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ABSTRACT
High sidelobes exist in normal multiple-input multiple-output (MIMO) radar wa-
veforms, which utilize linear frequency modulation (LFM) or non-linear frequency
modulation (NLFM) waveforms with the same subcarrier durations. Since the wa-
veforms have the same expression, and each segment of the subcarriers can be only
controlled by a few parameters to make them distinctive. This will cause compara-
tively high auto-correlation sidelobes in each zone of subcarriers. In order to sup-
press the sidelobes, new piecewise NLFM waveforms have been proposed in this
paper. These novel MIMO radar waveforms are composed of three different kinds of
subcarriers with totally different mathematical expressions. This is verified by the
fact that the cross-correlation sidelobes between different subcarriers are much lo-
wer than the auto-correlation of each subcarriers. In addition, the number of MIMO
radar waveforms has been improved significantly. As different subcarriers have their
own controllable parameters, a genetic algorithm will be applied to generate the
novel MIMO radar waveforms. Numerical results demonstrate the effectiveness that
the auto-correlation sidelobes and the cross-correlation sidelobes of our proposed
waveforms are reduced.

KEYWORDS
Auto-correlation, cross-correlation, multiple-input multiple-output (MIMO) radar,
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1. Introduction

Multiple Input Multiple Output (MIMO) radar systems have been applied into many
applications including synthetic aperture radar (SAR) imaging, target detection and
target tracking problems in recent years(Cerutti-Maori et al. 2014; Hu et al. 2018;
Krieger 2014; Moo et al. 2013; Tarchi et al. 2013). MIMO waveforms can improve the
spatial resolution, extend image swaths, and provide novel modes to solve the problem
in real radar systems. With the increasing availability of array hardware of a greater
number of channels, the applicability of MIMO radars has become more and more
feasible. One of the most significant challenges in MIMO radar is reducing mutual
interference between different signals transmitting from different antennas is also a
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significant task. Therefore, designing diverse waveforms plays an important part in
MIMO radar systems.

There are three key categories of methods to design MIMO radar waveforms, all of
which have been developed in recent decades. The first category of waveform design
is to take advantage of a priori information of a target, such as range and target
angle to generate adaptive waveforms for cognitive radars. Minimizing mean squared
error (MMSE) is one of these approaches used to design the waveforms in linear
systems(Yang et al. 2007a,b), and it can also been applied into non-linear systems in
Herbert et al. (2018). The second category of waveform design is focused on designing
a transmitting beampattern by optimizing the waveform covariance matrix, and the
transmitted waveforms are derived from the acquired covariance matrix(Fuhrmann
et al. 2008; Stoica et al. 2008). The peak sidelobe level can be suppressed by maximizing
the difference in the process of synthesizing the beampattern(Fan et al. 2018; Hua
et al. 2013). The last category of waveform design is to base the design of orthogonal
waveforms, which are generated directly in the spectral domain. Different kinds of
waveforms can be applied in the subcarriers of MIMO radar signals(Song et al. 2010).
Phase-coded waveforms are proposed in(Cao et al. 2015), which have extremely low
range cross-correlation sidelobes (CSLs). This kind of waveform can be simulated
with good performance, but it’s hard to apply with real equipment. Frequency-coded
waveforms include orthogonal frequency division multiplexing (OFDM) waveforms are
proposed in (Kim et al. 2015; Wang et al. 2015; Wang 2015), which can produce
constant modulus waveforms. However, perfect orthogonal waveforms do not exist
when there are different time delays in each received signal, and they are also very
sensitive to Doppler shift.

Therefore, frequency modulated waveforms without strict orthogonality are propo-
sed in (Gao et al. 2016), they are composed of piecewise linear frequency modula-
tion (LFM) waveformsGao et al. (2016), and piecewise non-linear frequency modula-
tion(NLFM) waveforms are also used as the subcarriers in (Gao et al. 2017). However,
all the proposed waveforms in (Gao et al. 2016, 2017) are composed of the same kind
of subcarrier, and they have the same expression and can only change their durati-
ons and chirp rates using a few controllable parameters. Meanwhile, because there
are pulse intervals between each subcarrier, the full time duration is not utilized. In
order to get rid of the gap between each subcarrier, modifications to Gao’s piecewise
non-linear frequency modulation (PNLFM) MIMO radar signals have been proposed
improved, which have no gap between each subcarrier. However, it will produce some
repetitive high sidelobes, and limit the diversity of waveforms.

