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1. Introduction

Much recent philosophical attention has been devoted to the prospects
of the Best System Analysis (BSA) for yielding high-level chances, in-
cluding statistical mechanical and special science chances. But a foun-
dational worry about the BSA lurks: There don’t appear to be uniquely
correct measures of the degree to which a system exhibits theoretical
virtues, such as simplicity, strength, and fit. Nor does there appear to
be a uniquely correct exchange rate at which the theoretical virtues
trade off against one another in the determination of a best system.
Further, there may be no robustly best system; no system that comes
out best under any reasonable measures of the theoretical virtues and
exchange rate between them.

In the following, I argue that there plausibly is a set of tied-for-best
systems for our world (specifically, a set of very good systems, but no
robustly best system) and that some of these systems entail different
statistical mechanical probabilities. I argue that the advocate of the
BSA should conclude that (some of) the Best System chances for our
world are imprecise (set valued). Since I don’t mount a general defense
of the BSA, my thesis is conditional: If one adopts the BSA, then one
should believe in the existence of imprecise chances.”

In Section 2, I outline the BSA. In Section 3, I describe a recent argu-
ment for the conclusion that the best system for our world is one that
entails the fundamental dynamical laws together with the probabilities
of statistical mechanics (SM) and, derivatively, the probabilities of the
special sciences. Specifically, I focus on the argument as it has been
made in connection with so-called ‘Globalist” approaches to axiomatiz-
ing SM: approaches that seek to derive SM from axioms concerning
the initial state of the universe as a whole. In Section 4, I argue that
plausibly there’s no robustly best ‘Globalist” system for our world, but

* Even for someone who rejects the BSA, the discussion of the relation between
imprecise chance and credence in Section 6 below may be of interest because,
as noted in that section, there also appear to be reasons independent of the
BSA for believing in imprecise chances.
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rather a set of tied-for-best systems, some of which entail diverging
probabilities for SM. In Section 5, I turn my attention to so-called ‘Lo-
calist” approaches to SM — approaches that seek to derive SM from
axioms that concern the initial states of various subsystems of the uni-
verse — and argue that a similar conclusion follows in that context.
In Section 6, I seek to articulate the role that chance, when imprecise,
plays in constraining rational credence. In Section 7, I argue that the
sets of probabilities entailed by the tied-for-best systems play that role
(or at least that they do so as well as unique probabilities associated
with a robustly best system would play the role defined by precise
chance-credence coordination principles) and so should be regarded
by the advocate of the BSA as constituting imprecise chances.

2. The BSA

According to the BSA, which received its most significant development
by Lewis (1983, 366-8; 1986, xi, xiv—v, 121-31; 1994, esp. 478-82), the
laws are those regularities that are entailed by the set of axioms that
best systematizes the entire history of the world. The objective chances
are probabilities entailed by this best system. Lewis (1994, esp. 473-5)
combines the BSA with the thesis of Humean Supervenience (HS): the
thesis that the laws and chances supervene upon the Humean mosaic,
that is, (roughly speaking) upon the distribution of categorical (i.e. non-
modal), locally-instantiated properties throughout all of space-time.
When the BSA is combined with HS, the idea is that what gets sys-
tematized by the various competing systems is (parts of) the Humean
mosaic. I shan’t challenge HS in what follows: Most discussion of the
BSA has been conducted against the background of this assumption.
The goodness with which a set of axioms systematizes the Humean
mosaic is a function of the degree to which it exhibits the theoretical
virtues of simplicity, strength, and fit. A system is strong to the ex-
tent that it says “what will happen or what the chances will be when
situations of a certain kind arise” (Lewis 1994, 480). A system is sim-
ple to the extent that it comprises fewer axioms, or those axioms have
simpler forms (e.g. linear equations are simpler than polynomials of

PHILOSOPHERS’ IMPRINT

Imprecise Chance and the Best System Analysis

degree greater than 1). Often greater strength can be achieved at a cost
in terms of simplicity by adding or complicating axioms.

If the world is a certain way (if it contains lots of stochastic-looking
events), then a candidate system may achieve a good deal of strength
with little cost in simplicity by including probabilistic axioms, which
define a probability function (cf. Loewer 2004, 1119). It's natural to take
this to be a conditional function ch(X|Y) that maps proposition pairs
(X,Y) onto the reals in the [0, 1] interval, perhaps in accordance with
the Rényi-Popper axioms (Rényi 1970; Popper 1972, New Appendicies
*i-*v).

The reason for thinking that the probabilistic axioms of a candi-
date system define, in the first place, conditional probabilities is that,
as Lewis (1994, 480) indicates, probabilistic axioms “say...what the
chances will be when situations of a certain kind arise”. Where X is an
outcome-specifying proposition, and Y is a proposition specifying that
a situation of the relevant kind arises, the probabilistic axioms thus
yield conditional probabilities, ch(X|Y).?

Where a system entails a probability function, it may exhibit the
theoretical desideratum of fit to a greater or lesser degree. As Lewis
(1994, 480) explains it, a system fits the actual course of history well to
the extent that the associated probability function assigns that history
a higher probability (perhaps conditional upon initial conditions).3

I think that an adjustment to Lewis’s definition of fit should be con-
sidered. Plausibly, the probability functions entailed by many reason-
able systems aren’t defined on propositions concerning entire possible
courses of history of the world. For instance, it seems that this is true
of orthodox Quantum Mechanics (QM) because it doesn’t assign prob-
abilities to measurement events (Ismael 2008, 301; Hajek 2003b, 305-8).

> Hajek (2003a; 2003b; 2007) provides more detailed arguments that condi-
tional chance is more basic than unconditional chance. The arguments to
follow could all be rearticulated, without loss of strength, on the alternative
assumption that unconditional chance is basic.

3 Lewis’s notion of fit applies only where systems don’t incorporate chance
distributions over infinite sets (Elga 2004, 68; Frigg and Hoefer 2015, 554).
See Elga (2004, esp. 71-2) for an extension to infinite cases.
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The great success of QM is rather that the probabilities it assigns to lo-
calized outcomes — such as a silver atom’s being deflected in a certain
direction — given localized experimental setups — such as that atom’s
being fired through a Stern-Gerlach device — closely match the ac-
tual relative frequencies that obtain in such cases (cf. Ismael 2008, 301,
301n).

In light of this, it seems plausible that, on the appropriate notion
of fit, a system should count as well-fitting to the extent that the con-
ditional probabilities that it does entail are close to the actual relative
frequencies, even if these conditional probabilities are not probabili-
ties for complete future histories of the world conditional upon the
(complete) initial conditions of the universe (cf. Schwarz 2014, 94). But,
however exactly these details are worked out, the claim made by the
Best System analyst is that the system that strikes the best balance be-
tween the theoretical virtues of simplicity, strength, and fit is the Best
System, that the laws of nature are regularities entailed by the Best
System, and that the probability function entailed by the Best System
is the chance function for the world.

3. The BSA and SM

Lewis (1986, 117-21; 1994) appears to have thought that the proba-
bility function associated with the best system for our world would
simply be the fundamental physical probability function: the function
that yields all and only the probabilities entailed by QM, or whatever
fundamental physical theory replaces it. Yet Loewer (2001; 2007; 2008;
2012a; 2012b) has influentially argued that the probabilities of SM are
also entailed by the best system for our world, and therefore are gen-
uine objective chances. Loewer appeals to the axiomatization of SM
described by Albert (2000, Chs. 3—4), who suggests that SM can be
derived from the following:

(FD) the fundamental dynamical laws;

(PH) a proposition characterizing the initial conditions of the universe
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as constituting a special low-entropy state; and

(SP) a uniform probability distribution (on the standard Lebesgue
measure) over the region of microphysical phase space associated
with that low-entropy state.*

Loewer (2012a, 16; 2012b, 124), following a suggestion of Albert’s (see
Loewer 2012a, 16n), dubs the conjunction of FD, PH, and SP ‘the Men-
taculus’.

The argument that the SM probabilities are derivable from the Men-
taculus goes roughly as follows. Consider the region of the universe’s
phase space associated with its low-entropy initial state described by
PH. Relative to the total volume of that region, the volume taken
up by micro-states that lead (by FD) to fairly sustained entropy in-
crease until thermodynamic equilibrium is reached, and to the uni-
verse staying at or close to equilibrium thereafter, is (on the Lebesgue
measure) extremely high. Consequently, the uniform probability distri-
bution (given by SP) over the entire region yields an extremely high
probability of the universe following such a path.

When it comes to (approximately) isolated subsystems of the uni-
verse, the idea is that since a system’s becoming approximately iso-
lated isn’t itself correlated with its initial micro-state being one that
leads (via FD) to entropy decrease, it’s extremely likely that any such
subsystem that’s in initial disequilibrium (and which is thus such that
most of the subregion of its phase space compatible with its initial dise-
quilibrium macrostate is taken up by microstates that, according to FD,
are on entropy-increasing trajectories through that phase space) will
increase in entropy over time (Loewer 2007, 302; 2012a, 124-5; 2012b,
17; Albert 2000, 81-5). It’s thus claimed that the Mentaculus entails a
probabilistic, SM approximation to the Second Law of Thermodynam-

4 Where FD are quantum rather than classical, the uniform probability distri-
bution is not over classical phase space, but rather over the set of quantum
states compatible with PH (Albert 2000, 131-3).
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ics (SLT).

Albert (2000, e.g. 22, 28—9; 2012, 28-33) and Loewer (2007, 306; 2008,
159-62; 20124, 18) have argued that the Mentaculus entails probabilities
for the special sciences. One reason for thinking this is that many spe-
cial sciences are concerned with entropy-increasing processes: These
include geological processes of erosion (Elga 2001, 322); meteorologi-
cal processes such as the evolution of pressure systems (Loewer 2008,
159); biological processes of ageing (Albert 2000, 22), inheritance, and
the workings of neurons; chemical processes involving reactions; and
so on. So it seems that the Mentaculus, if it entails probabilities for ther-
modynamic processes in general, entails probabilities that pertain to (at
least many of) the sorts of processes of concern to the special sciences.
Loewer (2001, 618; 2007, 305; 2008, 159; 2012b, 129) thus claims that
the Mentaculus is much stronger than a system comprising FD alone.
Since it’s apparently not much more complicated (it only requires the
addition of PH and SP), Loewer (2001, 618; 2007, 305; 2008, 159; 2012b,
129) claims that it’s plausibly the best system for our world.>¢

The claim that the Mentaculus is stronger than a system compris-
ing FD alone is plausible, especially according to Lewis’s construal of
strength, on which a system is strong to the extent that it says “what
will happen or what the chances will be when situations of a certain
kind arise” (Lewis 1994, 480). If Albert and Loewer are correct, the
Mentaculus tells us what the chances will be when certain kinds of

5 By including PH, the Mentaculus includes information about the initial con-
ditions of the universe. But Lewis (1983, 367) is sympathetic to the idea that
the best system might include such information.

® One common criticism of Albert and Loewer is that they don’t give enough
details of precisely how special science probabilities derive from the Men-
taculus (Callender and Cohen 2010, 437-9; Callender 2011, esp. 99-103). Co-
hen and Callender (2009; 2010) propose what they call a ‘Better Best System
Analysis” (BBSA) of laws and chance, according to which the chances for a
special science are given by the best system that’s framed in that science’s
proprietary vocabulary (cf. Schrenk 2008). Yet since, on the BBSA, the rela-
tive goodness of such special science systems depends on their balance of
simplicity, strength, and fit, the arguments below that BSA chances are im-
precise are liable to apply mutatis mutandis to BBSA chances.
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situation arise concerning which FD is silent.

Consider a thermodynamically isolated system, S. The Mentaculus
entails the chances for S’s future thermodynamic evolution given that
a situation of the kind S is in such-and-such a thermodynamic state arises.
FD (even together with bridge principles) doesn’t tell us what will
happen or what the chances will be when situations of such a kind
arise. FD tells us what will happen when situations of the more spe-
cific kind, S is located at such-and-such a point in its microphysical state
space, arise. Since thermodynamic states of systems are multiply real-
izable by points in microphysical state space, the mere fact that S is in
the relevant thermodynamic state is not enough for FD to provide us
with any predictions about S’s future evolution. It is, however, enough
for SM to do so. Hence, by entailing SM, the Mentaculus has greater
strength, in the relevant sense, than a system comprising FD alone.

Still, some modification to the BSA, as articulated by Lewis, is re-
quired if the Mentaculus is to be a candidate Best System. Observing
that the (syntactic) simplicity of a system is relative to the vocabulary
in which it’s expressed, Lewis (1983, 367-8) takes only those systems
formulated in perfectly natural kind terms to be candidate Best Sys-
tems. The trouble is that, as Schaffer (2007, 130) notes (cf. Cohen and
Callender 2009, 14), the Mentaculus, as formulated by Albert, employs
predicates like ‘low entropy” that correspond to properties that aren’t
perfectly natural. Moreover, if translated into a language with only per-
fectly natural kind terms, the Mentaculus is likely to be syntactically
very complex and thus (if we take Lewis’s approach) unlikely to be a
leading contender for Best Systemhood.

Yet, as Lewis (1983, 368) recognizes, naturalness admits of degrees.
I think that it’s plausible to take naturalness of the predicates that a
system employs to be a theoretical virtue, to be weighed alongside its
simplicity, strength, and fit. If an axiom system is able to achieve great
simplicity and strength and fit by employing a not-too-unnatural pred-
icate like ‘low entropy’ — as the Mentaculus does — then it’s a plau-
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sible Best System.” Of course it may seem a difficult task to specify a
uniquely appropriate ‘naturalness-of-vocabulary” metric and exchange
rate at which naturalness trades off against the other theoretical virtues
in the determination of an overall best system. But, as we shall see in
the next section, the BSA faces problems similar to this anyway.

4. Ties Between Systems

Lewis acknowledged that the BSA isn’t unproblematic. As he says (in
a passage worth quoting at length):

The worst problem about the best-system analysis is that when
we ask where the standards of simplicity and strength and bal-
ance come from, the answer may seem to be that they come from
us. Now, some ratbag idealist might say that if we don’t like the
misfortunes that the laws of nature visit upon us, we can change
the laws — in fact, we can make them always have been different
— just by changing the way we think! (Talk about the power of
positive thinking.) It would be very bad if my analysis endorsed
such lunacy. ...[Yet] if nature is kind to us, the problem needn’t
arise. I suppose our standards of simplicity and strength and
balance are only partly a matter of psychology. It's not because
of how we happen to think that a linear function is simpler than
a quartic or a step function .... Maybe some of the exchange
rates between aspects of simplicity, etc., are a psychological mat-
ter, but not just anything goes. If nature is kind, the best system
will be robustly best — so far ahead of its rivals that it will come
out first under any standards of simplicity and strength and bal-
ance. We have no guarantee that nature is kind in this way, but
no evidence that it isn’t. It’s a reasonable hope. (Lewis 1994, 479)

7 For alternative ways of relaxing the requirement that candidate systems be
framed in only perfectly natural kind terms, see Cohen and Callender (2009;
2010), Dunn (2011, 87-92), Schrenk (2008), Frisch (2014, Section 5), and Frigg
and Hoefer (2015, 560-2).

PHILOSOPHERS  IMPRINT

Imprecise Chance and the Best System Analysis

Lewis’s view seems to be that, while there are some objective con-
straints on what counts as a genuine measure of simplicity (‘It’s not be-
cause of how we happen to think that a linear function is simpler than
a quartic or step function’), strength, and perhaps even what counts
as an appropriate balance between them, these constraints aren’t suffi-
cient to determine unique measures of simplicity and strength, and a
unique exchange rate between the theoretical virtues as the objectively
correct ones. The worry is that, in order to arrive at unique measures
of the theoretical virtues and a unique exchange rate between them,
whatever objective constraints there are will need to be supplemented
by constraints that are ‘psychological” and relative to the ways of think-
ing of creatures like us.

For instance, it’s plausible that the particular, contingent cognitive
capacities and limitations of homo sapiens mean that axioms of certain
syntactic forms are easier than others for us to grasp and to work with
in generating predictions and explanations. This makes us judge them
simple and strong, while perhaps other creatures with different capac-
ities and limitations would judge different sets of (true) axioms to be
simpler and/or stronger. Although perhaps not anything goes — there
are certain objective constraints on what counts as a genuine measure
of simplicity, a genuine measure of strength, and an appropriate way
of balancing the theoretical virtues against one another — provided
that the objective constraints don’t single out unique measures and
balances, there may be no objective fact of the matter about what the
‘best” system is and so what the laws and chances are.

Although Lewis appears to grant that objective constraints may not
be sufficient to determine unique measures of simplicity, strength, and
a unique exchange rate between the theoretical virtues, he takes it to
be ‘a reasonable hope’ that this underdetermination won't issue in an
underdetermination of what counts as the ‘best’ system; that nature’s
kind enough to furnish a system that’s victorious on any measures and
exchange rate compatible with these objective constraints.

Of the possibility that this hope is unfulfilled, Lewis says:
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I can admit that if nature were unkind, and if disagreeing rival
systems were running neck-and-neck, [then] lawhood might be
a psychological matter, and that would be very peculiar. I can
even concede that in that case the theorems of the barely-best
system would not very well deserve the name of laws. ...(Like-
wise for the threat that two very different systems are tied for
best. ...I used to say that the laws are then the theorems com-
mon to both systems, which could leave us with next to no laws.
Now I'll admit that in this unfortunate case there would be no
very good deservers of the name of laws. (Lewis 1994, 479; italics
original)®

Lewis also appears to think that if there’s no clear winner of the best
system competition, then there may be nothing very well deserving of
the name chance:

How well the laws and chances deserve their names should de-
pend on how kind nature has been in providing a decisive front
runner [in the best system competition for our world]. (Lewis

1994, 481)

The trouble is that it has seemed to a number of authors that, particu-
larly when we consider axioms systems that entail SM, nature hasn’t
been all that kind. Specifically, it appears that there is indeed a set of
rival systems — each of which entails a slightly different probability
function and, correspondingly, slightly different probabilistic versions
of the principles of thermodynamics — that are such that it seems un-
likely that one is picked out unanimously as best by all combinations
of measures of simplicity and strength, and exchange rates between

In the parentheses, Lewis speaks of a scenario in which two ‘very different’
systems are tied for best. I'll make no claim that the systems for our world
that I'll argue are plausibly tied for best are very different, but they are dif-
ferent, and (crucially) entail divergent probabilities for certain propositions.
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the theoretical virtues that are compatible with whatever objective con-
straints there are on such combinations.

As I shall explain in Section 7, I'm not as averse as Lewis appears
to be to the notion that what counts as the best system and hence as
the laws and chances is, to an extent, relativized to groups of epis-
temic agents and their particular capacities and limitations. What I
find more troubling is that, even allowing that the standards may be
partly relativized in this way, there still seems to be underdetermina-
tion. Standards may be relativized without being arbitrary: This will
be so provided that there’s a fact of the matter about what standards
will produce a winning system that’s best for epistemic agents of a given
sort, perhaps by being the most useful to agents of that sort. However, in
light of the similarity of a range of very good systems entailing SM-like
probabilities, it seems doubtful (as I'll argue in more detail in Section 7)
that there’s a uniquely most useful system for agents like us and a corre-
sponding unique set of standards. My suggestion will be that, among
the set of very good systems and the sets of standards yielding them,
we shouldn’t (arbitrarily) pick a unique winner and a uniquely correct
set of standards.

