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Infinite-server queueing models of demand in healthcare: A review of
applications and ideas for further work
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Mathematics, University College London, London, UK; cStatistics and Operational Research Centre for Doctoral Training in
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ABSTRACT
Despite the apparently unrealistic assumption of infinite resources, infinite-server queueing
models have played a central role in the development of queueing theory and its appli-
cations. Healthcare modelling applications have certainly benefited from these models,
where arguably their greatest importance has been to provide the basis for the analysis
of “offered load” in systems with single or multiple nodes with multiple servers and time-
varying arrivals. In this paper, we provide a review of major healthcare applications to
date, identifying and consolidating the underpinning theoretical results and commenting
on the nature of the applications. We conclude by identifying potential further healthcare
applications, their relationships to existing theory and methods, and the need for new
theory and methods, including the use of infinite-server models alongside other model-
ling methodologies.
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1. Introduction

The well-known result that the steady-state distribu-
tion of the number of customers in an M/G/1
queueing system is Poisson with mean equal to k=l;
i.e., the ratio of the arrival rate ðkÞ to the service
rate per server lð Þ; is a classic example of an oper-
ational research model. Attributed to Palm (1943),
and elegantly re-derived by Newell (1966), it makes
the succinct and transparent assumptions that:

� arrivals are random (as one would expect in
many natural circumstances),

� the rate of arrival is constant (a simplification
which will tend to underestimate the variability
experienced by the system),

� service times of different customers are inde-
pendent, from any distribution,

� there is an unlimited number of servers (a sim-
plification which will underestimate the numbers
of customers present in the system).

Armed with this queueing model, operational
researchers could perform “back-of-an-envelope”
calculations to provide decision-makers with sound
underestimates of the levels of congestion and vari-
ability to be expected in real systems that they were
trying to manage; and an explanation of the extent
to which (due to the equality of mean and variance

of the Poisson distribution) the impact of this vari-
ability was likely to be less in bigger systems.

Infinite-server queueingmodels have been developed
in many directions since these early ideas. Reflecting on
50 years of queue modelling, Worthington (2009)
describes how infinite-server assumptions significantly
simplify the mathematics required for the analysis of
exponential and non-exponential systems, for single-
node and multi-node systems, and for steady-state
behaviour and time-dependent behaviour. Whitt
(2016), in reviewing work on infinite-server queues,
comments on the central role that they have played in
the development of queueing theory and applications,
despite their assumption of infinite resource and hence
no queues. Alongside their importance in understand-
ing many of the dynamics of time-dependent queues
and the development of asymptotic results for “many
server queues”, Whitt notes that arguably their greatest
importance is to provide the basis for the analysis of
“offered load” for multi-server systems with time-vary-
ing arrivals.

This is certainly the case in a healthcare context
where the ability of infinite-server queues to model
“offered load” or “unfettered demand” has proved
to be of great value. In this context, “offered load”
or “unfettered demand” at a given time is essentially
the number of patients that we would see in a sys-
tem (or at a particular service node in a system) at
that time if the progress of patients was never

CONTACT Dave Worthington d.worthington@lancaster.ac.uk Department of Management Science, Lancaster University, Lancaster LA1
4YX, UK
� 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
https://doi.org/10.1080/01605682.2019.1609878

http://crossmark.crossref.org/dialog/?doi=10.1080/01605682.2019.1609878&domain=pdf&date_stamp=2019-07-04
http://creativecommons.org/licenses/by/4.0/
https://doi.org./10.1080/01605682.2019.1609878
http://www.tandfonline.com


delayed by having to queue for a server (no queues,
no baulking, no reneging). This can be, for example,
the number of inpatients on a ward, in a hospital
unit, or in a whole hospital; or the numbers of
patients in the different service locations in an acci-
dent and emergency department; or the numbers of
patients receiving different elements of community-
based service. In all these cases comparison of distri-
butions of the “offered load” with service capacity
(by time and by location) provides similar insights
to those provided by “traffic intensity” in steady-
state queue modelling in general, giving managers
warning of the likely timing and origin of conges-
tion problems and guiding balanced allocation of
resources across a network of servers. Furthermore,
offered loads have also been shown to provide rea-
sonable guides for estimating service levels (via the
square root staffing law), and useable inputs to opti-
misation algorithms which seek to minimise patients
being refused admission or to balance diversions of
patients from their intended wards. See Section 3
for more details and for references.

Healthcare applications to date have drawn on
two areas of theory. The first is more closely related
to the very early work on M/G/1 queues and
assumes Poisson arrivals in continuous time, with the
main theoretical ideas developed in Eick, Massey,
and Whitt (1993) for single-node systems and
Massey and Whitt (1993) for networks. The second
makes less restrictive assumptions about arrival proc-
esses and works in discrete time, with the main the-
oretical ideas developed in Utley, Gallivan, Treasure,
and Valencia (2003) for single-node systems, and
extensions to multi-node systems developed in Utley,
Gallivan, Pagel, and Richards (2009).

In a healthcare setting, arrivals are often associ-
ated with unplanned (non-elective) work, and large
population bases with the independent incidence of
urgent medical conditions are typically used to jus-
tify Poisson arrivals, often with time dependence.
On the other hand, arrival processes for elective
work are not random, although often subject to
some uncertainty. Early examples of are Bagust,
Place, and Posnett (1999) and Gallivan, Utley,
Treasure, and Valencia (2002) who assumed random
arrivals for emergency patients and deterministic
arrivals for scheduled patients respectively.

Perhaps as a consequence of their different theor-
etical origins, early healthcare applications have con-
centrated either on emergency workloads or on
elective workloads, often in single wards. However,
later work has combined emergency and elective
workloads and has also developed models for mul-
tiple wards in a hospital department (Isken, Ward,
& Littig, 2011), whole hospital models (Helm & van

Oyen, 2014), and community-based services (Utley
et al., 2009).

However, it can be argued that the potential of the
infinite-server approach has not been fully realised
because the two different mathematical approaches
each come with their own assumptions, notations,
theories and results. In particular, applied healthcare
modellers can find it difficult to identify and select
an appropriate approach to tackle established or new
modelling opportunities; whereas it is also unclear to
technically orientated researchers where the focus of
further, hopefully impactful, research needs to be.

To tackle these two issues, we first show how the
existing theories can be consolidated and simplified
into an accessible and common approach. Alongside
this consolidated theory, we provide a generic
pseudocode to aid the process of model implemen-
tation. We then provide a review of major health-
care applications over the last 20 years, using the
consolidated theory as a framework. This then nat-
urally leads into the identification of potential fur-
ther healthcare applications of infinite-server
queues, including new applications of existing mod-
els, problems requiring new infinite-server model
developments, and opportunities for combining
infinite-server models with other models.

The remainder of the paper is organised as fol-
lows. Section 2 provides an intuitive consolidation of
the main theoretical results that are important for the
prediction of offered load in a healthcare setting.
Section 3 reviews a range of healthcare applications,
identifying the theoretical results that they draw
upon, the nature of the application, and the nature of
the analytical methods used. Finally, Section 4 identi-
fies further potential healthcare applications and out-
lines their likely relationships to existing theory and
methods and the need for new theory and methods.

2. Consolidating existing results

Previous accounts of infinite-server queueing sys-
tems have used different and sometimes difficult
mathematical notations with differences often rooted
in a choice to model in either continuous or discrete
time. In this section, we draw on the concepts and
ideas that are common to much of this earlier work
to consolidate the material in an accessible manner.
For example, Newell (1966), when considering
queues with random arrivals, describes mutually
exclusive events that can happen to the jth randomly
arriving customer and which are statistically inde-
pendent of all other customers. Eick et al. (1993)
later use Poisson random measure theory, again for
single-node queues with random arrivals, and
Massey and Whitt (1993) use a Poisson arrival loca-
tion model for networks of services with random
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arrivals. More recently, Gallivan (2005) outlined the
use of location probabilities for a booked admissions
example, Gallivan and Utley (2005) used persistence
distributions when modelling both random and
non-random arrivals; and Helm and van Oyen
(2014) used Poisson arrival location models and
Controlled arrival location models to cater for net-
works of services with both random and non-ran-
dom arrivals.