In order to solve this problem, we propose a novel piecewise non-linear frequency
modulation (PNLFM) waveform. It is known that NLFM waveforms have lower APSLs
and CSLs than LFM waveforms Boukeffa et al. (2011). In addition, the CSLs between
different kinds of waveforms can be achieved lower. In this paper, we propose MIMO
radar waveforms which are composed of three different kinds of PNLFM subcarriers
and each subcarrier has its own controllable parameters. Except for the novel PN-
LFM waveform proposed here, two other piecewise waveforms proposed in (Gao et al.
2017; Zhao et al. 2018) have been applied to our MIMO radar signals. Since there are
so many controllable parameters in the optimization function, a genetic algorithm is
utilized to optimize the sidelobes of our proposed waveforms. Numerical simulations
can demonstrate that the repetitive high sidelobes have been removed with distinctive
subcarriers in a single MIMO radar signal, improving the orthogonality, and therefore
the number of MIMO radar signals is possible to use jointly. In Section 2, we introduce
two kinds of PNLFM waveforms, and propose our new PNLFM waveforms. In Section
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3, our MIMO radar system model and MIMO radar ambiguity function are introduced.
In Section 4, a genetic algorithm is applied to optimize our fitness function, and gene-
rate our proposed MIMO radar signals. In Section 5, numerical simulations results are
shown to verify that our proposed MIMO radar signals achieve better performance.
In Section 6, it is the conclusion.

2. Piecewise NLFM waveform design

In this section, we first review two kinds of PNLFM waveforms proposed in (Gao et al.
2017; Zhao et al. 2018). Next, we introduce the design method of our new PNLFM
waveforms.

2.1. Introduction of some PNLFM waveforms

The time-frequency scheme of PNLFM waveforms are shown in Figure (1). It can be
seen that all the piecewise waveforms have a similar form, and the only difference
is that the second segments of each piecewise waveform have different expressions.
In order to combine these waveforms into a single MIMO radar waveform, a more
common expression has been proposed. Distinctive waveforms can be expressed in
Equation (1). Figure 1(a) shows the PNLFM waveform proposed in (Gao et al. 2017),
which are labelled as Gao’s PNLFM waveforms SG(m,l)(t), where m is the number of
MIMO radar waveforms, l is the number of subcarriers, and t is the time parameter of
MIMO radar waveforms. Figure 1(b) shows the PNLFM waveform proposed in (Zhao
et al. 2018), which are labelled as Zhao’s PNLFM waveforms SZ (m,l)(t). Figure 1(c)
shows the PNLFM waveform proposed in this paper, which are the newly proposed
PNLFM waveforms SO(m,l)(t). The common expression can be shown as follows:

SC (m,l)(t) =
ej2πtf1,m,lejπµm,lt

2

, −Tp

2
≤ t < −Tp

2
+ ∆m,l,

ej2πtfcejϕm,l(t), −
Tm,l

2
≤ t ≤

Tm,l
2
,

ej2πtf3,m,lejπµm,lt
2

,
Tp

2
−∆m,l < t ≤ Tp

2
.

(1)

where Tp is defined as the duration of each distinctive subcarrier, Bp is defined as the
bandwidth of each distinctive subcarrier, it is important to note that all the distinctive
subcarriers have the same duration and bandwidth. Since each new MIMO radar
waveform is composed of a sequence of distinctive waveforms, the total number in
our new MIMO radar waveforms can be defined as M and 0 ≤ m ≤ M − 1. The
total sequence number in each new MIMO radar waveform can be defined as L and
0 ≤ l ≤ L − 1. Assuming that each distinctive waveform has the same expression in
the first and third segment, therefore, the subcarrier bandwidth of the first and third
segment is defined as Ωm,l = δm,lBp/2 and 0 < δm,l < 2.

Here a little improvement has been made on the duration of the second segment Tm,l
in each distinctive subcarrier of Gao’s PNFLM waveform. In the original expression,
the duration of the second segment equals the subcarrier duration multiplies a fixed
fractional number, while in this paper the fractional number is random within a certain
range, and it can increase the degrees of freedom and improve the performance. Thus,
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Figure 1. Time-frequency scheme of PNLFM waveform (a) Gao’s PNLFM waveform. (b) Zhao’s PNLFM
waveform. (c) Our proposed PNLFM waveform.
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the common expression of the duration in the second segment of each distinctive
waveform can be defined as Tm,l = ηm,lTp and 0 < ηm,l < 1. The duration of the
first and third segment in each distinctive subcarrier can be expressed as ∆m,l =
(Tp − Tm,l) /2. In addition, The chirp rates of the first and third segment are the
same and can be expressed as µm,l = −ξm,lΩm,l/∆m,l, where ξm,l is the parameter
to control the polarity of chirp rate, when l is odd, the polarity of chirp rate in the
second segment of the subcarrier is positive and ξm,l = 1, otherwise when l is even
and ξm,l = −1. The subcarrier frequency of each segment can be shown as follows:

fd,m,l =fc + (d− 2)ξm,l

(
Ωm,lTp

2∆m,l
+
Bp

2
− Ωm,l

)
d =1, 3 (2)

According to the analysis mentioned above, when it comes to Gao’s PNLFM waveforms
which is shown in Figure 1(a), the phase of the second segment can be expressed as:

ϕm,l(t) = ϕG(m,l)(t) =
2πξm,lwm,l
gm,lhm,l

sec(gm,lt) (3)

where wm,l = αm,lB/π, gm,l = 2 arctan
(
π/2αm,l

)
/Tm,l, and hm,l = sec (gm,lTm,l/2).

