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Learning Local Metrics and Influential Regions
for Classification

Mingzhi Dong, Yujiang Wang, Xiaochen Yang, Jing-Hao Xue
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Abstract—The performance of distance-based classifiers heavily de-
pends on the underlying distance metric, so it is valuable to learn a
suitable metric from the data. To address the problem of multimodality,
it is desirable to learn local metrics. In this short paper, we define a
new intuitive distance with local metrics and influential regions, and
subsequently propose a novel local metric learning algorithm called LM-
LIR for distance-based classification. Our key intuition is to partition the
metric space into influential regions and a background region, and then
regulate the effectiveness of each local metric to be within the related
influential regions. We learn multiple local metrics and influential regions
to reduce the empirical hinge loss, and regularize the parameters on the
basis of a resultant learning bound. Encouraging experimental results
are obtained from various public and popular data sets.

Index Terms—Distance-based classification, distance metric, metric
learning, local metric.

1 INTRODUCTION

CLASSIFICATION is a fundamental task in the field of machine
learning. While deep learning classifiers have obtained supe-

rior performance on numerous applications, they generally require
a large amount of labeled data. For small data sets, traditional
classification algorithms remain valuable.

The nearest neighbor (NN) classifier is one of the oldest estab-
lished methods for classification, which compares the distances
between a new instance and the training instances. However,
with different metrics, the performance of NN would be quite
different. Hence it is very beneficial if we can find a well-suited
and adaptive distance metric for specific applications. To this end,
metric learning is an appealing technique. It enables the algorithms
to automatically learn a metric from the available data. Metric
learning with a convex objective function was first proposed in
the seminal work of Xing et al. [1]. After that, many other metric
learning methods have been developed and widely adopted, such
as the large margin nearest neighbor (LMNN) [2] and the informa-
tion theoretic metric learning [3]. Some theoretical work has also
been proposed for metric learning, especially on deriving different
generalization bounds [4]–[7] and deep networks have been used
to represent nonlinear metrics [8], [9]. In addition, metric learning
methods have been developed for specific purposes, including
multi-output tasks [10], multi-view learning [11], medical image
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Fig. 1. An example of calculating the distance between two points xi
and xj . A1 and A2 are different influential regions with metrics M(A1)
and M(A2), and B is the background region with metric M(B). The
distance between xi and xj equals to the sum of three line segments’
local distances, i.e. l(xixj \ A1;M(A1)), l(xixj \ A2;M(A2)) and
l(xixj \B;M(B)).

retrieval [12], kinship verification tasks [13], face recognition tasks
[14], tracking problems [15] and so on.

Most aforementioned methods use a single metric for the
whole metric space and thus may not be well-suited for data sets
with multimodality. To solve this problem, local metric learning
algorithms have been proposed [2], [16]–[23].

Most of these localized algorithms can be categorized into
two groups: 1) Each data point or cluster of data points has
a local metric M(xi). This, however, results in an asymmetric
distance as illustrated in [17], i.e. M(xi) 6= M(xj) would cause
D(xi,xj ;M(xi)) 6= D(xj ,xi;M(xj)). 2) Each line segment
or cluster of line segments has a local metric, i.e. M(xi,xj). In
[19], M(xi,xj) =

P
k wk(xi,xj)Mk, where wk is defined as

P (k|xi)+P (k|xj) so as to guarantee the symmetry and P (k|xi)
or P (k|xj) is based on the posterior probability that the point x
belongs to the kth Gaussian cluster in a Gaussian mixture (GMM).
However, most of the line segment approaches are based on certain
heuristic design. Geometric properties of line segments, which are
very intuitive and interpretable, have scarcely been considered.

In this short paper, we define a geometrically interpretable,
symmetric distance, and propose a novel local metric learning
algorithm that learns local metrics and locations of the local
metrics simultaneously; the proposed method is termed as LM-
LIR. By splitting the metric space into influential regions and
a background region, we define the distance between any two
points as the sum of lengths of line segments in each region, as
illustrated in Fig. 1. Building multiple influential regions solves
the multimodality issues; and learning a suitable local metric in
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Fig. 2. An illustration of learning local influential regions. The distance
between the adjacent vertical/horizontal grids is one unit. The location
and radius of a local area could be learned and a suitable local metric
could help to enhance the separability of the data, such as increasing
l(N1P1) and l(N2P3) while decreasing l(P1P2) and l(P3P4).

each influential region improves class separability, as shown in
Fig. 2.

To establish our new distance and local metric learning
method, we first define some key concepts, namely influential
regions, local metrics and line segments, which lead to the
definition of the new distance. Then we calculate the distance
by discussing the geometric relationship between line segment
and influential regions. After that, we use the proposed local
metric to build a novel classifier and study its learnability. The
penalty terms from the derived learning bound, together with
the empirical hinge loss, form an optimization problem, which
is solved via gradient descent due to the non-convexity. Finally
we experiment the proposed local metric learning algorithm on 20
publicly available data sets. On ten of these data sets, the proposed
algorithm achieves the best performance, much better than the
state-of-the-art metric learning competitors.