Even so, the best system analyst ought neither to draw the con-
clusion that there is nothing very well deserving of the name of laws
or chances in our world (pace Beisbart 2014), nor even that the laws
and chances are limited to those theorems and probabilities that all
rival systems that aren’t determinately non-best entail. Rather, I'll ar-
gue, the best system analyst ought to regard some of the chances, and
indeed some of the laws, for our world as indeterminate or imprecise,
corresponding to the indeterminacy of the (objectively /non-arbitrarily)
Best System for our world (for creatures like us)™®. First, however, it’s

9 Other Humeans, such as Hoefer (2007, 572), Albert (2012, 35-7), and possibly
Loewer (1996, 191—2; 2004, 1122) seem sympathetic to this idea.

1’1l drop this rider in what follows, though I'll return again to the idea that
best systemhood displays this sort of relativity in Section 7. For now, we can
pretend that it doesn’t. The point of raising the issue of relativity in the main
text above was just to point out that I don’t think that, even if we embrace it,
we have a solution to the underdetermination of best systemhood.
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necessary to show why consideration of SM points to the conclusion
that nature hasn’t furnished us with a clear winner of the Best System
competition.

To see this, let’s assume that the Mentaculus does indeed entail the
SM probabilities, and that Loewer is correct that it constitutes a better
system for our world than one comprising FD alone. If the Mentac-
ulus comes out best, then the generalizations that it entails count as
laws on the BSA, and the probabilities that it entails, including the SM
probabilities, count as chances. But a system comprising FD alone isn’t
the only rival to the Mentaculus. Another rival is a system comprising
FD plus an axiom giving the precise initial conditions (PICs) of the uni-
verse (Schaffer 2007, 130—2; Hoefer 2007, 560; Beisbart 2014, 518—9): call
this the FD + PICs system. If FD is deterministic, then FD + PICs is a
very strong system. Schaffer (2007, 131-2) suggests that it’s maximally
strong, while Hoefer (2007, 560) questions this. If FD is probabilistic,
then it may still be strong, depending on the exact nature of FD. How-
ever, a proposition specifying PICs would be complex when expressed
in a vocabulary that contained only perfectly natural kind terms and
would be simple only when expressed in a vocabulary that had predi-
cates corresponding to highly unnatural kinds.

Now, it’s fairly plausible that we should take FD + PICs to be de-
terminately not the best system. That’s because, if FD is deterministic,
it has as theorems things that we know not to be laws (cf. Woodward
2014, 97-100),"" such as all planets orbit the sun in the same direction (and
— in case we think we can discount this as a law in virtue of its refer-
ence to a particular object — all stars of mass m are such that all planets
orbiting them orbit in the same direction, where m is the mass of the sun
given precisely enough to ensure that no other star shares that precise
mass). Even if FD is probabilistic, there may still be problems, for it
may well come out as a theorem that there’s a high probability that
this generalization holds, in which case we’re in danger of classifying

' Thanks to an anonymous referee for pressing me on this point and for point-
ing out the correct response for the best system analyst.
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it as a probabilistic law despite its accidental nature.

The key point here is that a metaphysical theory of lawhood must
respect certain independent facts that contribute to determining which
generalizations count as laws of nature. These facts concern the gen-
eralizations” ability to play the role of laws by explaining, supporting
counterfactuals, predictions, and causal relations, being confirmed by
their instances, and entailing probabilities that play the chance role (of
guiding rational credence and explaining outcomes and frequencies of
outcomes). If we're to have any data to test our metaphysical theories
of lawhood against, whether a generalization plays these aspects of
the law role must at least partly be a matter that’s independent of our
metaphysical theories.

Such facts provide an additional source of non-arbitrary indepen-
dent constraint upon the appropriate standards of simplicity, strength,
and balance for determining what counts as the best system (cf. Loewer
1996, 185). Put another way: Any version of the BSA that incorporates
standards which are such as to entail that clearcut cases of non-laws
are in fact laws (or vice versa) isn't a good metaphysical theory of
laws. As already noted, it’s plausible that there are regularities that
are theorems of FD + PICs that are clear cases of non-laws. Therefore,
standards of simplicity, strength, and balance that don’t entail that FD
+ PICs is determinately not the best system are inappropriate standards
to incorporate into the BSA.

Still, there are further rivals to the Mentaculus besides FD + PICs
which aren’t so easily ruled out. As Beisbart (2014, 519) observes, a
system that applies a uniform probability distribution to a sub-region
of the region to which the Mentaculus’s SP applies a uniform distri-
bution to (namely the region compatible with the Mentaculus’s PH),
where this sub-region contains the universe’s PICs, will plausibly be
better-fitting than the Mentaculus, but will also be less simple because
we need to specify more information about the initial conditions of the
universe than is implied by PH. This can be done by being more precise
about the initial entropy level of the universe, or by actually specifying
(more precisely) the values of macro-variables concerning, for instance,

VOL. 19, NO. 23 (JUNE 2019)



LUKE FENTON-GLYNN

temperatures and pressures at some initial time, or even by specifying
some (but not all — as FD + PICs does) of the microphysical details of
the universe at some initial time (cf. Beisbart 2014, 519).

The worry is that, by choosing different sub-regions of the phase
space region associated with PH to apply a uniform probability distri-
bution to, we get a range of candidate systems (cf. Schaffer 2007, 131n;
Beisbart 2014, 519—20). At one extreme, we have the Mentaculus (which
applies a uniform distribution over the whole region of phase space
compatible with PH). We then have a continuum of systems involving
the application of the uniform distribution to smaller and smaller sub-
regions of the phase space region compatible with PH, each containing
PICs. In the limit, this yields a system equivalent to FD + PICs. As Beis-
bart (2014, 519) suggests, such systems would appear to be increasingly
well fitting, since they concentrate a higher and higher probability in
a smaller and smaller region around the PICs and thus assign an in-
creasingly high probability to the actual macroscopic course of events.
But they are also increasingly complex, since picking out the progres-
sively smaller sub-regions requires building into the axioms increasing
amounts of information about PICs.

FD + PICs itself should be taken to be beyond the pale in virtue
of its complexity (cf. Beisbart 2014, 518-9) because it entails accidental
generalizations. Yet one would need a very large amount of informa-
tion about initial conditions for FD to entail generalizations like all
planets orbit the sun in the same direction (or for FD, together with a
probability distribution over phase space, to entail a high probability
of such generalizations holding). So there seems quite a lot of scope
for a system to be more specific about the phase space region the PICs
occupy — and thus better fitting — than the Mentaculus without go-
ing beyond the pale by entailing accidental generalizations like the
one described. Given this fact, it appears that we’re confronted with a
range of systems each of which may come out best according to some
reasonable standards of strength, simplicity, and balance.

One can also consider rivals to the Mentaculus that incorporate
different probability distributions over the phase space region compat-
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ible with PH. In some cases, systems that specify different probability
distributions will be equivalent to systems that specify different sub-
regions of the phase space compatible with PH to apply the uniform
distribution to. For instance, Frigg and Hoefer (2015, 572) suggest that
among the competitors to the Mentaculus is an axiom system that —
instead of SP — contains an axiom that specifies “a peaked distribu-
tion, nearly Dirac-delta style” whose peak is at the (point-sized) PICs.
The delta distribution assigns probability 1 to the point at which it is
peaked, and o to all regions that don’t include this point. A system
incorporating the delta distribution, peaked at the PICs, is effectively
equivalent to FD + PICs.

Beisbart (2014, 520) is correct to challenge Frigg and Hoefer’s (2015,
572) contention that a system comprising FD together with (something
near) the delta distribution peaked at the PICs is clearly superior to the
Mentaculus. Frigg and Hoefer claim that the delta distribution is just
as simple as the uniform distribution specified by SP while yielding
much better fit to the actual frequencies. But as Beisbart (2014, 520)
points out, “[t]he delta distribution has a simple functional form, but
to pick one particular delta function, you have to specify the location
of the peak ...i.e., the whole initial condition, and this is not simple
at all!'" So the system that invokes the delta distribution is as complex
as the FD + PICs system and, because both systems are liable to entail
(high probabilities for) accidental generalizations like those described
above, we should take them to be beyond the pale in terms of their
complexity.

Nevertheless, there’s a range of systems intermediate in complexity
(and fit) between the Mentaculus and the system that incorporates the
Dirac-delta distribution: specifically, systems that incorporate non-flat
distributions that assign increasingly high probability to smaller and
smaller regions of phase space containing the PICs."™> Many of those,

2 Not surprisingly, given that a probability distribution can’t be specified in-
dependently of a measure, different choices of measure make a difference to
SM probabilities — so there may be rivals to the Mentaculus incorporating
different measures. SP appeals to a probability distribution that’s uniform
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especially those that lie toward the Mentaculus’s end of the spectrum,
will not have the untoward entailments that the system incorporating
the delta distribution does, and are credible contenders for best sys-
temhood.

It’s a non-trivial question precisely how different choices of region
of the universe’s phase space containing PICs and different choices of
probability distributions over such regions translate into SM probabili-
ties at later times. Albert (2000, 67) suggests that, provided that the sub-
region of the phase space region picked out by PH we apply a probabil-
ity distribution to is regularly-shaped and not too small, and provided
the probability distribution applied to it is reasonably ‘smooth” (i.e.
the probability density varies only negligibly over small distances in
the phase space) with respect to the Lebesgue measure, then the result-
ing probabilities of normal thermodynamic behavior (i.e. monotonic
entropy increase) will diverge only a little from those entailed by the
Mentaculus.

Frigg argues that the assumption that underlies Albert’s claim —
that the micro-states that lead to SLT violating behavior are scattered
in tiny clusters all over phase space (Albert 2000, 67) — is supported by
“neither a priori reasons nor plausibility arguments” (Frigg 2011, 87).
But, even if the assumption is correct, different choices of regularly-
shaped sub-region and smooth probability distribution are liable to
yield some small but non-zero differences in probabilities for thermo-
dynamic behavior. Moreover, from the perspective of providing a best
axiom system for the universe, choices of irregularly shaped regions
and non-smooth distributions presumably shouldn’t be ruled out a

on the Lebesgue measure. Maudlin (2007; 2011) has argued that, for systems
comprising a large but finite number of molecules, normal thermodynamic
behavior is ‘typical” in the sense of being produced by a set of initial condi-
tions that has Lebesgue measure 1 — € for small but positive € (Maudlin 2007,
289). Yet there are alternative measures that assign different sizes to the set of
initial conditions that lead to abnormal thermodynamic behavior (Maudlin
2007, 290). Probability distributions that are uniform with respect to these
alternative measures are thus liable to yield different SM probabilities from
the Mentaculus.
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priori. In particular, the complexity involved in specifying such irregu-
larly shaped regions and non-smooth distributions may be offset by a
compensating increase in fit.

Of course, there must be a certain amount of qualitative agreement
between systems that are serious contenders for best systemhood: Each
must entail that the probabilities of entropy increase in (at least most)
appropriately isolated non-equilibrium systems are ‘very high’, since
any that didn’t wouldn’t be well-fitting enough to be among the best.
Still, the different probability distributions invoked by different sys-
tems, and the different sized regions of phase space to which the prob-
ability distributions are applied, are liable to translate into non-zero
differences in the probabilities assigned to entropy-increasing behav-
ior (cf. Callender 2011, 107). Where more complex systems are better
fitting, it appears likely that different reasonable standards of simplic-
ity and balance will yield different verdicts about which system is best.
In other words, it appears likely that no system will count as ‘robustly’
best. As shorthand in what follows, I'll sometimes talk about such a
situation as one in which we have a ‘tie’ between systems, though of
course this shouldn’t be construed as meaning that we have uniquely
reasonable standards that score two or more systems identically, but
rather that we don’t have unique reasonable standards and that differ-
ent systems come out best according to different reasonable standards.

As we saw earlier, Lewis (1994, 479, 481) claims that, if there’s no
robustly best system, then there’s nothing very well deserving of the
name law or chance (cf. Beisbart 2014, 521). But we’ve now seen that,
very plausibly, there is no robustly best system for our world. Must
we then draw the (surprising) conclusion that there are no laws or
chances?

This seems too extreme. Lewis’s earlier position that, in case of ties
— here interpreted as the absence of a robustly best system —, those
theorems entailed by all of the tied-for-best systems would count as
laws (Lewis 1983, 367) is more plausible. So too is the claim that any
probabilities that the tied-for-best systems agree upon count as chances.
Thus, for example, those who have considered axiomatizations of SM
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that are rivals to the Mentaculus have not necessarily disputed that
the fundamental dynamical principles are the same in those axiomatiza-
tions as in the Mentaculus. If all tied-for-best axiom systems entail the
same fundamental dynamical principles, then these principles should
be taken to be genuine laws. Moreover, if the tied-for-best systems en-
tail the same fundamental dynamics, then they presumably entail the
same probabilities conditional upon microphysical chance setups. For
example, it’s possible that all tied-for-best systems agree on the prob-
ability that a particular tritium atom will decay within the next 12.32
years. If so, such probabilities should be taken to be genuine chances
by the Best System analyst.

While I agree that, in case of ties, the theorems and probabilities
that all tied-for-best systems agree upon count as laws and chances, I'll
argue that what chances there are goes beyond the probabilities that all
tied-for-best systems agree upon. Specifically, I'll argue that, for those
phenomena where divergent probabilities are entailed by the tied-for-
best systems — as I've argued is the case for thermodynamic behavior
— the chances correspond to the sets of probabilities entailed by these
tied-for-best systems. That is, the chances are imprecise. Where all tied-
for-best systems agree on a probability — as they might for tritium
decay — then the set is a singleton and the chance precise. But not so
where they disagree.

What about laws? Though I'll have less to say about laws than about
chances in what follows, I think that in the case where the generaliza-
tions entailed by the tied-for-best systems differ only in the probabili-
ties that they assign to certain behavior (and not, for instance, in what
factors they take to be relevant to that behavior) — as is plausibly the
case when it comes to the the probabilistic principles of thermody-
namics (such as SLT, the Ideal Gas Law, etc.) that are entailed by the
seemingly tied-for-best systems for our world — the best system an-
alyst should take the laws themselves to be imprecise in the sense of
entailing imprecise probabilities for the behavior they concern, where
of course the imprecise probabilities correspond to the sets of probabil-
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ities entailed by the tied-for-best systems.*3

5. Localist Approaches to SM

Callender (2011) calls attempts to axiomatize SM that appeal to axioms
giving a probability distribution (such as that given by SP) over a re-
gion of the phase space of the universe as a whole that contains its PICs
(such as that described by PH) ‘Globalist” approaches. The Mentaculus
is an example of a Globalist approach. As we’ve seen, there’s a range of
other Globalist approaches that vary the region of the universe’s phase
space that a probability distribution is applied to and/or the probabil-
ity distribution applied to it. Many of these approaches are plausibly
just as good systematizations as the Mentaculus.

In contrast to Globalist approaches, ‘Localist” approaches (Callen-
der 2011; Frigg and Hoefer 2015) propose that SM be axiomatized in-
stead by means of probability distributions applied to regions of the
phase spaces of the various approximately isolated subsystems of the uni-
verse that contain the actual initial conditions of those systems (Callen-
der 2011, 96—7). Without going into too much detail, an important mo-
tivation for those who have advocated the Localist approach is a skepti-
cism about the well-fittingness of Globalist axiomatizations combined

3 A slightly different approach would be to take the view that the laws are lim-
ited to the generalizations that all of the tied-for-best systems agree on but to
note that, while the tied-for-best systems do not all agree on thermodynamic
generalizations entailing precise probability distributions, they do agree on
generalizations that say that the probability distribution lies in a certain set:
namely any set whose elements include the probability distributions entailed
by each of the tied-for-best systems. The most informative such generaliza-
tions would be the ones that say that the probability distribution lies in the
set whose only elements are the probability distributions entailed by each of
the tied-for-best systems. On this approach, it would be natural to say that
the chances are an element of the set, but that there’s no fact of the matter
about which element, rather than that the chances are set-valued. Ultimately,
it seems quite plausible that this approach and the one described in the main
text are mere notational variants on one another. What’s of interest is that
they're quite different from the standard view that there’s a precise probabil-
ity distribution that gives the chances for our world, and that there’s a fact
of the matter about which distribution this is.
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with arguments that Localist approaches are much better fitting.™

In this section I'll argue that, as with candidate Globalist axiomati-
zations, it’s plausible that there’s a set of Localist axiomatizations none
of which is robustly better than any other. I'll thus argue that the best
system analyst should also believe in imprecise chances if she regards
Localist axiomatizations as more promising (i.e. as plausibly providing
better systems) than Globalist axiomatizations.

Frigg and Hoefer (2015) endorse a Localist approach to SM, and
combine this with a Best System-style analysis of chance, which they
call a “Theory of Humean Objective Chance’, or “THOC'. They argue
that the distribution, P!, that’s uniform on the standard Lebesgue mea-
sure, u, should be applied to that region of each (approximately) iso-
lated thermodynamic system’s phase space corresponding to its initial
macrostate in order to generate the SM chances. They argue that the
distribution P/} can be justified in terms of simplicity and fit with the
actual frequencies. Specifically, they take I'y to denote the phase space
region corresponding to such a system’s initial macro-state (that is, its
macro-state at some initial time ¢p) and they ask us to consider all of the
systems in the entire Humean mosaic that share this initial macrostate,
saying:

Each of these [systems] has a precise initial condition x at ¢y,
which, by assumption, lies within I',. Now go through the entire
[Humean mosaic] and put every single initial condition x into
I'y. The result of this is a swarm of points in I',. ... THOC is es-
sentially a refinement of finite frequentism and chances should
closely track relative frequencies wherever such frequencies are
available. ... But ... we have to reduce the complexity of the sys-
tem by giving a simple summary of the distribution of points. To
this end we approximate the swarm of points with a continuous
distribution (which can be done using one of the well-known
fitting techniques ...) and normalise it. The result of this is a

™ For details, see Callender (2011, 100-1, 106) and Frigg and Hoefer (2015).
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probability density function p on I';, which can be regarded as
an expression of the ‘initial conditional density” in different sub-
sets C of I'p.

The good-fit constraint now is that p(C) be equal to (or in very
close agreement with) 3(C) /u(T'p) for all subsets C of I'y. This is
a non-trivial constraint. For it to be true it has to be the case that
the initial conditions are more or less evenly distributed over
I'y because 1 (C)/u(Tp) is a flat distribution over T'j,. (Frigg and
Hoefer 2015, 562—3)

Frigg and Hoefer’s justification for applying the uniform distribution
to regions of the phase spaces of subsystems of the universe (namely
those regions corresponding to their initial macrostates) is thus some-
what different from Albert and Loewer’s justification for applying it to
a region of the phase space of the universe as a whole (namely, that
region picked out by PH). Their idea is that the uniform distribution
is “an elegant summary of actual initial conditions as they occur in the
[Humean Mosaic] of a world like ours” (Frigg and Hoefer 2015, 571).
As they point out, this justification of the uniform distribution “is not
open to those who take [Boltzmannian SM] to be a theory about the
universe as a whole, since there is only exactly one initial condition of
the universe” (Frigg and Hoefer 2015, 571).