For Zhao’s PNLFM waveforms which are shown in Figure 1(b), the phase of the second
segment can be expressed as:

ϕm,l(t) = ϕZ (m,l)(t) =

πξm,lρm,lBp

ζ
ln

(
e

1

2ρm,l + εm,lcosh

(
ζt

ρm,l

)
− εm,le

1

2ρm,l

)
(4)

where ζ = 20/Tp, the duration and the chirp rate of second segment in Zhao’s PNLFM
waveform can be controlled by ρm,l and εm,l , respectively.

2.2. Designing a novel piecewise NLFM waveform

Following the analysis above, we focus on designing the second segment in the novel
PNLFM waveforms. A novel NLFM waveform is proposed here, the expression for the
time-frequency scheme is given as:

df (t)

dt
= µ (t) = µh −

µh − µl[(
t− Tse

2

)/(
Th − Tse

2

)]2n , t ∈ [0, Tse] (5)

where f(t) is the frequency function of the second segment in our proposed PNLFM
waveforms, and µ(t) is the time-frequency function. µh is the upper bound of µ(t), µl

is the chirp rate in the pulse center, Tse is the duration of the novel NLFM waveform,
Th ∈ [0, Tse/2), and n is a positive integer. In order to simplify the expression, we
define x = t/Tse, µ̃ = Bp/Tse, Xh = Th/Tse, Kh = µh/µ̃, and Kl = µl/µ̃, then the
expression can be shown as:

k (x) =
µ (xTse)

µ̃
= Kh − (Kh −Kl)Yn,Xh

(x) (6)
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Yn,Xh
(x) =

1

1 +
(

2x−1
2Xh−1

)2n (7)

where x ∈ [0, 1], and Tse has been eliminated. Assuming that the normalized starting
frequency is f (0) = 0, and the normalized ending frequency is also a fixed value,
v (1) = 1, the instantaneous frequency can be expressed as:

f (xTse) = f (0) +

∫ xTse

0
µ (z)dz = Bp

∫ x

0
k (τ)dτ (8)

v (x) =

∫ x

0
[Kh − (Kh −Kl)Yn,Xh

(τ)]dτ (9)

where z = τTse. Assuming that Zn,Xh
(x) =

∫ x
0 Yn,Xh

(τ) dτ , then

v (1) = Kh − (Kh −Kl)Zn,Xh
(1) (10)

it can be known that if we obtain the value of Kh then Kl is also known, and vice
versa. Furthermore, we can get that:

v (x) = Khx− (Kh − 1)
Zn,Xh

(x)

Zn,Xh
(1)

(11)

Therefore, the instantaneous phase of our new proposed NLFM waveforms can be
expressed as:

ϕ (xTse) = 2π
∫ xTse

0 f (z)dz = 2πBpTse

∫ x
0 v (τ)dτ

= 2πBpTse

[
Khx2

2 − Kh−1
2

∫ x
0

Zn,Xh
(τ)

Zn,Xh
(1) dτ

] (12)

There are three controllable parameters n, Xh and Kh. In Equation (12), there is a
double integration expression, which is computationally complex. In order to further
simplify this function, the power exponent n = 2 is fixed. In Equation (7), it is assumed
that w = 2x−1

2Xh−1 , hence Zn,Xh
(x) can be transformed into that:∫

Y2,Xh
(τ)dτ = Q (x) = 2Xh−1

8
√

2

[
−2 arctan

(
1−
√

2w
)

+2 arctan
(
1+
√

2w
)
− ln

(
1−
√

2w + w2
)

+ ln
(
1−
√

2w + w2
)] (13)

Z2,Xh
(x) =

∫ x

0
Y2,Xh

(τ)dτ = Q (x)−Q (0) (14)
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According to the analysis above, and the double integration function in Equation (12),
this can be further simplified into:∫

Z2,Xh
(τ)dτ =

∫
Q (τ)−Q (0)dτ = P (x)

=
(

2Xh−1
2

)2 × 1
4
√

2

{
2
(√

2− w
)
× arctan

(
1−
√

2w
)

+2
(√

2 + w
)
× arctan

(
1 +
√

2w
)

+w
[
− ln

(
1−
√

2w + w2
)

+ ln
(
1 +
√

2w + w2
)]}

−Q (0)w 2Xh−1
2

(15)

∫ x

0
Z2,Xh

(τ)dτ = P (x)− P (0) (16)

Finally, the function of our novel NLFM waveform in the second segment of PNLFM
waveforms in (12) can be expressed as:

ϕm,l (t) = ϕO(m,l)(t) = ϕm,l (xTse)

= 2πBpTse

[
Kh(m,l)x

2

2 −
(
Kh(m,l) − 1

) P (x)−P (0)
Q(x)−Q(0)

] (17)

where the Tse represents the duration of the second segment of the subcarrier in
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Figure 2. Time-frequency scheme of the second segment in our proposed PNLFM waveform (a) Kh(m,l) =

2.0, Xh(m,l) = 0.1, 0.2, 0.3. (b) Xh(m,l) = 0.3, Kh(m,l) = 0, 2, 4.

our proposed PNLFM waveforms. The function shown in Equation (17) has two con-
trollable parameters to change the time-frequency scheme shape of NLFM waveform,
it can be regarded as the second segment of our proposed PNLFM subcarrier, and
in the (m, l)th subcarriers, we define Kh(m,l) = Kh and Xh(m,l) = Xh, respectively.
When Kh(m,l) = 2.0, and Xh(m,l) = 0.1, 0.2, 0.3, the time-frequency scheme of the se-
cond segment in PNLFM waveform is shown in Figure 2(a). When Xh(m,l) = 0.3, and
Kh(m,l) = 0.0, 2.0, 4.0, the time-frequency scheme of the second segment in PNLFM
waveform is shown in Figure 2(b). The auto-correlation function (ACF) and cross-
correlation function (CCF) between the introduced PNLFM waveforms mentioned
above are shown in Figure 3 and all the different controllable parameters are shown
in Table 1. In Figure 3(a) all the PNFLM waveforms have the same up-chirp rates
ξm,l = 1 in the CCF, it can be observed that the CPLs in the CCF is lower than the

7



APSLs in the region where the time delay is near 0µs. In Figure 3(b) all the PNFLM
waveforms have the down-chirp rate ξm,l = −1 in the CCF, and the CPLs in the CCF
is also lower than the APSLs in the region where the time delay is near 0µs. Since
the high repetitive sidelobes are generated by the same kind of PNLFM subcarrier in
one MIMO radar signal, the distinctive subcarriers are applied to replace the same
subcarrier in our new proposed MIMO radar signals and reduce the sidelobes.

Table 1. The parameters of distinctive PNLFM waveforms
SO(m,l)(t) Xh(m,l) Kh(m,l) δm,l ηm,l

Value 0.3 2 0.2 0.8
SG(m,l)(t) αm,l δm,l ηm,l

Value 2.95 0.51 0.375
SZ (m,l)(t) ρm,l εm,l δm,l

Value 0.71 0.57 0.31
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Figure 3. The ACF and CCF between different kinds of PNLFM waveforms(Tp = 1µs, Bp = 50Mhz) (a)

All the PNFLM waveforms have the same up-chirp rates in the CCF. (b) All the PNFLM waveforms have the
opposite chirp rates in the CCF.

3. MIMO Radar Signal Model and Ambiguity Function

In this section, the time-frequency scheme of our proposed PNLFM MIMO signal is
introduced. As shown in Figure 4(a), it has the same time-frequency scheme of original
Gao’s PNLFM MIMO radar signals, and Tr is the subcarrier repetition interval, Tp

is the time duration of each subcarrier; in this case there are duration gaps between
each subcarrier. As shown in Figure 4(b), the duration gaps have been eliminated,
and there are three different kinds of fillings in our proposed MIMO radar signals,
the orange grid represents Gao’s PNLFM waveform which has been improved, the
yellow grid represents Zhao’s PNLFM waveform, and the green grid represents our
proposed PNLFM waveform. According to the analysis in Section 2, each grid can be
filled with these three kinds of PNLFM waveforms randomly, it means that our scheme
can improve the diversity of MIMO radar signal significantly. In addition, each grid
has the same subcarrier duration Tp and same subcarrier bandwidth Bp, respectively.
There are M kinds of different non-orthogonal signals in our MIMO radar model, and
each non-orthogonal signal is composed of L different subpulse PNLFM waveforms.
Comparing with the waveforms proposed in (Gao et al. 2017), the number of MIMO
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radar signal is 3L larger than the original set. In order to simplify the processing of
waveform design, assuming that M = 4 and L = 8, the subcarrier sequence number is
defined as Y = {Y1,1, Y1,2, . . . , Ym,l, . . . , YM,L}, and they are selected randomly. When
Ym,l is 1, SC (m,l)(t) = SG(m,l)(t); when Ym,l is 2, SC (m,l)(t) = SZ (m,l)(t); and when
Ym,l is 3, SC (m,l)(t) = SO(m,l)(t). The expression of our proposed radar signal can be
shown as:

Sm (t) =

L−1∑
l=0

u (t− lTp)× SC (m,l) (t− lTp) (18)

where u (t) is an unit rectangle window function, 0 ≤ l ≤ L−1, and Tp is the subcarrier
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Figure 4. Time-frequency scheme of MIMO radar signal. (a) The blue grid represents original Gao’s PNLFM
waveform .(b) The orange grid represents Gao’s PNLFM waveform which has been improved, the yellow grid

represents Zhao’s PNLFM waveform, and the green grid represents our proposed PNLFM waveform

duration. In addition, the subchirp rate polarities of our proposed radar signal are
{+,−,+,−,+,−,+,−}. As a part of this analysis, assuming that the MIMO radar
system is a collocated MIMO radar array using our proposed signals. Four transmitting
and receiving antennas are used in the colocated MIMO radar array and the number
of proposed radar signals is equal to the numbers of transmitting antennas. Therefore,
M = N = 4 are the numbers of transmitting and receiving antennas, respectively. The
steering vectors of the transmitting and receiving antennas are defined as follow:

Vt (θ) = {1, exp(−jϕt (θ)), exp(−j2ϕt (θ)), . . . ,
exp(−j (M − 1)ϕt (θ))}T (19)
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Vr (θ) = {1, exp(−jϕr (θ)), exp(−j2ϕr (θ)), . . . ,
exp(−j(N − 1)ϕr (θ))}T (20)

where ϕt(θ) = 2πdtsin(θ)/λ, ϕr(θ) = 2πdrsin(θ)/λ, dt is the distance between each
transmitting antenna, dr is the distance between each receiving antenna, θ represents
the angle to the target and λ is the wavelength. The received signal at the received
antenna can be expressed as H(t) = Vr(θ)Vt(θ)

TS(t − τ)exp(2πfdt), where H(t) =
{H0(t), H1(t), . . . ,HN−1(t)}T, S(t − τ) = {S0(t − τ), S1(t − τ), . . . , SM−1(t − τ)}T, τ
is the time delay and fd is the Doppler frequency. Therefore, the expression of our
proposed echo signal in the nth receiving antenna can be shown as:

Hn(t)|τ,fd,ϕ(θ) =
m=M−1∑
m=0

ηSm(t− τ)exp(j2πfdt)

×exp(j2πϕ (θ) (βm+ n))

(21)

where η is the target reflection coefficient, β = dt/dr and ϕ (θ) = drsin(θ)/λ is the
normalized spatial frequency of the target. In order to achieve the target location and
velocity, some corresponding matched filters are designed to get echo signal. According
to the equation in Equation (21), there are three dimensions in the echo signal, which
include range, Doppler, and angle.

The MIMO radar ambiguity function (AF) is an important technique to evaluate
the sidelobes and resolution properties in the ACF and CCF, and it can be defined
as(Chen et al. 2008):

χ (τ, fd, ϕ (θ) , ϕ′ (θ)) =∣∣∣∣M−1∑
m=0

M−1∑
m′=0

χm,m′ (τ, fd)exp (j2π (ϕ′ (θ)m− ϕ′ (θ)m′)β)

∣∣∣∣ (22)

where

χm,m′ (τ, fd) =

∫ +∞

−∞
Sm (t)S∗m′ (t− τ) exp (j2πfdt) dt (23)

RSm(t),Sm′ (t)(τ) =

∫ +∞

−∞
Sm (t)S∗m′ (t− τ) dt (24)

χm,m′(τ, fd) is called the cross ambiguity function (CAF), and if m = m′, Equation
(23) turns to be the AF of the mth transmitting signal. What’s more, if fd = 0 and
m = m′, Equation (23) turns to be (24), and it can be called as the ACF, while if
m 6= m′, Equation (24) can be regarded as the CCF.

4. Parameter Optimization in MIMO Radar with Distinctive PNLFM
Waveforms

In this section, the optimization model of our new MIMO radar signal will
be proposed. According to the analysis above, there are several controlla-
ble parameters in each distinctive PNLFM subcarrier. The parameter vector
sets include A = {α1,1, . . . , αm,l, . . . , αM,L}, P = {ρ1,1, . . . , ρm,l, . . . , ρM,L},
E = {ε1,1, . . . , εm,l, . . . , εM,L}, Xh = {Xh,1,1, . . . , Xh(m,l), . . . , Xh(m,l)},
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Kh = {Kh,1,1, . . . ,Kh(m,l), . . . ,Kh(m,l)}, B = {δ1,1, . . . , δm,l, . . . , δM,L},
H = {η1,1, . . . , ηm,l, . . . , ηM,L}, Y = {Y1,1, . . . , Ym,l, . . . , YM,L}, and all of them
can be used to control the shape and duration in each segment of PNLFM waveforms.
In addition, the APSLs and CSLs can be suppressed by using the genetic algorithm
to optimize the fitness function. The fitness function can be expressed with the
parameter vectors mentioned above:

min
A,P,E,Xh,Kh,B,H,Y{

M−1∑
m=0,τ 6=0

max
∣∣RSm(t),Sm(t) (τ)

