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Abstract 
Non-Newtonian rheology can have a significant effect on mixing efficiency, which remains 

poorly understood. The effect of shear-thinning rheology in a Taylor-Couette reactor is studied 

using a combination of Particle-Image Velocimetry and flow-visualisation. Shear-thinning is 

found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher 

order wavy instability, and is associated with an increase in the axial wavelength. Strong shear-

thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as Reynolds 

number is varied. Finally, it is shown that shear-thinning causes an increase in the mixing time 

within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid 

in the reactor. 

 

Symbols and Abbreviations 
Symbols   

d [m] Gap width 

𝑓𝑠 [s-1] Sampling frequency 

𝑓𝑊𝑉𝐹 [s-1] Frequency of wavy instability 

G’ [Pa] Storage modulus 

G’’ [Pa] Loss modulus 

k [mPa sn] Consistency 

L [m] Axial length of reactor 

n [-] Flow index (Carreau model) 

nPL [-] Flow index (Power law model) 

Nv [-] Number of vortices 

r [m] Radius 
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ri [m] Radius of inner cylinder 

ro [m] Radius of outer cylinder 

t [s] Time 

tvisc [s] Viscous time-scale 

tmix [s] Mixing time 

z [m] Axial position 

   

Greek symbols   

𝛾̇ [s-1] Strain rate 

𝛾̇𝑛𝑜𝑚 [s-1] Nominal strain rate 

〈𝛤〉𝑧 [m2s-1] Mean vortex circulation 

δ [-] Ratio of storage and loss moduli 

η [-] Radius ratio 

λz [m] Axial wavelength 

λc [s] Carreau time-scale (Carreau model) 

λr [s] Relaxation time 

μ [Pa s] Viscosity 

μ0 [Pa s] Viscosity at zero shear (Carreau model) 

μ∞ [Pa s] Viscosity at infinite shear (Carreau model) 

ρ [kg m3] Density 

ωθ [s-1] Vorticity in meridian plane 

Ω [rad s-1] Rotation speed of inner cylinder 

   

Non-dimensional Groups   

AR [-] Aspect ratio 

Re [-] Reynolds number 

Rec [-] Critical Reynolds number 

Rec,2 [-] Critical Reynolds number for Wavy Vortex Flow 

Ret,1 [-] Reynolds number for first wavelength transition 

Ret,2 [-] Reynolds number for second wavelength transition 

t* [-] Time non-dimensionalised with respect to viscous time-scale 

𝑡𝑚𝑖𝑥
∗  [-] Mixing time non-dimensionalised with respect to rotation 

period 

𝑊𝑒 [-] Weissenberg number 

   

Abbreviations   

PIV  Particle-Image Velocimetry 

 

1. Introduction 
Non-Newtonian fluids are encountered both in nature and industrial applications. Understanding 

the behaviour of non-Newtonian fluids has particular significance for many mixing applications, 

where spatial and temporal variations in viscosity can lead to uncertainty in the mixing time of 

the system. Various non-Newtonian phenomena such as shear-thinning, shear-thickening and 

viscoelasticity are known to affect the appearance and characteristics of flow instabilities, 

chaotic advection and turbulence that may be required for efficient mixing [1,2,3]. 
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Shear-thinning is a feature of many complex fluids, including pastes, emulsions, gels and 

suspensions of solid particles and cells, and hence is of particular interest for mixing 

applications. In most mixing processes, energy is supplied to the fluid via a shear-stress (e.g. at 

a moving boundary such as an impeller blade) and this kinetic energy is then dissipated 

throughout the fluid to achieve mixing. In the case of a shear-thinning fluid, the applied shear-

stress will reduce the local viscosity and promote high rates of local mixing, while material far 

from the applied stress will experience low strain rates and will therefore be characterised by 

high relative viscosity and slow mixing [4]. In the absence of a significant background flow, this 

may lead to the appearance of slow mixing regions and heterogeneity in the reactor, similar to 

the formation of caverns in yield stress fluids [5], significantly increasing the mixing time. 

As a result of these issues, scale-up of processes involving non-Newtonian fluids can pose a 

major challenge. Much of the work in the literature on mixing of non-Newtonian fluids has 

focussed on viscoelasticity, in which the fluid stresses depend not just on the instantaneous 

strain rate (as in Newtonian fluids), but also on the magnitude of the strain (elasticity), as 

these fluids are known to undergo instabilities at very low inertia [6, 7]. However, there has 

been relatively little work examining the case of shear-thinning inelastic or weakly viscoelastic 

fluids.  

The early study of Metzner and Otto [8] examined mixing of Newtonian and shear-thinning 

fluids in a stirred tank reactor and found that shear-thinning rheology increased the critical 

Reynolds number (non-dimensional impeller speed) for transition to turbulence and the power 

required for rapid mixing. More recent studies of mixing in stirred tanks by Fontaine et al. [9] 

and Cortada-Garcia et al. [10]  showed that shear-thinning fluids were associated with greater 

spatial variations in mixing, the appearance of slow-mixing islands and pseudo-cavern formation 

surrounding the impeller blades. 

There has been relatively little work examining mixing of shear-thinning fluids in other types of 

reactors or under generalised conditions, such that the fundamental role of shear-thinning in 

mixing processes could be identified. For example, it remains unclear under what conditions 

shear-thinning may promote or supress flow instabilities that drive unsteady mixing, or how the 

characteristics of these instabilities (wavelength, time-scales etc.) may depend on the rheology. 