2 DEFINITIONS OF INFLUENTIAL REGIONS, LOCAL
METRICS AND DISTANCE
In this section, we will first define influential regions As, s =
1, . . . , S, and the background region B. With a local metric for
each region M(As) and M(B), the distance between xi and
xj will be defined as the sum of lengths of line segments in
each influential region and the background region, as illustrated
in Fig. 1. Since the metric is defined with respect to line segments,
the distance is symmetric, i.e. D(xi,xj) = DM(xixj)(xi,xj) =
DM(xjxi)(xj ,xi) = D(xj ,xi).

To simplify the calculation required later, we restrict the shape
of each influential region to be a ball.

Definition 1. Influential regions are defined to be any set of balls
or hyperspheres inside the metric space:

A = {As, s = 1, . . . , S},

where S denotes the number of influential regions; As =
Ball(os, rs), a ball with the center os and radius rs. Points
x 2 As construct a set with the following form:

{x|(os � x)T (os � x)  r2s}. (1)

The location of each influential region is determined by using the
Euclidean distance.

Definition 2. Background region is defined to be the region
excluding influential regions:

B = U �
[

s=1,...,S

As,

where U denotes the universe set.

Throughout this paper, the distance between two points xi

and xj is equivalent to the length of line segment xixj , i.e.
D(xi,xj) = l(xixj). Length l(xixj) in influential regions and
the background region will be defined separately with respective
metrics.

Definition 3. Each influential region As has its own local metric

M(As). The length of a line segment xixj inside an influential
region As is defined as1

l(xixj ;M(As)) =DM(As)(xi,xj)

=
q
(xi � xj)TM(As)(xi � xj).

(2)

Here, we adopt the Mahalanobis distance, rather than the widely
used squared Mahalanobis distance, since it simplifies the later
optimization problem.

Definition 4. The background region B has a background metric

M(B). For any two points xi,xj 2 B and xixj ✓ B, the length
of a line segment is defined as

l(xixj ;M(B)) = DM(B)(xi,xj)

=
q
(xi � xj)TM(B)(xi � xj).

Note that for xi,xj 2 B and xixj * B, the distance
between xi and xj is usually different from DM(B)(xi,xj). This
is because some parts of xixj may lie in influential regions so
their lengths should be calculated via the related local metrics.

For any xi 2 U and xj 2 U , its line segment xixj may
intersect with multiple influential regions and the background
region. Therefore, we calculate the distance between xi and xj as
the sum of lengths of line segments in each region. More precisely,
as defined below, the distance is the sum of lengths of intersection
of xixj and influential regions, plus the length of intersection of
xixj and the background region.

Definition 5. The length of intersection of a line segment xixj

and an influential region As is defined as l(As \ xixj ;M(As)),
where \ denotes the intersection operator. The length of the

intersection of a line segment xixj and the background region
B is defined as

l(B \ xixj ;M(B))

=l(xixj �
[

s=1...S

(As \ xixj);M(B))

=l(xixj ;M(B))� l(
[

s=1...S

(As \ xixj);M(B)),

(3)

where
S

s=1...S(As\xixj) denotes the union of intersections
between the line segment and all influential regions.

Definition 6. The length of line segment xixj is defined as

l(xixj ;M(xixj))

=
q
(xi � xj)TM(xixj)(xi � xj)

=l(B \ xixj ;M(B)) +
X

s

l(As \ xixj ;M(As)),

(4)

1. Since influential regions are restricted to be ball-shaped and a ball is a
convex set, xixj would lie in the ball for any xi and xj inside the ball.
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Fig. 3. The positions of u,v (intersection points between line xixj
and the influential region A) and p, q (intersection points between line
segment xixj and A) under different situations. h is the middle point of
line segment pq.

where M(xixj) is the metric of the line segment xixj . M(xixj)
will be simplified as M afterwards.

3 CALCULATION OF DISTANCES

3.1 Calculation of the Length of Intersection with Influ-
ential Regions
We start by providing an intuitive explanation of calculating the
length of intersection with influential regions, as illustrated in
Fig. 3. If the line xixj does not intersect with (Fig. 3.1) or is
the tangent to the influential ball (Fig. 3.2), the length is zero. If
the line intersects with the ball (Fig. 3.3-3.8), we will calculate the
length by considering the relationship between the intersection of
the line xixj and the influential ball, i.e. uv, and the intersection
of the line segment xixj and the influential ball, i.e. pq.

First, we show that the length of intersection can be calculated
given the local metric M(As) and the intersection ratio � defined
below.