∣∣
+σ1

m=M−1∑
m=0

[∑
τ 6=0

∣∣RSm(t),Sm(t) (τ)
∣∣2/ ∑

|τ |=0.2Tp

∣∣RSm(t),Sm(t) (τ)
∣∣2]

+σ2

m=M−1∑
m=0

M−1∑
m′=0,m′ 6=m

max |χm,m′ (τ, fd)|

+σ3
∑

fd,τ 6=0

max |χ (τ, 0, ϕ (θ) , ϕ′ (θ))|

}
s.t. 0 < αm,l < 3 0 < ρm,l < 1 0 < εm,l < 1

0 < Xh(m,l) < 0.3 0 < Kh(m,l) < 4 0 < δm,l < 2
0 < ηm,l < 1 Ym,l ∈ {1, 2, 3}

(25)

where σ1, σ2, and σ3 are the weighted coefficients, they can be used to provide a
trade-off implementation to satisfy the requirement of signals in different situations.
According to the sequence number, the restriction condition of different parameters
can be used to generate distinctive PNLFM waveforms. Unlike the previous expres-
sion proposed in (Gao et al. 2017), more controllable parameters are added into the
fitness function, and each controllable parameter has its own restricted range. This
increase the degrees of freedom in this fitness function. Equation (25) consist of four
components, the first term in this expression can be described as the ACF, and it can
be used to detect the target and distinguish the small target with the sidelobes. These
range sidelobes and resolution can be observed by APSLs. The second term can be
described as the integrated sidelobe ratio (ISLR), and it can be used to determine
the energy of the main lobe in the transmitting signal. The third term represents the
CCF, since our proposed MIMO radar signals are non-orthogonal in time-frequency
domain, the lower cross-correlation sidleobes between different signals can be regarded
as orthogonal ones approximately. The last term is the range-angle function, and the
angle resolution, angle sidelobes (ASLs), the APSLs from the same angle and CSLs
from different angle can be investigated.

In order to suppress the sidelobes of MIMO radar signals and optimize the fitness
function, the genetic algorithm is applied to solve this problem (Liu et al. 2007). The
population number, crossover rate, mutation rate and iteration number will be initi-
alized first. A loop process from selection, mutation and evaluation will be continued
until it reaches the limit of iteration number or the restriction condition of the fitness
function. Then the optimized controllable parameters are obtained after the operation
mention above, and the optimization model of our proposed PNLFM MIMO radar
signals is output.

11



-5.0 0.0 5.0

Delay( s)

-100

-80

-60

-40

-20

0

N
om

al
iz

ed
 a

m
pl

itu
de

(d
B

)

Auto-correlation function
Cross-correlation function

(a)

-5.0 0.0 5.0

Delay( s)

-100

-80

-60

-40

-20

0

N
om

al
iz

ed
 a

m
pl

itu
de

(d
B

)

Auto-correlation function
Cross-correlation function

(b)

-5.0 0.0 5.0

Delay( s)

-100

-80

-60

-40

-20

0

N
om

al
iz

ed
 a

m
pl

itu
de

(d
B

)

Auto-correlation function
Cross-correlation function

(c)

-5.0 0.0 5.0

Delay( s)

-100

-80

-60

-40

-20

0
N

om
al

iz
ed

 a
m

pl
itu

de
(d

B
)

Auto-correlation function
Cross-correlation function

(d)

-5.0 0.0 5.0

Delay( s)

-100

-80

-60

-40

-20

0

N
om

al
iz

ed
 a

m
pl

itu
de

(d
B

)

Auto-correlation function
Cross-correlation function

(e)

-5.0 0.0 5.0

Delay( s)

-100

-80

-60

-40

-20

0

N
om

al
iz

ed
 a

m
pl

itu
de

(d
B

)

Auto-correlation function
Cross-correlation function

(f)

Figure 5. The ACF and CCF of PNLFM MIMO radar signals. (a) Original Gao’s PNLFM MIMO radar

signal. (b) Gao’s PNLFM MIMO radar signal. (c) Gao’s PNLFM MIMO radar signal with improvement. (d)
Zhao’s PNLFM MIMO radar signal. (e) New PNLFM MIMO radar signal. (f) PNLFM MIMO radar signal

with distinctive waveforms.
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5. Simulation and analysis