The flow of a fluid between two concentric cylinders, the inner of which is rotating, is known as 
Taylor-Couette flow and has been used as an ideal case to study a variety of fluid phenomena 
[11]. Taylor-Couette flow has a simple and clearly defined geometry and undergoes a series of 
well-studied flow instabilities [12], making it a powerful approach through which to study the 
effect of non-Newtonian rheology on mixing. The dynamics of shear-thinning fluids in Taylor-
Couette reactors  are also of practical significance, as the system is used in many industrial 
applications involving non-Newtonian fluids, including filtration [13], protein-shearing [14, 15], 
blood detoxification [16], liquid-liquid extraction [17], food processing [18] and as a bioreactor 
[19, 20,21]. In spite of its theoretical and practical significance, it has been noted by several 
researchers that there is a lack of experimental data examining Taylor-Couette flow of shear-
thinning fluids [1,22,23,24]. 
 
The dynamics in a Taylor-Couette reactor are controlled by the rotational speed of the inner 

cylinder, Ω, which is non-dimensionalised as the Reynolds number, 𝑅𝑒 = 𝜌Ω𝑟𝑖𝑑 𝜇⁄ , where 𝜌 and 

𝜇 are the density and dynamic viscosity, respectively, 𝑟𝑖 is the radius of the inner cylinder and 𝑑 
is the width of gap between the cylinders. At slow rotation speeds, the fluid experiences uniform 
shear across the gap between the cylinders, a condition known as Circular Couette Flow. At a 
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critical Reynolds number, 𝑅𝑒𝑐, the centrifugal forces are no longer balanced by viscosity and the 
flow becomes unstable, leading to the formation of a series of alternating toroidal vortices [25] 

which is referred to as Taylor Vortex Flow. Further increases in 𝑅𝑒 lead to more instabilities, 
most notably the appearance of an azimuthal travelling wave (Wavy Vortex Flow), which 
causes the locations of the vortices to oscillate in the axial direction [26].  
 
Mixing in Taylor-Couette reactors can be broadly divided into two processes; mixing within 
individual vortices (intra-vortex mixing) and mass transfer between neighbouring vortices (inter-
vortex mixing). When Taylor-Couette flow is applied in a batch process, inter-vortex mixing is 
essential for homogenisation. However, it can also be applied in continuous processes by 
superimposing a weak axial flow, in which case the flow in referred to as Taylor-Couette-
Poiseuille flow and inter-vortex mixing is no longer a requirement[27]. Intra-vortex mixing is 
controlled by the velocity gradients within vortices that continuously stretch and deform fluid 
[28,29] and has been shown to increase with Reynolds number and show a weak dependence on 
the wave state [28,29,30]. Desmet et al. [31] argued that each vortex can be modelled as two 
separate zones, an inner zone at the vortex core and an outer zone near the vortex boundaries. 
The inner zone is characterised by relatively slow mixing [28,32] and is thought to occupy 
approximately 40% of the total vortex volume [33]. 
 
In the Taylor Vortex Flow regime, the flow remains axisymmetric, and mixing between 
neighbouring vortices occurs only via diffusion. However, the breakdown of symmetry in Wavy 
Vortex Flow and the oscillation of the vortices causes significant mass transfer between vortices 
[26], leading to an increase in the intervortex mixing [34]. Ohmura et al. [30] found that the 
intervortex mixing depended on Reynolds number and viscosity, and was inversely proportional 

to the wavelength of the flow, 𝜆𝑧. However, Dusting and Balabani [28] showed that even in 
Taylor Vortex Flow, the intervortex mixing time may be smaller than the intravortex mixing 
time, due to the inefficient mixing in the vortex core zone. 
 

It is not clear how intra- or inter-vortex mixing are affected by non-Newtonian rheology, or how 

this will ultimately affect the overall efficiency of the Taylor-Couette reactor. This study aims 

to address these questions, by providing experimental measurements of the dynamics within 

Taylor-Couette flow of Newtonian and non-Newtonian fluids. The remainder of the paper is 

structured as follows; the following section describes the experimental system used, and the 

velocity measurements and flow visualisation method used to study the dynamics; Sections 3.1 

and 3.2 present time-averaged and unsteady results of these approaches, respectively; the 

implications for mixing are discussed in Section 4; followed by some concluding remarks on the 

findings of this study. 

 

2. Experimental Details 
The experiments were performed in a custom-made Taylor-Couette reactor, described in detail 

elsewhere [28,35]. The test-section comprised a Teflon inner cylinder, spray-painted black to 

reduce reflections, and a thin-walled outer cylinder mounted between two acrylic blocks. In 

order to reduce optical distortion when viewing the flow in the reactor, the test-section was 

enclosed within a square chamber made of acrylic plates that was filled with the same working 

fluid as in the reactor. The radii of the inner and outer cylinders were 𝑟𝑖 = 21.2 mm and 𝑟𝑜 =
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25.5 mm, respectively, leading to a radius ratio of 𝜂 = 𝑟𝑖 𝑟𝑜 = 0.83⁄ , while the length of the 

cylinder axis was 𝐿 = 55.5 mm, leading to an aspect ratio of 𝐴𝑅 =  𝐿 𝑑⁄ = 12.97. 

The inner cylinder was mounted on a drive shaft and connected to a stepper motor (Smart 

Drive Ltd). Its rotation was monitored using an optical encoder with a high resolution (2000 

pulses per revolution), which allowed the rotational speed of the inner cylinder to be controlled 

to a high degree of accuracy [35]. 

Four working fluids were examined, which were composed of mixtures of deionised water, 

glycerol and xanthan gum, as detailed in Table 1. The working fluids were mixed using a high-

shear mixer for several minutes to ensure that the xanthan gum was fully dispersed, and the 

shear rheology was measured at room temperature using a rotational ARES rheometer (TA 

Instruments, with a Couette geometry. The resulting flow curves are shown in Figure 2(a). 

Shear-thinning can be described accurately using the Carreau model 

𝜇(𝛾̇) =  𝜇∞ +  (𝜇0 −  𝜇∞)(1 + (𝜆𝑐𝛾̇)2)
𝑛−1

2    [1] 

where 𝜇0 is the viscosity at negligible shear rates, 𝜇∞ is the viscosity at very high strain rates, 

𝜆𝑐 is the characteristic time-scale, 𝛾̇ is the strain rate and 𝑛 is the flow index, with 𝑛 = 1 for 

Newtonian fluids and 𝑛 < 1 for shear-thinning fluids. 