Definition 7. The intersection points of the line xixj and the
influential region As are represented as u = xi + �u(xj � xi)
and v = xi + �v(xj � xi), where �u,�v 2 R, �u  �v ,
and �u,�v are called the intersection coefficients between the line
xixj and As. The intersection points of the line segment xixj

and the influential region are represented as p = xi+�p(xj�xi)
and q = xi + �q(xj �xi), where 0  �p  �q  1 and �p,�q

are called the intersection coefficients between the line segment
xixj and As. � = �q � �p is called the intersection ratio.

Proposition 1. The length of intersection between line segment
xixj and the influential region As, with the intersection points
p, q and intersection coefficients �p,�q , is

l(A \ xixj ;M(As)) =
q
(q � p)TM(As)(q � p)

= �
q
(xi � xj)TM(As)(xi � xj).

(5)

Next, we figure out the relationship between the line xixj

and the influential ball via the one-variable quadratic equation and

TABLE 1
Relationship between �u,�v and �p,�q for different positions of xixj

Illustration �u,�p �v ,�q

Fig. 3.3 �u < 0 ) �p = 0 �v < 0 ) �q = 0
Fig. 3.4 �u > 1 ) �p = 1 �v > 1 ) �q = 1
Fig. 3.5 �u < 0 ) �p = 0 �v > 1 ) �q = 1
Fig. 3.6 0  �u  1 ) �p = �u 0  �v  1 ) �q = �v

Fig. 3.7 0  �u  1 ) �p = �u �v > 1 ) �q = 1
Fig. 3.8 �u < 0 ) �p = 0 0  �v  1 ) �q = �v

calculate �u,�v when they exist. xixj intersects with As if we
can find u,v that lie on the surface of the ball, which is equivalent
to solving the following quadratic equation in one variable �:

kxi + �(xj � xi)� osk22 = r2s . (6)

If the discriminant of (6) is positive, then u,v exist and the
solutions �s

u,ij  �s
v,ij are given by the quadratic equation

�s
u,ij =

�2(xj � xi)T (xi � os)�
p
�

2(xj � xi)T (xj � xi)
,

�s
v,ij =

�2(xj � xi)T (xi � os) +
p
�

2(xj � xi)T (xj � xi)
,

� = [2(xj � xi)
T (xi � os)]

2

� 4[(xj � xi)
T (xj � xi)][(xi � os)

T (xi � os)� r2s ].

For simplicity, we will drop the superscript s and subscript ij.
Last, we calculate �q,�p based on �u,�v . Since 0  �p 

�q  1, we set �p = �u if and only if �u 2 [0, 1] and
similarly for �q . In other words, we set �u,�v as follows:
�p = min(max(�u, 0), 1),�q = min(max(�v, 0), 1). Details
are given in Table 1.

3.2 Calculation of the Length of Intersection Using Lo-
cal Metrics
Proposition 2. In the case of non-overlapping influential regions,
i.e. Ai \Aj = ;, 8i 6= j,

DM (xi,xj) = �b
q
(xi � xj)TM(B)(xi � xj)

+
X

s

�s
q
(xi � xj)TM(As)(xi � xj),

(7)

where �b is defined as the intersection ratio of the background
region and �b = 1�

P
s �s.

Proof:

DM (xi,xj) = l(xixj ;M(B))� l(
[

s=1...S

(As \ xixj);M(B))

+
X

s

l(As \ xixj ;M(As))

= (1�
X

s

�s)
q
(xi � xj)TM(B)(xi � xj)

+
X

s

�s
q
(xi � xj)TM(As)(xi � xj).

Proposition 2 suggests that the distance can be obtained given
metrics (M(As), M(B)) and the intersection ratio �s. All calcu-
lations are in closed form and hence the computation is efficient.

To avoid creating overlapping influential regions, we will
conduct overlap detection during parameter updates. If the update
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of location parameters (o, r) leads to overlap, then we will skip
this update and continue on learning other parameters.

4 CLASSIFIER AND LEARNABILITY

In this paper, we select Lipschitz continuous functions as our
classifiers since they are a family of smooth functions which
are learnable [24]. Based on the resultant learning bounds, we
obtain the regularization terms in order to improve the classifier’s
generalization ability.

4.1 Classifier
To start with, we can see that the following classifier gives the
same classification result as 1-NN:

f(x) = minDset(x,X
�)�minDset(x,X

+),

where Dset(x,X�/+) = {D(x,xt)|8xt 2 negative class /
positive class} and D(xi,xj) denotes the distance between xi

and xj defined by any metric. f(x) < 0 indicates that x belongs
to negative class and f(x) > 0 indicates that x belongs to positive
class.

In this paper, in order to achieve robustness to noisy instances
and incorporate more flexible distance metrics, we extend the
above equation by considering more nearby instances as follows:

f(x) =
1

K

KX

k=1

D[k](x,X
�)� 1

K

KX

k=1

D[k](x,X
+), (8)

where D[k](x,X) = {D(x,xt)|8xt 2 X}[k] denotes the kth
smallest element of the distance set {D(x,xt)|8xt 2 X}. This
function will be used as the classifier in our algorithm.

