. Goldstein, J. R. Carpenter, and W. J. Browne. Fitting multilevel multivariate models with missing
data in responses and covariates that may include interactions and non-linear terms. Journal of the
Royal Statistical Society: Series A., 177(2):553–564, 2014. DOI: 10.1111/rssa.12022. [p21]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple imputation of missing covariate values in multilevel
models with random slopes: a cautionary note. Behav Res Methods, 48(2):640–649, Jun 2016a. [p21]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple imputation of multilevel missing data: An introduc-
tion to the r package pan. SAGE Open, 6(4):2158244016668220, 2016b. doi: 10.1177/2158244016668220.
URL https://doi.org/10.1177/2158244016668220. [p4]

S. Grund, A. Robitzsch, and O. Lüdtke. mitml: Tools for Multiple Imputation in Multilevel Modeling, 2016c.
URL https://CRAN.R-project.org/package=mitml. R package version 0.3-0. [p18]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple imputation of missing data at level 2: A comparison
of fully conditional and joint modeling in multilevel designs. Journal of Educational and Behavioral
Statistics, page 1076998617738087, 2018a. doi: 10.3102/1076998617738087. URL https://doi.org/
10.3102/1076998617738087. [p20]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple imputation of missing data for multilevel models:
Simulations and recommendations. Organizational Research Methods, 21(1):111–149, 2018b. doi:
10.1177/1094428117703686. URL https://doi.org/10.1177/1094428117703686. [p20]

S. Grund, O. Lüdtke, and A. Robitzsch. Missing data in multilevel research. In S. E. Humphrey
and J. M. LeBreton, editors, Handbook for Multilevel Theory, Measurement, and Analysis. American
Psychological Association, Washington, DC, 2018c. ISBN 978-1-4338-3001-3. [p20]

T. Harding, F. Tusell, and J. L. Schafer. cat: Analysis of categorical-variable datasets with missing values,
2012. URL http://CRAN.R-project.org/package=cat. R package version 0.0-6.5. [p1]

A. Hossain, K. Diaz-Ordaz, and J. W. Bartlett. Missing continuous outcomes under covariate dependent
missingness in cluster randomised trials. Statistical Methods in Medical Research, 26(3):1543–1562,
2017a. doi: 10.1177/0962280216648357. URL https://doi.org/10.1177/0962280216648357. PMID:
27177885. [p20]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://doi.org/10.1214/18-STS646
https://doi.org/10.1214/18-STS646
http://CRAN.R-project.org/package=dummies
http://CRAN.R-project.org/package=dummies
https://doi.org/10.3102/1076998614563393
https://doi.org/10.3102/1076998614563393
https://doi.org/10.1080/00273171.2018.1477040
https://doi.org/10.1177/2158244016668220
https://CRAN.R-project.org/package=mitml
https://doi.org/10.3102/1076998617738087
https://doi.org/10.3102/1076998617738087
https://doi.org/10.1177/1094428117703686
http://CRAN.R-project.org/package=cat
https://doi.org/10.1177/0962280216648357

CONTRIBUTED RESEARCH ARTICLE 23

A. Hossain, K. DiazOrdaz, and J. W. Bartlett. Missing binary outcomes under covariate-dependent
missingness in cluster randomised trials. Statistics in Medicine, 36(19):3092–3109, 2017b. doi:
10.1002/sim.7334. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7334. [p20]

O. Lüdtke, A. Robitzsch, and S. Grund. Multiple imputation of missing data in multilevel designs: A
comparison of different strategies. Psychol Methods, 22(1):141–165, Mar 2017. [p10, 21]

R. J. A. Little and D. B. Rubin. Bayes and Multiple Imputation, pages 200–220. John Wiley & Sons, Inc.,
2002. ISBN 9781119013563. doi: 10.1002/9781119013563.ch10. URL http://dx.doi.org/10.1002/
9781119013563.ch10. [p1]

F. Meinfelder. BaBooN: Bayesian Bootstrap Predictive Mean Matching - Multiple and single imputation for
discrete data, 2011. URL http://CRAN.R-project.org/package=BaBooN. R package version 0.1-6.
[p8]

X.-L. Meng. Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9(4):
538–558, 11 1994. doi: 10.1214/ss/1177010269. URL http://dx.doi.org/10.1214/ss/1177010269.
[p2]

P. Mortimore, P. Sammons, L. Stoll, D. Lewis, and R. Ecob. School Matters. Wells: Open Books., 1988.
[p4]

A. A. Novo and J. L. Schafer. norm: Analysis of multivariate normal datasets with missing values, 2013.
URL http://CRAN.R-project.org/package=norm. R package version 1.0-9.5. [p1]

I. Olkin and R. F. Tate. Multivariate correlation models with mixed discrete and continuous variables.
The Annals of Mathematical Statistics, 32(2):448–465, 06 1961. doi: 10.1214/aoms/1177705052. URL
http://dx.doi.org/10.1214/aoms/1177705052. [p1]

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear and Nonlinear Mixed Effects
Models, 2017. URL https://CRAN.R-project.org/package=nlme. R package version 3.1-131. [p18]

M. Quartagno and J. R. Carpenter. Multiple imputation for ipd meta-analysis: allowing for hetero-
geneity and studies with missing covariates. Statistics in Medicine, 35(17):2938–2954, 2016. ISSN
1097-0258. doi: 10.1002/sim.6837. URL http://dx.doi.org/10.1002/sim.6837. sim.6837. [p3, 4,
10, 13, 20, 21]