Many studies in the literature have used the power law model to describe a shear-thinning 

rheology: 

𝜇(𝛾̇) =  𝑘𝛾̇𝑛𝑃𝐿−1     [2] 

where 𝑘 is the consistency and 𝑛𝑃𝐿 is the flow index found using this model (which is not 

always the same as that found using Equation 1). While the power law model was found to 

work well over a limited range of strain rates, it underestimated the viscosity at high strain 

rates and overestimates it at low strain rates. Nevertheless, in order to facilitate comparison of 

the data in the current study with previous work in the literature, the power law model was also 

applied to the rheological measurements. 

The best fits of the Carreau and power law models to the rheological data are presented in 

Figure 2(a), with the various fitting parameters listed in Table 1. In order to define the 

Reynolds number, it is necessary to choose a reference viscosity. In this study, the nominal 

strain rate across the fluid layer 

𝛾̇𝑛𝑜𝑚 =  
Ω𝑟𝑖

𝑑
,       [3] 

was utilised in  the Carreau model (Equation 1). 

 

Fluid 1 2 3 4 

Water:glycerol 
ratio 

3:1 4.08:1 1:0 1:0 

Xanthan conc. 0 g/L 0.291 g/L 0.507 g/L 0.843 g/L 

𝑛 1 0.68 0.52 0.38 

𝜇∞ 2.2 mPa s 1.73 mPa s 0.935 mPa s 1.28 mPa s 

𝜇0 2.2 mPa s 13.6 mPa s 85.3 mPa s 966 mPa s 

𝜆𝑐 n/a 0 s 1.28 s 7.49 s 
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𝑛𝑃𝐿 0.995 0.73 0.531 0.401 

𝑘 2.2 mPa sn 16.4 mPa sn 77.4 mPa sn 267 mPa sn 

𝜆𝑟 ~0 s ≪ 6.28 ms < 6.28 ms 2.65 s 

Table 1: Rheological properties of the various fluids used in experiments, including the fitting 

parameters of the Carreau and power law models (Equations 1 and 2, respectively). 

 

 

Oscillatory shear measurements were performed to assess the viscoelasticity of the fluids. An 

oscillatory strain with a maximum amplitude of 10% was applied to the fluid samples and the 

unsteady stress signal was measured. By decomposing this signal into the viscous stresses in 

phase with the strain rate (the loss modulus, 𝐺′′) and the elastic stresses in phase with the 

strain (the storage modulus, 𝐺′), the phase shift between the applied strain rate and the 

resulting fluids stresses could be found as 

𝛿 =  tan−1 𝐺′

𝐺′′ .      [4] 

This can be used to characterise the rheology, with 𝛿 = 0 for purely viscous fluids, 𝛿 = 90° for 

solids and 0 <  𝛿 < 90° for viscoelastic fluids. 

The variation in the phase lag with oscillation frequency is shown in Figure 2(b). The 

Newtonian fluid has 𝛿 ≈ 90° implying that it behaves as a purely viscous fluid, while all three 

xanthan solutions exhibit some viscoelasticity, with the elastic behaviour tending to become 

more important at high frequencies. For two fluids (𝑛 = 0.68 and 𝑛 = 0.52), 𝛿 > 45°, implying 

the rheology is dominated by viscous effects, while for the most shear-thinning case (𝑛 = 0.38), 

the elastic effects become dominant for excitation frequencies greater than 2.5 rad/s. Thus, 

the fluids examined in this study span the Newtonian, shear-thinning and viscoelastic regimes. 

The frequency, 𝜔𝑟, at which the 𝛿 = 45° can be used to identify the relaxation time of a fluid, 

𝜆𝑟 = 2𝜋 𝜔𝑟⁄ . For three of the fluids, Figure 2(b) indicates that the relaxation time is too small 

to be measured (𝜆𝑟 < 6.28 s). However, in the case of the most shear-thinning fluid, the 

relaxation time is given by 2.65 s. The significance of the relaxation time is given by the 

Weissenberg number, 𝑊𝑒 =  𝜆𝑟𝛾̇𝑛𝑜𝑚, which represents the ratio of the relaxation time to the 

time-scale of the flow. For 𝑊𝑒 ≪ 1, viscoelastic effects can be neglected, while for 𝑊𝑒 ~ 1 

they are likely to play a significant role in the dynamics. 

The experiments were performed by slowly accelerating the inner cylinder at a constant rate to 

reach a final speed, Ω𝑚𝑎𝑥, which is listed in Table 2, along with the corresponding maximum 

Reynolds number and Weissenberg number. For Fluids 1,2 and 3, the Weissenberg number is 

relatively low, and it is clear that when the flow becomes unstable at 𝑅𝑒~𝒪(102), the 

Weissenberg number is significantly less than 1, suggesting elasticity plays a minor role in this 

instability. However, for Fluid 4, the Weissenberg number is significantly larger and can be 

expected to play an important role in the dynamics. 

Fluid 1 2 3 4 

Ω𝑚𝑎𝑥 22.9 rad/s 45.9 rad/s 61.3 rad/s 99.9 rad/s 

𝑑Ω𝑚𝑎𝑥 𝑑𝑡⁄  0.013 rad/s2 0.025 rad/s2 0.031 rad/s2 0.05 rad/s2 

𝑓𝑠 (PIV) 40 Hz 80 Hz 80 Hz 80 Hz 
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𝑓𝑠 (vis) 10 Hz 20 Hz 25 Hz 45 Hz 

𝑅𝑒𝑚𝑎𝑥 1015 1044 996 1312 

𝑊𝑒𝑚𝑎𝑥 ~0 ≪ 1.4 < 1.9 1312 

Table 2: Details of the PIV and flow visualisation (vis) experiments performed on the four fluids 

(details of which are provided in Table 1). 