One worry about this Localist approach is that there may simply not
be enough systems that have exactly the same number of phase space
dimensions (and that share the same initial macrostate) to produce a
set of actual initial conditions that’s large enough to single out the
uniform distribution as that which supplies the robustly best balance
of fit and simplicity. Frigg and Hoefer (2015, 563n) acknowledge this
worry in a footnote, saying:

[Olur discussion idealises by pretending that the histories of all
sorts of different SM systems could be treated as representable
via paths in a single phase space. This is an idealisation because
systems with a different particle number N have different phase
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spaces. We think that this is no threat to our approach. SM sys-
tems such as expanding gases and cooling solids are ubiquitous
in [the Humean Mosaic] and there will be enough of them for
most N to ground a [Humean Best System] supervenience claim.
Those for which this is not the case (probably ones with very
large N) can be treated along the lines of rare gambling devices
such as dodecahedra: they will be seen as falling into the same
class as the more common systems and a flat distribution over
possible initial conditions will be the best distribution in much
the same way in which the 1/7 rule [where n is the number of
sides] is the best for all gambling devices.

But it’s not clear whether Frigg and Hoefer are justified in being con-
fident, even for systems of relatively low phase space dimensionality,
that there will be enough such systems to single out P;; as the distri-
bution that strikes the robustly best balance of simplicity and fit with
the actual distribution of initial conditions. Still less is it clear whether
there are enough systems with the same low-dimensional phase spaces
to guarantee that applying Pﬁ to phase spaces of higher dimensional-
ity (of which there may be fewer instances) will be the strategy that
strikes the robustly best balance between simplicity and fit.

If the set of actual initial conditions of such systems fails to nail
down P{} as that distribution which strikes the robustly best balance be-
tween simplicity and fit, then plausibly we will be left with a large (per-
haps continuous) range of distributions that fit actual initial condition
frequencies reasonably well, with the better fitting (e.g. certain non-
flat distributions that concentrate probability in regions where there
are clusters of actual initial conditions for the subsystems in question)
being more complex, and the worse fitting (e.g. P,’jl) being more simple.

Analogously to the Globalist approach, we can also consider a
range of Localist approaches to SM that apply one or other proba-
bility distribution to variously sized sub-regions of the phase space of
the appropriate subsystems of the universe (where these subregions
contain the precise initial conditions of each of the systems that has
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a phase space of that dimensionality).”> Again, picking out smaller
sub-regions will typically buy better fit (by increasing the probability
of each subsystem’s actual macro-evolution) but involves more com-
plexity (because it involves specifying the initial macro-states of the
subsystems more precisely, or adding in some information about the
subsystems’ initial micro-states). The upshot is liable to be a range
of tied-for-best Localist axiomatizations of SM entailing different SM
probabilities and consequently, even if Localist axiomatizations are su-
perior to Globalist axiomatizations, the Best System analyst should (I'll
argue) still conclude that there exist imprecise SM chances, where this
time the imprecise SM chances are constituted by the sets of probabili-
ties entailed for given outcomes by the tied-for-best Localist axiomatiza-
tions of SM. Insofar as the Localist also wishes to recover probabilistic
approximations of thermodynamic laws, perhaps by taking them to be
generalizations over appropriately isolated thermodynamic systems,
then this also gives us reason to think that such probabilistic laws are
imprecise.

6. Imprecise Chances & Chance-Credence Coordination

The basic reason for thinking that there are imprecise chances where
there’s a tie between systems entailing different probability distribu-
tions is that, in such a case, players of the chance role in guiding ra-
tional credence are not confined to those probabilities that each of the
tied-for-best systems agree upon. Rather, in cases of divergence, the
(non-singleton) sets of probabilities entailed by the tied-for-best sys-
tems appear to play this role.”® In order to make the case that this is

5 Note that there’s no reason to rule out non-convex sub-regions a priori. Suit-
able choices of (possibly non-convex) regions of phase space that contain the
actual initial conditions of systems that share that phase space may (at the
cost of some simplicity) allow us to ensure a higher probability for the actual
macro-evolution of such systems.

16 A referee pointed out that another drawback of taking the chances to be
confined to those probabilities on which the tied-for-best systems all agree is
that this may yield an oddly ‘gappy’ chance function: For instance, if all such
systems agree on the probability of the conjunction A&B but disagree on the
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probabilities of A and B, then such a proposal implies that the domain of the
chance function isn’t a Boolean algebra. But the same referee notes that there
may be a worry about my proposal if the tied-for-best systems aren’t defined
on the same domain. For instance, what do we say about the chance of A if
some but not all of the tied-for-best systems assign a probability to A?

In addressing this worry, first note that there’s no obvious reason for
thinking that the systems that, in this essay, have been envisioned to be
among the tied-for-best are defined on different domains. It has been argued
that there are liable to be systems that assign different probabilities to ther-
modynamic behavior among the tied-for-best, but nothing has been said to
suggest that the tied systems entail probability distributions defined on dif-
ferent kinds of behavior or for different kinds of system. (Even if there were
a tie between certain Globalist and Localist systems, then because Globalist
systems have to entail probabilities for subsystems of the universe in order to
be well-fitting, and because Localist systems may well entail probabilities for
the thermodynamic evolution of the universe as a whole — if Frigg and Hoe-
fer are correct that such axiomatizations can entail probabilities for systems
comprising very large numbers of particles — it still wouldn’t be unreason-
able to suppose that the tied systems are defined on the same domain.)

But, by the same token, we have given no argument that among the tied
systems there won't be systems defined on differing algebras. (Note that
Lewis doesn’t take definition on exactly the same algebra to be a prerequisite
for the goodness of two systems to be compared: He says that a system is
strong to the extent that it says “what will happen or what the chances will
be when situations of a certain kind arise” (Lewis 1994, 480), which suggests
that not all systems up for comparison need entail probabilities for the same
kinds of situation.) This might be so if, for instance, there are systems among
the tied-for-best that disagree on the fundamental dynamics.

Still, I think that we can reasonably expect significant (if not perfect) over-
lap in the domains on which the tied systems are defined. It is not very
plausible that a system can be among the tied-for-best if it doesn’t entail de-
cay probabilities for the various standardly-recognised radioisotopes, for in-
stance, or indeed for the macroscopic behavior of ordinary thermodynamic
systems. (If, by contrast, very different systems — presumably deploying
sets of predicates that don’t overlap much — were among the tied-for-best,
then perhaps there really would be nothing well deserving of the names
of ‘chance” and ‘law’, as Lewis (1994, 479) suggests. An exception would
be if the disparate systems can simply be taken as characterizing different
branches of science, in which case an approach such as the BBSA might be
called for. But, as noted in Footnote 6, it’s reasonable to take the BBSA as also
implying the existence of imprecise chances.) So I think that the following
conservative proposal is perfectly defensible: The domain of the chances is
the Boolean closure of the maximal set of atomic propositions upon which
each of the tied systems is defined and the chance associated with each el-
ement of that domain is the set of probabilities associated with it by the
tied systems. (When, in what follows, I speak (for simplicity) of the set of
probability functions associated with the tied-for-best systems as constitut-
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so, it will be necessary to say how imprecise chances — if they exist —
would guide rational credence. I attempt to do so in this section. Then,
in Section 7, I argue that the set of probability functions associated
with the tied-for-best systems guide rational credence in this way. In
this section, I first say something about rational credence (Subsection
6.2), before turning to imprecise chance (Subsection 6.3), and then the
role of the latter in guiding the former (Subsection 6.4). Before doing
this, however, I'll briefly mention some previous arguments that have
been given for the existence of imprecise chances (Subsection 6.1).

6.1 Existing Arguments for Imprecise Chances
The use of imprecise probability (IP) models of chancy phenomena has
been investigated by Walley and Fine (1982), Kumar and Fine (1985),
Grize and Fine (1987), Fine (1988), and Fierens et al. (2009), among oth-
ers.'7 These authors are interested in the use of imprecise probabilities
to model physical processes that give rise to frequencies that vary over
time, particularly where the frequency is always within some interval.
Consider the following heuristic example, based on one given by
Walley and Fine (1982, 759) (cf. Fierens et al. 2009, 1880-3). Suppose
that I purchase a brand new die and proceed to roll it a very large
number of times. The corners of the die start off sharply angled, but
they become more worn and rounded after a large number of rolls.

ing chance, I should therefore, strictly speaking, be interpreted as meaning
that it is the set of the restrictions (or perhaps truncations) of such functions
to the domain of chances — with this domain being the one specified in the
previous sentence — that constitute the chance for the world.) This is weaker
than (and preferable to) the restriction of the chance domain to those propo-
sitions that all the tied systems agree upon, and doesn’t issue in gaps such as
those described by the referee. It might be possible to argue that the domain
of the chance function extends further to propositions upon which only some
of the tied systems are defined. That suggestion is liable to re-introduce such
gaps (for instance: What if some systems give probabilities for A, some for
B, but none for A&B?) and in general is liable to be more controversial. In
any case, an exploration of this more radical approach would take us too far
afield.

7 Fierens et al. (2009, 1879) use the term ‘chaotic’ rather than ‘imprecise” prob-
ability.
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Suppose the die is more likely to land face down on a face the corners
of which are relatively unrounded, and yet repeated landing with a
given face down tends to wear and round the corners of that face.
Then it is to be expected that the frequency with which the die lands
on each of its faces will vary slightly over time within some small
interval around % as chancy runs of lands on one face wears its corners,
slightly reducing the likelihood of lands on that face for a while until
the patterns of wear are evened up.

Kumar and Fine (1985, 1-2), Fine (1988), and Grize and Fine (1987,
785) observe that ‘flicker noise’ — a form of non-deterministic fluctu-
ation found, for instance, in electric signals — involves such variable
frequencies, while Fierens et al. (2009, 1880) claim that frequencies in
weather and financial data may behave similarly. These behaviors resist
modelling with precise probabilities (Kumar and Fine 1985), but can be
captured using IP models. Walley and Fine (1982, 741-3) and Fierens
et al. (2009, 1879) (cf. Fine 1988, 392-3) variously describe their inter-
pretations of these models as “objective, frequentist” (Walley and Fine
1982, 742; cf. Fierens et al. 2009, 1879), as “a representation of propen-
sities” (Walley and Fine 1982, 742; cf. Fine 1988, 392—3) of outcomes,
and as ‘ontological’ probabilities or ‘chances” (Walley and Fine 1982,
743), with the imprecision representing “ontological indeterminacy”
rather than mere “incomplete knowledge” or “epistemological inde-
terminacy” (Walley and Fine 1982, 758). They clearly distinguish this
interpretation from “subjectivist and epistemic” approaches (Walley
and Fine 1982, 742) or a “behavioral subjective” interpretation (Fierens
et al. 2009, 1879).18

'8 One might object that it’s implausible to interpret such processes as subject to
objective imprecise probabilities. Surely — one might think — the processes
are simply subject to changing precise probabilities (for instance, I failed to
characterise the die example in the main text without speaking in terms of
the changing ‘likelihood’ of its landing on a given side), which we might
struggle to empirically estimate. However, Fierens et al. (2009, 1883) argue
that there may be “no empirical reality existing” that’s sufficient to ground
these changing precise probabilities (in their terms, there may be no empiri-
cal reality that is sufficient to ground a ‘selection function’ F over the set M
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Likewise, some authors have appealed to imprecise probability
models of quantum phenomena (Suppes and Zanotti 1991; Hartmann
and Suppes 2010; Galvan 2008; Hartmann 2015; Allahverdyan 2015"),
such as entangled systems of particles that lack a classical probabil-
ity distribution. It’s clear that at least some of these authors wish to
interpret the IP models realistically. For instance, Allahverdyan (2015,
2) claims that “[ilmprecise joint probabilities in quantum mechanics
are to be regarded as fundamental entities, not reducible to a lack of
knowledge.”

The arguments of the authors cited above, who advocate IP models
for flicker noise or QM phenomena, do not appeal to the BSA nor to
the imprecision of the associated notions of simplicity, strength, and
balance. A natural moral for the defender of the BSA to draw from
these arguments might be that an adequate BSA should allow that in-
dividual candidate systems themselves needn’t be associated with a unique
probability distribution (i.e. the BSA should allow for intra-system im-
precision): Good candidate systems should (if these authors are correct)
entail sets of probabilities for phenomena such as flicker noise and per-
haps entangled states of particles.

My arguments, which focus principally on SM, aren’t based on any
claim that SM processes yield unstable frequencies (as is the case for
flicker noise) or that they lack a classical probability distribution (as is
the case for entangled systems of particles). Rather the claim is that,
even if they do yield stable frequencies, systems that entail probabili-
ties exactly equal to those frequencies might not be the (robustly) best,
because such systems might be exceedingly complex. For instance, the
best-fitting systems might entail different probabilities for a huge range
of types of thermodynamic system reflecting the frequencies, among

of probability functions used to model the process, where F selects a unique
probability function at each instant of time — perhaps depending on the pre-
cise state of the system at that time). Put in Humean terms: For at least some
physical processes, the mosaic just isn’t rich enough to ground ever-evolving
precise probabilities, but only rich enough to determine a non-singleton set
of probability functions associated with the process.

™ Fine (1974) proposes a comparative probability model of quantum phenomena.
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systems of those types, with which their initial conditions are located
within regions of phase space that issue in given sorts of thermody-
namic behavior. Such systems are much more complex than those that
simply treat all types of thermodynamic system as subject to a uniform
distribution over those regions of their phase space compatible with
their initial macrostate. (They might also strike us as too sensitive to
‘accidental’ facts about the frequencies with which initial conditions of
systems of certain sorts are located within regions that issue in certain
sorts of thermodynamic behavior.)

The argument of this essay is that plausibly there’s a set of systems
entailing (slightly) different probabilities for SM phenomena that are
tied for best and hence the Best System analyst should take the set
of probability distributions associated with the set of tied-for-best sys-
tems to constitute the (imprecise) chance distribution for the world.
That is, my claim is that there’s imprecision for inter-system reasons
(ties between systems) and not just for intra-system reasons (the fact
that a given system might be more adequate if it itself entails sets
of probabilities for certain phenomena).*® However, it's worth noting

20 Although I won’t develop this suggestion in detail, if we have ties between
systems sy, ...s,, each of which itself posits a sef of probability distributions
Pi(F) over elements of an algebra F generated on a sample space (), then a
natural suggestion is that the overall imprecise chance distribution over F is
given by the set {P(F) : P(F) € P;(F)} (where P(F) denotes an individual
probability distribution over F). Alternatively, we might regard the chances
as represented by the set of sets of probability distributions (cf. Bradley 2016,
Section 3.5), {P1(F), ..., Pu(F)}. Interestingly, the latter is the sort of entity
that Kozine and Utkin (2002), Troffaes (2006), and others take as a ‘second
order’ sample space in developing imprecise hierarchical uncertainty models
(the first order sample space is just ). (Strictly speaking, Kozine and Utkin
(2002) take a second order sample space to be a set of coherent interval-
valued previsions and Troffaes (2006) takes it to be a set of coherent lower
previsions for gambles on ). As I indicate in the main text below, I don’t as-
sume imprecise chances to be convex/interval-valued and so determined by
upper and lower values.) As they interpret them, the elements of these sec-
ond order sample spaces are imprecise assignments over () that are made by
individual experts. We are instead currently interpreting them as imprecise
assignments associated with individual best systems (which can be regarded
as ‘experts’ regarding outcomes in the Humean mosaic). In imprecise hierar-
chical models, a(n imprecise) distribution is then placed on this second order
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that, to the extent that the approaches cited above suggest that the best
system(s) may themselves entail imprecise probabilities, the following
discussion (subsections 6.2—6.4) of the imprecise chance-credence rela-
tion should be of interest even to those who are skeptical that there’s
a tie for best systemhood or those who believe that a tie per se doesn’t
commit the Best System theorist to the existence of imprecise chances.
Moreover, because the above-cited approaches suggest that the exis-
tence of imprecise chances for our world must be permitted by any
satisfactory metaphysical theory of chance, the following discussion of
the imprecise chance-credence relation should be of interest even to
those who are skeptical of the BSA.

I'm not the first to suggest that ties between systems might lead the
defender of the BSA to endorse imprecise chances. This possibility has
been noted in passing by Hajek (2003b). After discussing the possibility
that credences may be imprecise — or as Héjek puts it ‘vague’>" —

sample space (Kozine and Utkin 2002; Troffaes 2006). Though I won’t develop
this idea here, the weightings implied by such a distribution could be used
to model degree-of-membership of the first-order (sets of) distributions asso-
ciated with the different systems in a second-order (fuzzy) set representing
chance if it's a vague matter which systems are among the tied-for-best (a
possibility raised in Footnote 21 below).

2T don't think that ‘vague probability” is the ideal terminology for the phe-
nomenon under consideration. ‘Vague probability” is best reserved for the
case where it's a vague matter which probability distributions belong to
the set that constitutes an imprecise probability distribution (cf. Joyce 2005,
167n; Sturgeon 2008, 158-9; 2010, 128-33; Bradley 2016, Section 1.2). On the
present interpretation, chances might be vague in addition to being impre-
cise if there’s not only a tie between systems, but it’s also a vague matter
which systems are tied-for-best (perhaps there are some systems that are de-
terminately among the tied-for-best, some systems that are determinately not
among the tied-for-best, and some systems that don’t determinately belong
to either category). This might be so if what constitute reasonable standards
of simplicity, strength, fit, and/or balance is itself a vague matter. I shan’t
explore this possibility further here. In any case, adopting the terminology
recommended here, it’s possible to have an imprecise probability that isn’t
vague — i.e. where a probability model comprises a set of distributions, but
it’s a perfectly determinate matter which elements belong to that set. Ha-
jek (personal communication) has confirmed that what he means by ‘vague’
probability in the passages I quote in the main text corresponds to what I'm
calling ‘imprecise” probability (and also that he doesn’t regard ‘vague’ as the
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Hijek briefly turns his attention to objective probability:

More controversially, let me suggest that we remain open to the
possibility of vague objective probabilities. For example, perhaps
the laws of nature could be vague, and if these laws are inde-
terministic, then objective probabilities could inherit this vague-
ness. ... [A] chance that is vague over the set S corresponds to a
set of sharp chances, taking on each of the values in S. (H&jek
2003b, 278)

In a footnote, Hajek (2003b, 278n) observes that:

This would certainly seem to be a live possibility on a Mill-
Ramsey-Lewis style account of laws as regularities that appear
as theorems in a ‘best’ theory of the universe, as long as the
criteria for what makes one theory better than another are them-
selves vague. (In Lewis’ ...theory, for instance, the vagueness
may enter in the standards for balancing the theoretical virtues
of ‘simplicity” and ‘strength’.) Then nature may not determine a
single best theory, but rather a multiplicity of such theories. Sup-
pose, for example, that these equal-best theories disagree on the
chance that a radium atom decays in 1500 years: for each real
number r in the interval [1/3, 2/3], there is such a theory that
says that the chance is r. Then we might say that the chance of
this event is vague over this interval.>?