The key element in all results for infinite-server
queues is that the assumed infinite number of serv-
ers means that patients (when considering a health-
care system) do not compete with each other for
service, and hence “travel” through service, be it via
a single node or a network of nodes, independently
of all other patients. Hence each patient of type (r)
who arrives at time u will have their own independ-
ent probability of being in state s at time t (say
psðr; u; tÞ), will contribute either 0 or 1 patients
being in state s at time t, and this will be a
Bernoulli random variable. Note that at this stage, it
is immaterial whether time is treated as continuous
or discrete, and it is also immaterial whether the
state of interest is “in service” or “completed serv-
ice” in a single-node system, or indeed “in service
1”, “in service 2”, “in service 1 or 2”, “completed
services 1 and 2”, etc. in a multi-node system. It is
also immaterial at which node in a multi-node sys-
tem a patient first arrives.

Thus for a patient of type (r) who arrives at time
u, the set of probabilities psðr; u; tÞ for t>¼u can be
said to provide their “stochastic footprint” with
respect to state s; and for each t this implies a
Bernoulli random variable. Similarly, if we consider
a set of states fs1; s2; :::sKg for a patient of type (r)
who arrives at time u, the set of probabilities
pskðr; u; tÞ for k¼ 1, … , K and t>¼u provides their
“stochastic footprint” with respect to states
fs1; s2; :::sKg; and for each t this implies a
Multinomial (n¼ 1) random variable.

Given this assumed independence of travel
through the system, the second element underpin-
ning behaviour is the way in which patients arrive,
and the options take different forms depending on
whether the time is discrete or continuous. In this
section, we, therefore, consider a number of possi-
bilities which between them provide the main
results needed for the application of infinite-server
queues to model offered load/unfettered demand. In
Sections 2.1 and 2.2, we develop results for the
probability distributions of the number of patients
in any state of interest (s) for systems formulated in
discrete and continuous times respectively. Because
2.1 considers systems modelled in discrete time, e.g.
days, we need to consider multiple patients arriving
at the same time (u), and whether these arrivals are

independent or not. On the other hand, in 2.2,
available results for continuous time systems all
assume arrivals occur as homogeneous or non-
homogeneous Poisson processes, and hence that
arrivals are independent. Once the results for gener-
ally defined state (s) are obtained, Sections 2.3 and
2.4 apply them to obtain the probability distribu-
tions of occupancy levels in single-node infinite-ser-
ver systems and in multi-node infinite-server
systems respectively.

2.1. Discrete-time systems

The main results for the probability distribution of
the number of patients in general state (s) for dis-
crete-time systems are presented in Section 2.1.4,
which considers multiple types of patient and mul-
tiple arrival times. Sections 2.1.1–2.1.3 develop the
underpinning ideas incrementally.

2.1.1. One patient type ðr0Þ and one arrive
time ðu0Þ
If the only patients who arrive are of type r0 and
arrive at time u0; we can use h to denote psðr0; u0; tÞ:

i. If a fixed number of patients (x) arrives, then
by the independence of travel:

#of patients in state s at time t ¼ Ns tð Þ � Bin x; hð Þ:

And E½Ns tð Þ� ¼ xh and Var½Ns tð Þ� ¼ xhð1� hÞ.
ii. If the number of patients (X) who arrive is a

random variable, taking values 0, 1, 2, … K
with probabilities q0; q1; q2:::qK ; then by the
independence of travel Ns tð Þ will now be a
mixture of Binomial distributions, i.e.

Ns tð Þ �
Bin 0; hð Þ with prob ¼ q0
Bin 1; hð Þ with prob ¼ q1

:::::::::::::::::::::::::
Bin K; hð Þ with prob ¼ qK

8>><
>>:

This distribution is fully defined, with:

prob Ns tð Þ ¼ xð Þ ¼
XK
k¼x

qk � k
x

� �
hx 1�hð Þk�x

The mean and variance of Ns tð Þ can be con-
veniently obtained by noting that Ns tð Þ can be
viewed as the sum of a random number of
independent identical Bernoulli distributions,
as each patient has a probability h of being in
state s at time t, and the number of patients
(X) is a random variable, with mean E½X� and
variance Var½X�: Hence:

E Ns tð Þ½ � ¼ E X½ �h
and by the law of total variance, see, for
example, Weiss, Holmes, and Hardy (2006):
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Var Ns tð Þ½ � ¼ E X½ �h 1�hð Þ þ h2Var X½ �
as the mean and variance of the Bernoulli dis-
tribution are h and h 1�hð Þ; respectively.We
note at this point that case (i) which assumes a
fixed number of arrivals is just a special case of
(ii) which allows any distribution of a number
of arrivals, where the distribution only takes
the one value, with probability ¼ 1. We will,
therefore, omit this special case in the subse-
quent development of ideas.

iii. If the number of patients (X) who arrive is a
Poisson random variable with mean k, then by
the decomposition property of Poisson proc-
esses, see, for example, Mitrani (1998), Ns tð Þ
has a Poisson distribution with mean:

E Ns tð Þ½ � ¼ kh

We note at this point that case (iii) is also a special
case of (ii). However, some of the properties of the
Poisson distribution are very useful when they can
be used, and so we will continue to develop separ-
ate results for the case of Poisson arrivals.

2.1.2. Two types of patients (r¼ 1, 2), one arrival
time (u0Þ
If there are two types of patients (r¼ 1, 2) who
arrive at time u0; we can use h1 and h2 to denote
psð1; u0; tÞ and ps 2; u0; tð Þ respectively.

i. If the numbers of arrivals of patients of the
two types (r¼ 1, 2) are independent random
variables X1 and X2; respectively, taking
values 0, 1, 2, … K with probabilities
fq1;0; q1;1; q1;2:::q1;Kg and fq2;0; q2;1; q2;2:::q2;Kg;
then Ns tð Þ is the sum of two independent ran-
dom variables Ns 1; tð Þ and Ns 2; tð Þ; where, as
in 2.1.1(ii), each of Ns 1; tð Þ and Ns 2; tð Þ is a
mixture of Binomial distributions, i.e.,

Ns r; tð Þ �

Binð0; hrÞ with prob ¼ qr;0
Binð1; hrÞ with prob ¼ qr;1

:::::::::::::::::::::::::

BinðK; hrÞ with prob ¼ qr;K

8>>>><
>>>>:

for r ¼ 1 and 2

As before, each of the two mixture distribu-
tions is well defined, with means and variances
for r¼ 1 and 2:

E Ns r; tð Þ½ � ¼ E Xr½ �hr
Var Ns r; tð Þ½ � ¼ E Xr½ �hr 1�hrð Þ þ h2rVar Xr½ �

And hence the full distribution can be obtained as
the convolution of the two separate mixture distri-
butions, and it’s mean and variance are simply:

E Ns tð Þ½ � ¼ E Ns 1; tð Þ½ � þ E Ns 2; tð Þ½ �

Var Ns tð Þ½ � ¼ Var Ns 1; tð Þ½ � þ Var Ns 2; tð Þ½ �
ii. If the numbers of patients of the two types

(r¼ 1, 2) who arrive are independent Poisson
random variables with means k1 and k2; then
by the decomposition property of Poisson
processes both of Ns 1; tð Þ and Ns 2; tð Þ have
Poisson distributions with means:

E Ns 1; tð Þ½ � ¼ k1h1 and E Ns 2; tð Þ½ � ¼ k2h2

And, as the sum of independent Poisson distribu-
tions, Ns tð Þ has a Poisson distribution with mean:

E Ns tð Þ½ � ¼ k1h1 þ k2h2:

iii. If the numbers of arrivals of patients of the two
types (r¼ 1, 2) are independent random variables
X1 and X2; with X1 taking values 0, 1, 2, … K
with probabilities fq1;0; q1;1; q1;2:::q1;Kg and X2

being a Poisson random variable with mean k2;
then Ns tð Þ is the sum of two independent ran-
dom variables Ns 1; tð Þ and Ns 2; tð Þ; where (as in
2.1.1(ii)) Ns 1; tð Þ is a mixture of Binomial distri-
butions, and where (as in 2.1.1(iii)) Ns 2; tð Þ is a
Poisson random variable with mean k2h2; i.e.,

Ns 1; tð Þ �
Bin 0; h1ð Þ with prob ¼ q1;0
Bin 1; h1ð Þ with prob ¼ q1;1

:::::::::::::::::::::::::
Bin K; h1ð Þ with prob ¼ q1;K

8>><
>>:

And Ns 2; tð Þ has a Poisson distribution with
mean:

E Ns 2; tð Þ½ � ¼ k2h2

As before, each of the two distributions is well
defined, with their corresponding means and
variances:

E Ns 1; tð Þ½ � ¼ E X1½ �h1 and E Ns 2; tð Þ½ � ¼ k2h2

Var Ns 1; tð Þ½ � ¼ E X1½ �h1 1�h1ð Þ þ h21Var X1½ �
and Var Ns 2; tð Þ½ � ¼ k2h2

Hence, the full distribution can be obtained
as the convolution of the two separate
distributions, and it’s mean and variance are
simply:

E Ns tð Þ½ � ¼ E Ns 1; tð Þ½ � þ E Ns 2; tð Þ½ �
Var Ns tð Þ½ � ¼ Var Ns 1; tð Þ½ � þ Var Ns 2; tð Þ½ �

2.1.3. Two types of patients (r¼ 1, 2), two arrival
times u1 and u2
If there are two types of patients (r¼ 1, 2) who
arrive at times u1 and u2; we can use h1;1; h1;2; h2;1
and h2;2 to denote psð1; u1; tÞ; ps 1; u2; tð Þ; psð2; u1; tÞ
and ps 2; u2; tð Þ respectively.

i. If the numbers of arrivals of patients of the
two types (r¼ 1, 2) at times u1 and u2; are
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independent random variables X1;1;X1;2;X2;1;

and X2;2; taking values 0, 1, 2, … K with proba-
bilities q1;1;0; q1;1;1; q1;1;2:::q1;1;Kf g; q1;2;0; q1;2;1f
; q1;2;2:::q1;2;Kg; q2;1;0; q2;1;1; q2;1;2:::q2;1;Kf g and
q2;2;0; q2;2;1; q2;2;2:::q2;2;Kf g; then Ns tð Þ is the

sum of four independent random variables
Ns 1; 1; tð Þ; Ns 1; 2; tð Þ;Ns 2; 1; tð Þ; and Ns 2; 2; tð Þ;
where, as in 2.1.1(ii), each Ns r; j; tð Þ is a mixture
of Binomial distributions, i.e.

Ns r; j; tð Þ �
Bin 0; hr;j

� �
with prob ¼ qr;j;0

Bin 1; hr;j
� �

with prob ¼ qr;j;1
:::::::::::::::::::::::::

Bin K; hr;j
� �

with prob ¼ qr;j;K

8>>><
>>>:

for r ¼ 1; 2; j ¼ 1; 2

As before, each of the four mixture distribu-
tions is well defined, with means and variances
for r, j¼ 1 and 2:

E Ns r; j; tð Þ½ � ¼ E Xr;j½ �hr;j
Var Ns r; j; tð Þ½ � ¼ E Xr;j½ �hr;j 1�hr;j

� �þ h2r;jVar Xr;j½ �

Hence, the full distribution can be obtained as
the convolution of the four separate mixture
distributions, and its mean and variance are:

E Ns tð Þ½ � ¼
X2
r¼1

X2
j¼1

E Ns r; j; tð Þ½ �

Var Ns tð Þ½ � ¼
X2
r¼1

X2
j¼1

Var Ns r; j; tð Þ½ �

ii. If the numbers of patients of the two types (r¼ 1,
2) who arrive at times u1 and u2; are independ-
ent Poisson random variables with means
k1;1; k1;2; k2;1 and k2;2; then by the decomposition
property of Poisson processes, each Ns r; j; tð Þ
has a Poisson distribution with mean:

E Ns r; j; tð Þ½ � ¼ kr;jhr;j

And, as the sum of independent Poisson distribu-
tions, Ns tð Þ has a Poisson distribution with mean:

E Ns tð Þ½ � ¼
X2
r¼1

X2
j¼1

kr;jhr;j

iii. If the numbers of patients of the two types
(r¼ 1, 2) who arrive at times u1 and u2; are a
combination of independent general distribu-
tions for the type 1 patients (for example) and
Poisson distributions for the type 2 patients,
then as argued in 2.1.2(iii), Ns tð Þ will be the
sum of four independent random variables,
two being mixtures of Binomial distributions
and two being Poisson distributions.
Furthermore, the arguments in 2.1.2(iii) can be

generalised, and the distribution of Ns tð Þ can
be obtained as the convolution of distributions,
with mean and variance found using the obvi-
ous extension of the formulae in 2.1.2(iii).

2.1.4. R types of patients (r¼ 1, … , R), J arrival
times u1; u2 … , uJ
Generalising the results in 2.1.3, we now consider R
types of patients (r¼ 1, … , R) who arrive at J times
u1; u2 … , uJ ; and use hr;j to denote psðr; uj; tÞ:

i. If the numbers of arrivals of patients of type r
(r¼ 1, … , R) at times uj (j¼ 1, … , J) are inde-
pendent random variables Xr;j; each of which
takes values 0, 1, 2, … , K with probabilities
qr;j;0; qr;j;1; qr;j;2:::qr;j;Kf g; then Ns tð Þ is the sum

of the R� J independent random variables
Ns r; j; tð Þ; where, as in 2.1.3(i), each Ns r; j; tð Þ is
a mixture of Binomial distributions, i.e.,

Ns r; j; tð Þ �
Bin 0; hr;j

� �
with prob ¼ qr;j;0

Bin 1; hr;j
� �

with prob ¼ qr;j;1
:::::::::::::::::::::::::

Bin K; hr;j
� �

with prob ¼ qr;j;K

8>>><
>>>:
for r ¼ 1; :::;R; j ¼ 1; :::; J

As before, each of the R� J mixture distribu-
tions is well defined, with means and variances
for r¼ 1, .R and j¼ 1, .J:

E Ns r; j; tð Þ½ � ¼ E Xr;j½ �hr;j
Var Ns r; j; tð Þ½ � ¼ E Xr;j½ �hr;j 1�hr;j

� �þ h2r;jVar Xr;j½ �

And hence the full distribution can be obtained
as the convolution of the R� J separate mixture
distributions, and its mean and variance are:

E Ns tð Þ½ � ¼
XR
r¼1

XJ

j¼1

E Ns r; j; tð Þ½ �

Var Ns tð Þ½ � ¼
XR
r¼1

XJ

j¼1

Var Ns r; j; tð Þ½ �

ii. If the numbers of arrivals of patients type r
(r¼ 1, … , R) at time uj (j¼ 1, … , J) are inde-
pendent Poisson random variables with means
kr;j; then as in 2.1.3(ii), each Ns r; j; tð Þ has a
Poisson distribution with mean:

E Ns r; j; tð Þ½ � ¼ kr;jhr;j

And Ns tð Þ has a Poisson distribution with mean:

E Ns tð Þ½ � ¼
XR
r¼1

XJ

j¼1

kr;jhr;j

iii. As argued in 2.1.3(iii), if the numbers of
patients of the R types who arrive at the J
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times are a combination of independent gen-
eral distributions for some patient types and
Poisson distributions for the other patient
types, then Ns tð Þ will be the sum of R� J inde-
pendent random variables, some being mixtures
of Binomial distributions and the remainder
being Poisson distributions. Furthermore, the
same arguments can be further generalised, and
the distribution of Ns tð Þ can again be obtained
as the convolution of known distributions, some
mixtures of Binomials and some Poisson, with
mean and variance obtained from the obvious
extensions of the formulae in 2.1.2(iii).