The experiments were performed by slowly accelerating the inner cylinder at a constant rate, as 

listed in Table 2. The non-dimensional acceleration rate, 𝑑𝑅𝑒 𝑑𝑡∗⁄  (where 𝑡∗ = 𝑡 𝑡𝑣𝑖𝑠𝑐⁄ , and 

𝑡𝑣𝑖𝑠𝑐 = 𝜇 𝜌𝑑2⁄  is the viscous time-scale) was minimised, such that 𝑑𝑅𝑒 𝑑𝑡∗ < 5.5⁄  at any point 

in the experiments to ensure that the flow behaved in a quasi-steady manner (i.e. the flow state 

was not affected by the inner cylinder acceleration rate). The choice of acceleration rate was a 

balance between the need to avoid unsteady effects and the requirement that the 

measurements were performed over a reasonable time-scale, such that viscous heating did not 

lead to significant temperature variations. Experiments typically lasted approximately 30 

minutes, and temperature measurements of the fluid in the reactor immediately before and 

after the experiments indicated that the temperature change was less than ±1.2℃. 

As the inner cylinder was slowly accelerated, the flow was characterised using two approaches: 

Particle-Image Velocimetry (PIV) and flow visualisation. Time-resolved PIV was used to 

measure the velocity field in the meridian plane over short time-periods at several intervals. For 

each measurement, the plane was illuminated using a pulsed Nd:Yag laser and 1024 image-pairs 

were acquired spanning the length of the reactor using a high-speed camera (Phantom Miro 

M340). Fluorescent particles with a mean diameter of 10 μm were used as tracers. The 

sampling rate was high (Table 2), such that the change in the speed of the inner cylinder over 

the course of each measurement was small and this data could be used to represent the flow at 

a fixed 𝑅𝑒. The image-pairs were processed using a cross-correlation scheme with 50% window 

overlap. The PIV fields had a vector spacing of 16 x 16 pixels (approximately 10 vectors over 

the gap width). To facilitate comparison between different experiments, all velocity data was 

linearly interpolated onto a regular grid spanning 𝑟 𝑑⁄ = 0.1 − 0.8 and 𝑧 𝑑⁄ = 0.1 − 12.8 in steps 

of 0.1, where 𝑟 is measured with respect to the inner radius (i.e. 𝑟𝑖 𝑑⁄ = 0). In order to reduce 

the effects of diffraction due to the curvature of the outer cylinder, velocity data acquired for 

𝑟 𝑑 > 0.8⁄  were ignored. 

The PIV measurements provided detailed flow information over a number of discrete Reynolds 

numbers; however, they could not capture the evolution of the dynamics and the transitions 

between flow regimes, which require continuous measurements over the duration of the 

experiments. This could be achieved using flow visualisation. Following the completion of the 

PIV measurements, a small quantity of anisotropic tracer particles (mica flakes) were added to 

the flow. The quantity was sufficiently small (a volume fraction of < 10−4) so that they had a 

negligible effect on the fluid viscosity, which was confirmed by additional rheometer 

measurements. Mica flakes have a high aspect ratio and thus align with the flow, such that the 

variations of the scattered light can be used to visualise the distribution of shear and identify 

structures in the flow [36]. This approach has been used by several previous researchers to 

study transitions in Newtonian Taylor-Couette flow [37,38,39]. 

A white LED light source (SugarCUBE, Edmund Optics) was used to illuminate the flow and 

images were acquired of a narrow strip of the flow at the front of the reactor (as indicated in 

Figure 1) using the same high-speed camera employed for the PIV measurements. The 
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sampling rate used for each experiment is listed in Table 2. By determining the image at which 

a banded structure appears, due to the formation for Taylor vortices, the critical Reynolds 

number could be determined. 

 

3. Results 

3.1 Flow Fields 
The critical Reynolds number at which the flow transitions from stable Circular Couette Flow 

to unstable Taylor Vortex Flow, was determined from the flow visualisation measurements, and 

is shown as a function of the flow index in Figure 3(a). In each case, when the system initially 

transitioned from Circular Couette Flow, the vorticity fields contained a series of vortices that 

were stable and stationary, and in no case were any phenomena observed that are characteristic 

of the elasticity controlled instabilities (e.g. isolated ‘diwhirls’ or unsteady ribbon or spiral 

vortices [40, 41]). This indicates that the shear-thinning rheology is modifying the inertia-

controlled Taylor-Couette instability seen in Newtonian fluids (i.e. the transition to Taylor 

Vortex Flow), rather than causing the flow becoming unstable due to the viscoelasticity of the 

fluids.  

In order to compare the current estimates of 𝑅𝑒𝑐 to those of previous studies in the literature, 

the critical Reynolds number is also shown as a function of the flow index calculated using the 

power law model in Figure 3(b). The results from the current study indicate that shear-thinning 

is associated with a reduction in 𝑅𝑒𝑐. However, this effect is not monotonic; there is a 

reduction of approximately 40% at 𝑛 = 0.68 relative to the Newtonian case, but as 𝑛 is 

reduced further 𝑅𝑒𝑐 increases. This trend is consistent with the experimental study of Sinevic et 

al. [42] who examined a slightly smaller radius ratio reactor (𝜂 = 0.7) and found a sharp 

increase in 𝑅𝑒𝑐 near 𝑛𝑃𝐿 = 0.45; by 𝑛𝑃𝐿 = 0.4, 𝑅𝑒𝑐 was larger than that observed for the 

Newtonian fluid. 