The possibility suggested in this latter quote is the one I wish to push.
Though Hajek uses QM as his example, I've been arguing that com-
peting axiomatizations that entail SM probabilities provide a strong
motivation for thinking that there’s indeed a tie and hence — on a
plausible construal of the BSA — that there are imprecise Best System

ideal term for this phenomenon).
22 Compare Hajek and Smithson (2012, 39).
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chances in our world and that the probabilistic laws of statistical ther-
modynamics can correspondingly be taken to be imprecise. Hajek’s
suggestion that, given the imprecision of the standards for balancing
the theoretical virtues (as well, I would add, as the virtues themselves)
there may be systems among the tied-for-best that incorporate differ-
ing QM probabilities, might be plausible. However, this isn’t a thesis
I'll argue for here.

In the remainder of this section and in the next, I'll seek to bolster
my argument that the best system analyst should endorse the existence
of imprecise chances given that there’s plausibly a tie for best system-
hood. I'll do this by describing (in the remainder of this section) how
imprecise chances, if they exist, would constrain rational credence and
then arguing (in Section 7) that the set of probability distributions en-
tailed by the tied-for-best systems constrain rational credence in this
way.

6.2 Imprecise Credence
The thesis that reasonable credence may be imprecise has gained
some popularity in formal epistemology.?3 Joyce (2005, 156) claims
that “[tlhe idea that people have sharp degrees of Dbelief is
...epistemologically calamitous". Joyce (2005, 170) argues in particu-
lar that “[i]t is wrong-headed to try to capture states of ambiguous or
incomplete evidence using a single credence function”. An agent do-
ing so “is pretending to have information he does not possess” and
ignoring “a vast number of possibilities that are consistent with his
evidence” (Joyce 2005, 170). Instead, Joyce (2005, 171) argues that:

As sophisticated Bayesians ...have long recognized
...[iI]ndefiniteness in the evidence is reflected not in the

values of any single credence function, but in the spread of val-

23 Advocates include Levi (e.g. 1974, 1980; 1985; 1999), Kaplan (1983), Fine
(e.g. 1988), Walley (1991), Kyburg Jr. and Pittarelli (1996), Joyce (2005; 2010),
Bradley (2009), Bradley (2012), and Konek (2019).
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ues across the family of all credence functions that the evidence
does not exclude. This is why modern Bayesians represent
credal states using sets of credence functions. ...Imprecise
credences have a clear epistemological motivation: they are the

proper response to unspecific evidence.

As Joyce indicates in the above quotations, a common formal repre-
sentation of imprecise credence appeals to the idea that the credences
of a rational agent, S, are best represented, not by a single probability
function, but rather by a set of probability functions, cr. This set is the
person’s ‘representor’ (van Fraassen 1985, 249).?4 Since I take condi-
tional probability as basic (cf. Hajek 2003a; 2003b; 2007), I assume that
each element of cr is a conditional probability function cr;(-|-) that
maps ordered pairs of propositions (X,Y) onto a unique real num-
ber, x(€ R), in the [0,1] interval: cr;(X|Y) = x (cf. Joyce 2005, 156).
(Unconditional probabilities can be defined via cr;(X) =g.¢ cri(X[T),
where T is the tautology — see Héjek 2003b, 315; Bradley 2016, For-
mal Appendix.) With slight abuse of notation, we can let cr(-|-) rep-
resent the function that maps ordered pairs of propositions (X,Y)
to the set of values x that the probability functions in cr give for
X conditional upon Y (where such probabilities are defined): that is
cr(X|Y) = {cri(X|Y) : ¢cr; € er} (cf. Bradley ms; Carr 2015, 69n). We
can also stipulate that cr(-) =g,¢ cr(-|T).

Those who advocate representing a rational agent S’s credal state in
terms of a set of probability functions typically model updating upon
new evidence D by supposing that each probability function in S’s rep-
resentor is updated upon D and that such updates involve condition-
alization upon D (see Joyce 2005, 153, 172; 2010, 287, 292—3; Chandler
2014, 1277; Bradley 2016, Section 1.1; cf. White 2010, 173; Sturgeon 2008,

24 There are many other formal models of imprecise credence, and several of
the authors I discuss below make use of alternative models. The advantages
of the representor model over other representations are described by Joyce
(2010, 285-7, 294-6) and Bradley (2016). These advantages seem decisive to
me.
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157, 1571; 2010, 131, 137). Where S’s initial representor, cr, is assumed
to be a set of conditional probability functions, the idea is that if S
learns D (and nothing else), then her new representor is crP, where:

crP :{crlD(~|-) =cri(+|- &D) : cri(+|-) € cr} (*)

(Any probability function cr; € cr such that probabilities of the form
cri(+] - &D) aren’t defined is ‘weeded out’ rather than updated in the
transition to crP.)

To illustrate, suppose that S gains imprecise evidence, D, concern-
ing some proposition A. For example, suppose that A = ‘a red ball will
be drawn from urn 1’, and that D = ‘all balls in urn 1 are either red or
blue and a ball will be drawn from urn 1 at random’ (D is imprecise
evidence because it doesn’t say what the proportions of red and blue
balls in the urn are). If S has no other evidence bearing upon A, then
— for reasons to be discussed below — imprecise probabilists will typ-
ically argue that her post-update credence in A (conditional upon T)
should be spread out over the whole of the [0, 1] interval.

Modeling S’s credences by a representor cr that’s updated accord-
ing to (+) can accommodate this. The idea is that various elements
cr; € cr ‘interpret’ the evidence D differently. That is, the value of
cri(A|D) is different for various c¢r; € cr. Consequently, when S up-
dates upon D in accordance with (x), various elements CriD € crP yield
different values cr?(A) (= crP(A|T)). More precisely, there’s a set
ct/ C cr such that, for each pair of elements cr;, crj € c! (i £ ),
cri(A|D) # crj(A|D). This means that the post-update probabilities,
crP(A) and cr]-D (A), diverge. The idea is that, for a rational agent, the
probability functions in her initial representor are such that the various
values for cr;(A|D) are spread out all over the [0, 1] interval, so that the
various values of crP(A) are, too.

No completely compelling argument has been produced to show
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that (x) is the correct way of modeling belief change for a rational
agent whose credal state is represented by a set of probability func-
tions. Where the credal state of a rational agent is modeled by a single
probability function, conditionalization is normally taken to be justi-
fied by diachronic Dutch Book arguments (Teller 1973; Lewis 1999),
or by considerations of ‘symmetry” or ‘representation independence’
(Hughes and van Fraassen 1984; cf. Grove and Halpern 1998). Justifica-
tion of the principle that, where an agent’s belief state is represented
by a set of probability functions, rationality requires that she update
by conditionalizing each probability function in her representor (for
which conditionalization is defined) upon the evidence is less straight-
forward, and attempts to justify it (see Grove and Halpern 1998) are
less compelling.?> For now, however, I'll assume that (x) is the correct
way to model rational belief change for a (rational) agent whose credal
state is modeled by a representor. I'll consider an heterodox model of
belief change for such an agent in Subsection 6.4 below.

Among those who have defended the view that imprecise credence
is the rational response to ignorance or unspecific evidence are Levi
(1985), Fine (1988), Walley (1991), Joyce (2005), and Sturgeon (2008;
2010).2% Sturgeon treats this as a consequence of what he calls the

25 Walley (1991, 335-6) discusses an update model for imprecise probabilities
modeled using lower previsions in which an agent’s unconditional lower pre-
visions after learning D are equal to her prior lower previsions conditional
upon D. However, he notes that “there is scope for other updating strategies”
(Walley 1991, 336). For instance, he suggests that it might be reasonable for
your post-update lower previsions to imply a more precise attitude than your
prior lower previsions conditional upon D if, for instance, your prior condi-
tional lower previsions correspond to a highly imprecise attitude reflecting
the fact that, prior to learning D, D was “unexpected and You have spent
little time assessing prior previsions related to” it (Walley 1991, 336). He also
expresses the concern (equally applicable to the standard model of updating
precise credal states) that some evidence that one might gain can’t be repre-
sented in the possibility space on which one’s prior previsions were defined,
so ‘prior’ conditional previsions can at best be assessed after the fact relative
to the more fine-grained (post-update) possibility space (Walley 1991, 337-8,
340n).

26 Not everyone is convinced. Elga (2010) and White (2010) argue that impre-
cise credences are irrational. Elga (2010) argues that any plausible decision
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rule for imprecise credences sanctions irrational sequences of actions in cer-
tain diachronic decision problems. Yet Sahlin and Weirich (2014), Chandler
(2014, 1280), and Bradley and Steele (2014, esp. 284—7) have all argued that
Elga’s argument turns upon spuriously supposing that a rational agent will
fail to engage in valid ‘backwards induction’ reasoning that’s clearly called
for when the decision problem is presented in its extensive form (see Sei-
denfeld 1994, esp. 459n). (Thanks to an anonymous referee for bringing this
to my attention.) Sahlin and Weirich (2014), Chandler (2014, 1282—4), and
Bradley and Steele (2014, esp. 285-6) also show that an agent who adopts
one plausible decision rule for imprecise probabilities, namely I'-Maximin (a
rule derived from Gérdenfors and Sahlin 1982) — which says that an act A
is permissible iff the minimum expected utility associated with A by any ele-
ment of the agent’s representor is at least as great as the minimum expected
utility of any alternative act B — and engages in the warranted backwards
induction, will recognize the irrational sequence of decisions as inadmissible
by the lights of her decision rule. Elga has subsequently responded to Sahlin
and Weirich’s (2014) article by conceding the point (see Elga 2012).

Bradley and Steele (2014, esp. 285-7) argue that another decision rule for
imprecise credences — namely, what they call a ‘non-dominated-set” (NDS)
rule, which says that A is admissible if there’s no alternative act B such that
at least one element of the agent’s representor assigns B a higher expected
utility than A and no element assigns B a lower expected utility than A —
also avoids irrational acts in Elga’s scenario when the agent engages in the
warranted backwards induction reasoning. Meanwhile, Joyce (2010, 315-6)
argues that a subclass of what he calls ‘pragmatic sharpening rules’ (which
involve basing your decisions on a subset of elements of your representor
arrived at by ‘throwing out’ certain extreme probability functions) also avoid
the irrational sequences of decisions in Elga’s case.

White (2010) focuses upon the phenomenon of probabilistic dilation (cf. Sei-
denfeld and Wasserman 1993). An example of this phenomenon, considered
by Pedersen and Wheeler (2014, 1326—7) — which is the same in all relevant
respects as that which White (2010, 175-81) considers — is as follows. Sup-
pose that an agent S, who has unspecific evidence for a proposition A, has
imprecise credence in that proposition. In particular, suppose that A is the
proposition that the next toss of Coin 1 will result in heads, where the bias
of Coin 1 is unknown to S. Suppose also that S has highly specific evidence
for proposition B, and has a precise credence in B on that basis. In particu-
lar, suppose that B is the proposition that the next toss of Coin 2 will result
in heads, where Coin 2 is known by S to be fair and S has credence 0.5 in
B on that basis. Then learning either A <+ B or its complement (A <> B)
will force S, if she updates via (+), to have imprecise credence in B. White
regards it as irrational that an agent should come to have imprecise credence
in a proposition like B because she has imprecise credence in the unrelated
proposition A and learns the seemingly innocuous proposition A <+ B (or
—(A <> B)), especially as she seems required to have a precise 0.5 credence
in B in accordance with Lewis’s (1980) Principal Principle (PP).

Hart and Titelbaum (2015) counter — correctly — that the biconditional
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‘Character-Match Thesis” (CMT), which is the thesis that “the attitude
taken to a claim should be fixed by the character of evidence on which
it is based” (Sturgeon 2010, 133; cf. Joyce 2005) or, as he elsewhere
puts it, that “epistemic perfection demands character match between
evidence and attitude” (Sturgeon 2008, 160; italics original). The conse-
quence is, according to Sturgeon, that:

is far from innocuous. Indeed it is ‘inadmissible’ evidence (cf. Lewis 1986,
92—-6) concerning B in the sense that the PP fails to constrain rational cre-
dence for an agent in possession of it (see Joyce 2010, 299-307; cf. Hart and
Titelbaum 2015, 259n). Even where an agent’s probabilities for both A and
B are precise, updating via orthodox Bayesian conditionalization on A <+ B
(or its negation) can (depending on the exact values of her prior credences
in A and B) have prima facie surprising effects on the agent’s probabilities for
A and/or B. The extent of dilation in the imprecise case is just an instance
of the same phenomenon: It reflects the surprising (but normatively correct)
result of conditionalizing precise probability distributions on biconditionals
(after all, this is all that orthodox updating for a representor amounts to).

Joyce (2010, 299-307), Bradley (2016), and Hart and Titelbaum (2015) (cf.
Seidenfeld and Wasserman 1993; Joyce 2005, 173) all thus regard dilation
as a rational phenomenon. The key point (expressed in terms of our run-
ning example) is that A <+ B is strong (inadmissible) evidence for B (and
—(A 4> B) is strong (inadmissible) evidence against B) according to some
elements of S’s representor: namely, those that assign high initial probability
to A. On the other hand, A <+ B is strong (inadmissible) evidence against B
(and =(A < B) is strong (inadmissible) evidence for B) for others: namely,
those that assign low initial probability to A. (The biconditional is therefore
‘epistemically relevant’ to B sensu Pedersen and Wheeler (2014, 1325), and
B is epistemically relevant to the biconditional, and hence the two are not
‘completely stochastically independent” sensu Pedersen and Wheeler (2014,
1325) (cf. Joyce 2010, 300), even though the biconditional is epistemically ir-
relevant to A (cf. Couso et al. 2000, Section 3.1).) Hence the dilation that
results from updating each of the elements of S’s representor on A <+ B (or
—(A + B)), can’t (non-question-beggingly) be claimed to be irrational. On
the other hand, if S updates on some proposition that each element of her rep-
resentor agrees is independent of B — specifically, if the two propositions are
‘completely stochastically independent” sensu Pedersen and Wheeler (2014,
1307), as A <+ B would be if all elements of her representor agreed that Coin
1 as well as Coin 2 was fair (cf. Pedersen and Wheeler 2014, 1328) — then
dilation won’t occur. For more detail on this line of response, see Joyce (2010,
299-307). Pedersen and Wheeler (2014) pursue a slightly different line of re-
sponse. They observe that there are representors that both encode imprecise
beliefs about A and where updating upon the biconditional or its negation
doesn’t dilate B, and defend the rationality of an agent’s having a credal state
modeled by such a representor.
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[E]vidence and attitude should match in character: when evi-
dence is essentially sharp, it warrants a sharp attitude; when
evidence is essentially fuzzy, it warrants a fuzzy attitude. When
evidence is maximally precise it warrants . ..real-valued subjec-
tive probability. When evidence is not maximally precise — as
in most of the time — some other kind of attitude is called for,
some kind of thick confidence. (Sturgeon 2010, 133)*7

By ‘thick confidence’, Sturgeon means roughly what I mean by ‘im-
precise credence’. (‘Roughly’ because he rejects existing formal mod-

27 Cf. Sturgeon (2008, 159) and Joyce (2005, 170-1). Wheeler (2014) argues that
the CMT doesn’t hold in full generality. However, his argument is that states
of full belief/disbelief/suspension of judgment needn’t match the character
of one’s evidence. For instance, imprecise and weak evidence can sometimes
warrant full belief, while strong and precise evidence sometimes fails to war-
rant full belief. This is because full belief in ¢ “is the disposition to act as
if ¢ were true relative to some specified range of actions” (Wheeler 2014,
191-2). This means that states of full belief are sensitive, not just to the char-
acter of evidence, but also to the range of possible actions available and the
risk-to-reward ratio of acting as though ¢ (Wheeler 2014, 192). As Wheeler
shows, because states of full belief are sensitive to these other factors, some-
times mismatches in character between states of fully belief and evidence
will arise. But then again, Wheeler (2014, 191) recognizes that, for these rea-
sons, there will sometimes be a mismatch in character between states of full
belief and credal states. Though it would take us too far afield to discuss
Wheeler’s specific examples, I don’t think any of them show (nor does he
claim that they show) that there are situations in which we have imprecise
evidence for a proposition but are warranted in having precise credence in it,
or vice versa. So Wheeler’s arguments don’t tell against the view that there’s
a character match between evidence and rational credence, which is the as-
pect of character matching that interests us here. (Certainly, Wheeler (2014,
189-90) acknowledges that at least sometimes (imprecise) evidence will issue
in reasonable imprecise credence — cf. Bradley 2016, Section 2.3.) Nor do
they tell against my claim — to be developed in Subsection 6.4 below — that
knowledge of imprecise chances of outcomes issues in reasonable imprecise
credence about those outcomes.

28 Sturgeon rejects the terminology that T adopt here because (a) he prefers to
keep ‘credence’ as a technical term for real-valued subjective probability; and
(b) he thinks that ‘imprecise probability” suggests the probability is (what I've
referred to as) vague or (as he calls it) ‘fuzzy’ (Sturgeon 2010, 130n, 132-3)
when it needn’t be. I use the term ‘imprecise probability’ because it’s the
most standard term for the phenomenon in question, and I've clearly distin-
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els of the phenomenon.??) Thus, in the urn case described above, S
has highly imprecise evidence concerning whether a red ball will be
drawn from the urn. The CMT supports the claim that S’s credence in
this outcome should be correspondingly highly imprecise.

Imprecise chances might plausibly be taken as one sort of imprecise
evidence one might have about the outcomes those chances concern.
My claim — to be developed in Subsection 6.4 below — will be that
the rational response to knowledge of imprecise chances of outcomes
is imprecise credences in those outcomes.

White (2010, 173—4) — though himself denying the rationality of
imprecise credences?® — suggests that some of those who endorse im-
precise credences may do so as a consequence of their endorsement of:

Chance Grounding Thesis (CGT): “Only on the basis of known
chances can one legitimately have sharp credences. Otherwise
one’s spread of credence should cover the range of possible
chance hypotheses left open by your evidence.”

In the urn example given above, it seems that for each real number
x € [0,1], S’s evidence leaves open the hypothesis that the chance that
a red ball will be drawn from the urn is x. CGT thus suggests that S’s
credence in this outcome should cover the whole [0, 1] interval 3*

guished this from ‘vague probability” above. It’s also now quite common to
use ‘credence’ neutrally between the real-valued phenomenon and the im-
precise phenomenon.

29 His reservations are based on worries about dilation — which was addressed
in Footnote 26.

39 For reasons discussed in Footnote 26 above.

31 A referee has questioned whether the CGT is widely endorsed among im-
precise probabilists. And indeed Joyce (2010, 289) argues that it’s too strong
on the grounds that certain known symmetries can lead to precise credences
even where chances are unknown. For instance, suppose fair Coin A will be
tossed. If it lands heads, then Coin B with unknown bias B towards heads
will be tossed. If it lands tails, then Coin C with unknown bias 1 — 8 towards
heads will be tossed. You know all of this, and that each coin has zero chance
of landing ‘edge’. Then, before Coin A is tossed, for each probability func-
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The CGT — which I'll return to in Section 6.4 — says that only when
one knows the chances is it legitimate to have precise credences. I'll

tion in your representor, the probability that the second coin to be tossed will
land heads (Hp) is P(Hy) = 3+ 1(1-8) = 1.