For multiclass classification, the result will be given by

y = argminc

KX

k=1

D[k](x,X
c),

where Xc denotes the training instances of class c. It gives the
same classification result as (8) in the binary case.

4.2 Learnability of the Classifier with Local Metrics
We will discuss learnability of functions based on the Lipschitz
constant, which characterizes the smoothness of a function. The
smaller the Lipschitz constant is, the smoother the function is.

Definition 8. [25] Let (X , ⇢X ), (Y, ⇢Y) be two metric spaces.
The Lipschitz constant of a function f is

Lip(f) =min{C 2 R|8xi,xj 2 X ,xi 6= xj ,

⇢Y(f(xi), f(xj))  C⇢X (xi,xj)}

= max
xi,xj2X :xi 6=xj

⇢Y(f(xi), f(xj))

⇢X (xi,xj)
.

Proposition 3. [25] Let Lip(f)  Lf and Lip(g)  Lg , then
(a) Lip(f + g)  Lf + Lg;
(b) Lip(f � g)  Lf + Lg;
(c) Lip(af)  |a|Lf , where a is a constant.

Proposition 4. Let Lip(fk(x))  L, k = 1, . . . , N , then, for
any K  N , Lip(

PK
k=1 f[k](x)) is bounded by Kmaxk L,

where f[k](x) denotes the kth smallest element of the set
{fk(x), k = 1, . . . ,K}.

Proof. 8xi,xj 2 X , k 2 {1, . . . , N}
KX

k=1

f[k](xi) =
KX

k=1

{fk(xj) + fk(xj + (xi � xj))� fk(xj)}[k]


KX

k=1

{fk(xj) + Lkxj + (xi � xj)� xjk}[k]


KX

k=1

{fk(xj) + Lkxi � xjk}[k]

=
KX

k=1

f[k](xj) +KLkxi � xjk.

Based on the definition of Lipschitz constant, the proposition is
proved.

Lemma 1. With distance defined in (7), the Lipschitz con-
stant of the classifier specified in (8) is bounded by L =
2(
P

s

p
kM(As)kF +

p
kM(B)kF ), where k · kF denotes the

matrix Frobenius norm.

Proof. Let dM (x,xk) denote the Mahalanobis distance with
metric M , i.e.

dM (x,xk) =
q
(x� xk)TM(x� xk),

and dI(x,xk) denotes the Euclidean distance with the identity
matrix I .

The Mahalanobis distance dM (x,xk) has the Lipschitz con-
stant of

p
kMkF as follows:

Lip(dM (x,xk)) = sup
xa,xb2X ,xa 6=xb

dM (xa,xk)� dM (xb,xk)

dI(xa,xb)

 sup
xa,xb2X ,xa 6=xb

dM (xa,xb)

dI(xa,xb)

 sup
xa,xb2X ,xa 6=xb

dI(xa,xb)
p
kMkF

dI(xa,xb)

=
q
kMkF ,

where the first inequality follows the triangle inequality of dis-
tance, and the second inequality is based on the Cauchy-Schwarz
inequality and the fact that Frobenius norm is compatible with the
vector l2 norm.

According to the definition of distance in (7), we have

DM (x,xk) =
X

s

�sdM(As)(x,xk) + �bdM(B)(x,xk)


X

s

dM(As)(x,xk) + dM(B)(x,xk)

as �s, �b  1. From Proposition 3, we get that

Lip(DM (x,xk)) 
X

s

q
kM(As)kF +

q
kM(B)kF .

Based on the Lipschitz constant of DM (x,xk) and the com-
position property illustrated in Proposition 4,

Lip(
KX

k=1

{DM (x,xk), k = 1, . . .K}[k])

K

(
X

s

q
kM(As)kF +

q
kM(B)kF

)

.
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Finally, based on Proposition 3, f(x) in (8) is bounded by
2(
P

s

p
kM(As)kF +

p
kM(B)kF ).

Combining Lemma 1 and Corollary 2 of [24], we can obtain
the following Corollary.

Corollary 1. Let metric space X have doubling dimension
ddim(X ) and let F be the collection of real valued functions over
X with the Lipschitz constant at most L. Then for any f 2 F that
classify correctly on all but k examples, we have with probability
at least 1� �

P{(x, t) : sign[f(x)] 6= t}

k

n
+

r
2

n
(c ln(34en/c) log2(578n) + ln(4/�)),

(9)

where n denotes the sample size, t 2 {�1, 1} denotes the label,
and

c  (16L diam(X ))ddim(X )

=
⇣
32(

X

s

q
kM(As)kF +

q
kM(B)kF ) diam(X )

⌘ddim(X )
.

diam denotes the diameter of the space and ddim denotes
doubling dimension; precise definitions can be found in [24].