In this section, numerical simulation results of our proposed PNLFM MIMO radar
signals are shown to illustrate the effectiveness of our method, and these are compared
with original Gao’s PNLFM MIMO radar signals which are proposed in (Gao et al.
2017) . All the PNLFM MIMO radar signals proposed in this paper have the same
time-frequency scheme as shown in Figure 4(b) without duration gaps. Assuming that
Tp = 1µs, Bp = 400Mhz, M = 4, and L = 8. Therefore, ζ = 20/Tp = 2× 107, and the
total pulse duration of MIMO radar signal is T = 8µs, there are four transmitting and
receiving antennas in our array, respectively. The parameters in the fitness function
of genetic algorithm are initialized, the initial population includes 100 individuals, the
crossover rate is set to be 0.9, the mutation rate is set to be 0.4, and the iteration
number is set to be 200. The weighting coefficients in the fitness function can be set
as σ1 = σ3 = 1, and σ2 = 3, dt = 2λ and dr = λ/2, The original Gao’s PNLFM MIMO
radar signals have the time-frequency scheme as shown in Figure 4(a). Tp = 0.4µs and
Tr = 1µs are set in this situation. Therefore, all the different PNLFM MIMO radar
signals mentioned above have the same time-bandwidth products.

Table 2. Comparison between different PNLFM MIMO radar signals.

Category
τ ≤ 0.4|Tp| τ > 0.4|Tp| ISLS(dB) ASLS(dB) AVDC(dB)

APSLS(dB) CSLS(dB) APSLS(dB) CSLS(dB)
Original Gao’s PNLFM MIMO radar signal -41.34 -22.08 -21.82 -22.23 -38.86 -13.45 -1.18

Gao’s PNLFM MIMO radar signal -29.40 -24.47 -25.82 -24.38 -38.73 -13.34 -0.46
Gao’s PNLFM MIMO radar signal with improvement -29.50 -25.45 -25.56 -24.93 -38.37 -13.34 -0.46

Zhao’s PNLFM MIMO radar signal -29.98 -25.29 -24.12 -25.11 -38.08 -13.34 -0.40
New PNLFM MIMO radar signal -29.98 -23.74 -26.08 -23.44 -38.46 -13.34 -0.41

PNLFM MIMO radar signal with distinctive waveforms -30.66 -27.21 -27.18 -26.50 -38.44 -13.34 -0.38

When all the subcarrier sequence number Ym,l = 1, the new signals are composed of
Gao’s PNLFM waveforms which have been improved, and they can be labelled as Gao’s
PNLFM MIMO radar signal with improvement. When all the subcarrier sequence
number Ym,l = 2, the new signals are composed of Zhao’s PNLFM waveforms, and
they can be labelled as Zhao’s PNLFM MIMO radar signal. When all the subcarrier
sequence number Ym,l = 3, the new signals are composed of our new proposed PNLFM
waveforms, and they can be labelled as New PNLFM MIMO radar signal. In addition,
according to the optimization of fitness function, the best subcarrier sequence number
is obtained as Y={2,3,3,2,2,2,2,1;3,3,1,1,2,2,2,1;1,2,3,1,2,2,2,3;3,3,2,3,2,2,1,1;}. Then
we can obtain our proposed PNLFM MIMO radar signals, and they can be nomina-
ted as PNLFM MIMO radar signal with distinctive waveforms. Here, Gao’s PNLFM
MIMO radar signals mean that they have the time-frequency scheme as shown in Fi-
gure 4(b) and their PNLFM subcarriers are the waveforms proposed in (Gao et al.
2017) without any improvement.

Figure (5) shows the ACF and CCF of different PNLFM MIMO radar signals, and
Figure (6) shows the ACF and CCF of different PNLFM MIMO radar signals in their
mainlobes. As shown in Equation (25), the range of mainlobe is τ ≤ 0.2|Tp|. When
τ > 0.4|Tp| and τ ≤ 0.4|Tp|, the APSLs and CSLs are both shown in Table (2). It can
be observed that original Gao’s PNLFM MIMO radar signals have the highest APSLs
and CSLs when τ > 0.4|Tp|, the high repetitive sidelobes are produced by the duration
gaps between each subcarrier and each subcarrier has the same expression. It can be
noted that they have the lowest APSLs but highest CSLs in their mainlobes. When
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Figure 6. The mainlobe of ACF and CCF of PNLFM MIMO radar signals. (a) Original Gao’s PNLFM MIMO

radar signal. (b) Gao’s PNLFM MIMO radar signal. (c) Gao’s PNLFM MIMO radar signal with improvement.
(d) Zhao’s PNLFM MIMO radar signal. (e) New PNLFM MIMO radar signal. (f) PNLFM MIMO radar signal

with distinctive waveforms.
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Figure 7. The properties of original Gao’s PNLFM MIMO radar signals. (a) The ambiguity function of

original Gao’s PNLFM MIMO radar signal. (b) The range angle function of original Gao’s PNLFM MIMO

radar signal. (c) The transmitting beampattern of original Gao’s PNLFM MIMO radar signal. (d) The diagonal
cut of the transmitting beampattern of original Gao’s PNLFM MIMO radar signal.
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the target locates near the mainlobe with high signal noise ratio(SINR), the target
can be detected easily, otherwise it will lose its advantage. When the duration gaps
of time-frequency scheme as shown in Figure 4(b) are eliminated, it can be observed
that the APSLs become more average during the whole period of the time delay. All
the signals in this kind of time-frequency scheme have almost the same APSLs in their
mainlobes. According to the method with distinctive subcarriers within the whole
signal, our proposed PNLFM MIMO radar signals have the lowest APSLs and CSLs
in the whole period of time delay.
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Figure 8. The properties of Gao’s PNLFM MIMO radar signals with improvement. (a) The ambiguity

function of Gao’s PNLFM MIMO radar signal with improvement. (b) The range angle function of Gao’s