Schoenfield (2017) describes a thesis which is somewhat weaker than
CGT, and which she claims is part of “the standard imprecise view”: namely,
that “if the only evidence you have concerning whether P is that the objec-
tive chance function for {P, ~ P} is in the set of probability functions S, then
your evidence requires you to adopt the doxastic attitude represented by S.”
If Joyce’s example is construed as one in which you have evidence that goes
beyond what the chance for H, is — namely evidence that a certain sym-
metry holds — then it’s not a counterexample to the thesis that Schoenfield
describes.

However, I think that the symmetry information is a form of chance
information. As Carr (2015, yon) points out, in Joyce’s case, “you do have
chance information: in particular, information that before the coin [to be
tossed second] was selected, the chances of heads [on the second toss] was
.5”. That seems exactly right to me. Let ¢; be a time immediately prior to the
toss of Coin A, and let t; be a time after Coin A has been tossed, but before
the second coin has been tossed. Since § is unknown, at t, you will be com-
pletely ignorant of the chance of heads on the second coin toss whichever
coin has been selected to be the second tossed, and so your credence plausi-
bly ought to cover the full [o,1] interval. Yet the fact that the ¢, chance (better:
the chance conditional upon the history of the world up to t;) of heads on
the second toss is unknown at ¢, is compatible with the f; chance (better: the
chance conditional upon the history of the world up to t1) of heads on the
second toss being known at t;. And indeed this is the case: The unknown
value of the parameter B, while being highly relevant to the f; chance, is
irrelevant to the #; chance, which is given by P(H,) = 3B+ 1(1 — B). This
is equal to %, no matter what the value of B. (Learning the outcome of the
first toss thus dilates one’s credence concerning Hp.) In any case, there’s no
time at which (and no evidential state relative to which) rational credence
concerning H, comes apart from the range of chance hypotheses concerning
H, that’s left open by your evidence. Joyce’s example is therefore a coun-
terexample neither to Schoenfield’s principle nor to the CGT.

It should be noted that my thesis in what follows isn’t that the CGT
holds, but is rather the distinct claim that knowledge of imprecise chances
warrants imprecise credences. Still, one of the arguments for the latter claim
that I'll provide in Subsection 6.4 parallels an argument for the CGT that
Carr (2015) advances. If the CGT turns out to be false, then something must
be wrong with Carr’s argument, and this is liable to cast doubt upon my
parallel argument. I think that the CGT is true but, in any case, I provide
arguments for the conclusion that knowledge of imprecise chances warrants
imprecise credences that are independent of the one that parallels Carr’s
argument for the CGT.
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argue that it’s not always legitimate to have precise credences when one
knows the chances. Specifically, it won't be legitimate if those known
chances are themselves imprecise.

6.3 Imprecise Chance

That chance is probabilistic is something that has mostly been taken
for granted. The authors cited in Subsection 6.1 are exceptions, since
they take chance to be imprecise (and hence not real valued3?). As, for
instance, is Feynman (1987) who countenanced negative chances (and
chances greater than 1).

Perhaps the most influential argument that chance is probabilistic
is given by Lewis (1986, 98) who points out that this is a direct result
of the assumption that rational credence is probabilistic — an assump-
tion which has itself been defended by Dutch Book reasoning (Ramsey
1931, 182) and considerations of accuracy (Joyce 1998) — together with
the Principal Principle (PP) — the chance-rational credence coordina-
tion principle that Lewis (1986, 87) himself advocates, and which is
defended by Pettigrew (2012; 2013) inter alia.

However, as Bradley (2012) (cf. Fine 1988, 399, 401-3; Joyce 2010,
292) points out, it can’t be shown that someone with imprecise degrees
of belief can be subjected to a Dutch Book without making highly dubi-
ous assumptions about the decision rule that they adopt (cf. Frigg et al.
2014, esp. 55-6). Moreover, while accuracy arguments can be used to
show that numerically precise credences ought to obey normalization,
non-negativity, and finite additivity, it’s dubious whether they can be
deployed to show that degrees of belief must be numerically precise
(Joyce 1998, 600—2).33 Moreover, if chance is assumed to be imprecise

32 These authors typically replace finite additivity with finite superadditivity
of lower chances and finite subadditivity of upper chances. See, for instance,
Bradley (2016, Formal Appendix) for details.

33 Schoenfield (2017) and Konek (2019) dispute whether the view that the only
epistemic good is accuracy (sometimes called accuracy-first epistemology) is
consistent with the view that imprecise credences can be rationally permitted
or required, with Schoenfield giving an argument that accuracy-firsters can’t
allow that they’re rationally permitted, and Konek arguing that accuracy-
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for the sake of argument, then the PP itself stands in need of revision,
as I'll argue below. If the resulting principle were substituted for the
PP in Lewis’s argument, the argument would no longer be valid. So
it seems that there’s no non-question-begging argument along these
lines for thinking that chance must be precise.

Imprecise chance — on the assumption that it exists — can be rep-
resented as a set ch of probability functions. On the present interpre-
tation, a probability function ch; is an element of ch iff ch; is entailed
by one of the set of tied-for-best systems. Call the set ch the cadentor.34
Each element of the cadentor is a precise probability function ch;(-|-)
that associates ordered pairs of propositions (X, Y) with a unique real
number, x(€ R), in the [0,1] interval: ¢h;(X|Y) = x. (Again, uncon-
ditional probabilities are defined via ch;(X) =g chi(X|T).) Abusing
notation slightly, we can let ch(:|-) represent the function that maps
ordered pairs of propositions (X,Y) to the set of values x that the
probability functions in ch give for X conditional upon Y (where such
probabilities are defined): that is ch(X|Y) = {ch;(X|Y) : ch; € ch}.

6.4 The Imprecise Chance-Credence Connection

How ought rational credence be constrained by evidence of imprecise
chances? Walley and Fine (1982, 747-51) take physical processes mod-
eled by upper and lower probabilities to warrant corresponding upper
and lower expectations. Fierens et al. (2009) (cf. Walley and Fine 1982,
752—7) provide ways of estimating a set of probability distributions
(where the set is given an objective interpretation, and taken to model

firsters should allow that they’re sometimes rationally required. Note, how-
ever, that one can take accuracy to be an epistemic good without taking
it to be the sole epistemic good. And if one’s a pluralist about epistemic
value, then it’s easy to sidestep Schoenfield’s argument. Indeed, without go-
ing into details, I find it more plausible to take Schoenfield’s argument — if
(contra Konek) it’s otherwise successful — as constituting a reductio against
accuracy-first epistemology than as telling against the rationality of impre-
cise credences. Nevertheless, I do believe that accuracy is an epistemic good,
but just that there may be others.

34 After the Latin cadentia from which the English word ‘chance’” ultimately
derives.
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a physical process) from a data sequence by computing the relative fre-
quencies along some of its subsequences, and they treat such estimates
as a basis for prediction (Fierens et al. 2009, 1883). Fine (1988, 399) also
suggests that imprecise subjective probabilities are the correct response
to imprecise chances (cf. Walley 1991, 358n).35

This points in the direction of a natural proposal for how impre-
cise chances constrain rational credences which, roughy speaking, is
that when an agent learns what the set-valued chance is for A, her cre-
dence in A ought to come to take the same set of values. Hajek and
Smithson (2012, 38) make a suggestion along these lines — though
they state it in terms of a rational agent’s credences conditional upon
a set-valued chance for A rather than her credences upon learning a
set-valued chance for A3® — when they say:

[Y]our credence in a proposition, conditional on the chance of
that proposition being indeterminate in a particular way, should
be indeterminate in the same way. The indeterminacy in the
chance ... is inherited by your conditional credence.

The following is an attempt to state this idea more precisely.

Since I'm taking conditional chance to be basic, I prefer to begin
with a formulation of the chance-credence connection that — in con-
trast to Lewis’s (1980) PP — takes conditional chances to be the quan-
tities that (in the first place) constrain rational credence.3” I take it to
be more or less platitudinous that precise conditional chances place

35 While Fierens et al. (2009, 1879) prefer a representation of imprecise proba-
bilities as sets of measures, Fine (1988) appears to prefer to work with lower
probabilities.

3% The two ways of putting the point are equivalent on the representor approach
to imprecise credences if the agent updates in accordance with (x).

37 I'm grateful to Richard Pettigrew for reminding me that, as Hall (2004, 100-
1) argues, chance-credence coordination principles that appeal to conditional
chances needn’t appeal to Lewis’s (1980) notion of ‘admissible evidence’.
This enabled me to formulate the coordination principles that I discuss in
the following in a simpler way than they were formulated in an earlier ver-
sion of the manuscript.
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the following constraint on rational credence. Suppose that a rational
agent S’s total evidence is given by the proposition E together with
the proposition that the chance of A conditional upon E is x (which,
for now, is assumed to be a unique real number). Such an agent has a
credence in A equal to x.

More precisely, let ch(-|-) be the ur-chance function (Hall 2004, 95).
Let cr(-]-) be any reasonable initial credence function (the credence of
a Bayesian ‘superbaby’ — cf. H4jek ms b). (For now, both ch(-|-) and
cr(+|-) are assumed to be unique, real-valued conditional probability
functions.) Suppose that {A, E} is any pair of propositions such that
there’s a well defined chance ch(A|E). Then conditional chances guide
rational credence in the sense captured by (Cond):

cr MAIE)=x&E(A) — y (Cond)

Here, "ch(A|E) = x7 is the proposition that the chance of A condi-
tional upon E is x (cf. Hall 2004, 99), while cr' AIE)=¥"&E () js the
credence distribution that results from updating cr(-|-) upon the propo-
sition "ch(A|E) = x'&E and conditioning upon T .38

The most natural generalization of Cond to the case of imprecise

38 Cond doesn’t say how the update on "ch(A|E) = x7&E proceeds. One
obvious suggestion is that it proceeds by conditionalization and that, for
a rational agent, CCP (‘Conditional Chance Principle’) holds (where A, E,
Tch(A|E) = x7, and cr(-|-) all have the same interpretation as above):

cr(A|"ch(A|E) = x"&E) = x (CCP)

CCP is an analogue of PP where conditional chances are taken to guide
rational credence. A principle along the lines of CCP is described by Hall
(2004, 101) (cf. Hoefer 2007, 574—5; Schwarz 2014, 88).
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chances and credences is given by what I'll call the Mushy Principle
(or MusnyP):39

cr MAE)=Y&E(A) — & (MusHYP)

Here, A and E have the same interpretation as before. cr is any rea-
sonable initial representor (that is, any set of probability functions
that could model a rational agent’s initial epistemic state), while
cr HAIE)=x"&E j5 the representor that results from updating the credal
state represented by cr upon the proposition "ch(A|E) = x"&E, where
Tch(A|E) = x™ is the proposition that x is the set of probabilities that
the various elements of the cadentor entail for A conditional upon E.
MushYP thus states that a rational agent S, whose total evidence is the
conjunction of E with the proposition that the set-valued chance for A
conditional upon E is x, has a credence in E represented by the set of
values x.4°

39 The name is inspired by the fact that imprecise probabilities are sometimes
described as ‘mushy’ (and by the memorability of its abbreviation for fans of
British cuisine!).

49In comments on an earlier version of this paper, Richard Pettigrew and Jason
Konek suggested that there’s another plausible principle, which is consistent
with MusHYP and which describes a further way in which rational credence
is constrained by imprecise chance. This is MusHYP*:

crP€E () = ch(:| - &E) (MusnYP*)

Here, P is the proposition that ch is the cadentor. MusHYP* says that the
representor of an agent whose total evidence is P&E ought to be equivalent
to the set of conditional distributions arrived at from the cadentor by taking
E as a fixed condition. I find this principle plausible. However, it doesn’t
render MusHYP redundant, since MusHYP tells us how rational credence re-
sponds to knowledge of the set-valued chance for an individual proposition A
conditional upon E. It’s possible, and arguably quite common, to have such
knowledge without knowing exactly what the cadentor is, just as in the pre-
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MusHYP doesn’t say anything about how the update on "ch(A|E) =
x '&E occurs. As we saw in Section 6.2, the orthodox approach is that
updating an imprecise credal state cr upon some proposition D in-
volves updating — by conditionalization — each probability function
cr; € cr for which the update operation is defined upon D. (Where the
update operation is undefined, cr; is ‘weeded out’ rather than updated
in the transition to c¢rP.) Where D is imprecise evidence — as D is im-
precise evidence for A if D is the proposition "ch(A|E) = x'&E — the
idea is that the different elements of cr ‘interpret’ D in different ways,
in the sense described in Section 6.2.

If — as I've claimed — MusHYP correctly describes how rational
imprecise credence is constrained by knowledge of imprecise chances
and if the orthodox model of updating an imprecise credal state upon
evidence — given by (x) — is correct, then it follows that, for any ra-
tional initial representor cr, for every possible cadentor ch, and for all
and only values x; such that ch;(A|E) = x; for an element ch; € ch,
there must be an element cr; € cr such that cr;Ch(AlE):xj&E(A) = x;.4

This is slightly unsatisfactory in that we only get the correct post-
update ‘spread’ for a rational agent’s credence as a result of the some-
what ad hoc stipulation that her initial representor must comprise prob-
ability functions that yield this spread when updated by conditional-

cise case one might know the chance of some proposition (e.g. that a given
tritium atom will decay within 12.32 years) conditional upon one’s evidence
without knowing what the complete chance distribution is over the full al-
gebra of events on which chance is defined. In what follows, for reasons of
space, I'll confine myself to an attempt to defend MusnyP without also seek-
ing to defend MusHYP* and also to attempting to show how the probabilities
entailed by the set of tied-for-best systems for our world play the MusuyP
role in guiding rational credence without also seeking to explicitly show that
the entailed probability functions play the MusuyP* role. However, I hope
the following will at least make clear what sort of strategy I would pursue in
seeking to defend MusaYP* (and the view that the probability functions en-
tailed by the tied-for-best systems play the MusuyP* role), even if the details
of that defence must await another occasion.

4 Thanks to an anonymous referee for helping me to more accurately charac-
terize the constraints that an initial representor must meet if, when updating
occurs in accordance with (+), it is to satisfy MusHYP.
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ization upon any possible proposition of the form "ch(A|E) = x"&E.
Perhaps we can get a more satisfactory model of how rational post-
update credence conforms to MusHYP by adopting a heterodox up-
date principle. In fact, when imprecise evidence takes the form of an
imprecise chance, a particular heterodox update model suggests itself.

On this heterodox model, S’s post-update representor is arrived
at by updating (perhaps by conditionalization) each of the probabil-
ity functions cr;(|-) in her initial representor upon each proposition
of the form "chj(A|E) = x;"&E, where "ch;j(A|E) = x;" is a true
proposition stating that an element, j, of the cadentor entails that the
probablh E){ of A cond1t10na1 upon E is x;. That is, cr Teh(AE)=x"&E () =

xj &E .

*) s cri € er,chj € ch}. If each update of a cr; € cr
upon a propos1t10n Tchi(A|E) = x;&E (for ch; € ch) conforms to Cond
— that is, if for each such update, cr; treats Xj as the unique chance of
A conditional upon E and cr; acts as though it were a unique, rational
credence function — then any initial representor cr such that, for each
element ch; € ch, there’s a cr; € cr with respect to which the update
on "ch;i(A|E) = x;"&E is defined, will yield a post-update representor
satisfying MusHYP.

This heterodox update model allows us to be more permissive than
the orthodox model does with regard to the initial representor that a
rational agent may come endowed with if her post-update credence
is to conform to MusHYP. Still, there are two worries about this het-
erodox update model. The first concerns motivation. It's not clear why,
in each update of a cr; € cr upon a proposition "ch;(A|E) = x;'&E
(for ch; € ch), cr; should treat x; as the unique chance for A condi-
tional upon E. It’s also not clear why, in each such update, cr; should
act as though it were a unique, rational credence function. Finally, it’s
not clear why every cr; € cr should be updated on each proposition
Tchi(A|E) = x;"&E (for ch; € ch) in the transition to the new repre-
sentor. Perhaps an adequate answer to these questions is simply that
this is a way of generating the rationally correct post-update credences
from a rational pre-update representor without imposing implausibly
strong constraints upon what rationality requires of the pre-update
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representor. Such a response might be particularly plausible if we con-
ceive of what we’re doing in ‘modeling’ such updates not as aiming to
describe real psychological processes that a rational agent must be sub-
ject to (let alone conscious of), but just as describing some algorithm
that’s capable of implementing the function from rational prior credal
states (which perhaps aren’t as constrained as the orthodox update
model would have it) to rational posterior credal states that reflect the
imprecision of the evidence acquired.

Yet there’s a second, and I think more serious, worry about the
heterodox model described. This concerns its generalizability to other
sorts of imprecise evidence. The heterodox proposal involves the idea
that there are various ‘precisifications’ of an imprecise chance: Specif-
ically, each proposition of the form "chj(A|E) = x;'&E is, in a
sense, a precisification of the imprecise evidence for A that comprises
Tch(A|E) = x"'&E. The idea is that each probability function in the
agent’s representor should be updated upon each precisification of the
evidence to yield the updated representor. Yet there are examples of
imprecise evidence (see e.g. Elga 2010, 1) where it’s not clear what a
‘precisification” of the evidence would be.

So I have no entirely satisfactory story about the update mechanism.
Yet note that I'm in no worse a position here than any other imprecise
probabilist who claims that imprecise evidence issues in rational cre-
dence that’s imprecise in a similar way (i.e. anyone who adopts some-
thing like the CMT). If they adopt the orthodox update model, they
will have to say that any rational initial representor must contain el-
ements that interpret any possible imprecise evidence D in just the
right spread of ways that updating the representor in accordance with
(+) yields a posterior spread of credence that matches the imprecision
of the evidence updated upon. Likewise, if they adopt the heterodox
model, they will face the burden of explaining what counts as a precisi-
fication of imprecise evidence where that imprecise evidence doesn’t
take the form of an imprecise chance. If it turns out that there’s no
reasonable update model for imprecise credences, then this might fur-
nish a reason for thinking that only precise credences are rational. Still,
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as we’ve seen, independent reasons have been given for thinking that
imprecise credences are rational in some circumstances. So we must ac-
knowledge here as elsewhere that the ultimate success of the present
arguments will be partly contingent upon the outcome of more general
debates — having nothing specifically to do with chance — between
precise and imprecise probabilists.

Hijek and Smithson (2012, 38—9) have claimed that something along
the lines of MusHYP is plausible:

If you regard the chance function as indeterminate regarding
[some proposition] X, it would be odd, and arguably irrational,
for your credence to be any sharper. Compare: if your doctor is
your sole source of information about medical matters, and she
assigns a credence of [0.4, 0.6] to your getting lung cancer, then
it would be odd, and arguably irrational, for you to assign this
proposition a sharper credence — say, 0.5381. How would you
defend that assignment?

In what follows, I'll attempt to given an explicit defense of MusHYP.
My strategy will be two-pronged. First, I'll consider the most obvious
and/or plausible rivals to MusHYP and argue that it’s irrational to cal-
ibrate one’s credences as these principles suggest. Of course it might
be that there are alternatives of which I haven’t conceived that don’t
lead to irrationality. Nevertheless, this first prong of my strategy at
least lays down a challenge to the opponent of MusHYP to devise and
defend some such rival principle.#* The second prong of my strategy
will be to show how an epistemic utility argument that Carr (2015) has
advanced for CGT can be readily adapted into a direct argument for
MusHyP. This direct defense reduces the plausibility that any uncon-
ceived rival principle is at least as defensible as MusHYP.