2.2. Continuous time systems

Having introduced cases 2.1.1, 2.1.2 and 2.1.3 as the
building blocks of the results for discrete-time sys-
tems, it can be seen that all three are in fact special
cases of 2.1.4. Hence, in this overview of results for
continuous time systems, we go directly to the
equivalent of 2.1.4. Central to this overview is the
observation that many of the available results for
continuous time systems, for example, Eick et al.
(1993) and Massey and Whitt (1994), assume arriv-
als occur as homogeneous or non-homogeneous
Poisson processes. In these cases, the results of
interest correspond to just 2.1.4(ii), and hence:

If the arrivals of patients type r (r ¼ 1, … , R) at
time u are independent Poisson processes with
mean krðuÞ; this can be viewed as the limit of case
2.1.4(ii) as the uj values get infinitesimally close
together. Hence, as in 2.1.4(ii), each Ns r; j; tð Þ con-
tinues to have a Poisson distribution with mean:

E Ns r; j; tð Þ½ � ¼ kr;jhr;j ¼ kr;jps r; uj; tð Þ
Thus their sum over r and over uj; i.e., Ns tð Þ; also
continues to have a Poisson distribution, with mean:

E Ns tð Þ½ � ¼
XR
r¼1

XJ

j¼1

kr;jps r; uj; tð Þ

And taking the limit as the uj values get infinitesi-
mally close together maintains the Poisson distribu-
tion, now with the mean:

E Ns tð Þ½ � ¼
XR
r¼1

ð
u<t

kr uð Þps r; u; tð Þdu

Where more general continuous time assumptions
are made, for example, compound Poisson arrivals, as
in Fakinos (1984) and Economou and Fakinos (1999),
we note that these cases can be tackled as the limit of
the more general case 2.1.4(i), as the uj values get
infinitesimally close together. However, this does not
lead to the simple form of results above.

2.3. Single-node infinite-server systems

All the results presented in Sections 2.1 and 2.2
apply directly to single-node infinite-server systems,
by simply noting that the state of interest (s) is
whether the patient is at the single node. Hence
by definition:

ps r; u; tð Þ ¼ prob½ðservice time of type r patient

arriving at time uÞ � t�uð Þ�

For example, consider a hospital that schedules
fixed numbers of patients for surgery on each of the
7 days of the week, say x1; x2; :::; x7; and where all
patients have lengths of stay sampled from the
same distribution, i.e., fl0; l1; l2; ::::g; where li ¼
probðstay ¼ i daysÞ; l0 includes the probability that
a patient does not attend, and L'i ¼ probðstay �
i daysÞ: Then applying result 2.1.4(i) for the special
case of deterministic arrivals, there is only one type
of patient (i.e., R¼ 1), so if we are interested in the
demand for beds on the following Monday from a
week’s worth of scheduled patients:

Ns tð Þ ¼
X1
r¼1

X7
j¼1

Ns r; j; tð Þ

where

Ns 1; j; tð Þ � Bin xj; h1;j
� �

and

h1;j ¼ ps 1; j; 8ð Þ ¼ prob service time of patientð Þ½
� 8�jð Þ� ¼ L08�j

Hence, Ns tð Þ is the sum of seven independent bino-
mial distributions. Therefore, its distribution can be
obtained by convolution of the seven separate bino-
mial distributions if required, and its mean and
variance are simply:

E Ns tð Þ½ � ¼
X7
j¼1

xjL
0
8�j

Var Ns tð Þ½ � ¼
X7
j¼1

xjL
0
8�j 1� L08�j

� �

Clearly result 2.1.4(i) could also cope in a very
similar way with the more involved case where there
is more than one type of scheduled patient (i.e.,
R> 1) and/or lengths of stay are dependent on the
day of admission.

Similarly, result 2.1.4(i) can also be used to cope
with predicting bed demand for situations where
schedules are more stochastic in nature, and the dis-
crete time or continuous time versions of results
2.1.4(ii) and (iii) can be used to model demands
generated respectively by non-elective admissions to
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hospital and by combinations of elective and non-
elective admissions.

Whilst real hospital behaviour is of course in con-
tinuous time, the daily routine of much hospital
inpatient activity and the purposes for which the mod-
els are designed means that inpatient care has mainly
been modelled in discrete time, with the choice of
time-step dependent on the decisions to be made and
the scale of any time effects. So, for example, Bagust
et al. (1999) and Helm and van Oyen (2014) use daily
time-steps when modelling inpatient bed requirements
across a hospital, whereas Isken et al. (2011) suggest
using 2- or 4-h discrete time steps for modelling an
obstetrics department. An exception is Tan, Tan, and
Lau (2013) who model an Emergency Department in
continuous time by assuming exponential service times
and use differential equations.

The infinite-server approach can be applied to any
single-node system formulated in discrete time via
results 2.1.4(i) to (iii) respectively for the cases where
numbers of arrivals of patient types having general
distributions, Poisson distributions, and some of each.
Furthermore, in purely algorithmic terms, an algo-
rithm for 2.1.4(iii) will naturally include algorithms
for 2.1.4(i) and 2.1.4(ii). Hence, to aid the implemen-
tation of the consolidated infinite-server approach, we
next provide some pseudocode for 2.1.4(iii).

Pseudocode for case 2.1.4 (iii) – This pseudocode
is suitable for any single-node system formulated as
an infinite-server queue. Hence, the “node” can refer
to any suitable patient-state of interest, be it occupying
a bed on a ward, under the care of a particular health-
care professional, or simply being in a state of interest.
However, for ease of understanding the pseudocode
below is explained in the language corresponding to
the node of interest being a hospital ward which
receives both planned and unplanned admissions of
different types of patients, each type having its own
arrival pattern and length of stay distribution.

We consider the case where we want to obtain the
probability distribution of the ward occupancy at time
t. As in case 2.1.4 (iii) there are R types of patients
(r¼ 1, … , R) and J possible arrival times
{uj : j ¼ 1; :::; Jg; and we denote the number of
patients of type r who arrived at time uj by the ran-
dom variable Ns r; j; tð Þ: Associated with each type-time
combination r; jð Þ there is a probability that the patient
is still in hospital at time t, which we denoted by

hr;j ¼ ps r; uj; tð Þ
¼ prob½patient of type r who arrives at time

uj has a length of stay � t�ujð Þ�

We first note that there may well be some, quite
possibly many, r; jð Þ combinations for which there
are no possible patients. We, therefore, just consider

the feasible combinations, and assume that for each
feasible combination r; jð Þ the length of stay distri-
bution is known, and so hr;j is known.

Also for each feasible combination r; jð Þ we
assume that the number of arrivals is an independ-
ent random variable, either with a known general
distribution (as in 2.1.4(i)), i.e., taking values 0, 1, 2,
… , K with probabilities qr;j;0; qr;j;1; qr;j;2:::qr;j;Kf g; or
has a Poisson distribution with mean kr;j (as in
2.1.4(ii)). Note that for the general distributions we
can assume each random variable has the same
range (0 to K) by inserting zero probabilities
where necessary.

The algorithm then has three parts.

Part 1: Calculate the mixture distribution for
each feasible combination r; jð Þ for which the num-
ber of arrivals has a general distribution.