PNLFM MIMO radar signal with improvement. (c) The transmitting beampattern of Gao’s PNLFM MIMO
radar signal with improvement. (d) The diagonal cut of the transmitting beampattern of Gao’s PNLFM MIMO

radar signals with improvement.

It can be observed that all the PNLFM MIMO radar signals that consist of only
one kind of subcarriers produce high repetitive sidelobes both in ACF and CCF. In
our proposed PNLFM MIMO radar signals with distinctive waveforms, there are three
different kinds of subcarriers. They are Gao’s PNLFM waveforms with improvement,
Zhao’s PNLFM waveforms, and our novel designed PNLFM waveforms, respectively.
Each different waveform has its own controllable parameters, the degrees of freedom
are increased significantly in our proposed PNLFM waveforms. In addition, the se-
quence number of each subcarrier is selected randomly. According to the optimization
of genetic algorithm, our proposed PNLFM MIMO radar signals can achieve better
performance than the others.

Here, some other properties of the signals are simulated, which include the ambiguity
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Figure 9. The properties of Zhao’s PNLFM MIMO radar signals. (a) The ambiguity function of Zhao’s

PNLFM MIMO radar signal. (b) The range angle function of Zhao’s PNLFM MIMO radar signal. (c) The

transmitting beampattern of Zhao’s PNLFM MIMO radar signal. (d) The diagonal cut of the transmitting
beampattern of Zhao’s PNLFM MIMO radar signal.
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Figure 10. The properties of PNLFM MIMO radar signals with distinctive waveforms. (a) The ambiguity

function of PNLFM MIMO radar signal with distinctive waveforms. (b) The range angle function of PNLFM
MIMO radar signal with distinctive waveforms. (c) The transmitting beampattern of PNLFM MIMO radar

signal with distinctive waveforms. (d) The diagonal cut of the transmitting beampattern of PNLFM MIMO

radar signal with distinctive waveforms.
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function, range angle function, transmitting beampattern and the diagonal cut of its
transmitting beampattern. Since some signal have very similar properties, we choose
to show the original Gao’s PNLFM MIMO radar signals, Gao’s PNLFM MIMO radar
signals with improvement, Zhao’s PNLFM MIMO radar signals and our proposed
PNLFM MIMO radar signals with distinctive waveforms. The simulations of each
signal are shown in Figure (7), Figure (8), Figure (9) and Figure (10), respectively, and
the simulation results are shown in Table (2). It can be observed that there are two high
sidelobes in the direction of Doppler delay in Figure 7(a), it means that original Gao’s
PNLFM MIMO radar signals are very sensitive to the Doppler shift. However, the
ambiguity functions of the other signals are like thumb-tack and have good properties
in the direction of both range and Doppler delay. From Table (2), we can see that
all the signals almost have the same ISLs and ASLs, meaning that they have almost
the same detection ability of targets in the aspect of radar transmitting power and
different angles. The diagonal cut of the transmitting beampattern of each PNLFM
MIMO radar signal shows the orthogonality, and when the amplitude variation of the
diagonal cut(AVDC) reduces, the ability of orthogonality improves. According to the
results from Table (2), original Gao’s PNLFM MIMO radar signals have the biggest
variation range, and all the other signals have almost the same variation range. The
PNLFM MIMO radar signals with distinctive waveform have the smallest variation
range, therefore they have the best orthogonal characteristics. In a summary, according
to the simulation results mentioned above, our proposed MIMO radar signals with
distinctive waveforms achieve improved performance, in comparison to those analysed
here.

6. Conclusion

In this paper, a new PNLFM MIMO radar signal has been proposed for MIMO radar.
The simulation results illustrate that the repetitive high sidelobes caused by the same
subcarrier durations have been suppressed by the genetic algorithm with different ca-
tegories of subcarriers. Our proposed new waveforms have lower APSLS, CSLS and
ASLs. They also have the smallest variation range of the diagonal cut of the transmit-
ting beampattern. This means that our proposed PNLFM MIMO radar signals with
distinctive waveforms have the improved orthogonality. In addition, there are more
degrees of freedom in our proposed signals and improve the diversity of MIMO radar
signals significantly. Therefore, our proposed signal can be applied into more powerful
MIMO radar against challenging targets.
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