Recall that MusHYP says that, when a rational agent updates her

42 As indicated in Footnote 40, MusHYP* isn’t a rival, since it’s compatible with
MusnyP.
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initial representor upon the proposition "ch(A|E) = x'&E, where this
proposition represents her total evidence, her post-update credence in
A is x. Perhaps the most obvious rivals to this principle are:

Rival 1: S’s post-update credence is the mean (or some other weighted
average) of x.

Rival 2: S’s post-update credence is the convex hull of x.
Rival 3: S’s post-update credence is some proper subset of x.

Rival 4: S’s post-update credence contains values that lie outside
[inf{x},sup{x}].

Rival 3 and Rival 4 aren’t unique alternatives to MusHYP, but describe
classes of such rivals. Indeed, in some cases, Rival 1 will be a special
case of Rival 3. This will be so if, for instance, x contains its own mean.

I think that instances of Rival 3 that aren’t instances of Rival 1 can
be passed over fairly quickly. Rival 1 (where it’s an instance of Rival
3) is a specific proposal about which subset of x one should adopt as
one’s post-update credence, and (as we'll see) it comes associated with
some prima facie motivations for why this is the relevant subset. I'm
not aware of any motives for adopting an alternative instance of Rival
3. In general, in adopting Rival 3, you're acting as though a subset of
ch is privileged. The question — as Hajek and Smithson (2012) pose
it in the passage quoted above — is what justifies you in doing this?
In the absence of some such justification, it’s not clear which subset
should be taken as privileged. As noted, Rival 1 comes associated with
a story about this. It is of course possible that someone might devise
some story that would motivate some alternative version of Rival 3.
However it’s not obvious to me how such a story would go. In the
absence of such a story, it seems that MusuYP, which is backed by the
plausibility of CMT (and also the positive argument for MusHYP to be
given below), should be presumed preferable.

So let’s now consider Rival 1. It’s worth noting, first of all, that if the
elements of x are infinite and x is convex, then the natural analogue
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of taking the mean of x would be to take the mid-point of the inter-
val [inf{x}, sup{x}]. If we prefer a version of Rival 1 that, in the finite
case, recommends a credence that’s some weighted average of x with
non-equal weights, then the natural generalization to the infinite case
might be to choose some other point in the interval [inf{x}, sup{x}]
as our recommended post-update credence. If the elements of x are
infinite and x is non-convex, then it’s not obvious that there’s a natural
analogue of Rival 1. Still, some of the following considerations raise
general concerns about responding to imprecise chances with any par-
ticular precise credence (concerns that don’t simply involve invoking
the CMT).

Rival 1 certainly might be appealing to those who are skepti-
cal of the rationality of adopting imprecise credences. Wheeler and
Williamson (2011, 324) describe an analogue of this view for the case
where the chance of an outcome is unknown (thus describing a view
that appears at odds with the CGT):

As far as you are aware, the physical probability of a is now 1
or o and no value in between. But this does not imply that your
degree of belief in a should be 1 or o and no value in between —
a value of %, for instance, is quite reasonable in this case.

One way one might seek to bolster Rival 1 is by noting that the set
of probability functions in the cadentor is plausibly regarded as a set
of expert functions — analyst experts in Hall’s (2004, 101-2) sense —
and that you should respond to learning the set of probabilities these
functions entail for A conditional upon the remainder of your total
evidence E in the same way you’d respond to learning the set of prob-
abilities for A conditional upon E assigned by any other group of
experts.#3 One proposal* for how one should respond to experts is
that one should take a linear average of their probability assignments.

43 Thanks to an anonymous referee for pushing this way of thinking about it.
4 Discussed by, for example, Dawid et al. (1995) and Bradley (2018).
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Where one has no grounds for trusting one of the experts any more
than any other, a natural view is that one should take a linear aver-
age with equal weights (i.e. the arithmetic mean) of their probability
assignments as one’s own credence.

Yet there are reasons for thinking that linear averaging isn’t in gen-
eral the correct response to learning the opinions of experts. One rea-
son is that it’s not, in general, consistent with Bayesian conditionaliza-
tion (Dawid et al. 1995; Bradley 2018). So it’s not clear that it has a
general attractiveness as a principle for responding to expert opinions
that makes it an appealing way to respond to imprecise chances.

There are more direct objections to Rival 1. First, what justifies the
(equal) weighting assigned to the various functions in the cadentor?
The only obvious proposal for justifying equal weights is to appeal
to the sort of Principle of Indifference-like reasoning that advocates
of imprecise credence reject as failing to accurately reflect one’s (lack
of) evidence (cf. Bradley 2012, 4). This might not unduly concern fans
of precise credences, but nevertheless, independent arguments against
the Principle of Indifference (Pol) tell against this sort of justification
of equal weights. And it’s still less clear what would justify non-equal
weights.

Perhaps even more troubling is that linear averaging doesn’t pre-
serve independence (Laddaga 1977). To see this, let us adapt an exam-
ple from Jeffrey (1987). Suppose that two coins are about to be tossed,
where H; and —H; are the two possible outcomes of the first toss and
H, and —H; are the two possible outcomes of the second. This yields
a set of four atomic events: {H&H,, ~H1&H;, H1&—Hy, ~H1&—H,},
over which an algebra A is defined. For simplicity, suppose that
there are just two probability functions in the cadentor, ch; and
chy. Suppose that chi(Hy) = chi(Hy) = % Suppose, moreover, that
chy regards the tosses as independent, so that ch(H1&H;) = %,
chy (~Hi1&~H,) = §, and chy(H1&—H,) = chy(~H&H,) = 3. Sup-
pose that chy(Hy) = chy(Hy) = 2 and chy regards the tosses as
independent, so that chy(H;&Hp) %, chy(—H1&—H) = %, and
Ch2(H1&—‘H2) = Chz(—\H1&H2) = %
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The trouble is that, although each of ch; and ch, takes the tosses to
be independent, linear averages of the probabilities assigned by each
of them to the atomic events Hi&H,, “H1&H,, H1&—H,, ~H1&—H>
result in distributions that entail non-independence of the tosses (ex-
cept if extreme, 1/0, weights are given to the chances entailed by
chy and chy). For instance, taking a ‘straight average’ (i.e. averaging
with equal weight) of the probability assignments that ch; and chy en-
tail, we get the assignments p(H;&H,) = p(~Hi&-H,) = £ and
p(Hi&=H;) = p(~Hi&H,) = {3, implying that p(Ha|Hy) > p(Ha).

If all elements of the cadentor entail that the chances of two events
are independent, it seems highly dubious that any rule can be a
principle of rationality if it requires (or even permits) that credence,
upon learning what the distributions in the cadentor are (and noth-
ing else of relevance), should come to treat the two events as non-
independent.#5-4° Indeed, Loewer and Laddaga (1985, 90) point out
that linear averaging actually results in inconsistency. To see this, sup-
pose that we refine the partition we’ve been considering by subdivid-
ing each cell into two subcells, according to whether I or —I holds,
where [ is the proposition that H; and H; are independent. Since ch;
and chy both assign probability 1 to I, a distribution p that takes a
straight average (or any weighted linear average) of ch; and chy’s as-
signments also assigns 1 to I even though H; and H; are not in fact
independent according to p.47 While there are adjustments that can be

45 In the context of opinion aggregation, many authors have found plausible a
principle that Elkin and Wheeler (2018, 5) call the Preservation of Irrelevant
Evidence Principle: namely, that if each member of the group whose opinion
is to be aggregated agrees that P is independent of Q (and wouldn’t change
her mind after learning the other agents’ credences), then the aggregated
opinion should take P and Q to be independent.

401f the cadentor is convex, then the worry is slightly more subtle: namely,
that it’s hard to see why one’s credence should treat two or more events as
determinately dependent if not all elements of the cadentor treat them as
dependent. Yet adopting credences in atomic events that are the mid-points
of intervals of probabilities entailed by the cadentor is liable to lead to such
a result.

47 Elkin and Wheeler (2018, 5-6) exploit this fact to show that someone with
a credence represented by p can be subjected to an expected sure loss by a
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made to a simple linear averaging procedure that preserve indepen-
dence (see Wagner 1985; 2011), these adjustments are rather ad hoc.

Partly because of issues surrounding the preservation of indepen-
dence, Elkin and Wheeler (2018) (cf. Seidenfeld et al. 1989, esp. 241-2)
regard imprecise probability assignments as the correct solution to the
problem — closely related to the problem of responding to expert opin-
ion — of opinion aggregation for groups of peers, where “the span
between lower and upper probabilities for a proposition is determined
by the range of judgments expressed by a group of peers” (Elkin and
Wheeler 2018, 15)* and where convexity isn’t mandated (Elkin and
Wheeler 2018, 13; cf. Seidenfeld et al. 1989, esp. 241-2). Levi (1982)
and Fine (1980) also treat imprecise probability assignments as the cor-
rect solution to the problem of opinion aggregation. Kyburg Jr. and
Pittarelli (1992, 151-3; 1996, 334-5) give reasons for thinking that tak-
ing the convex hull of the agents’ probability distributions (as opposed
to the set of distributions itself) to represent the group belief may be
undesirable.

Although some of these authors frame the point in terms of ‘epis-
temic peers’, it seems that, where you are confronted with a group of
experts who are themselves epistemic peers with one another (and you
know this), it would be a good idea for you to strive to adopt the aggre-
gated opinion that they would if they employed a suitable aggregation
rule. Indeed, Fine (1980; 1988, 403—4) argues specifically that imprecise
probability assignments are the correct solution to the problem of ag-
gregating expert opinions and that non-experts should aim to adopt
the resulting imprecise probabilities and use them in decision-making
(Fine 1980, e.g. 27; 1988, 403—4).4° Thus, far from a linear averaging
proposal for responding to imprecise chances being motivated by the

clever bookie and, indeed, if offered a bet on H; in ignorance of the outcome
of the first coin toss, could be induced to pay for information about the
outcome of the first toss.

48 Cf. Fine (1980, 27-9; 1988, 403—4).

49 Fine (1980), however, represents imprecise probabilities using interval-valued
probabilities, rather than sets of probability distributions.
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notion that this is in general the correct response to learning a set of ex-
pert opinions, it seems that linear averaging is the incorrect response
and imprecise credence may well be the correct response to both the
problem of responding to a set of expert opinions and to the problem
of responding to imprecise chances.

The present considerations also tell against Rival 2 — which is that,
upon learning the set of values for A that are entailed by elements of
the cadentor conditional upon the remainder of one’s total evidence, E,
one’s credence in A should correspond to the convex hull of that set of
values (cf. Levi 1980, Ch. 9). Of course, if the probabilities entailed by
elements of the cadentor always form an interval, then this proposal
is equivalent to MusHYP and unproblematic. However, if they don't,
such an update rule is liable to result in trouble. For instance, consider
the coin case described above and suppose that there are only two ele-
ments of the cadentor, yielding the distributions ch; and chy described
above. If, upon learning the probabilities that these distributions en-
tail for each of the atomic events in that case, one responded with
credences in each of these atomic events that comprise all convex com-
binations of the probabilities entailed by chy and chy, then the result
would be that the overwhelming majority (measure ~ 1) of the distri-
butions in one’s representor regard the tosses as dependent, despite all
elements of the cadentor regarding them as independent.’® In such a
scenario, one would appear to have good evidence that the sequence
of tosses is i.i.d. and yet one’s credal state seemingly wouldn’t reflect
this fact (cf. Joyce 2005, 171n; 2010, 296n).

Kyburg Jr. and Pittarelli (1992, 150-1) (cf. Kyburg Jr. and Pittarelli
1996, 333—4) show that, if an agent’s representor is the convex hull of
a set of probability distributions (chance hypotheses) that is itself non-

59 Thus, in Pedersen and Wheeler’s (2014, 1325) terminology, H; and H, would
fail to be ‘completely stochastically independent” according to the agent’s
representor (cf. Cozman 2012, 581) (indeed each of H; and Hy would fail to
be ‘epistemically irrelevant’ — cf. Couso et al. 2000 — to the other), even
though they are completely stochastically independent according to the ca-
dentor.
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convex, then the popular E-admissibility decision rule for imprecise
credences — which says that an act is permissible iff it maximizes ex-
pected utility relative to at least one probability function in the agent’s
representor — will permit her to accept series of gambles that appear
irrational, precisely because the convex hull of these probability dis-
tributions contains elements that treat as dependent events that each
of the original probability distributions treats as independent. As they
put it (labeling the set of chance hypotheses S): “posting odds in accor-
dance with a probability function not in S but in the convex hull of S
may result in negative long-run expectation relative to the knowledge
embodied in S” (Kyburg Jr. and Pittarelli 1996, 338).

It’s not clear that I-Maximin would also permit irrational decisions
if representors were required to be convex — which seems more perti-
nent given that I'-Maximin avoids Elga’s (2010) objections to decision
rules for imprecise credences.>’ But nevertheless, there does appear
to be something epistemically defective about a situation where one
has strong evidence that the tosses of a coin flip are independent, and
yet one’s credal state doesn’t clearly reflect that evidence, even if this
doesn’t induce irrational betting behavior. Indeed, if convexity were re-
quired, then it becomes very difficult to see how imprecise credal states
could encode knowledge or strong beliefs about independence of the
coin flips in the example given above. Their being independent accord-
ing to all (or even a significant proportion) of elements of the agent’s
representor is incompatible with convexity. A strong belief about in-
dependence could therefore only be represented if the partition were
refined so that explicit probabilities concerning independence could
be represented. We would then encounter the trouble that all elements
of the agent’s representor would assign probability 1 (or perhaps high
probability) to independence even while not treating the tosses as in-
dependent.>?

51 See Footnote 26.
52 See Bradley (2012, 4) for a different objection to the requirement that repre-
sentors always entail convex sets of probabilities.
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The very notion that a rational agent should update her credal state
by taking convex combinations of possibly non-convex sets of proba-
bilities assigned by various chance hypotheses seems wrong-headed.
After all, rational agents often arrive at joint distributions by deriving
them from marginals together with independence assumptions justi-
fied by their evidence (cf. Couso et al. 2000). In a case where the agent
is certain about independence, but where the marginals are imprecise,
it seems very doubtful that her credal state should be the set of convex
combinations of the joint chance distributions, given that many such
convex combinations will treat the variables as dependent.53

Finally, consider Rival 4. This seems to me to have fairly lit-
tle prima facie plausibility. It's true that some — such as Easwaran
et al. (2016) and Bradley (2009, 249) — have advocated principles for
opinion aggregation, and even for updating on the credences of ex-
perts (Easwaran et al. 2016, 28) according to which, where P(A) is
a set of (precise) probabilistic opinions regarding A to be updated
on/aggregated, the post-update/aggregation probability for A needn’t
liein [inf{P(A)}, sup{P(A)}]. However, Easwaran et al. (2016, 32) are
clear that their rule doesn’t apply where the initial opinions of the ex-
perts result from estimates of the chance of A, which is precisely the
case where the elements of the cadentor are taken as the expert func-
tions. Meanwhile, Bradley’s (2009, 249) suggestion is motivated by the
thought that there might be synergies between the various experts’ ev-
idence for a given outcome. But we’re here concerned with how an
agent should respond when she learns that different elements of the
cadentor entail different probabilities conditional on precisely the same ev-
idence. So neither of these approaches to opinion pooling can be used
to provide a prima facie motivation for Rival 4. And, in general, it’s
difficult to see how Rival 4 — which, as Rival 1 and Rival 2 will some-
times do, recommends that upon learning a set-valued chance for A,

53 Mayo-Wilson and Wheeler (2016, 61) analogously argue that, where one
doesn’t know which of a non-convex set of chance hypotheses is true, it
would be ‘strange’ to require that one’s credences be convex.
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elements of one’s representor should entail probability values for A
that are determinately not the chance of A — could be motivated. In-
deed, unsurprisingly, if one responds to learning a set-valued chance
in the way described by Rival 4, and one adopts just about any plau-
sible decision rule that has been discussed for agents with imprecise
credences (see Troffaes 2007 and Bradley ms for surveys), then one will
be opened up to either betting according to, or at least having one’s
betting behavior influenced by, probabilities that are determinately not
the chances, even when one knows the chances.54

Let us, finally, consider an explicit epistemic utility argument for
MusnyP. Following Héjek (ms a), Pettigrew (2012, 261), and Carr (2015,
71), I assume rational credence to be chance-directed. And, in partic-
ular, I assume that a rational agent with total evidence "ch(A|E) =
x'&E aims to calibrate her credence to ch(A|E) = x. Thus, what fol-
lows is not an argument for that assumption, but rather for the view
that MusHYP (rather than rivals 1—4, or some other rival that someone
might devise) is the correct calibration principle.

The standard blueprint for giving an epistemic utility justification
of some epistemic norm involves, firstly, designating some probability
or probability function (or set of probabilities or set of probability func-
tions) as ‘vindicated”: roughly speaking, as aim-worthy for reasonable
credence. The next step is to propose some measure of the distance
between probabilities or probability functions (or sets of probabilities
or sets of probability functions) and some ‘epistemic decision rule’ —
roughly speaking, some rule concerning how rational credence ought
to respond to facts about distance from vindication — such that an
agent adopting the epistemic norm will arrive at credences that har-
monize with those of an agent following the epistemic decision rule.
To the extent that the epistemic decision rule (and choice of vindi-
cated probability (probabilities)/probability function(s) and distance

54 Though I won't seek to show it here, it should be fairly obvious to anyone
familiar with them that this will be true of the E-admissibility, I'-Maximin,
I'-Maximax, Maximality, and Interval Dominance rules.
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measure) is justified, the epistemic norm is supported. Or, as Konek
(2019) suggests, the coherence of a plausible epistemic norm — as I
claim MusnYP to be — with plausible principles concerning the pur-
suit of epistemic value — such as those invoked in the epistemic utility
argument — may provide “symbiotic support” (italics original) for both,
providing “good reason to think that each component of your episte-
mology was on the right track”.

An epistemic utility argument for MusHYP can be arrived at by a
simple adaptation of an argument due to Carr (2015) in favor of CGT,
which Carr glosses as follows:

[Flor each proposition A, evidence determines some set of pos-
sible chances of A at an appropriate time t. A rational agent’s
upper credence in A will be equal to the upper evidentially pos-
sible chance of A at ¢, and her lower credence in A will be equal
to the lower evidentially possible chance of A at t. (Carr 2015,

70)

In contrast to Carr, I don’t take chances to be inherently time-relative.
Rather, like Hall (2004), I just take them to be relative to some evi-
dential proposition F. I shall therefore not follow Carr in invoking the
time-relativity of chances in what follows.