For each feasible combination r; jð Þ for which the
number of arrivals has a general distribution, i.e.,
takes values 0, 1, 2, … , K with probabilities
qr;j;0; qr;j;1; qr;j;2:::qr;j;Kf g; obtain the mixture distribu-

tion of the number of patients in hospital at time t
as in 2.1.4(i), i.e., using:

N 's r; j; tð Þ �
Bin 0; hr;j

� �
with prob ¼ qr;j;0

Bin 1; hr;j
� �

with prob ¼ qr;j;1
:::::::::::::::::::::::::

Bin K; hr;j
� �

with prob ¼ qr;j;K

8>>><
>>>:

Note that in this equation the prime is intro-
duced to indicate that this holds for r; jð Þ combina-
tions for which the number of arrivals takes a
general distribution.

Part 2: Calculate the overall Poisson distribution
for all feasible combinations r; jð Þ for which the
number of arrivals has a Poisson distribution.

For all feasible combinations r; jð Þ for which the
number of arrivals has a Poisson distribution with
mean kr;j; obtain the Poisson distribution of their
combined total number of patients in hospital at
time t as in 2.1.4(ii), i.e.

N ''s tð Þ � Poisson
XR00

r¼1

XJ00
j¼1

kr;jhr;j

0
@

1
A

Note that in this equation the double primes are
introduced to indicate that the summation is only over
the r; jð Þ combinations which have Poisson arrivals.

Part 3: Calculate the convolution of all the mix-
ture distributions together with the one Poisson
distribution.

The convolution of two distributions on finite
ranges (0, K1) and (0, K2) results in a convoluted
distribution on the finite range (0, K1 þ K2). Hence,
the distribution of the total number of patients
resulting from feasible combinations r; jð Þ for which
the number of arrivals has a general distribution
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will also be on a finite range. Adding the final
Poisson distribution will in theory result in a distri-
bution on an infinite range, although for practical
purposes this can be truncated.

It is also expected that some practical limit will
be introduced to put a finite limit on how far back
in time it is necessary to go when choosing the pos-
sible arrival times {uj : j ¼ 1; :::; Jg:

For the case where the problem under consider-
ation is strategic, the input distributions would prob-
ably reflect planned arrivals of elective patients, their
associated DNA probabilities, observed distributions of
arrivals of non-elective patients and historic length of
stay distributions of all the patient types. When the
problem under consideration is operational the input
distributions would probably reflect known arrivals of
the elective and non-elective patients currently in hos-
pital, and their conditional length of stay distributions,
given that they have already been in hospital for a
known length of time.

2.4. Multiple-node infinite-server systems

As soon as multiple-node systems are considered
the possible states of a patient can be much more
varied, ranging from whether they are in the system
at all, which node they are at, or perhaps what
number visit they are making to a particular node.
For some multiple-node systems, these possibilities
can be dealt with quite well, for others they are
much more problematic.

Massey and Whitt’s (1993) influential early work
on networks of infinite-server queues addressed
many of these issues within a continuous time
framework, although the daily routine of hospitals
has again meant that directly useful models for mul-
tiple-node systems have been formulated mainly in
discrete time.

2.4.1. Rooted directed trees
One type of multiple-node system for which most of
the previous single-node results have an equivalent is
referred to as a “rooted directed tree”. These are sys-
tems with only one entry point, no merging, no repeat
visits, and for practical cases a finite number of nodes.
Figure 1 shows a typical small example.

Note first of all that the finite number of nodes
and no repeat visits mean that there are only a finite
number of patient pathways, each of which can be
used to define a type of patient with a specific set of
requirements. As in single-node systems, the unlim-
ited numbers of servers at each node means that
each patient of each type proceeds along their path-
way independently of all other patients.

If the interest is to model the total occupancy of
the network of nodes, then this can be formulated
as a single-node system, where patient types are
defined according to the route that they follow, and
each type of patient’s service time is their total ser-
vice time across all the nodes that they visit. In the-
oretical terms, the probability distribution of total
service time will be the convolution of the distribu-
tions of the individual node service times, whereas
empirically one might estimate the distribution dir-
ectly from total service time data. In either case
results, 2.1.4(i)-(iii) can again be applied.

If the interest is to model the occupancy of one
of the nodes (say node 3 in the simple example of
Figure 2), then the state of interest (s) for any
patient is occupancy of node 3. This can also be
tackled using results 2.1.4(i)-(iii), again defining
patient types according to the route that they follow.
Only patient types whose route includes node 3 can
contribute to its occupancy, so in the simple
example, this is just the patient types following
routes 1-3-5 and 1-2-3-5. For the first of these
types:

p3 r; u; tð Þ ¼ prob combined service time atð½

nodes 1 & 3Þ � t�uð Þ�

�prob service time at node 1ð Þ � t�uð Þ� �

And for the second of these types:

p3 r; u; tð Þ ¼ prob combined service time atð½

nodes 1; 2 & 3Þ � t�uð Þ�
�prob combined service time at nodes 1 & 2ð Þ½

� t�uð Þ�
As above, probability distributions for combined

service times can be obtained as convolutions of the

Figure 1. A typical (small) directed tree.
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component distributions, or estimated directly from
data on combined service times. In either case,
results 2.1.4(i)-(iii) can again be applied.

2.4.2. More complicated networks
Once a network goes beyond the restrictions of a
rooted directed tree, a variety of problematic issues
can arise, including multiple entry points, merging
of pathways and multiple visits to nodes. Figure 2
shows a simple example of a tree with merging,
which can be considered as having two types of
patient, who take the routes 1-2-3 and 1-3,
respectively.

If the numbers arriving of the two types of
patient are independent, then by results 2.1.4(i)-(iii)
they will give rise to independent distributions of
numbers of each type at each node, which can be
combined in the usual ways.

However, if numbers of arrivals of the two
patient types are not independent, very different
results can occur. To take a simple example, sup-
pose that lengths of stay at nodes 1, 2 and 3 are
deterministic, spending 2 days at node 1, 2 days at
node 2 (if needed) and 4 days at node 3. Six patients
arrive at node 1 at time 0, each has a 0.7 chance of
going via node 2, and our interest is in patients at
node 3 on day 5. All the patients who go via node 2
will be at node 3 on day 5 and so will have a
Bin(6,0.7) distribution, whilst all the patients who
go direct to node 3 will also be at node 3 on day 5
and will have a Bin(6,0.3). However, these numbers
of patients are clearly not independent, and in fact,
their total is guaranteed to be 6 for this particular
example. Hence this sort of scenario is not covered
by results 2.1.4(i)–(iii), although in this case by care-
ful consideration of the particular problem it has
been possible to calculate the occupancy of interest.

When some types of patients can return to a
node, this can be modelled by introducing a dummy
node, as shown in Figure 3 for a simple example
where there are just two possible routes: 1-2 and 1-
2-1�. In this case, each route can again define a type
of patient whose location (including 1�) in the net-
work can be modelled using results 2.1.4(i)–(iii).
However, the numbers at node 1 and node 1� will
not be independent, and so cannot be easily com-
bined to give the distribution of the number of
patients at the real node 1. Utley et al. (2009) specu-
late that methods for tackling issues such as this

could be based upon using multinomial distribu-
tions to describe the probabilities of the same
patients being in each or more than one location.

Drawing on the influence of Massey and Whitt
(1993) led Helm and van Oyen (2014) to propose a
rather different way to deal with multiple-node net-
works. In particular, they argue that for predicting
occupancy of a node (or a group of nodes), all that
is needed to use results 2.1.4(i)–(iii) are the values
of ps r; u; tð Þ for each patient type and for the
node(s) of interest. Thus, the routes by which
patients get to a node, or whether it is the first or a
later visit, is immaterial to predicting the occupancy.
Their approach relies on estimating the values of
ps r; u; tð Þ from available data, rather than the more
usual method involving combining routing probabil-
ities and service time distributions, see Section 3.2
for further details.