In contrast, the analytical work using linear stability theory of [23,43,44] all predict an 

approximately steady decline in 𝑅𝑒𝑐 with decreasing flow index. The discrepancy between the 

results of the experimental studies and those of the theoretical work is interesting and suggests 

that the power law model used in the analytical studies summarised in Figure 3 may not 

capture all the relevant physics occurring in the experiments. This may arise in part because 

analytical predictions of the critical Reynolds number generally assume an infinite length 

reactor, while all experiments are performed in finite-aspect ratio systems (the system of 

Sinevic et al. [42] had an aspect ratio of 9.9). However, it should be noted that Cole [45] found 

that the aspect ratio has a negligible effect on the critical Reynolds number for 𝐴𝑅 > 8 (for 

Newtonian fluids).  

It is notable that in the current study the fluids in which the shear-thinning is associated with 

an increase in the critical Reynolds number (relative to the minimum 𝑅𝑒𝑐 observed near 𝑛 =

0.68) are also characterised by moderate viscoelasticity, such that the elasticity and viscous 

moduli are of comparable magnitude (Figure 2(b)). Viscoelasticity was not considered in the 

analytical work of Caton [43], Jastrzębski et al. [44] and Alibenyahia et al. [23], while Sinevic et 

al. [42] noted the presence of viscoelasticity in their fluids, but did not quantify it. Therefore, 

viscoelasticity is a potential explanation for the differences in the predictions of the analytical 

studies of ideal power law fluids and the experimental results of real shear-thinning fluids. 
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In order to examine the effects of shear-thinning on the flow within the reactor, the vorticity 

fields calculated from the time-averaged velocity fields at 𝑅𝑒 ≈ 500 for each fluid are shown in 

Figure 4. In the Newtonian case, six pairs of counter-rotating vortices are present, which are 

approximately evenly spaced. As the flow index is reduced, the number of vortices, 𝑁𝑣, is also 

reduced, corresponding to an increase in the axial wavelength, 𝜆𝑧/𝑑 = 𝐴𝑅/2𝑁𝑣. By 𝑛 = 0.38 

four vortex-pairs are present, with 𝜆𝑧/𝑑 = 3.24, compared to 𝜆𝑧/𝑑 = 2.16 for the Newtonian 

case.  

The variation in the wavelength with 𝑅𝑒 for each fluid is shown in Figure 5 (neglecting the data 

points in the Circular Couette Flow regime, where the wavelength is given by 𝜆𝑧/𝑑 = 𝐴𝑅). For 

𝑛 > 0.38, 𝜆𝑧/𝑑 remains constant at the Reynolds number is increased beyond 𝑅𝑒𝑐. However, in 

the weakly elastic case (𝑛 = 0.38), the flow undergoes two discontinuities, with 𝜆𝑧/𝑑 

transitioning from 3.24 to 2.59 at 𝑅𝑒 = 99 – 152, before reverting to 3.24 in the range 𝑅𝑒 =

309 – 385. As the vorticity fields in Figure 6(a-e) show, this corresponds to the creation of a 

new vortex pair (𝑅𝑒 ≈ 99 – 152) and the subsequent disappearance of a vortex pair (𝑅𝑒 ≈ 309 

– 385). 

This creation and destruction of vortex pairs is unlikely to be captured by PIV measurements 

which provide measurements over relatively short periods of time. Instead, these transitions can 

be examined in the flow visualisation measurements which are shown in Figure 7(a) and 7(b) 

for the Newtonian and weakly elastic case, respectively. The maps were formed by averaging 

each image to form a single column of pixels spanning the axis of the reactor, and compiling 

these columns to form a stack, where the Reynolds number (and time) increases along the 

horizontal axis of the figure and the vertical axis corresponds to the reactor axis.  

For 𝑅𝑒 < 𝑅𝑒𝑐, the maps are broadly uniform due to the absence of clear flow features other 

than the Ekman vortices at either end. As the flow becomes unstable at 𝑅𝑒𝑐, the maps are 

characterised by a series of light and dark bands, which correspond to the various bands of 

shear caused by the vortices. In the Newtonian case, this banded structure remains uniform for 

all 𝑅𝑒 < 1000, indicating that there is little change in the position or size of vortices as 

Reynolds number is increased. 

For the weakly elastic case, there is a sudden change at 𝑅𝑒𝑡,1 =  147, in which several of the 

light and dark bands shift in the axial direction. This is associated with a new dark band 

forming at 𝑧/𝑑 ≈ 11.5, which corresponds to the creation of a new vortex pair. The vortex 

splitting event appears to be spontaneous, and it is followed by a gradual shifting in the 

positions of all vortices such that they revert to a broadly uniform spacing by 𝑅𝑒 ≈ 200. 

This is followed by another abrupt transition at 𝑅𝑒𝑡,2 =  235, where the dark band at 𝑧/𝑑 ≈

9.5 disappears, which corresponds to the destruction of the vortex pair via merging with 

neighbouring vortices. This process is again followed by a gradual re-organisation of the vortices 

to achieve an approximately uniform axial spacing. 

The process of vortex pair creation and destruction is consistent with the PIV results shown in 

Figure 6. In the flow visualisation experiment, 𝑅𝑒𝑡,1 =  147, which is in agreement with the PIV 

experiments, where 𝑅𝑒𝑡,1 occurred in the range 99 < 𝑅𝑒 < 152. However, the flow visualisation 

experiment indicates that 𝑅𝑒𝑡,2 occurs at 235, while the PIV measurements indicate that the 

transition occurs at a slightly higher Reynolds number range, 309 < 𝑅𝑒 < 385. 
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Sudden transitions in the number of vortices in Taylor-Couette of Newtonian fluids have been 

documented in previous studies, arising due to the effect of the wavy instability, as increases in 

𝑅𝑒 lead to an increase in the amplitude of the wavy instability and a gradual reduction in the 

number of vortices present [46,47]. However, to the best of the authors’ knowledge, the 

process observed here, in which a vortex pair is created and shortly thereafter another pair is 

destroyed (i.e. 𝜆𝑧 has a non-monotonic dependence on 𝑅𝑒) has not previously been observed. 