To start with, note that a very natural measure of the distance, J,
between two probability functions, P(-) and P/(+), is the average of the
squared Euclidian distance between the probabilities assigned by the
two functions to each proposition on which they’re defined: that is,
the Brier score.>> The distance between the probabilities that the two
functions assign to a single proposition A — i.e., §(P(A),P'(A)) —
might therefore be taken to be given by (P(A) — P'(A))? (though, for
present purposes, it would be harmless to alternatively take it to be the

55 The Brier score is an instance of a quadratic loss scoring rule. Joyce (1998)
and Pettigrew (2012) show that such rules satisfy a number of desiderata for
distance measures in the case of precise credences (and a single vindicated
function).
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simple Euclidean distance between these probabilities). Like us, Carr
wishes to allow that a rational agent’s credence in A may be imprecise.
Adapting definitions due to Carr (2015, 72), where (given an agent’s
total evidence F) there’s a single vindicated probability value v for A,
we can define lower and upper distances for imprecise credence as
follows:

5 (erf (A),v) = min_ 8(crf(A),v) (Lower Distance)
crf(A)ecrF (A)

5t (erf(A),v) = max  8(crf(A),v) (Upper Distance)
crf(A)ecrF (A)

Carr’s argument for CGT involves, rather than taking there to be a
single ‘vindicated’ probability for A, taking there to be a set v of
‘vindicated” probabilities for A. We can thus adapt Carr’s (2015, 72—
3) definitions of two further notions — lower-dominance and upper-
dominance:5°

5 These are modified versions of Carr’s definitions. That’s because she defines
lower- and upper-dominance for sets of probability distributions and not just
for sets of probability assignments to a single proposition, A. Her definitions
thus invoke the ‘global” lower- and upper-distance of a set of probability
distributions from a vindicated distribution (Carr 2015, 72), rather than just
the ‘local” lower- and upper-distance of a set of probability assignments to a
single proposition from a vindicated assignment. The definitions of the latter
distance notions are the ones given in the main text above. Since MusHYP is
a principle concerning how knowledge of set-valued chances for individual
propositions constrains credences in those propositions, we need only the
notions of lower- and upper-dominance for sets of probabilities for single
propositions. Although I won't attempt to show it here, by invoking Carr’s
‘global” lower- and upper-distance notions and her corresponding notions
of lower- and upper-dominance for sets of distributions, we can provide an
accuracy-based argument for MusHYP* (see Footnote 40 above).
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Lower-Dominance: crf (A) lower-dominates crk (A) iff, for each v € v,
5 (erf (A),v) < 6 (erf(A),v) and for some w € v, 6 (crf (A),w) <
5 (crf(A),w).
Upper-Dominance: crf (A) upper-dominates crk (A) iff, for each v € v,
5T (erf (A),v) < 6% (erf(A),v) and for some w € v, 6 (crf (A),w) <
5 (erf (A),w).

Finally, Carr (2015, 72-3) proposes the following epistemic decision
rule:

Lower-Then-Upper Dominance Avoidance: It’s irrational to adopt
crf(A) as one’s credence for A (given one’s total evidence is F) if ei-
ther (i) crf(A) is lower-dominated; or (ii) crf (A) is upper-dominated
by any credence for A that’s not lower-dominated.

Carr’s strategy is to take the vindicated probabilities at ¢ for an agent
S to be the set C(A) of probabilities for A that are evidentially possible
time f chances of A for S. I'm concerned with the case where S knows
what the chance of A is, but the chance is set-valued. So the ‘eviden-
tially possible’ chance of A for S is the set of probabilities for A entailed
by the cadentor. Another slight difference between myself and Carr is
that I take chances to be evidence- rather than time-relative. So rather
than taking the vindicated probabilities at ¢ to be the ‘evidentially pos-
sible” time ¢ chances of A, I instead take the vindicated probabilities
relative to S’s total evidence (which in the case we are interested in is
given by "ch(A|E) = x"&E) to be given by the chance of A conditional
upon that evidence.5”

Carr’s epistemic decision rule, when combined with the squared
Euclidean distance measure, implies that the set of probabilities crf (A)

57 Strictly speaking, for simplicity, I've taken them to be given by ch(A|E) rather
than ch(A|"ch(A|E) = x'&E). See Hall (2004) for a discussion of the distinc-
tion. Nothing I have to say here turns upon it.

PHILOSOPHERS  IMPRINT

_31_

Imprecise Chance and the Best System Analysis

entailed for A by the elements of the representor of any rational agent
with evidence F (on our interpretation F = "ch(A|E) = x"&E) in-
cludes all elements of the set of vindicated probabilities (on our inter-
pretation, the set ch(A|E)) and that the upper- and lower-probabilities
entailed for A by elements in her representor are no higher and
lower (respectively) than the highest and lowest vindicated probabili-
ties (Carr 2015, 73—4). To see this, note first that to avoid lower domina-
tion, a credence for A must include all elements v € v: Any credence in
A, crf (A) that doesn’t contain some element v € v is lower-dominated
by a credence cr} (A) that contains all elements of v. That’s because, by
containing all elements of v, cr} (A) has a lower distance of zero with
respect to each of them, while, because it doesn’t contain v, crf (A) has
positive lower distance from v.

So all non-lower-dominated credences include all elements of v.
Among such credences, a credence will avoid upper-domination only
if it contains no elements that lie outside the interval defined by the
maximum and minimum elements in v. Any credence that’s non-
lower-dominated includes the maximum and minimum elements in v.
Among such credences that don’t include elements that lie outside of
the interval defined by these maximum and minimum elements, their
upper distance from each element v € v is the same (thus no such
credence is upper-dominated by any other): It’s given by the squared
Euclidean distance of v from the furthest end-point of the interval.
Moreover, each such credence upper-dominates any that, in addition
to containing all elements v € v (thus avoiding lower-dominance), con-
tains elements lying outside this interval. That’s because any element
lying outside the interval is more distant from the furthest end-point of
the interval than the nearest end-point of the interval is to the furthest
end-point of the interval.

Thus, an agent with evidence "ch(A|E) = x'&E who conforms to
Carr’s proposed epistemic decision rule (with ch(A|E) taken to be the
set of vindicated probabilities for an agent with this evidence) will
Tch(A|E)=x"&E (A)

be such that her credence cr contains each element

of ch(A|E) and is such that the maximum and minimum elements
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of cr MAIE)=x"&E( A) are identical to the maximum and minimum el-
ements of ch(A|E). For such an agent, calibrating her credences to
imprecise chances in the way described by MusnyP is thus consistent
with following Carr’s epistemic decision rule, whereas calibrating her
credences to imprecise chances in the ways described by Rival 1, Rival
3, and Rival 4 isn’t. To the extent that Carr’s proposed epistemic de-
cision rule is a good one, we thus have an additional reason to prefer
MusnyP over these rivals.

Carr’s decision rule doesn’t, however, allow us to discriminate be-
tween MusHYP and Rival 2 (the proposal that a rational agent calibrates
her credences to a set-valued chance by adopting a credence that’s the
convex hull of that chance). Presumably the reason that Carr herself
doesn’t seek such a rule is because she’s neutral on whether impre-
cise credences are “determined by upper and lower credences in each
proposition or whether they’re more structured” (Carr 2015, 73).58 I've
already given independent reasons for preferring MusnuYP to Rival 2.
Nevertheless, the following, fairly natural, modification of Carr’s deci-

sion rule would also give us the result we want:

Lower-Then-Upper-Dominance-Avoidance-Then-Total-Distance-
Minimization: It’s irrational to adopt crf (A) as one’s credence for A
(given one’s total evidence is F) if either

(i) crf(A) is lower-dominated; or

(ii) erf(A) is upper-dominated by any credence for A that's not
lower-dominated; or

(iii) there’s some crf’(A) that’s not lower-then-upper dominated (i.e.
that satisfies (i) and (ii)) such that

581 suspect that the epistemological arguments for imprecise credences de-
scribed in Section 6.2 point to rational credences being more structured. The
fact that non-convex imprecise chances appear possible seems to me further
reason for thinking this.
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(5(crf(A),v)

Y 5(crf(A),v) > ).

crf(A)eerF (A),vev cer(A)EWF’(A),va

i

The only difference from Carr’s decision rule is that condition (iii) is
added to penalize (among those credences that avoid lower-then-upper
dominance) those such that the total distance of their elements from el-
ements of the vindicated set of probabilities is greater than necessary.>9
This rules out any credence that contains elements that aren’t elements
of the vindicated set. Under our interpretation, it rules it irrational to
have a credence in A that contains elements that aren’t elements of the
set-valued chance for A (conditional upon one’s total evidence), as the
convex hull of that set-valued chance will if the set-valued chance isn’t
itself convex. Obviously, this supports MusHYP over Rival 2 only to
the extent that this modification of Carr’s decision rule is plausible. I
feel some intuitive pull to the idea that one shouldn’t have elements in
one’s set-valued credence that simply add to the total distance between
elements of one’s credence and elements of the set-valued chance (total
distance seems like a reasonable thing for an epistemic decision rule
for imprecise probabilities to be sensitive to). But this is perhaps bound
up with the intuitive pull MusHYP has over Rival 2 for me in the first
place, as well perhaps as the independent reasons given above for pre-
ferring MusHYP to Rival 2. So I won’t set too much store by it, and I'm

59 Although condition (iii) gives the intuitive flavor of the requirement that
we're trying to capture, since the elements of ¢rf’(A) are infinite in number
and don’t form a convergent series, we should, strictly speaking, instead
impose a requirement (iii’): There’s no crf (A) € crF(A) such that there’s no
v € v from which crf (A) has zero distance. As we’ve seen, condition (i) entails
that a reasonable representor (for an agent with evidence F) contains all
elements of v. Condition (iii’) then adds that there not be any extraneous
elements of the agent’s representor (elements that are some positive distance
from every element in v and that therefore, intuitively, just ‘add” inaccuracy
to the agent’s representor). Note that the addition of condition (iii’) (just
like the addition of condition (iii) in the finite case) renders condition (ii)
redundant. So in fact our epistemic decision rule simplifies.
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happy to let those reasons speak for themselves.®

7. Tied Systems and the Chance-Credence Role

MusHYP seems plausible as an explication of the (imprecise) chance-
credence connection, and I've outlined an epistemic utility justifica-
tion for it, as well as arguing for it indirectly by arguing that its most
obvious/prima facie plausible rivals are problematic. Still, there’s the
further question of whether the sets of probabilities entailed by the
tied-for-best systems play the chance role in guiding rational credence
in accordance with MusHYP.

Perhaps the most promising attempts to argue that, in the case of a
unique Best System, the (precise) Best System probabilities play some-
thing like the PP or Cond role are Loewer’s (2004) ‘reverse-engineering’
argument, Schwarz’s (2014) ‘symmetry’-based argument, and Hicks’
(2017) ‘epistemic utility” argument. In this section, I'll argue that, in the
case of a tie, these arguments can be adapted to support the claim that
the sets of probabilities entailed by the tied systems play the MusuYP
role.

I don’t claim that any of the above-mentioned arguments that, in
the case of a unique winner, the (precise) best system chances play the

% One might be skeptical of the foregoing epistemic utility argument for
MusnYP in light of Schoenfield’s (2017) (cf. Seidenfeld et al. 2012; Mayo-
Wilson and Wheeler 2016) proof that — assuming certain plausible desider-
ata for distance/inaccuracy measures — for every imprecise credal state cr,
there’s a precise credence cr such that, relative to every possible vindicated
function (Schoenfield doesn’t take (non-extremal) chance hypotheses to be
candidate vindicated functions — but her proof doesn’t turn on this), the
inaccuracy of cr is no greater than the inaccuracy of cr. Though I won't
seek to respond to this in detail here, it’s worth pointing out that Carr (2015,
77) suggests that her argument — which I've adapted for my purposes —
evades objections based on Schoenfield’s proof because it doesn’t invoke a
single inaccuracy measure, but rather invokes both lower and upper dis-
tances. But even if it didn’t, Konek (2019) points out that it’s not obvious
that we should reject accuracy-based arguments for imprecision rather than
the putative desiderata that Schoenfield invokes. In any case, as a last resort
(and given my disposition to accept a form of epistemic value pluralism —
see Footnote 33), I could simply fall back on my more negative arguments
for MusnYP that involved disparaging the alternatives.
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PP or Cond role is entirely watertight. Rather, my more modest aim is
to show that it’s as plausible, in the case of a tie, that the probabilities
entailed by the tied-for-best system play the MusHYP role as it is that,
in the case of a unique winner, the probabilities entailed by that system
play the PP or Cond role.

First, let us consider Loewer’s (2004) ‘reverse-engineering’ argu-
ment. Loewer’s (2004, 1122) key idea is that a theory counts as best
just by being a theory whose probabilities a rational agent would cali-
brate her credences to. In other words, the standards for ‘bestness’ are
to be thought of as ‘reverse-engineered’ from the chance-credence con-
nection. For a system to count as best just is for it to be victorious under
those standards of strength, simplicity, and fit, and that exchange rate
between them, such that a system that’s victorious under just those
standards and that exchange rate is one that entails rational-credence
guiding probabilities. Presumably, if the best-fitting system isn’t auto-
matically best, then there must be some story about why probabilities
that diverge from the actual frequencies because of the relative sim-
plicity of the system that entails them are targets for rational credence.
One such reason will be considered below.

In any case, it seems that we can adapt Loewer’s argument to the
case where there are ties. If we adopt Loewer’s interpretation then,
where there are ties, there are multiple systems entailing probabilities
that have equal claim on rational credence. On the face of it, it seems
quite plausible that this is so® given that, as was argued in Section
4, there appears to be a multitude of very similar systems entailing
similar but not identical probabilities for SM. The systems that have
equal claim on rational credence are victorious under different (reverse-
engineered) standards of simplicity, strength, fit, and balance. The fact
that the probabilities entailed by such systems have strong and equal
claims upon rational credence is analogous to the situation in which
one is confronted with the probabilistic opinions of a group of experts
and, as noted in Section 6.4, there are arguments in the literature (e.g.

61 Further reason to think this will be given below.
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Elkin and Wheeler 2018; cf. Seidenfeld et al. 1989, esp. 241—2) that can
be adapted in support of the view that one should respond to the
probabilistic opinions of a group of experts in the way that MusuyP
implies that one should respond to learning a set-valued chance. And,
as we’ve seen, alternative proposals like averaging have undesirable
consequences (such as a failure to preserve independence).

Next, consider Schwarz’s (2014) ‘symmetry’-based argument. This
requires a little more unpacking. The initial step that Schwarz takes is
to provide an argument for why known frequencies constrain rational
credence in something like the way Cond has chance constrain rational
credence. He then argues that, where a frequency is unknown but the
best system probability (which he supposes to be unique) is known,
the best system probability constrains rational credence in that way
because of the relationship between best system probabilities and fre-
quencies.®?

When it comes to frequencies, following de Finetti (1937), Schwarz
(2014, 84-5) observes that if one’s initial credal state is represented by a
probability function that treats a sequence of outcomes as exchangeable
— meaning, roughly, that for a set T of mutually exclusive and jointly
exhaustive event types to which outcomes in that sequence belong (e.g.
{heads, tails,edge}), all permutations of that sequence involving each
of those event types occurring in the same proportions are equiproba-
ble®3 — then it’s a consequence of the probability calculus that one’s
credence that the i'" outcome in this sequence is an event of some type
T € T (e.g. heads), conditional upon (just) the fact that the frequency
with which outcomes of type T occur in the sequence is x, is x. Of
course, it’s not a priori that some sequence is exchangeable. The most ob-
vious way of justifying such an assumption is to appeal to some facts

2 Of course, this suggests that, where the agent knows both the frequency
and the best system probability and these diverge, she should calibrate her
credence to the frequency. This is a point that I return to in the main text
below.

63 Strictly speaking, then, a sequence is not exchangeable or not simpliciter, but
only exchangeable relative to some such set T.
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about the chances to which the sequence is subject (for instance, that
the sequence is i.i.d.). So this doesn’t give us a non-circular argument
that frequencies play the chance role in guiding rational credence (cf.
Hall 2004, 108).

Consequently, Schwarz (2014, 86—7, 92—4) suggests that, rather than
appealing to exchangeability, we appeal to a certain sort of symme-
try to rationalize conforming one’s credences to the actual frequencies.
Roughly speaking, the idea is that, if one is concerned with the "
event in a sequence of outcomes and one knows that the frequency of
outcomes of type T in that sequence is x, but one doesn’t know in what
position in the sequence i lies,%* then it follows from what looks like a
reasonable application of the Pol® that one’s credence that i is of type
T should be x.

When it comes to Best System probabilities, Schwarz’s (2014, 96)
idea is, roughly speaking, as follows. For reasons already described,
it’s reasonable to calibrate one’s credences to actual frequencies, where
these are known. But suppose that one is interested in whether some
outcome o in a sequence is of type T, and one doesn’t know the ac-
tual frequency f of outcomes of type T in that sequence, but one does
know that x is the best system probability of a given outcome in that
sequence being T. Then one can reasonably take x to be close f be-
cause ‘mostly” or ‘typically’ a system’s probabilities must be close to
the actual frequencies if it’s to be reasonably well-fitting (and thus a
candidate for Best systemhood). Of course, x may deviate somewhat
from f (after all, Best System probabilities are simplicity-constrained

%4 This is commonly our situation with respect to chance events. For example,
we might be interested in whether the decay of this Po-215 atom will be an
instance of alpha- or beta-decay, but have very little idea in what position in
(say) the time-ordered sequence of all Po-215 decay instances the decay of
this one lies.

65 Schwarz (2014, 93), acknowledging the concerns that some philosophers have
about the Pol, describes this as a “very restricted” application and argues that
it is less controversial than other applications. Of course, not everyone will
accept even this limited application of the Pol (some imprecise probabilists
appear to reject all applications). So this is a respect in which Schwarz’s
argument is not watertight.
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as well as fit-constrained). But, for any (moderate) value of &, one has
no more reason to suspect that f = x — a than to believe that f = x +«.
One’s expectation of the frequency should therefore be equal to x and,
if one’s ignorant of where o lies in the relevant sequence, then one’s
credence that o is T should also be x.

Suppose we relax the assumption of a unique Best System. Then
we might reason as follows. Each of the tied-for-best systems is con-
strained (via the desideratum of fit) to entail probabilities that, globally,
don’t deviate far from the actual frequencies. In ignorance of the actual
frequencies, if one only knew the probabilities entailed by one of the
tied-for-best systems, then Schwarz’s (2014, 96) arguments could be
deployed for taking the probabilities entailed by that system as one’s
expected frequencies and thus for calibrating one’s credences to the
probabilities entailed by that system. In other words, one is in the posi-
tion of treating that system as though it were an expert concerning the
frequencies. On the other hand, where one knows the set of probabili-
ties entailed by the set of tied-for-best systems, then this is tantamount
to being confronted with a group of experts’ estimates of the actual fre-
quencies and one can do no better than to adopt this set of estimates
as one’s credence. By the foregoing reasoning, then, we seem to arrive
at a justification for thinking that sets of probabilities entailed by the
tied-for-best systems play something like the MusHYP role.

But one might object to this. For instance, one might think that
the probabilities entailed by the tied-for-best systems are likely to be
symmetrically distributed around the frequency. If so, it seems that one
would do well to take the mean of the set of probabilities entailed by
the systems as one’s credence rather than the set of probabilities itself.