The above learning bound illustrates that the generalization
ability, i.e. the difference between the expected error P{(x, t) :
sign[f(x)] 6= t} and the empirical error k/n, can be improved
by reducing the value of

P
s

p
kM(As)kF +

p
kM(B)kF .

Since the square function is monotonically increasing, we would
instead reduce

P
s kM(As)kF + kM(B)kF . In other words,P

s kM(As)kF +kM(B)kF would be used as the regularization
term to improve the generalization ability of the classifier.

5 OPTIMIZATION PROBLEM

5.1 Objective Function
In order to obtain low training error and good generalization
ability, we propose the following optimization problem, where
the objective function consists of a sum of hinge loss and the
regularization term

P
s kM(As)kF + kM(B)kF :

min
⇥,⇠

1

N1

X

(i,j)

⇠ij +
1

N2

X

(m,n)

⇠mn + ↵
X

s

kM(As)kF + ↵kM(B)kF

s.t. DM (xi,xj)  1� C + ⇠ij , DM (xm,xn) � 1 + C + ⇠mn

⇠ij , ⇠mn � 0,M 2 M+

i,m = 1, . . . , N, j ! i, n 9 m,
(10)

where ⇥ = {M(As),M(B),o, r} denotes the set of parameters
to be optimized; j ! i denotes that xj is xi’s K nearest neighbor
comparing against all instances in the same class; m 9 n
denotes that xn is xm’s K nearest neighbor comparing against
all instances in the different class; C is a constant which has the
intuition of margin; ⇠ij and ⇠mn denote the error caused by margin
violation; N,N1, N2 denote the number of training samples, pairs
(i, j), and pairs (m,n) respectively ; ↵ is a trade-off parameter
between the margin loss and the regularization terms. This opti-
mization formula is suitable for both binary and multi-class tasks.
In the proposed algorithm, we will learn the locations of influential
regions (os, rs) and the metrics of influential/background regions
(M(B),M(As)) under the same framework.

5.2 Gradient Descent
With DM(As) and DM(B) being the Mahalanobis distances, the
optimization problem is convex even when o, r are fixed and only
M(As) and M(B) are updated. Therefore, we adopt the gradient
descent algorithm:

⇥t+1 = ⇥t � �
@g

@⇥
|⇥t ,

where � is the learning rate, and the superscript t denotes the time
step during optimization.

The objective function g is

g =
1

N1
[DM (xi,xj)� (1� C)]+ + ↵

X

s

kM(As)kF

+
1

N2
[1 + C �DM (xm,xn)]+ + ↵kM(B)kF ,

where the distance is

DM (xi,xj) = [�b(os, rs)]+DM(B)(xi,xj)

+
X

s

�s(os, rs)DM(As)(xi,xj)

and �b(os, rs) = 1 �
P

s �s(os, rs). Here, �s is written as
�s(os, rs) to remind us that �s is a function of the location
parameters os and rs.

The gradient of g with respect to parameters o, r is

@g

@⇥
|⇥t =

1

N1

X

(i,j)

1[DMt(xi,xj)� (1� C) > 0]
@DM (xi,xj)

@⇥
|⇥t

� 1

N2

X

(m,n)

1[1 + C �DMt(xm,xn) > 0]
@DM (xm,xn)

@⇥
|⇥t .

If the gradient is with respect to M(B) and M(As), then the
shrinkage term of ↵M(B)

kM(B)k or ↵M(As)
kM(As)k should be added into the

above formula.
Now we will calculate @DM (xi,xj)

@⇥ |⇥t for the parameters
M(As), M(B), os, rs separately:

@D(xi,xj)

@M(As)
|⇥t =

�s(ot
s, r

t
s)

2
⇥

[(xi � xj)
TM t(As)(xi � xj)]

�1/2(xi � xj)(xi � xj)
T ;

@D(xi,xj)

@M(B)
|⇥t =

1[�b(ot
s, r

t
s) > 0]�b(ot

s, r
t
s)

2
⇥

[(xi � xj)
TM t(B)(xi � xj)]

�1/2(xi � xj)(xi � xj)
T ;

@D(xi,xj)

@os
|⇥t =

@�s
@os

DMt(As)(xi,xj)�

@�s
@os

1[�b(o
t
s, r

t
s) > 0]DMt(B)(xi,xj)

where @�
@o could be obtained as illustrated in Table 2;

@D(xi,xj)

@rs
|⇥t =

@�s
@rs

DMt(As)(xi,xj)�

@�s
@rs

1[�b(o
t
s, r

t
s) > 0]DMt(B)(xi,xj),

where @�
@r could be obtained as illustrated in Table 2.

Initial values are crucial for non-convex optimization prob-
lems. We adopt a heuristic method to initialize the parameters as
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TABLE 2
Partial gradients of @�

@o and @�
@r in different cases.

�!
oh, �!ov, �!ou can be found from Fig. 3.