Furthermore, the splitting/merging of vortices did not occur while the wavy instability was 

present (as will be shown in the following section), and therefore appears to be distinct from 

that described in previous studies of Taylor-Couette flow of Newtonian fluids [46,47]. The 

Weissenberg numbers at which the transitions occurred (at 𝑅𝑒𝑡,1 and 𝑅𝑒𝑡,2) were much greater 

than unity (𝑊𝑒 = 317 and 428, respectively) and significantly higher than any values seen in 

the 𝑛 = 0.68 and 0.52 experiments, where no such transition were observed, which suggests 

that the abrupt changes in wavelength are associated with viscoelastic effects. 

The various vorticity fields in Figures 4 and 6 indicate that as well as inducing an increase in 

the wavelength, shear-thinning is also associated with a concentration of vorticity at the centre 

of vortex-pairs, i.e. points where the is a positive (red) vortex on the left and a negative (blue) 

vortex on the right. This corresponds to a jet of fluid moving radially outward from the inner 

cylinder. In contrast, the inward jets (which occurs at points where there is a negative vortex on 

the left and a positive vortex on the right) are associated with patches of weak vorticity. 

 

𝑛 𝑅𝑒𝑐,2 (PIV) 𝑅𝑒𝑐,2 (vis) 𝑓𝑊𝑉𝐹 (
2𝜋

Ω
) (PIV) 𝑓𝑊𝑉𝐹 (

2𝜋

Ω
) (vis) 

1 761 – 846 826 1.14 1.14 

0.6 682 – 834 824 0.895 0.878 

0.45 635 – 750 664 0.884 0.881 

0.38 >1005 >1005 n/a n/a 

Table 3: Critical Reynolds number and characteristic frequency for the Wavy Vortex Flow found 

using velocity measurements (PIV) and flow visualisation (vis).  

 

3.2 Wavy Instability 
The wavy instability allows mass transfer between vortices and controls inter-vortex mixing 

[29]. Table 3 lists the Reynolds number at which the transition to Wavy Vortex Flow occurred, 

𝑅𝑒𝑐,2, and the frequency of the instability, 𝑓𝑊𝑉𝐹, for each fluid, based on both the flow 

visualisation and PIV measurements. For the PIV measurements, the Fast Fourier Transform 

(FFT) was used to find the spectra of the axial velocity component at every point in the 

measurement plane; these spectra were then averaged (in order to reduce the influence of the 

choice of measurement site) and the maximum was taken to coincide with 𝑓𝑊𝑉𝐹. For the 

visualisation measurements, 𝑓𝑊𝑉𝐹 was found as a function of 𝑅𝑒 by dividing the spatio-temporal 

maps into segment 256 data points in length and computing the average FFT for each 

segment. For the weakly elastic case, the wavy instability was not observed at any Reynolds 

number examined, indicating that 𝑅𝑒𝑐,2 > 1005. The flow index does not appear to have a 

consistent effect on the critical Reynolds number for the transition to Wavy Vortex Flow. 

There is strong agreement between the estimates of 𝑅𝑒𝑐,2 and 𝑓𝑊𝑉𝐹 found using the flow 

visualisation and PIV measurements, indicating that the transition to wavy flow is repeatable 
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and the absence of a clear relationship between 𝑛 and 𝑅𝑒𝑐,2 or 𝑓𝑊𝑉𝐹  is not a consequence of 

uncertainty in the measurements. 

The wavy instability can be visualised using the vorticity fields averaged in the radial direction, 

〈𝜔𝜃〉𝑟, which are shown in Figure 8 for ten cylinder rotation cycles at 𝑅𝑒 ≈ 1000. The increase 

in wavelength and the changes in the distribution of vorticity as the fluid becomes more shear-

thinning are again apparent. In the Newtonian case, the instability can clearly be seen as an 

oscillation in the axial position of the boundary between vortices at 𝑧/𝑑 ≈ 4.5, 6.5 and 8.5, 

which correspond to inward jets (in this case, a vortex boundary with a positive vortex above 

and a negative vortex below). The other boundaries, near the end of the reactor and at the 

outward jets, do not exhibit significant oscillations. The weakly elastic case exhibits some 

waviness at a single outward jet near the top of the reactor, 𝑧/𝑑 ≈ 11.5, but the instability is 

not apparent at any other location (and thus in Table 3 it is not treated as being unstable). In 

the intermediate cases (𝑛 = 0.68 and 0.52, Figures 8(b-c)), the wavy instability is clearly visible 

at a number of inward and outward jets. In some cases, e.g. at 𝑧/𝑑 ≈ 5.5 in Figure 8(b)), the 

amplitude of the instability is significantly larger than that observed at any points in the 

Newtonian case. It is clear that the reduction in the flow index is not associated with a clear 

trend in terms of 𝑅𝑒𝑐,2 or the amplitude of the wavy instability; this may be a consequence of 

the viscoelasticity of the strongly shear-thinning fluids, as was discussed earlier regarding the 

critical Reynolds number for the transition to Taylor Vortex Flow (Figure 3). 

4. Implications for Mixing 
The results presented in the previous sections have significant implications for both the intra- 

and inter-vortex mixing. The intra-vortex mixing occurs within vortices and therefore is 

controlled by the strength and size of the vortices, which are characterised by the mean 

(absolute) circulation of vortices along the reactor, 〈Γ〉𝑧, and the axial wavelength, respectively. 