Yet this is implausible (and in particular, doesn’t follow from
Schwarz’s reasoning that, for any given system, one has no more rea-
son to suspect that the frequency is x — & than one does to believe
that it’s x + «), as can be seen from the following example. Suppose
that the frequency, throughout all of spacetime, of coin flips (of a cer-
tain physical character) that result in heads is 0.5. Suppose that it just
so happens that the frequency is slightly elevated (0.515) among coin
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flips that occur on Mondays, and slightly elevated again among coin
flips that occur on Monday afternoons (0.52). And suppose that one’s
interested in whether this coin flip, which happens to be taking place
on a Monday afternoon, will land heads. If one knew the overall world
frequency for heads among coin flips on Monday afternoons (and not
just for coin flips on Mondays or coin flips in general) and one didn’t
have any more specific information, I take it that one should conform
one’s credence to that frequency.%

Now suppose that there are just three tied-for-best systems (per-
haps the world of the example is a very simple one): One (which, ce-
teris paribus, is relatively simple but relatively non-well-fitting) entails a
uniform o.5 probability for coin flips resulting in heads; another (which,
ceteris paribus, is middlingly complex and middlingly well-fitting) dis-
criminates between days of the week but not times of day and assigns a
uniform o.515 probability for coin flips on Mondays resulting in heads;
and the third (which, ceteris paribus, is relatively complex but relatively
well-fitting) discriminates between days of the week and times of day
and assigns a probability o0.52 for coin flips on Monday afternoons
resulting in heads. Then taking the average (= 0.512) of the probabili-
ties of heads for a Monday afternoon coin flip entailed by these three
systems won't result in your having a credence that’s closer to the ac-
tual frequency of heads on Monday afternoons than the probabilities
entailed by all (or even most) of the tied-for-best systems.

Another problem with the averaging strategy is the following. As
was indicated above, where one knows the set of probabilities entailed
by the set of tied-for-best systems, this is tantamount to being con-
fronted with a group of experts’ estimates of the actual frequencies.
Now it might be that, on each of these estimates, certain outcomes
are independent under the actual frequencies (for instance, perhaps
each of the systems described above takes coin flips on Monday af-
ternoons to be probabilistically independent of one another). Yet, as

% See Hoefer (2007, 580~7), especially his discussion of ‘Next-n Frequentism’,
for arguments supportive of this claim.
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the discussion of Section 6.4 makes clear, an agent who simply aver-
ages the probabilities that each distribution entails is liable to end up
with credences that take these outcomes as dependent, and could be
induced to pay money for information about one such outcome when
considering whether to accept a bet on another.

One might, however, think that there’s an alternative strategy for an
agent who knows the probabilities entailed by the tied-for-best systems
that will ensure that her credences are as close as possible to the actual
frequencies (relative to the smallest possible reference classes): namely,
to adopt as her credence the probabilities entailed by the most complex
system.%” She can reason as follows: Only by being relatively better-
fitting than the other systems can a relatively more complex system
earn its membership of the set of tied-for-best systems. Even though
the overall best fitting system may not best fit every frequency, unless
she already knows the frequencies, such an agent might reason that
the probabilities that the overall best fitting system entails will more
typically be closer to the frequencies than the probabilities entailed by
simpler systems. The worry is thus that a rational agent will respond
to knowledge of the set of probabilities entailed by the tied-for-best
systems by calibrating her credences to those entailed by the most
complex system. This response is at odds with the way that rational
credence responds to (set-valued) chance according to MusHYP.

Before responding in earnest to this concern, note that, as we’ve
seen, ties might not only arise because of the indeterminacy of the
correct exchange rate between strength, simplicity, and fit, but also
because simplicity (as well as strength and fit) is itself indeterminate.
So, for at least some subset of the tied-for-best systems, there may
not be any clear answer to the question of which is the simplest, and
so the foregoing reasoning might not allow the agent to identify a
unique probability to calibrate her credence with. Nevertheless, pro-
vided that ties result, in part, from indeterminacy concerning the cor-
rect exchange rate, the indeterminacy of simplicity needn’t ensure that

67 Thanks to an anonymous referee for pressing a concern along these lines.
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the agent’s credences calibrate to the full range of probabilities entailed
by the tied-for-best systems (because, by the foregoing reasoning, she’ll
prefer to go with those entailed by the determinately more complex
systems).

It’s worth noting that the present worry has an analogue which con-
cerns the ability of best system probabilities to play the Cond role in the
case where there’s a unique winning system. The worry there is that
a rational agent who has knowledge both of the (precise) best system
probabilities and also of some better-fitting probabilities, such as the
actual frequencies, will calibrate her credences to those better-fitting
probabilities (see Hoefer 2007, 583). (The best system probabilities are
liable to diverge from the actual frequencies because considerations
of simplicity, and not just of fit, go into determining which system is
best.) Indeed, as we’ve seen, Schwarz argues directly that it’s rational
to calibrate one’s credences to the actual frequencies, and argues only
that it’s rational to calibrate one’s credences to the best system proba-
bilities when one’s ignorant of the actual frequencies (but knowledgeable
of the best system probabilities) and then only because they equal one’s
expectations of the frequencies. Schwarz’s reasoning suggests that, given
knowledge of both the actual frequencies and the best system probabil-
ities, one ought to calibrate one’s credences to the actual frequencies.

In general, the probabilities entailed by some probability function
won’t guide the credences of a rational agent who’s aware of alterna-
tive probabilities that she knows to derive from a better-fitting proba-
bility function (unless, for some reason, she has reason to believe that
the latter function is locally worse-fitting for the particular type of se-
quence she’s concerned with). In the case of a unique winner of the
best system competition, the probabilities entailed by the winner won't
guide the credences of an agent who knows the actual frequencies. In
the case of a set of tied-for-best systems, the probabilities entailed by
the (determinately) simpler among these systems won’t guide the cre-
dences of someone who knows the probabilities that are entailed by
the (determinately) more complex of these systems and who knows
both the relative complexity of the systems and that they're tied-for-
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best. After all, such an agent can conclude that the latter systems are
better-fitting by the reasoning given above.

One could doggedly maintain that the best system probabilities nev-
ertheless perfectly play the chance role in guiding rational credence (as
I've suggested is defined by Cond in the precise case and MusHYP in
the imprecise case), by arguing that rational agents only fail to calibrate
their credences to the best system probabilities in these instances be-
cause they’re in possession of inadmissible information (cf. Hoefer 2007,
583). However, this seems like a cheat for two reasons. First, one of the
key advantages of a formulation of the chance-credence connection
that appeals to conditional (rather than unconditional) chance — like
Cond and MusHYP — is that one shouldn’t need a restriction to ‘ad-
missible” evidence, for reasons discussed by Hall (2004, esp. 101). Rein-
troducing admissibility to deal with the present objection seems ad hoc.
Second, not only does it seem ad hoc, but it seems question-begging:
Claiming that knowledge of the actual frequencies is inadmissible (in
the sense that chance doesn’t guide rational credence in the face of
such knowledge) straightforwardly begs the question against actual
frequentist accounts of chance.

I think the correct response is to admit that the Best System prob-
abilities (whether precise or imprecise) are imperfect players of the
chance role in guiding rational credence, but observe (contra Lewis
1980, 266) that the chance-credence connection doesn’t exhaust the
chance role (cf. Loewer 2001; Arntzenius and Hall 2003; Schaffer 2003;
2007) and to argue that the Best System probabilities earn the name
‘chance’” by playing other aspects of the chance role better than rival
candidates. (Indeed, I take it that it’s partly because they’'re persuaded
of the latter point that most Humean philosophers nowadays think
that the BSA provides a better interpretation of chance than actual fre-
quentism.) For instance, it’s plausibly one aspect of the chance role to
be a lawfully-entailed magnitude (Schaffer 2007, 126). If one thinks on
independent grounds that the BSA is the correct account of laws (as
many Humeans do), then one’s liable to think that the Best System
probabilities are better players of this aspect of the chance role than
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the actual frequencies.68 Indeed, if, as suggested above, in case of ties,
the best system analyst ought to say that the laws are imprecise in the
sense of entailing the sets of probabilities for outcomes yielded by the
tied systems, then it’s these set-valued chances that play this aspect of
the chance role.

It’s also important not to overstate the degree of imperfection with
which the BSA probabilities (precise or imprecise) play that aspect of
the chance role that involves guiding reasonable credence. We don't
know exactly what the actual frequencies are relative to many refer-
ence classes, and never will, though we may be able to confine them
(with higher probability!) within narrower intervals the more evidence
we accumulate. Likewise, among the range of similar systems that en-
tail SM-like probabilities, we don’t know what the best-fitting are and
never will, though we may be able to rule out more and more can-
didates (with higher probability!) the more evidence we accumulate.
We have a sense of what the simpler systems are (systems that, for in-
stance, draw upon uniform distributions over simply-characterizable
regions of the universe’s phase space) but, among the more complex
ones, we often don’t know which fit better and which fit worse than
the simpler ones. For instance, because we don’t know exactly where
in its phase space the PICs of the universe are located, we don’t know
for sure which of the more complex of the Mentaculus-like systems
concentrate probability in subregions in which they are located, as op-
posed to subregions in which they aren’t.

If agents more rapidly accumulate evidence for the reasonably-
well-fittingness of simpler systems than they do for the even-better-
fittingness of those more complex systems that are better fitting, then
this might explain why, relative to all but the extremely large amounts

% And if one thinks that there’s some sort of frequency-tolerance platitude
concerning chance (Armstrong 1983, 32; Loewer 2001, 613; Frigg and Hoefer
2015, 553—4) — namely that, although chances explain actual frequencies and
actual frequencies are evidence for chances, actual frequencies may neverthe-
less diverge from the chances — one might also point out that, unlike the
Best System probabilities (which exhibit moderate frequency-tolerance), the
actual frequencies exhibit zero frequency-tolerance!
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of evidence needed to establish the better-fittingness of more complex
systems, simpler systems have an equal or greater claim on rational
credence. Hoefer (2007, 583—7) and Hicks (2017) have suggested that
something like this phenomenon may explain why the best system
probabilities (in the case of a unique winner) are better guides to ra-
tional credence than the actual frequencies for an agent that lacks an
extremely large amount of evidence (sufficient to determine what the
actual frequencies are). Below, I'll return to the idea that, in the case
of ties, this phenomenon might explain why the set of probabilities en-
tailed by the tied-for-best systems constrain rational credence in some-
thing like the manner described by MusHyP for all but agents with an
extremely large amount of evidence. Before doing so, it will be helpful
to discuss Hicks’ (2017) argument that (in the precise case) the BSA
probabilities play the chance role in guiding rational credence because
it appeals to something like this phenomenon.

Hicks (2017) gives an epistemic utility argument that the best sys-
tem probabilities play the chance role in guiding rational credence.
Hicks first proposes a slightly revisionary interpretation of the theo-
retical desideratum of ‘fit": namely, that the ‘fit’ of a system should be
understood in terms of the distance of the probability function that
it entails from the ‘truth’ function that assigns 1 to all truths and
o to all falsehoods. (The argument would go through just as well if
we took the ‘vindicated” probabilities to be actual frequencies, thus
recovering something closer to the orthodox notion of ‘fit".) Hicks
then argues that — in the case of a unique Best System — because
the Best System probabilities are constrained by the requirement of
fit to be close to the truth function, an agent who knows the prob-
abilities entailed by the Best System has an epistemic justification
for minimizing the distance of her credences from these probabilities.
In the case of ties between systems, ‘minimizing the distance’ of an
agent’s credence from a set of probabilities entailed by the tied-for-
best systems might just mean respecting the principle ‘Lower-Then-
Upper-Dominance-Avoidance-Then-Total-Distance-Minimization” (see
Section 6.4 above) with this set of probabilities taken as the vindicated
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ones.

The reason, according to Hicks (2017), that it’s not the best fitting
theory that constrains our credence is that we're typically in the posi-
tion of having better evidence for the well-fittingness of simpler theo-
ries. For a simple example, suppose that one has observed an initial
sequence of three flips of a coin, with the outcomes being H;T,H3
(with the subscripts denoting the order in the sequence in which the
outcome occurs). And suppose that one’s interested in the outcomes
of the next three flips. Let’s suppose that the outcomes of these next
three flips will in fact be HyT5Hg. So, as things pan out, (where the
vindicated function is taken to be the truth function) the most ac-
curate credence (conditional upon one’s evidence) is one such that
cr(Hy|H ToH3) = cr(T5|H1 T H3) = cr(Hg|H  ToH3) = 1.

But now consider, on the one hand, a simple chance hypothesis
that says that the coin has a uniform 0.6 chance of landing heads
and, on the other, a more complex chance hypothesis that says that
Cl’l(H4|H1T2H3) = Ch(T5|H1T2H3) = Ch(H6|H1T2H3) = 1. The latter
hypothesis is more complex because it assigns different chances to out-
comes of the type heads (and tails) depending on their position in the
sequence. (In this sense, a hypothesis that treats a sequence as i.i.d. —
as the first hypothesis does — is, ceteris paribus, simpler than one that
doesn’t). But, as it turns out, an agent who conforms her credences to
the latter hypothesis has the most accurate credences possible, where
accuracy is construed as distance from the ‘truth’ function.®?

%9 1t’s plausible — especially if one thinks that the aim-worthiness of frequen-
cies is inherited from the aim-worthiness of truth — that such credences
should also be taken as more accurate than credences conforming to the
0.6 hypothesis even if ‘accuracy’ is construed as distance from ‘the’ frequen-
cies. After all, frequencies relative to narrower reference classes are often (at
least) more aim-worthy than those relative to broader reference classes. For
instance, take the overall frequency, among all atoms of all isotopes ever to ex-
ist, of decay within one year of coming into existence. This frequency seems
less aim-worthy for rational credence than the specific frequencies for the
various different isotopes. The frequencies we're presently considering the
agent calibrating her credences to are the ones relative to reference classes
comprising single elements, which might seem the most aim-worthy of all.
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However the agent in question — before having witnessed the out-
comes of tosses 4, 5, and 6 — doesn’t have very good evidence for
the well-fittingness of the more complex chance hypothesis and conse-
quently would be irrational to calibrate her credences to it. Indeed, for
an agent who updates via the Rule of Succession, this more complex
chance hypothesis has an expected Brier Score (over the next three out-
comes) of approximately 0.468, whereas the simpler chance hypothesis
has an expected Brier Score of approximately 0.241 and so has lower
expected inaccuracy according to a popular measure. As Hicks (2017,
939) puts the point:

[W]e gain information about the chances from the frequencies.
In order for the chances to be epistemically accessible to us, we
need to be able to infer them from observation. And in order to
observe them, we need a broad class of events whose outcomes
are assigned the same chance. So simpler chance theories are
more epistemically accessible.

In our example, the simple chance hypothesis treats all coin tosses in
the sequence as belonging to the same class of events, hence the Rule
of Succession can be applied in order to gain rational confidence that
it has a high degree of accuracy. The more complex chance hypothe-
sis treats tosses 4, 5, and 6 as sui generis events and so although, as
it turns out, it's even more accurate than the simpler hypothesis, its
accuracy is less amenable to confirmation. Before observing the tosses,
we thus have a lower degree of rational confidence in its accuracy. It’s
not hypotheses with greater accuracy (as the more complex theory does
in this case) that rational credence calibrates to, but rather hypotheses
with greater (rationally) expected accuracy (as the simpler theory does
in this case). Only for agents who have a large amount of evidence
relative to the total possible evidence is the theory with the highest
accuracy liable to coincide with the theory with the highest expected
accuracy.

I think it’s natural to integrate this thought with a Loewer-style ‘re-
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verse engineering’ of the best system from the chance-credence connec-
tion. The idea would be to say that the ‘best system’ just is that system
with the probability function that has the greatest expected accuracy.
Since the expected accuracy of a system is relative to an evidential
state (the complex chance hypothesis considered above has greater ex-
pected accuracy for an agent who has observed the outcomes of tosses
1-5 — and updates via the Rule of Succession — than it does for an
agent who has observed tosses 1-3), the question naturally arises as
to what evidential state the probability function must have greatest
expected accuracy with respect to. The most natural answer is ‘the
sort of evidential state that we human beings, collectively, find our-
selves in around about now’ (in other words, the evidential state that
comprises something like our current corpus of accumulated scientific
knowledge). This re-introduces into the BSA some of the sort of an-
thropocentrism that Lewis was keen to avoid.

As I suggested in Section 4 above, I doubt that anthropocentrism is
to be avoided entirely. For the Humean, what’s fundamental is the mo-
saic. The laws and chances derive from systematizations of the mosaic,
and it’s doubtful that it’s possible or even desirable to give a complete
account of what counts as a good systematization without invoking fea-
tures that are good-making for creatures like us. God, for instance, who
knows everything that happens throughout the entire mosaic — and
can easily hold all of this in His memory and recall it at will — would
have no need for a simple systematization of it (cf. Albert 2012, 35-7).
Moreover, the evidence-relativity of good systemhood just alluded to is
unlikely to be too radical. For most reasonable confirmation functions
(e.g. the Rule of Succession), where evidence is fairly significant yet
still low relative to the total amount of possible evidence that could be
acquired (as it is for most of our most serious candidates for lawhood
and chancehood), the expected accuracy of chance hypotheses tends to
vary relatively little with small increments of evidence (at least where
the chance hypotheses entail non-extreme chances for that evidence).

On the present approach, given the number of similar and very
good systems that entail SM probabilities, ties can reasonably be ex-
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pected on this Loewerian interpretation. In light of the above reason-
ing, it appears that evidence of the well-fittingness of certain simpler
systems accrues at a higher rate than evidence of the even-better-
fittingness of more complex systems, which could well yield a tie
in expected fit (relative to a reasonable confirmation function). But
what’s even more plausible is that there’s no system that will come
out as uniquely maximizing expected accuracy/fit under every reason-
able confirmation function and every reasonable choice of priors. And
since, on this picture, the correct standards of simplicity, strength, fit,
and balance are treated as those that confer victory on the system that
maximizes expected accuracy, the conclusion on this interpretation is
that there are no uniquely correct standards and no unique winner.

If an agent knows the set of probabilities for some proposition A,
conditional upon the remainder of her evidence E, that’s entailed by
a set of systems that’s tied when it comes to the maximization of ex-
pected accuracy, then it’s plausible that she ought to adopt that set of
probabilities as her credence. For one thing, if she takes some alterna-
tive approach, like averaging, then she’s liable to take some sequences
as non-i.i.d. that all of the tied-for-best systems take as i.i.d.. Since treat-
ing sequences as i.i.d. is one component of simplicity in the relevant
respect (and it’s easier to gain evidence for the accuracy of hypotheses
that — like the simpler hypothesis considered above — treat sequences
as ii.d.), averaging is liable to leave her with a credence distribution
that determinately doesn’t maximize expected accuracy.

8. Conclusion

It has been argued that, if we accept the BSA, then we have good rea-
son to think that there are imprecise chances in our world. This is
for the following reasons. Firstly, it’s implausible that there’s a single
axiom system for our world that strikes the robustly best balance be-
tween the theoretical virtues of simplicity, strength, and fit. Secondly,
it appears that the tied-for-best systems entail divergent (conditional)
probabilities for certain outcomes: In particular, it has been argued that
this is the case for thermodynamic outcomes (conditional upon earlier
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thermodynamic states). But, thirdly, the sefs of probabilities entailed by
the set of probability functions associated with the tied-for-best sys-
tems play the chance role in (for example) guiding rational credence in
accordance with MusnHYP, and so such sets of probabilities constitute
imprecise chances.
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