�u,�v � partial gradients
�u < 0,�v < 0 0
�u < 0,�v > 1 1 @�

@o = 0, @�
@r = 0

�u > 1,�v > 1 0

0  �u  1, 0  �v  1 �v � �u
@�
@o = � 2��1/2(xj�xi)

T (xi�o)(xj�xi)

(xj�xi)T (xj�xi)
� 4��1/2(o� xi) = 4��1/2�!oh, @�

@r = 4��1/2r

�u < 0, 0  �v  1 �v
@�
@o =

(xj�xi)���1/2(xj�xi)
T (xi�o)(xj�xi)

(xj�xi)T (xj�xi)
� 2��1/2(o� xi) = 2��1/2�!ov, @�

@r = 2��1/2r

0  �u  1,�v > 1 1� �u
@�
@o =

�(xj�xi)���1/2(xj�xi)
T (xi�o)(xj�xi)

(xj�xi)T (xj�xi)
� 2��1/2(o� xi) = 4��1/2�!ou, @�

@r = 2��1/2r

follows. 1) Extract local discriminative direction h(x) 2 RF for
each training instance x, where F indicates the number of features
of x:

h(xi)[f ] =
X

k9i

|xk[f ]� xi[f ]|�
X

j!i

|xj [f ]� xi[f ]|,

where x[f ] indicates the f th dimension of vector x. 2) Perform
nonparametric clustering: The Dirichlet process Gaussian mixture
model is applied to the augmented feature vector [x, h(x)] to
group instances into clusters; the number of clusters, and hence
the number of influential regions, is automatically decided by the
clustering algorithm. 3) Initialize the parameters: Cluster centers
are initialized as os; the 80th percentile of the distance between
samples and the cluster center is set as initial value of rs; the
local metric is set as M(As) = I+0.1⇥diag(mean(h(x),x 2
cluster s)), where diag is an operation which returns a square
diagonal matrix with elements of the input vector on the main
diagonal. The initialization process is carried out from the largest
cluster to the smallest one. If a later influential region overlaps
with an earlier one, the later region will be shrunk, or even deleted,
until no overlap exists.

6 EXPERIMENTS

6.1 Toy Example
To visualize the learned parameters, we consider a toy data
set for binary classification consisting of 80 instances generated
from a two-component Gaussian mixture model. 40 instances in
the positive and 40 instances in the negative class are sampled
from 1

2N [(�1, 0), 1
2I]+

1
2N [(1, 0), 1

2I] and 1
2N [(�1, 2), 1

2I]+
1
2N [(3, 0), 1

2I] respectively. Parameters in our algorithm are set
as follows: ↵ and C in the optimization formula are 0.1 and
0.5 respectively; the number of clusters used for initializing the
parameters is 2; the gradient descent algorithm stops after 50
iterations. For illustration purpose, overlap detection has not been
conducted on the toy example.

In Figs. 4a-4c, we learn one parameter from {M(A),o, r}
at each time, fixing the other parameters. Take Fig. 4a (left) as
an example. Since M(A1) = M(A2) = 2I and M(B) = I ,
the influential regions act as enlarging the local distance. In this
case, we see that the centers of A1 and A2 move to the inter-
class region. This phenomenon could be explained as follows.
For a line segment that lies in an inter-class region and vio-
lates the margin constraint, i.e. DM (xm,xn) < 1 + C , the
direction of gradient descent is same as that of @DM (xm,xn)

@o .
As DM(A)(xm,xn) > DM(B)(xm,xn),

@DM (xm,xn)
@o has the

same direction as @r
@o , which, according to Table 2, is the direction

of
�!
oh, �!ou, �!ov in Fig. 3 depending on the value of �. In other

words, the margin-violated inter-class line segments will pull the
influential regions towards the inter-class region. At the same time,
for an intra-class line segment that violates the margin constraint,
i.e. DM (xi,xj) > 1 � C , the direction of gradient descent
is opposite to that of @DM (xm,xn)

@o , and hence opposite to
�!
oh,

�!ou, �!ov. That is, the margin-violated intra-class line segments will
push the influential regions away from the intra-class region. In
summary, as illustrated in Fig. 4a (left), when the influential
regions have the effect of ‘enlarging’ distance, o move to the
inter-class region. Similar reasoning applies to Fig. 4a (right), 4b,
and 4c. In Fig. 4d, M(A),o, r are learned simultaneously. As
expected, the influential regions focus on inter-class samples by
moving towards the inter-class region, increasing the region size,
and enlarging the local distance in the direction that is nearly
perpendicular to the decision boundary.

The toy example demonstrates that the gradient learning has a
clear geometric interpretation.