2.4.3. Pseudocode for multiple-node infinite-ser-
ver systems
As explained in the previous two sub-sections, quite
a number of multiple-node systems can be tackled
by a suitable choice of the state of interest in results
2.1.4(i)–(iii). Hence, the previous pseudocode is also
directly applicable to these systems, with a suitable
change of language to reflect the chosen definition
of state of interest.

3. Healthcare applications

Healthcare applications to date of infinite-server
queues have been dominated by studies of inpatient
bed requirements, be it for a single ward, for mul-
tiple wards or for a whole hospital. However, there
are also examples where the emphasis has been on
staffing requirements, for example, in emergency
departments, accident and emergency departments
and community care. Modelling has been to support
strategic, tactical and operational decision-making,
and the models used have been time-homogeneous
and time-inhomogeneous. In Section 3.1, we
describe time-homogeneous models which are
mainly used for strategic and tactical decision-mak-
ing, and in Section 3.2, we describe time-inhomo-
geneous models which are used to support all three
levels of decision-making.

Figure 2. A simple tree with merging.
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3.1. Time-homogeneous models

Various authors have used time-homogeneous infin-
ite-server models to address bed capacity issues in
circumstances where it is believed that time-depend-
ence of arrival rates are second order effects. By
assuming random arrivals the well-known Erlang
Loss formula, see for example Gross and Harris
(1985), can be applied. This means that the steady-
state probability that patients are turned away
because all beds are full can be obtained simply
from the truncated steady-state Poisson distribution
of bed occupancy for the equivalent infinite-ser-
ver system.

An early example is Bagust et al. (1999), writing
in the British Medical Journal, who used a time-
homogeneous model to demonstrate the implica-
tions of fluctuating and unpredictable demands for
emergency admission for hospital management, and
to quantify the daily risk of having insufficient beds.
In fact, they chose to simulate the loss system rather
than use the analytical Erlang loss formula, but the
insights provided are the same. For a pool of 200
beds and the then current length of stay distribu-
tions, they showed that whilst average occupancy
levels of 85% were likely to be achievable with rela-
tively small numbers of patients turned away per
year, a 90% occupancy level caused those numbers
to grow dramatically.

In a later and more comprehensive paper, de
Bruin, Bekker, van Zanten, and Koole (2010) first
investigate how well the homogeneous Poisson
arrivals assumption of the M/G/c/c model fits data
collected on 24 clinical wards over a 3-year period.
They found that Poisson distributions provided
good fits for unscheduled patients, and more sur-
prising they also showed good fits for scheduled
patients for roughly half the wards, albeit at differ-
ent levels for weekdays and weekends. They then
argue that the M/G/c/c model provides an accept-
able model for most wards, and demonstrate its use,
including the Erlang loss formula, to help hospital
managers judge acceptable occupancy levels for
wards of different sizes and case mixes, and to esti-
mate the benefits of merging operational units.

More recently, Monks et al. (2016), writing for a
medical audience, used a three-node time-homoge-
neous infinite-server model to investigate capacity
requirements for a stroke service comprising of an
acute stroke unit, a rehabilitation unit and early
supported discharge. They combine simulated

infinite-server results with the Erlang Loss formula
to estimate delay probabilities for patients needing
acute beds and for patients needing rehabilitation
beds under different scenarios, including current
service, pooling (or partial pooling) of the acute and
rehabilitation beds, and changes in the throughput
of patients.

In a similar time-homogeneous vein, but consid-
ering elective patients, Gallivan et al. (2002) present
results for an infinite-server model with constant
daily arrivals of scheduled patients and a general
distribution of length of stay. Also writing for a
medical audience, their results comparing the distri-
bution of bed demand with capacity clearly show
how variability in length of stay contributes to vari-
ability in bed occupancy, and that the introduction
of booked admissions would be unlikely to enable
wards to operate at substantially increased bed occu-
pancy levels. They also highlight and discuss the
important issue of model complexity in this context.
Infinite-server models deliberately do not attempt to
include details of what might happen in practice in
the event of bed requirements exceeding bed avail-
ability. They argue that attempting to do so might
well overcomplicate the model, and that “…models
do not need to replicate the full complexity of hos-
pital operation to provide useful insights… .” and
“… .models that attempt to do so can hinder under-
standing with confusing and irrelevant detail”.

3.2. Time-inhomogeneous models

A second area of application involves the use of
time-inhomogeneous infinite-server queues to tackle
the “hospital admission scheduling problem”, i.e.,
essentially tailoring admission schedules to make
good use of available beds. There are two versions
of how this task can be tackled. Version 1 is to sim-
ply use the infinite-server models to predict the bed
usage of any admission schedule that is being con-
sidered, version 2 combines the predictive model
with an optimisation algorithm intended to find the
“best” admission schedule.

An early example of version 1, i.e., predictive
modelling, is Utley et al. (2003), who assume time-
dependent arrivals in discrete time to represent both
scheduled and unscheduled admissions. Their for-
mulation corresponds to a particular case of model
2.1.4(iii) in which the two types of arrival (R¼ 2)
are scheduled and unscheduled. The numbers of
scheduled arrivals are assumed to be deterministic

Figure 3. Using a dummy node for multiple visits.
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and can differ by day of the week. Each arrival has
a fixed probability of not attending, and a common
length of stay distribution is assumed. The number
of unscheduled arrivals have a general distribution,
which can differ by day of the week, and they are
assumed to have the same length of stay distribution
as the scheduled patients. Their results include for-
mulae for the steady-state mean and variance of bed
demand for each day of the week for any assumed
admission schedule. They demonstrate their results
on data based upon a cardiac surgery department;
and using the central limit theorem to justify the
use of the normal distribution they calculate proba-
bilities of daily demand exceeding bed capacity. As
with Gallivan et al. (2002), they deliberately make
no attempt to model what might happen if demand
exceeds capacity.

Utley, Jit, and Gallivan (2008) use essentially the
same infinite-server models to investigate a policy
issue associated with the possible introduction of
treatment centres. In theory, treatment centres have
the potential to be more efficient than normal wards
because they concentrate on homogeneous subsets
of patients, and so reduce the variability in lengths
of stay. Based on data for UK urology inpatient
services, they use a range of scenarios to show how
increases in efficiency may well be small or indeed
not possible. Difficulties in achieving efficiencies are
shown likely exist if only one or two hospitals are
served by the treatment centre, and/or numbers of
emergency patients are high, and/or the treatment
centre patients turn out to be less homogeneous
than intended.

Bekker and de Bruin (2010) use predictive mod-
els for continuous time-inhomogeneous infinite-ser-
ver systems to investigate capacity planning issues
for clinical wards. Like de Bruin et al. (2010) they
argue that important insights can be obtained by
making the simplifying assumption that both sched-
uled and unscheduled arrivals can be represented as
Poisson. Making a further assumption of hyper-
exponential distributions of length of stay, they go
on to use analytical M(t)/H/1 models combined
with two different approximations (approximate
Erlang loss formula and the square root staffing
rule) to demonstrate how the impact of weekly fluc-
tuations in arrival rates can have serious implica-
tions for the required bed capacity for clinical
wards. They also go on to show how within day
fluctuations in arrival rates can often be ironed out
in this setting, but that they become important
when setting staffing levels in an emer-
gency department.

In the first approximation, they assume that
arrivals are lost when beds are full (rather than
attempt to model queueing patients or early

discharges), and hence that performance is repre-
sented via a loss probability. This they estimate by
applying the modified-offered-load approximation
of Massey and Whitt (1994), which applies the
steady-state Erlang loss formula with traffic intensity
replaced by the time-dependent bed demand.
Algorithms to improve upon this approximation for
the case of exponential service times, see Alnowibet
and Perros (2009), and for more general service
times, see Izady and Worthington (2011), are
now available.

In the second approximation, they highlight the
potential value of using the square root staffing rule,
a heuristic rule based on the work of Jennings,
Mandelbaum, Massey, and Whitt (1996). The rule is
usually associated with call centre staffing models,
assumes Poisson arrivals and approximates the
resulting Poisson distribution of demand by a
Normal distribution to guide the extent to which
staffing levels should exceed the time-dependent
expected demands levels.