M. Quartagno and J. R. Carpenter. Multilevel multiple imputation in presence of interactions, non-
linearities and random slopes. In Studies in Theoretical and Applied Statistics - SIS2018 - 49th Meeting
of the Italian Statistical Society, Palermo 20-22 June 2018. Springer, 2018. [p21]

M. Quartagno and J. R. Carpenter. Multiple imputation for discrete data: an evaluation of the joint
latent normal model. Biometrical Journal, In press, 2019. [p9, 20]

J. Rasbash, F. Steele, W. Browne, and H. Goldstein. A user’s guide to mlwin, v3.00. Centre for Multilevel
Modelling, University of Bristol., 2017. [p4]

D. B. Rubin. Inference and missing data. Biometrika., 63(3):581–592, 1976. DOI:10.1093/biomet/63.3.581.
[p1]

D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, New York, 1987. [p1]

J. L. Schafer. Analysis of incomplete multivariate data. Chapman & Hall., 1997. ISBN 0-412-04061-1. [p1]

J. L. Schafer. mix: Estimation/multiple Imputation for Mixed Categorical and Continuous Data, 2010. URL
http://CRAN.R-project.org/package=mix. R package version 1.0-8. [p1]

J. L. Schafer and M. K. Olsen. Multiple imputation for multivariate missing-data problems: A data
analyst’s perspective. Multivariate Behavioral Research, 33, 07 2000. [p1]

J. L. Schafer and R. M. Yucel. Computational strategies for multivariate linear mixed-effects models
with missing values. Journal of Computational and Graphical Statistics, 11(2):437–457, 2002. doi:
10.1198/106186002760180608. URL https://doi.org/10.1198/106186002760180608. [p1]

S. R. Seaman and R. H. Keogh. Handling missing data in matched case-control studies using multiple
imputation. Biometrics, 71(4):1150–1159, 2015. ISSN 1541-0420. doi: 10.1111/biom.12358. URL
http://dx.doi.org/10.1111/biom.12358. [p20]

M. A. Tanner and W. H. Wong. The calculation of posterior distributions by data augmentation.
Journal of the American Statistical Association, 82(398):528–540, 1987. ISSN 01621459. URL http:
//www.jstor.org/stable/2289457. [p2]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7334
http://dx.doi.org/10.1002/9781119013563.ch10
http://dx.doi.org/10.1002/9781119013563.ch10
http://CRAN.R-project.org/package=BaBooN
http://dx.doi.org/10.1214/ss/1177010269
http://CRAN.R-project.org/package=norm
http://dx.doi.org/10.1214/aoms/1177705052
https://CRAN.R-project.org/package=nlme
http://dx.doi.org/10.1002/sim.6837
http://CRAN.R-project.org/package=mix
https://doi.org/10.1198/106186002760180608
http://dx.doi.org/10.1111/biom.12358
http://www.jstor.org/stable/2289457
http://www.jstor.org/stable/2289457

CONTRIBUTED RESEARCH ARTICLE 24

R. M. Yucel. Random-covariances and mixed-effects models for imputing multivariate multilevel
continuous data. Statistical Modelling., 11(4):351–370, 2011. DOI: 10.1177/1471082X100110040. [p1, 3,
10, 13]

Z. Zhang, R. Parker, C. Charlton, G. Leckie, and W. Browne. R2mlwin: A package to run mlwin
from within r. Journal of Statistical Software, Articles, 72(10):1–43, 2016. ISSN 1548-7660. doi:
10.18637/jss.v072.i10. URL https://www.jstatsoft.org/v072/i10. [p4]

J. H. Zhao and J. L. Schafer. pan: Multiple Imputation for multivariate panel or clustered data. R Foundation
for Statistical Computing, 2013. R Package, version 0.9. [p1]

Matteo Quartagno
MRC Clinical Trials Unit at UCL
90 High Holborn, London WC1V 6LC
United Kingdom
m.quartagno@ucl.ac.uk

Simon Grund
IPN - Leibniz Institute for Science and Mathematics Education at Kiel University
Olshausenstraße 62, D-24118 Kiel
Germany
grund@ipn.uni-kiel.de

James Carpenter
London School of Hygiene and Tropical Medicine
Keppel Street, Bloomsbury, London WC1E 7HT
United Kingdom
james.carpenter@lshtm.ac.uk

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://www.jstatsoft.org/v072/i10
mailto:m.quartagno@ucl.ac.uk
mailto:grund@ipn.uni-kiel.de
mailto:james.carpenter@lshtm.ac.uk

	jomo: A Flexible Package for Two-level Joint Modelling Multiple Imputation
	Introduction
	Joint Modelling Multiple Imputation
	Package structure
	jomo: tutorial with single-level data
	Starting values and prior distributions
	Analysing the imputed data
	 Categorical variables

	jomo: tutorial with multilevel data
	Analysing the imputed data
	Design matrix for random effects
	Starting values and prior distributions
	Cluster-specific covariance matrices
	Random cluster-specific covariance matrices

	Imputing level-2 variables
	Checking convergence of MCMC
	Using jomo in practice
	mitml: an alternative interface to jomo
	Specification of the imputation model
	Analysis of the imputed data sets

	Simulations and applications
	Conclusions and further developments
	Sources of funding
	Aknowledgements