6.2 Real Data
We compare our algorithm with twelve established metric learn-
ing algorithms from three categories: (1) the most cited algo-
rithms, including large margin nearest neighbor (LMNN) [2]
and information theoretic metric learning (ITML) [3]; (2) lo-
cal metric learning algorithms, including multiple-metric large
margin nearest neighbor (mmLMNN) [2], parametric local met-
ric learning (PLML) [17], reduced-rank local distance metric
learning (R2LML) [18], and local discriminative distance met-
rics ensemble learning (LDDM) [26]; (3) the state-of-the-art
metric learning algorithms, including distance metric learning
with eigenvalue optimization (DMLE) [27], sparse compositional
metric learning (SCML) [20], stochastic neighbor compression
(SNC) [28], regressive virtual metric learning (RVML) [29],
geometric mean metric learning (GMML) [30], and supervised
distance metric learning through maximization of the Jeffrey
divergence (DMLMJ) [31]. LMNN and ITML are implemented
using the metric-learn toolbox2; mmLMNN, PLML, R2LML,
LDDM, DMLE, SCML, SNC, RVML, GMML and DMLMJ are
implemented using the authors’ code.

We conduct binary classification on 14 data sets and multiple-
class classification on 6 data sets, all of which are publicly
available from UCI3 and LibSVM4. For binary classification,
we use data sets Australian, Breastcancer, Diabetes, Fourclass,

2. https://all-umass.github.io/metric-learn/
3. https://archive.ics.uci.edu/ml/datasets.html
4. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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TABLE 3
Metric learning algorithm results: Mean accuracy and standard deviation are reported with the best ones in bold; ‘AVERAGE’ denotes the average
accuracy of all data sets; ‘# of BEST’ denotes the number of data sets that an algorithm performs the best; ‘NAN’ indicates the algorithm cannot

return a classification result for the data set.

Data sets LMNN ITML mmLMNN PLML R2LML LDDM DMLE SCML SNC RVML GMML DMLMJ LMLIR
Binary classification

Australian 78.8±2.6 77.2±1.9 82.5±2.6 80.5±1.1 84.7±1.3 72.8±9.1 82.6±1.5 82.3±1.4 81.8±8.8 83.0±1.6 84.4±1.0 83.9±1.3 85.1±1.9
Breastcancer 95.9±0.7 96.4±1.0 96.7±1.0 96.4±0.9 97.0±0.7 66.1±1.8 97.0±1.1 97.0±0.9 96.7±0.7 95.8±1.1 97.3±0.8 96.6±0.8 96.4±2.1

Diabetes 69.2±1.4 69.1±1.2 72.2±1.9 68.5±2.0 73.8±1.4 64.4±2.0 72.6±2.0 71.5±2.2 75.3±2.7 71.0±2.6 74.2±2.6 71.5±3.1 75.9±1.9
Fourclass 72.1±2.3 72.1±2.2 75.6±1.4 72.4±2.4 76.1±1.9 64.0±2.1 75.6±1.4 75.5±1.4 73.4±8.7 70.5±1.4 76.1±1.9 76.1±1.9 79.9±0.9
German 67.9±1.5 67.0±2.1 68.9±1.8 70.0±2.9 72.9±1.8 70.1±1.5 72.0±2.1 70.9±2.7 70.1±3.3 71.7±1.8 71.6±1.1 69.3±2.7 73.7±1.6

Haberman 67.9±3.3 68.0±4.1 69.0±2.7 67.1±3.1 71.1±3.4 73.8±3.6 70.8±3.5 69.2±2.5 72.0±5.2 66.7±2.3 71.2±3.4 68.5±3.2 74.4±3.7
Heart 76.2±3.8 76.9±3.3 79.4±3.7 75.1±3.2 82.0±3.8 71.6±9.7 77.9±3.1 79.0±3.2 77.0±5.3 77.7±4.1 81.2±2.7 80.6±2.8 83.1±3.2
ILPD 67.0±2.1 68.7±2.8 66.8±2.1 67.4±3.0 65.9±2.2 72.4±1.1 68.8±2.7 68.0±2.9 68.9±2.7 68.0±2.9 67.1±2.2 68.0±1.6 69.6±2.7

Liverdisorders 61.0±4.8 57.2±4.0 62.0±3.5 62.2±2.5 66.8±3.7 56.8±3.8 61.8±2.7 61.7±4.6 63.3±5.2 64.6±3.9 63.8±5.4 60.9±3.8 66.7±3.6
Monk1 88.4±2.6 77.3±1.3 90.3±2.6 96.6±2.7 89.2±1.5 67.9±8.1 99.9±0.3 97.5±0.9 96.8±4.8 89.2±2.7 75.0±2.6 87.7±3.8 95.0±7.2
Pima 68.5±1.6 68.0±2.0 72.5±2.7 68.4±2.2 72.3±1.5 64.9±2.6 72.1±2.4 71.1±2.6 74.0±2.6 69.5±1.7 73.0±1.8 71.1±2.8 74.6±2.0