The applications of time-inhomogeneous models
described so far have been concerned with strategic
or tactical decisions about resourcing and/or patient
scheduling. However, the same predictive time-
dependent equations apply equally well for short-
term planning decisions. Pagel et al. (2017) describe
their use for forecasting the short-term demand for
beds in an intensive care unit (ICU). Given their
aim to forecast bed requirements in the next few
days, they need to extend the standard formulation
incorporating emergency and elective patients by
adding a third type of patient, namely those patients
already in the ICU. A further interesting feature of
this paper is its description of the implementation
of this model, and an evaluation of the implementa-
tion over a period of more than 3 years.

Gallivan and Utley (2005) develop a version 2
model, i.e., an optimisation approach, for the hos-
pital admission scheduling problem. Their first step
is a version 1 model providing analytic expressions
for mean and variance of bed demand. The model
they use is very similar to that of Utley et al. (2003),
generalised to include patient types (e.g. defined by
health-related groups) and simplified a little to
assume Poisson unscheduled arrivals. After some
discussion of possible optimisation criteria, they
propose a linear programming (LP) formulation
derived from road traffic modelling which mini-
mises the maximum daily traffic intensities, subject
to achieving target admission rates of patients of the
different types. They demonstrate the approach on
an example problem, based on a 32-bedded ortho-
paedic centre, which gives rise to a small LP prob-
lem, and suggests that the same approach could
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work well for significantly bigger and more detailed
formulations.

Also important is their recognition that their LP
formulation only approximates the “real” problem.
In particular, the traffic intensities they use in their
assumed objective and the admission levels they use
in their assumed constraints are linear functions of
scheduled admissions (i.e., the decision variables),
hence enabling their LP formulation, whereas the
probability of demand exceeding bed capacity
(which more closely mirrors real management
objectives or constraints) is not linear in the deci-
sion variables. Clearly, a “perfect” model would
need to deal with this sort of nonlinearity, alongside
recognition that the infinite-server formulation itself
deliberately omits detailed modelling of how par-
ticular hospitals might deal with situations where
demand exceeds capacity.

Isken et al. (2011) develop and apply methods
based on the single-node results of Gallivan and
Utley (2005) to tackle bed occupancy modelling and
procedure scheduling for an obstetrics department
consisting of four distinct units, and hence four
nodes. Their formulation involves 11 patient types,
each with specific requirements, and hence well-
specified routes through the four nodes, with no
repeat visits. However, rather than use the multi-
node results described in Section 2.4, they assume
that transfers of scheduled admissions between
nodes can be represented as deterministic processes
and hence they use single-node results to provide
approximate formulae for the means and variances
of daily bed demands at each node. Using their sin-
gle-node results they then go on to propose an LP
formulation based on smoothing daily occupancies,
and a non-linear formulation which uses a normal
approximation for the probabilities that daily
demands exceed capacities.

Two further interesting features of their work are
the development of open source software tools to
implement their models, and the use of simulation
models to attempt to validate some of the approxi-
mations that they use.

Presenting a more rigorous treatment of multi-
node systems, Helm and van Oyen (2014) tackle the
whole hospital admission scheduling problem in
which each ward is represented by a node. They
measure hospital performance in terms of through-
puts, off-ward boarding of patients (i.e., when
patients are diverted to other wards because their
intended ward is full) and refused admissions (i.e.,
when admissions are refused because the hospital is
full). In order to do so, they develop two stochastic
location models, PALM (Poisson arrival-location
model) and d-CALM (deterministic controlled-
arrival-location model) to provide the values of

ps r; u; tð Þ for each patient type and each node which
are needed to use results 2.1.4(i)-(iii). They assume
time-inhomogeneous Poisson arrivals of non-elective
patients and day-of-week-dependent deterministic
arrivals of elective patients, leading to expressions
for the means of the Poisson distributions of the
non-elective bed demands and for the means and
variances of elective bed demands by ward and day.

In order to formulate a hospital-wide optimisa-
tion problem that is linear in its decision variables
(essentially the daily throughputs of different patient
types), they introduce linearised approximate
expressions for their “blocking” probabilities, i.e.,
the probabilities that demands for each ward exceed
their capacities, and the probability that total
demand exceeds hospital capacity. They provide two
formulations, one which maximises the weighted
sum of throughputs of elective patients subject to
constraints on the approximate blocking probabil-
ities, and the second controlling blocking probabil-
ities subject to achieving desired throughputs. As
noted earlier, an important extra feature of their
paper is the development of a practical approach for
estimating values of ps r; u; tð Þ directly from available
data, given that the directly observable behaviour of
patients is influenced by the non-availability of beds
whereas the values of ps r; u; tð Þ that are required the
need to be unaffected by bed availability. Hence, an
important and innovative part of their paper is the
development of a statistical approach capable of
providing unbiased estimates of these probabilities.
However, because it is a purely statistical approach,
it does not naturally enable the probabilities to be
updated to reflect actions that management
might take.

Moving away from healthcare applications
focussed on inpatient beds, Utley et al. (2009)
develop predictive results for multimode systems of
a “directed rooted tree” type in order to tackle the
problem of estimating demand for community
health services. In this work, nodes represent the
state that a patient is in, which could be a physical
location, or a type of therapy, a health condition, or
a combination thereof. They assume general inde-
pendent time-inhomogeneous distributions of arriv-
als in discrete time and general sojourn time
distributions for each service to give time-dependent
expressions for the means and variances of demand
levels for each service. They illustrate the approach
by predicting the growth of demand during the first
year of a newly configured community service for
people with common mental health problems.
Following the spirit of earlier work, this information
on “unfettered” demand can be used to guide cap-
acity-related decisions.
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Another area for healthcare applications is emer-
gency departments where, as noted by Bekker and
de Bruin (2010), the within-day variations in
demand can be important for deciding staffing lev-
els. Izady and Worthington (2012) formulate a UK
accident and emergency department (AED) as a
time-inhomogeneous network of finite server queues
with Poisson arrivals (which they simulate), but use
an analytic infinite-server multimode model com-
bined with the square root staffing law to guide the
hourly staffing levels of different types in the differ-
ent service areas within the AED. The value of the
infinite-server model here is to provide a heuristic
to narrow down from a very large number of possi-
bilities the staffing patterns worth simulating in
order to find an efficient way to achieve waiting
time targets.

Tan et al. (2013) also consider an emergency
department setting in which they consider hourly
staffing levels of doctors in two main areas (resusci-
tation/critical care and ambulatory care), but with
the added features of (i) switching staff between the
areas and (ii) patients having multiple movements
between the areas. Their particular interest is to
show the potential benefit of dynamic allocation of
staff, in particular, switching doctors between the
two areas based on real-time modelling of demand
levels. Using infinite-server simulation models and
heuristics based on the square root staffing law they
design and evaluate static staffing schedules and
dynamic staffing patterns, using historic arrival pat-
terns for the former and historic and real-time
arrivals for the latter. Their use of simulation mod-
els instead of analytical models brings with it some
of the extra challenges associated with simulation
optimisation, see, for example, Fu (2014) for an
intensive introduction to simulation optimisation.

4. Future developments

Three directions for future developments are
described here. The first direction is essentially new
healthcare problems tackled using existing infinite-
server models, the second is healthcare problems for
which new infinite-server model development is
required, the third is new ways of using infinite-ser-
ver models (old and new) in combination with other
models.

4.1. New applications of existing models

Existing models have mainly been used to inform
strategic or tactical decision-making concerning
major hospital resources for which arrival patterns,
service times and routing probabilities are well
established (with appropriately stable historic data)

and/or subject to control. As data increasingly
become available for a greater range of services in
hospitals or in the community, there will be scope
for addressing their strategic or tactical resourcing
decisions as well.