The mixing time within a single vortex is known to be inversely proportional to mean (absolute) 

vorticity within that vortex [48, 49], which is given by  

 

𝑡𝑚𝑖𝑥  ~ 
2〈Γ〉𝑧

𝑑𝜆𝑧
, 

 

where 𝑑𝜆𝑧 2⁄  is the cross-sectional area of a single vortex. This can be expressed relative to the 

period of rotation of the inner cylinder to give a non-dimensional mixing time that is 

proportional to the intra-vortex mixing time: 

𝑡𝑚𝑖𝑥
∗ =  

𝑑𝜆𝑧Ω

4𝜋 〈Γ〉𝑧
.       [5] 

This can be calculated from the time-averaged PIV data, using area integration of the vorticity 

to find  〈Γ〉𝑧. The resulting estimates of the mixing time are presented as a function of 

Reynolds number for each of the four fluids in Figure 9. The intra-vortex time decreases sharply 

at the onset of Taylor Vortex Flow, before reaching an approximately constant value for 𝑅𝑒 

greater than around 500. Shear-thinning is associated with an increase in the intra-vortex 

mixing time. This is summarised in Figure 10, which shows the average value of 𝑡𝑚𝑖𝑥
∗  found for 

𝑅𝑒 > 500, normalised by the value found for the Newtonian case. A reduction in the flow index 
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leads to a non-linear increase in the mixing time, such that by 𝑛 = 0.38, it becomes 30% larger 

than the value for a Newtonian fluid. 

The simple mixing model summarised in Equation 5 assumes constant mixing throughout each 

vortex. However, it is known from experiments that intra-vortex mixing is characterised by a 

fast mixing region and a slow mixing core [28,31,34]. The vorticity fields in Figures 4 and 6 

indicate that shear-thinning fluids are associated with a concentration of vorticity along some 

vortex boundaries and a reduction in vorticity in the vortex core region, which is likely to lead 

to a further decrease in the mixing time in the fast mixing regions and a further increase in the 

mixing time in the slow regions. This will act to reduce the overall efficiency of intra-vortex 

mixing in shear-thinning fluids relative to the Newtonian case, for which almost all estimates of 

the mixing times of Taylor-Couette reactors have been derived [28,29,31,34]. 

The inter-vortex mixing is controlled by the wavy instability, which allows for mass transfer 

between vortices. In the absence of waviness, dispersion of a fluid along the reactor axis relies 

on diffusion to cross vortex boundaries, which is a relatively slow process [30,34]. Therefore, 

the inter-vortex mixing time is strongly dependent on the wavelength of the flow, because if the 

wavelength is large there are less vortex boundaries that must be traversed. Shear-thinning is 

associated with an increase in 𝜆𝑧 (Figure 5), implying that it will lead to a reduction in the 

inter-vortex mixing time. 

The inter-vortex mixing is also strongly dependent on the amplitude of the wavy instability and 

how this varies along the reactor axis. The Newtonian map (Figure 8(a)) shows that the wavy 

instability has a non-negligible amplitude only at every second vortex boundary, corresponding 

to the locations of jets moving radially inwards (i.e. containing fluid with low angular 

momentum), as was also reported by Wereley and Lueptow [50] and Nemri et al. [34]. The 

latter study of Nemri et al. [34] found that this can lead to significantly larger time required for 

mass transfer between vortices separated by an outward jet relative to vortices separated by an 

inward jet. The map in Figure 8(a) also indicates that at the inward jets, the amplitude of the 

instability is not the same at all locations, tending to be largest near the axial centre of the 

reactor and smallest near the ends. In an industrial process, reactors may be required to 

disperse a product introduced at one end along the entire span of the fluid. In this case, the 

overall mixing time will be dependent on the largest inter-vortex mixing time between two 

neighbouring vortices in the reactor; therefore, even if the mixing time is greatly reduced for 

vortices separated by an inward jet (and not for those separated by an outward jet), this will at 

most lead to a reduction in the overall mixing time by a factor of two. 

In contrast, the moderately shear-thinning vorticity maps in Figures 8(b) and 8(c) show that 

the wavy instability is now present at a number of both inward and outward jets, which will be 

associated with a significant reduction in the inter-vortex mixing time. Furthermore, the 

amplitude of the wavy instability at some points in the shear-thinning fluids (e.g. at 𝑧/𝑑 ≈ 5 −

7) is larger than that observed at any location in the Newtonian fluid, indicating a further 

increase in the efficiency of the mass transfer between vortices. However, the amplitude of the 

wavy instability does not appear to vary smoothly in the axial direction; Figure 8(c) shows that 

the amplitude tends to be high for 𝑧 𝑑⁄ > 7, but is relatively low near the centre of the reactor, 

𝑧 𝑑⁄ = 5 − 7. This variability is likely to lead to some uncertainly in the estimates of the mixing 

time in practice. 
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Finally, the wavy instability was not observed in the strongest shear-thinning case (Figure 

8(d)), other than at a single jet at the top of the reactor. The absence of wavy flow may be a 

consequence of the non-monotonic effect of the flow index on 𝑅𝑒𝑐,2. Alternatively, viscoelastic 

fluids in rotating flows are known to exhibit hoop stresses [xxx2]; these stresses may act to 

stabilise the flow with respect to the inertia-controlled wavy instability, because any waviness 

will increase the length of the closed streamlines surrounding the inner cylinder and will thus be 

opposed by the hoop stresses.  

However, even in the absense of significant wavy instability at 𝑛 = 0.38, the inter-vortex mixing 

time will be reduced relative to the Newtonian case due to the increase in the wavelength; the 

vorticity maps in Figures 8(a) and 8(d) show that in both cases there are six vortex boundaries 

with low or negligible amplitude waves, despite the clear dominance of Wavy Vortex Flow in 

the Newtonian fluid. 

Overall it appears that shear-thinning enhances the efficiency of axial disperion or inter-vortex 

mixing through the combined effects of an increase in the wavelength and the appearance of 

the wavy instability at both inward and outward jets. However, these effects are mitigated by 

the non-monotonic effects of shear-thinning on the critical Reynolds number for the onset of 

the wavy instability, possibly due to viscoelasticity. 

 

5. Conclusions 
The flow of Newtonian and shear-thinning fluids in a Taylor-Couette reactor was studied using 

Particle-Image Velocimetry and flow visualisation, in order to gain insight into how non-

Newtonian rheology affects mixing. The Reynolds number was slowly increased, spanning the 

Circular Couette Flow, Taylor Vortex Flow and Wavy Vortex Flow regimes. The PIV 

measurements provided detailed information on the flow dynamics over short time periods when 

the Reynolds number was approximately constant whereas the flow visualisation allowed the 

transitions between regimes to be examined. 