Planning 60.4±5.3 62.2±2.3 54.7±3.4 60.8±5.5 63.9±3.4 72.1±7.8 60.1±5.5 61.9±5.0 NAN 55.1±7.4 65.2±5.5 64.3±2.9 67.5±6.5
Voting 94.8±0.8 90.8±1.4 95.4±0.9 95.5±1.0 96.3±1.2 65.1±10.3 93.1±1.9 95.0±1.3 94.5±1.2 95.8±1.3 95.2±1.9 95.3±1.1 93.2±3.9
WDBC 96.6±1.1 94.9±0.9 97.4±1.0 96.4±0.9 96.9±1.7 63.2±3.5 96.7±0.5 97.0±0.9 96.9±0.9 96.6±1.3 96.7±0.8 97.3±1.9 96.6±1.0

AVERAGE 76.0 74.6 77.3 76.9 79.2 67.5 78.6 78.4 NAN 76.7 77.9 77.9 80.8
# of BEST 0 0 1 0 2 2 1 0 0 0 1 0 7

Multiclass classification
Cleveland 54.6±2.1 56.2±2.2 53.9±2.2 49.0±4.1 57.7±2.1 52.9±2.3 54.0±2.4 54.4±3.5 53.3±3.1 50.9±4.4 59.1±2.3 55.3±3.2 57.7±3.5

Glass 70.7±4.8 69.9±4.7 NAN NAN 70.2±5.5 41.6±9.0 66.2±5.3 71.7±2.9 69.5±6.5 68.1±3.7 69.9±6.0 59.3±5.1 72.0±5.7
Iris 86.7±2.9 87.0±3.3 86.5±3.6 82.7±6.9 87.0±4.6 70.0±13.3 86.8±3.6 87.3±3.1 NAN 83.8±4.2 87.5±3.7 85.3±4.8 87.8±3.8

Newthyroid 88.6±2.7 90.0±2.3 88.5±3.2 89.0±2.1 90.4±3.2 69.9±3.0 89.2±2.1 89.3±3.3 89.7±2.5 88.3±1.8 89.8±3.4 91.1±2.1 90.6±1.9
Tae 50.2±8.2 46.2±7.0 50.2±7.2 50.8±8.3 50.8±6.1 29.2±5.1 49.7±4.4 53.6±5.9 NAN 55.4±6.9 51.2±6.3 49.0±6.9 53.6±6.7

Winequality(red) 58.3±1.9 56.1±1.5 NAN NAN 58.0±1.2 NAN 55.0±1.7 58.9±1.7 58.2±4.0 59.6±2.3 58.2±1.8 49.0±3.9 60.08±6.5
AVERAGE 73.0 71.8 NAN NAN 75.2 62.1 74.1 75.1 NAN 73.8 74.3 72.7 76.9
# of BEST 0 0 0 0 0 0 0 0 0 1 1 1 3

Germannumber, Haberman, Heart, ILPD, Liverdisorders, Monk1,
Pima, Planning, Voting, and WDBC; for multiple-class, we use
Cleveland, Glass, IRIS, Newthyroid, Tae, and Winequality (red).
All data sets are pre-processed by firstly subtracting the mean and
dividing by the standard deviation, and then normalizing the L2-
norm of each instance to one.

For each data set, 60% instances are randomly selected
as training samples and the rest for testing. This process
is repeated 10 times and the mean accuracy and the stan-
dard deviation are reported. We use 10-fold cross-validation
to select the trade-off parameters in the compared algo-
rithms, namely the regularization parameter of LMNN (from
{0.1, 0.3, 0.5, 0.7, 0.9}), � in ITML (from {0.25, 0.5, 1, 2, 4}), t
in GMML (from {0.1, 0.3, 0.5, 0.7, 0.9}) and � in RVML (from
{10�5, 10�4, . . . , 10}). All other parameters are set as default.
For our algorithm, we set the parameters as follows: ↵ and C in
the optimization formula are 0.1 and 0.5 respectively; K in the
classifier is 10. The number of influential regions in our algorithm
is determined via Dirichlet process Gaussian mixture model and it
is implemented with PRML toolbox 5.

Results for binary classification and multiclass classification
are shown in Table 3. The proposed algorithm achieves the highest
average accuracy on both tasks. Out of 20 data sets, LMLIR
outperforms all other methods on ten data sets out and none of
the other algorithms performs the best in more than two data
sets. In cases where our algorithm is not leading, the difference to
the optimal method is relatively small. Such encouraging results
demonstrate the effectiveness of our proposed method.

7 CONCLUSIONS AND FUTURE WORK

In this short paper, by introducing influential regions, we define a
very intuitive distance and propose a novel local metric learning
method. The distance can be computed efficiently and encouraging
results are obtained on public data sets.

5. https://github.com/PRML/PRMLT

Some directions merit future investigation to extend our work.
Original features from data are used in this paper, but we may
explore deep features for specified tasks. More advanced optimiza-
tion techniques and other types of influential regions may also be
explored. Domain knowledge can be embedded into the partition
of the regions. Tighter learning bounds and resultant penalty terms
would also be our future work.
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