A second data development is the growing
amount of real-time data becoming available in
healthcare, offering the scope for more operational
resource allocation decisions to be underpinned by
system modelling. The analytical nature of many
infinite-server models and their associated short
runtimes will be an advantage in this respect. The
work of Pagel et al. (2017) on short-term predic-
tions of ICU bed demands is an early example of
this sort of work.

A third type of new application might stem from
the scope for creative interpretations of the concept
of a model that predicts the occurrence of
“problems” or “pressure”, without any attempt to
model the precise consequences of that pressure.
For example, Suen (2015) shows how infinite-server
models can be used to create convenient and
insightful performance indicators to compare the
performance of hospitals in a way that allows for
their differing mixes of patients.

4.2. Healthcare problems requiring new infinite-
server model developments

A key characteristic of healthcare applications of
infinite-server models has been the assumed inde-
pendent arrivals of different patient types and the
assumption that patients progress through the ser-
vice (or network of services) independently once
they have arrived. Hence for cases where arrivals of
patient types, either on the same day or on different
days of the week, are correlated new model develop-
ments are required. Also, as outlined in Section
2.4.2, for cases where the network cannot be
described as a rooted directed tree, the assumption
of independence of travel breaks down and more
work is required to develop appropriate model-
ling approaches.

Some interesting early work on some aspects of
non-independence is described in Fakinos (1984)
who considers infinite-server systems where arrivals
occur in groups, and where the within-group service
times are allowed to be dependent. Assuming that
arrivals are generated by a non-homogeneous com-
pound Poisson process (i.e., groups arrive as a non-
homogeneous Poisson process, with group size hav-
ing a known distribution), Fakinos uses probability
generating functions to show that the number in the
system at time t will have a compound Poisson dis-
tribution (i.e., number in the system can be seen as
being made up of groups of individuals, where the
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number of groups is Poisson and the distribution of
group sizes is known). Note that the mean of the
Poisson distribution and the probability distribution
of group sizes are derived from the parameters of
the arrival process and the joint distributions of ser-
vice times associated with the groups of arrivals of
different sizes. Economou and Fakinos (1999) later
show that the same approach can be extended to
the case where there can be more than one type of
customer in a group of arrivals, with each customer
type having their own service time characteristics.

4.3. Combining infinite-server models with
other models

Multi-fidelity modelling is a phrase that is more
common in engineering than in management sci-
ence but is one that encompasses key issues for the
application of models in management decision-mak-
ing. In engineering, a high fidelity model would
often be a model that is accurate enough for its
intended purpose but requiring a high computa-
tional cost; whereas a low fidelity model would have
a lower computational cost but would not have the
desired accuracy. In such circumstances, there can
be scope for using the low fidelity model to, in
some sense, narrow down the problem or solutions
of interest, before using the high fidelity model to
come to a final decision. Note that this concept goes
beyond the merits of longer run lengths to achieve
greater statistical accuracy common in simulation
studies, and is concerned with the level of detail
included in the model, and its consequential need
for greater computational effort.

Xu, Lee, and Celik (2014) develop this principle
in a management science simulation modelling set-
ting, using a simple example of a manufacturing
process to demonstrate the concept and the nature
of results. They describe the principle as using a low
fidelity simulation model to provide a preliminary
comparison of all the possible options, before using
a high fidelity simulation model to choose amongst
the options that the low fidelity model identifies as
most promising. Where the low fidelity model is an
analytical model (as for the infinite-server models)
rather than a simulation model, the scope for com-
putational savings, and hence the potential advan-
tage of the approach, is even greater.

A significant challenge for multi-fidelity model-
ling is the requirement that the low fidelity model is
capable of ordering potential solutions sufficiently
well that those identified as high performers accord-
ing to the low fidelity model will also be high per-
formers according to the high fidelity model. The
fact that infinite-server models reflect many of the
important characteristics known to be important in

the solution of the real-life problems strengthens the
likelihood that the required correlation will be pre-
sent. The application of infinite-server models by
Izady and Worthington (2012) to Accident and
Emergency staffing patterns has some of these char-
acteristics. Although they did not use their low
fidelity model to consider all possible solutions, they
nevertheless used it to find solutions that were going
to be markedly better than existing staffing patterns.

Chow, Puterman, Salehirad, Huang, and Atkins
(2011) provide a variation on the above theme
which is interesting in a number of respects. Their
low fidelity model is a mixed integer programming
model designed to schedule surgical admissions so
as to stabilise expected bed occupancies. This is
then used alongside a (high fidelity) infinite-server
simulation model to more accurately predict the
likely stochastic consequences of schedules identified
as “good” by the mixed integer programming model.
As with some previous examples, the simulation
model of the infinite-server system could, in theory,
be replaced by an analytical model, however, in some
circumstances, the simulation representation is quite
convenient. Finally, the choice of an infinite-server
model as a high fidelity model emphasises that the
high fidelity model could well itself be an approxima-
tion of the real situation, but one that is deemed
accurate enough for the intended purpose. Clearly,
infinite-server models have the potential to take on a
number of roles in situations where multi-fidelity
models are being considered.

5. Summary

Infinite-server queueing models have a well-estab-
lished track record in being used via the concept of
offered load in healthcare applications. The math-
ematical approaches developed which underpin this
work have taken a variety of forms, each with their
own set of assumptions and notations. However,
they are all centred around the concept of inde-
pendence of travel which is guaranteed by the
assumption of infinite servers. The first part of this
paper has therefore been to consolidate the
approaches and results used in this work in a form
that is intended to be easily understood and easily
applied by operational researchers interested to use
them or to develop further results. Pseudocode for
implementing the central set of results is also
included to further facilitate such work.

The second part of the paper has reviewed, in
terms of the consolidated theory, healthcare applica-
tions ranging from capacity planning for hospital
wards to staff scheduling in A&E through to admis-
sion scheduling to smooth inpatient workloads.
Some applications have used infinite-server models
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in a purely predictive sense, whereas others have
integrated the predictions into optimisation formu-
lations in an attempt to find optimal solutions, e.g.
admission schedules. Most of the early examples
concentrated on tackling strategic decisions and
made use of historical data, whereas some more
recent examples have looked at more operational
decisions and have occasionally made use of near
real-time data. In some cases, modellers have found
it adequate to use time-homogeneous formulations
whilst others have chosen to use time-inhomogen-
eous formulations.

This review then leads to the identification of
three general directions for further work. New appli-
cations of existing models could be achieved simply
by greater awareness of, and access to, the infinite-
server modelling concepts and methods. Increasing
data availability across a wider set of services in hos-
pitals and in community service, some of it real-
time data, should also contribute to this larger set of
applications, including more support for operational
decision-making. There is also scope for more cre-
ative uses of the ethos of infinite-server models, i.e.,
they use relatively simple models to indicate the
pressure a system is under, and avoid the much
more complicated (or impossible) task of modelling
the consequences of that pressure.

The second general direction concerns new infin-
ite-server model development. In particular, this
needs to concentrate on approaches to deal with
arrival patterns within which numbers of different
types of patients cannot be considered as independ-
ent and also on approaches to deal with networks of
services which cannot be described as a rooted
directed tree.

The third general direction is, in fact, the arena
of multi-fidelity modelling in which the natural ana-
lytical characteristics of infinite-server models seem
particularly well suited to providing insightful and
inexpensive low fidelity models to be used in com-
bination with more expensive high fidelity models.

In summary, despite their unrealistic assumption
of infinite resources, and hence their inability to dir-
ectly model queues and queueing times, infinite-ser-
ver queueing models have played an important role
in supporting healthcare resourcing decisions, often
via the offered load concept. Our hope is that con-
solidating the existing theory in an accessible form,
providing a review of existing applications and iden-
tifying three directions for new work will enable fur-
ther applications of the existing theory, and guide
further developments of applicable theory.
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