Shear-thinning was found to induce a reduction in the critical Reynolds number for the onset of 

Taylor Vortex Flow. However, at low flow index (strongly shear-thinning), further decreases in 

𝑛 lead to an increase in 𝑅𝑒𝑐. This was consistent with the experiments of Sinevic et al. [42], 

but was not predicted by various analytical works for power law fluids [23,43,44], which may be 

caused by the viscoelasticity of the fluids used in the experiments. 

Shear-thinning was found to lead to an increase in the axial wavelength in Taylor Vortex Flow 

(i.e. a decrease in the number of vortices present). In the most shear-thinning case, which was 

weakly elastic, the wavelength varied as the Reynolds number was increased, with the 

transitions occurring via the sudden splitting and merging of vortices. 

The flow index also had a non-monotonic effect on the critical Reynolds number for the onset 

of the wavy instability. For the Newtonian fluid, the amplitude of the wavy instability was 

negligible at the outward jets, while in the moderately shear-thinning fluids (𝑛 = 0.68 and 

0.52), the wavy instability was observed at both inward and outward jets. At some points along 

the reactor axis, the amplitude of the instability was significantly larger than that observed in 

the Newtonian case at a similar Reynolds number; however, in the shear-thinning fluids, there 

were significant variations in the amplitude along the axis. The most shear-thinning case (𝑛 =
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0.38), was not found to undergo the transition to wavy flow in the Reynolds number range 

examined (𝑅𝑒 = 0 − 1005), which may be related to the greater viscoelasticity of the fluid. 

Finally, the implications of the findings on the mixing behaviour were discussed. The intra-

vortex mixing time was argued to scale with the inverse of the mean vorticity, and it was shown 

that shear-thinning led to an increase in the intra-vortex mixing time. This effect was expected 

to be enhanced by the spatial distribution of vorticity in the shear-thinning cases, which led to 

large regions of weak vorticity and increased the relative size of the slow-mixing vortex cores. 

In contrast, shear-thinning was found to improve inter-vortex mixing by increasing the 

amplitude of the wavy instability in moderately shear-thinning fluids and by increasing the 

wavelength, such that there were less vortex boundaries that the fluid must cross to achieve 

homogeneity. 
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Figure 1: Sketch of the test-section used, showing the arrangement used to perform PIV (left) 

and flow visualisation measurements (right). 

 

 

Figure 2: (a) Flow curves for the four fluids examined, including the best fit of the Carreau 

model (dashed lines) and the power law model (solid lines). The fitting parameters for both 

models are listed in Table 1 for each fluid. (b) Variation in the phase angle between the applied 

oscillating strain and the fluid stress (which provides a measure of the viscoelasticity of the fluid 

sample) with oscillation frequency. 

 

 

Figure 3: Variation in the critical Reynolds number for the onset of Taylor Vortex Flow as a 

function of flow index found using the Carreau model (a) and the power law model (b). The 

study of Sinevic et al. [42] was experimental, while the other studies summarised in (b) were 

analytical. The analytical studies were performed with a radius ratio of 𝜂 = 0.8, while Sinevic et 

al. [42] used 𝜂 = 0.7, which is responsible for the differences in 𝑅𝑒𝑐 found for the Newtonian 

case between these and the current work (𝜂 = 0.83) [51]. 
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Figure 4: Vorticity fields, calculated from the mean velocity fields at 𝑅𝑒 ≈ 500 for four fluids, 

including the Newtonian case (a), and three progressively more shear-thinning fluids (b-d). 

 

 

Figure 5: Variation in the mean wavelength of the flow with Reynolds number for four fluids. 

The sudden reduction in wavelength at 𝑅𝑒 ≈ 50 − 100 corresponds to the formation of Taylor 

vortices. 
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Figure 6: Vorticity fields acquired for the weakly elastic fluid (𝑛 = 0.38) at a range of Reynolds 

numbers, showing the transition to Taylor Vortex Flow (a-b), the increase in wavelength (b-c) 

and its subsequent decrease (d-e). 



21 

 

 

Figure 7: Flow visualisation maps acquired as the Reynolds number is gradually increased for a 

Newtonian (a) and strongly shear-thinning (𝑛 = 0.38) (b) fluid. Variations in intensity of the 

image correspond to changes in the local shear. The formation of horizontal bands at 𝑅𝑒 ≈ 100 

in (a) and ≈ 80 in (b) correspond to the transition to Taylor Vortex Flow. The shifts in the 

axial position of the bands in (b) in the region 𝑅𝑒 = 120 − 250 is caused by the formation of a 

new vortex pair at 𝑧/𝑑  =   11.5, followed by the destruction of another vortex pair at 𝑧/𝑑  =

  9.5. 
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Figure 8: Radially averaged azimuthal vorticity over ten rotations of the inner cylinder for a 

Newtonian (a) and three shear-thinning (b-d) fluids at 𝑅𝑒 ≈ 1000. The wavy instability can be 

seen as an oscillation of the boundaries of various vortices, but is not uniform throughout the 

reactor. 

 

 

 

Figure 9: Variation in the non-dimensional mixing time for intra-vortex mixing (according to 

Equation 5) with Reynolds number for the four fluids (a). Mixing time decreases sharply at the 
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onset of Taylor Vortex Flow, after which shear-thinning tends to increase the mixing time. A 

close-up view of the trend lines in the plateau region for 𝑅𝑒 > 200 is shown in (b). 

  

Figure 10: Variation in the mean estimate of the mixing time (found for PIV measurements 

acquired for 𝑅𝑒 > 500, using Equation 5) as a function of flow index. Results are normalised 

with respect to the predicted mixing time for the Newtonian case. 

 


